| ; RUN: opt < %s -sroa -S | FileCheck %s |
| |
| target datalayout = "E-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-n8:16:32:64" |
| |
| define i8 @test1() { |
| ; We fully promote these to the i24 load or store size, resulting in just masks |
| ; and other operations that instcombine will fold, but no alloca. Note this is |
| ; the same as test12 in basictest.ll, but here we assert big-endian byte |
| ; ordering. |
| ; |
| ; CHECK-LABEL: @test1( |
| |
| entry: |
| %a = alloca [3 x i8] |
| %b = alloca [3 x i8] |
| ; CHECK-NOT: alloca |
| |
| %a0ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 0 |
| store i8 0, i8* %a0ptr |
| %a1ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 1 |
| store i8 0, i8* %a1ptr |
| %a2ptr = getelementptr [3 x i8], [3 x i8]* %a, i64 0, i32 2 |
| store i8 0, i8* %a2ptr |
| %aiptr = bitcast [3 x i8]* %a to i24* |
| %ai = load i24, i24* %aiptr |
| ; CHECK-NOT: store |
| ; CHECK-NOT: load |
| ; CHECK: %[[ext2:.*]] = zext i8 0 to i24 |
| ; CHECK-NEXT: %[[mask2:.*]] = and i24 undef, -256 |
| ; CHECK-NEXT: %[[insert2:.*]] = or i24 %[[mask2]], %[[ext2]] |
| ; CHECK-NEXT: %[[ext1:.*]] = zext i8 0 to i24 |
| ; CHECK-NEXT: %[[shift1:.*]] = shl i24 %[[ext1]], 8 |
| ; CHECK-NEXT: %[[mask1:.*]] = and i24 %[[insert2]], -65281 |
| ; CHECK-NEXT: %[[insert1:.*]] = or i24 %[[mask1]], %[[shift1]] |
| ; CHECK-NEXT: %[[ext0:.*]] = zext i8 0 to i24 |
| ; CHECK-NEXT: %[[shift0:.*]] = shl i24 %[[ext0]], 16 |
| ; CHECK-NEXT: %[[mask0:.*]] = and i24 %[[insert1]], 65535 |
| ; CHECK-NEXT: %[[insert0:.*]] = or i24 %[[mask0]], %[[shift0]] |
| |
| %biptr = bitcast [3 x i8]* %b to i24* |
| store i24 %ai, i24* %biptr |
| %b0ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 0 |
| %b0 = load i8, i8* %b0ptr |
| %b1ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 1 |
| %b1 = load i8, i8* %b1ptr |
| %b2ptr = getelementptr [3 x i8], [3 x i8]* %b, i64 0, i32 2 |
| %b2 = load i8, i8* %b2ptr |
| ; CHECK-NOT: store |
| ; CHECK-NOT: load |
| ; CHECK: %[[shift0:.*]] = lshr i24 %[[insert0]], 16 |
| ; CHECK-NEXT: %[[trunc0:.*]] = trunc i24 %[[shift0]] to i8 |
| ; CHECK-NEXT: %[[shift1:.*]] = lshr i24 %[[insert0]], 8 |
| ; CHECK-NEXT: %[[trunc1:.*]] = trunc i24 %[[shift1]] to i8 |
| ; CHECK-NEXT: %[[trunc2:.*]] = trunc i24 %[[insert0]] to i8 |
| |
| %bsum0 = add i8 %b0, %b1 |
| %bsum1 = add i8 %bsum0, %b2 |
| ret i8 %bsum1 |
| ; CHECK: %[[sum0:.*]] = add i8 %[[trunc0]], %[[trunc1]] |
| ; CHECK-NEXT: %[[sum1:.*]] = add i8 %[[sum0]], %[[trunc2]] |
| ; CHECK-NEXT: ret i8 %[[sum1]] |
| } |
| |
| define i64 @test2() { |
| ; Test for various mixed sizes of integer loads and stores all getting |
| ; promoted. |
| ; |
| ; CHECK-LABEL: @test2( |
| |
| entry: |
| %a = alloca [7 x i8] |
| ; CHECK-NOT: alloca |
| |
| %a0ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 0 |
| %a1ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 1 |
| %a2ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 2 |
| %a3ptr = getelementptr [7 x i8], [7 x i8]* %a, i64 0, i32 3 |
| |
| ; CHECK-NOT: store |
| ; CHECK-NOT: load |
| |
| %a0i16ptr = bitcast i8* %a0ptr to i16* |
| store i16 1, i16* %a0i16ptr |
| |
| store i8 1, i8* %a2ptr |
| |
| %a3i24ptr = bitcast i8* %a3ptr to i24* |
| store i24 1, i24* %a3i24ptr |
| |
| %a2i40ptr = bitcast i8* %a2ptr to i40* |
| store i40 1, i40* %a2i40ptr |
| |
| ; the alloca is splitted into multiple slices |
| ; Here, i8 1 is for %a[6] |
| ; CHECK: %[[ext1:.*]] = zext i8 1 to i40 |
| ; CHECK-NEXT: %[[mask1:.*]] = and i40 undef, -256 |
| ; CHECK-NEXT: %[[insert1:.*]] = or i40 %[[mask1]], %[[ext1]] |
| |
| ; Here, i24 0 is for %a[3] to %a[5] |
| ; CHECK-NEXT: %[[ext2:.*]] = zext i24 0 to i40 |
| ; CHECK-NEXT: %[[shift2:.*]] = shl i40 %[[ext2]], 8 |
| ; CHECK-NEXT: %[[mask2:.*]] = and i40 %[[insert1]], -4294967041 |
| ; CHECK-NEXT: %[[insert2:.*]] = or i40 %[[mask2]], %[[shift2]] |
| |
| ; Here, i8 0 is for %a[2] |
| ; CHECK-NEXT: %[[ext3:.*]] = zext i8 0 to i40 |
| ; CHECK-NEXT: %[[shift3:.*]] = shl i40 %[[ext3]], 32 |
| ; CHECK-NEXT: %[[mask3:.*]] = and i40 %[[insert2]], 4294967295 |
| ; CHECK-NEXT: %[[insert3:.*]] = or i40 %[[mask3]], %[[shift3]] |
| |
| ; CHECK-NEXT: %[[ext4:.*]] = zext i40 %[[insert3]] to i56 |
| ; CHECK-NEXT: %[[mask4:.*]] = and i56 undef, -1099511627776 |
| ; CHECK-NEXT: %[[insert4:.*]] = or i56 %[[mask4]], %[[ext4]] |
| |
| ; CHECK-NOT: store |
| ; CHECK-NOT: load |
| |
| %aiptr = bitcast [7 x i8]* %a to i56* |
| %ai = load i56, i56* %aiptr |
| %ret = zext i56 %ai to i64 |
| ret i64 %ret |
| ; Here, i16 1 is for %a[0] to %a[1] |
| ; CHECK-NEXT: %[[ext5:.*]] = zext i16 1 to i56 |
| ; CHECK-NEXT: %[[shift5:.*]] = shl i56 %[[ext5]], 40 |
| ; CHECK-NEXT: %[[mask5:.*]] = and i56 %[[insert4]], 1099511627775 |
| ; CHECK-NEXT: %[[insert5:.*]] = or i56 %[[mask5]], %[[shift5]] |
| ; CHECK-NEXT: %[[ret:.*]] = zext i56 %[[insert5]] to i64 |
| ; CHECK-NEXT: ret i64 %[[ret]] |
| } |
| |
| define i64 @PR14132(i1 %flag) { |
| ; CHECK-LABEL: @PR14132( |
| ; Here we form a PHI-node by promoting the pointer alloca first, and then in |
| ; order to promote the other two allocas, we speculate the load of the |
| ; now-phi-node-pointer. In doing so we end up loading a 64-bit value from an i8 |
| ; alloca. While this is a bit dubious, we were asserting on trying to |
| ; rewrite it. The trick is that the code using the value may carefully take |
| ; steps to only use the not-undef bits, and so we need to at least loosely |
| ; support this. This test is particularly interesting because how we handle |
| ; a load of an i64 from an i8 alloca is dependent on endianness. |
| entry: |
| %a = alloca i64, align 8 |
| %b = alloca i8, align 8 |
| %ptr = alloca i64*, align 8 |
| ; CHECK-NOT: alloca |
| |
| %ptr.cast = bitcast i64** %ptr to i8** |
| store i64 0, i64* %a |
| store i8 1, i8* %b |
| store i64* %a, i64** %ptr |
| br i1 %flag, label %if.then, label %if.end |
| |
| if.then: |
| store i8* %b, i8** %ptr.cast |
| br label %if.end |
| ; CHECK-NOT: store |
| ; CHECK: %[[ext:.*]] = zext i8 1 to i64 |
| ; CHECK: %[[shift:.*]] = shl i64 %[[ext]], 56 |
| |
| if.end: |
| %tmp = load i64*, i64** %ptr |
| %result = load i64, i64* %tmp |
| ; CHECK-NOT: load |
| ; CHECK: %[[result:.*]] = phi i64 [ %[[shift]], %if.then ], [ 0, %entry ] |
| |
| ret i64 %result |
| ; CHECK-NEXT: ret i64 %[[result]] |
| } |
| |
| declare void @f(i64 %x, i32 %y) |
| |
| define void @test3() { |
| ; CHECK-LABEL: @test3( |
| ; |
| ; This is a test that specifically exercises the big-endian lowering because it |
| ; ends up splitting a 64-bit integer into two smaller integers and has a number |
| ; of tricky aspects (the i24 type) that make that hard. Historically, SROA |
| ; would miscompile this by either dropping a most significant byte or least |
| ; significant byte due to shrinking the [4,8) slice to an i24, or by failing to |
| ; move the bytes around correctly. |
| ; |
| ; The magical number 34494054408 is used because it has bits set in various |
| ; bytes so that it is clear if those bytes fail to be propagated. |
| ; |
| ; If you're debugging this, rather than using the direct magical numbers, run |
| ; the IR through '-sroa -instcombine'. With '-instcombine' these will be |
| ; constant folded, and if the i64 doesn't round-trip correctly, you've found |
| ; a bug! |
| ; |
| entry: |
| %a = alloca { i32, i24 }, align 4 |
| ; CHECK-NOT: alloca |
| |
| %tmp0 = bitcast { i32, i24 }* %a to i64* |
| store i64 34494054408, i64* %tmp0 |
| %tmp1 = load i64, i64* %tmp0, align 4 |
| %tmp2 = bitcast { i32, i24 }* %a to i32* |
| %tmp3 = load i32, i32* %tmp2, align 4 |
| ; CHECK: %[[HI_EXT:.*]] = zext i32 134316040 to i64 |
| ; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296 |
| ; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]] |
| ; CHECK: %[[LO_EXT:.*]] = zext i32 8 to i64 |
| ; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32 |
| ; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295 |
| ; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]] |
| |
| call void @f(i64 %tmp1, i32 %tmp3) |
| ; CHECK: call void @f(i64 %[[LO_MERGE]], i32 8) |
| ret void |
| ; CHECK: ret void |
| } |
| |
| define void @test4() { |
| ; CHECK-LABEL: @test4 |
| ; |
| ; Much like @test3, this is specifically testing big-endian management of data. |
| ; Also similarly, it uses constants with particular bits set to help track |
| ; whether values are corrupted, and can be easily evaluated by running through |
| ; -instcombine to see that the i64 round-trips. |
| ; |
| entry: |
| %a = alloca { i32, i24 }, align 4 |
| %a2 = alloca i64, align 4 |
| ; CHECK-NOT: alloca |
| |
| store i64 34494054408, i64* %a2 |
| %tmp0 = bitcast { i32, i24 }* %a to i8* |
| %tmp1 = bitcast i64* %a2 to i8* |
| call void @llvm.memcpy.p0i8.p0i8.i64(i8* align 4 %tmp0, i8* align 4 %tmp1, i64 8, i1 false) |
| ; CHECK: %[[LO_SHR:.*]] = lshr i64 34494054408, 32 |
| ; CHECK: %[[LO_START:.*]] = trunc i64 %[[LO_SHR]] to i32 |
| ; CHECK: %[[HI_START:.*]] = trunc i64 34494054408 to i32 |
| |
| %tmp2 = bitcast { i32, i24 }* %a to i64* |
| %tmp3 = load i64, i64* %tmp2, align 4 |
| %tmp4 = bitcast { i32, i24 }* %a to i32* |
| %tmp5 = load i32, i32* %tmp4, align 4 |
| ; CHECK: %[[HI_EXT:.*]] = zext i32 %[[HI_START]] to i64 |
| ; CHECK: %[[HI_INPUT:.*]] = and i64 undef, -4294967296 |
| ; CHECK: %[[HI_MERGE:.*]] = or i64 %[[HI_INPUT]], %[[HI_EXT]] |
| ; CHECK: %[[LO_EXT:.*]] = zext i32 %[[LO_START]] to i64 |
| ; CHECK: %[[LO_SHL:.*]] = shl i64 %[[LO_EXT]], 32 |
| ; CHECK: %[[LO_INPUT:.*]] = and i64 %[[HI_MERGE]], 4294967295 |
| ; CHECK: %[[LO_MERGE:.*]] = or i64 %[[LO_INPUT]], %[[LO_SHL]] |
| |
| call void @f(i64 %tmp3, i32 %tmp5) |
| ; CHECK: call void @f(i64 %[[LO_MERGE]], i32 %[[LO_START]]) |
| ret void |
| ; CHECK: ret void |
| } |
| |
| declare void @llvm.memcpy.p0i8.p0i8.i64(i8*, i8*, i64, i1) |