| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -S | FileCheck %s |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=IND |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -instcombine -S | FileCheck %s --check-prefix=UNROLL |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=2 -S | FileCheck %s --check-prefix=UNROLL-NO-IC |
| ; RUN: opt < %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -enable-interleaved-mem-accesses -instcombine -S | FileCheck %s --check-prefix=INTERLEAVE |
| |
| target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128" |
| |
| ; Make sure that we can handle multiple integer induction variables. |
| ; |
| ; CHECK-LABEL: @multi_int_induction( |
| ; CHECK: vector.body: |
| ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK-NEXT: %vec.ind = phi <2 x i32> [ <i32 190, i32 191>, %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; CHECK: [[TMP3:%.*]] = add i64 %index, 0 |
| ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %A, i64 [[TMP3]] |
| ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 |
| ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* |
| ; CHECK-NEXT: store <2 x i32> %vec.ind, <2 x i32>* [[TMP6]], align 4 |
| ; CHECK: %index.next = add i64 %index, 2 |
| ; CHECK-NEXT: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body |
| define void @multi_int_induction(i32* %A, i32 %N) { |
| for.body.lr.ph: |
| br label %for.body |
| |
| for.body: |
| %indvars.iv = phi i64 [ 0, %for.body.lr.ph ], [ %indvars.iv.next, %for.body ] |
| %count.09 = phi i32 [ 190, %for.body.lr.ph ], [ %inc, %for.body ] |
| %arrayidx2 = getelementptr inbounds i32, i32* %A, i64 %indvars.iv |
| store i32 %count.09, i32* %arrayidx2, align 4 |
| %inc = add nsw i32 %count.09, 1 |
| %indvars.iv.next = add i64 %indvars.iv, 1 |
| %lftr.wideiv = trunc i64 %indvars.iv.next to i32 |
| %exitcond = icmp ne i32 %lftr.wideiv, %N |
| br i1 %exitcond, label %for.body, label %for.end |
| |
| for.end: |
| ret void |
| } |
| |
| ; Make sure we remove unneeded vectorization of induction variables. |
| ; In order for instcombine to cleanup the vectorized induction variables that we |
| ; create in the loop vectorizer we need to perform some form of redundancy |
| ; elimination to get rid of multiple uses. |
| |
| ; IND-LABEL: scalar_use |
| |
| ; IND: br label %vector.body |
| ; IND: vector.body: |
| ; Vectorized induction variable. |
| ; IND-NOT: insertelement <2 x i64> |
| ; IND-NOT: shufflevector <2 x i64> |
| ; IND: br {{.*}}, label %vector.body |
| |
| define void @scalar_use(float* %a, float %b, i64 %offset, i64 %offset2, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ] |
| %ind.sum = add i64 %iv, %offset |
| %arr.idx = getelementptr inbounds float, float* %a, i64 %ind.sum |
| %l1 = load float, float* %arr.idx, align 4 |
| %ind.sum2 = add i64 %iv, %offset2 |
| %arr.idx2 = getelementptr inbounds float, float* %a, i64 %ind.sum2 |
| %l2 = load float, float* %arr.idx2, align 4 |
| %m = fmul fast float %b, %l2 |
| %ad = fadd fast float %l1, %m |
| store float %ad, float* %arr.idx, align 4 |
| %iv.next = add nuw nsw i64 %iv, 1 |
| %exitcond = icmp eq i64 %iv.next, %n |
| br i1 %exitcond, label %loopexit, label %for.body |
| |
| loopexit: |
| ret void |
| } |
| |
| ; Make sure we don't create a vector induction phi node that is unused. |
| ; Scalarize the step vectors instead. |
| ; |
| ; for (int i = 0; i < n; ++i) |
| ; sum += a[i]; |
| ; |
| ; CHECK-LABEL: @scalarize_induction_variable_01( |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: %[[i0:.+]] = add i64 %index, 0 |
| ; CHECK: getelementptr inbounds i64, i64* %a, i64 %[[i0]] |
| ; |
| ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_01( |
| ; UNROLL-NO-IC: vector.body: |
| ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %index, 0 |
| ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %index, 2 |
| ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i0]] |
| ; UNROLL-NO-IC: getelementptr inbounds i64, i64* %a, i64 %[[i2]] |
| ; |
| ; IND-LABEL: @scalarize_induction_variable_01( |
| ; IND: vector.body: |
| ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND-NOT: add i64 {{.*}}, 2 |
| ; IND: getelementptr inbounds i64, i64* %a, i64 %index |
| ; |
| ; UNROLL-LABEL: @scalarize_induction_variable_01( |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL-NOT: add i64 {{.*}}, 4 |
| ; UNROLL: %[[g1:.+]] = getelementptr inbounds i64, i64* %a, i64 %index |
| ; UNROLL: getelementptr inbounds i64, i64* %[[g1]], i64 2 |
| |
| define i64 @scalarize_induction_variable_01(i64 *%a, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] |
| %sum = phi i64 [ %2, %for.body ], [ 0, %entry ] |
| %0 = getelementptr inbounds i64, i64* %a, i64 %i |
| %1 = load i64, i64* %0, align 8 |
| %2 = add i64 %1, %sum |
| %i.next = add nuw nsw i64 %i, 1 |
| %cond = icmp slt i64 %i.next, %n |
| br i1 %cond, label %for.body, label %for.end |
| |
| for.end: |
| %3 = phi i64 [ %2, %for.body ] |
| ret i64 %3 |
| } |
| |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We |
| ; can't easily simplify vectorized step vectors. |
| ; |
| ; float s = 0; |
| ; for (int i ; 0; i < n; i += 8) |
| ; s += (a[i] + b[i] + 1.0f); |
| ; |
| ; CHECK-LABEL: @scalarize_induction_variable_02( |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: %offset.idx = mul i64 %index, 8 |
| ; CHECK: %[[i0:.+]] = add i64 %offset.idx, 0 |
| ; CHECK: %[[i1:.+]] = add i64 %offset.idx, 8 |
| ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i0]] |
| ; CHECK: getelementptr inbounds float, float* %a, i64 %[[i1]] |
| ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i0]] |
| ; CHECK: getelementptr inbounds float, float* %b, i64 %[[i1]] |
| ; |
| ; UNROLL-NO-IC-LABEL: @scalarize_induction_variable_02( |
| ; UNROLL-NO-IC: vector.body: |
| ; UNROLL-NO-IC: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL-NO-IC: %offset.idx = mul i64 %index, 8 |
| ; UNROLL-NO-IC: %[[i0:.+]] = add i64 %offset.idx, 0 |
| ; UNROLL-NO-IC: %[[i1:.+]] = add i64 %offset.idx, 8 |
| ; UNROLL-NO-IC: %[[i2:.+]] = add i64 %offset.idx, 16 |
| ; UNROLL-NO-IC: %[[i3:.+]] = add i64 %offset.idx, 24 |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i0]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i1]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i2]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %a, i64 %[[i3]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i0]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i1]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i2]] |
| ; UNROLL-NO-IC: getelementptr inbounds float, float* %b, i64 %[[i3]] |
| ; |
| ; IND-LABEL: @scalarize_induction_variable_02( |
| ; IND: vector.body: |
| ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND: %[[i0:.+]] = shl i64 %index, 3 |
| ; IND: %[[i1:.+]] = or i64 %[[i0]], 8 |
| ; IND: getelementptr inbounds float, float* %a, i64 %[[i0]] |
| ; IND: getelementptr inbounds float, float* %a, i64 %[[i1]] |
| ; |
| ; UNROLL-LABEL: @scalarize_induction_variable_02( |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL: %[[i0:.+]] = shl i64 %index, 3 |
| ; UNROLL: %[[i1:.+]] = or i64 %[[i0]], 8 |
| ; UNROLL: %[[i2:.+]] = or i64 %[[i0]], 16 |
| ; UNROLL: %[[i3:.+]] = or i64 %[[i0]], 24 |
| ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i0]] |
| ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i1]] |
| ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i2]] |
| ; UNROLL: getelementptr inbounds float, float* %a, i64 %[[i3]] |
| |
| define float @scalarize_induction_variable_02(float* %a, float* %b, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ] |
| %s = phi float [ 0.0, %entry ], [ %6, %for.body ] |
| %0 = getelementptr inbounds float, float* %a, i64 %i |
| %1 = load float, float* %0, align 4 |
| %2 = getelementptr inbounds float, float* %b, i64 %i |
| %3 = load float, float* %2, align 4 |
| %4 = fadd fast float %s, 1.0 |
| %5 = fadd fast float %4, %1 |
| %6 = fadd fast float %5, %3 |
| %i.next = add nuw nsw i64 %i, 8 |
| %cond = icmp slt i64 %i.next, %n |
| br i1 %cond, label %for.body, label %for.end |
| |
| for.end: |
| %s.lcssa = phi float [ %6, %for.body ] |
| ret float %s.lcssa |
| } |
| |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We |
| ; can't easily simplify vectorized step vectors. (Interleaved accesses.) |
| ; |
| ; for (int i = 0; i < n; ++i) |
| ; a[i].f ^= y; |
| ; |
| ; INTERLEAVE-LABEL: @scalarize_induction_variable_03( |
| ; INTERLEAVE: vector.body: |
| ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 |
| ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 |
| ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 |
| ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 |
| ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 |
| ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 |
| ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 |
| |
| %pair.i32 = type { i32, i32 } |
| define void @scalarize_induction_variable_03(%pair.i32 *%p, i32 %y, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] |
| %f = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 |
| %0 = load i32, i32* %f, align 8 |
| %1 = xor i32 %0, %y |
| store i32 %1, i32* %f, align 8 |
| %i.next = add nuw nsw i64 %i, 1 |
| %cond = icmp slt i64 %i.next, %n |
| br i1 %cond, label %for.body, label %for.end |
| |
| for.end: |
| ret void |
| } |
| |
| ; Make sure we scalarize the step vectors used for the pointer arithmetic. We |
| ; can't easily simplify vectorized step vectors. (Interleaved accesses.) |
| ; |
| ; for (int i = 0; i < n; ++i) |
| ; p[i].f = a[i * 4] |
| ; |
| ; INTERLEAVE-LABEL: @scalarize_induction_variable_04( |
| ; INTERLEAVE: vector.body: |
| ; INTERLEAVE: %[[i0:.+]] = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; INTERLEAVE: %[[i1:.+]] = or i64 %[[i0]], 1 |
| ; INTERLEAVE: %[[i2:.+]] = or i64 %[[i0]], 2 |
| ; INTERLEAVE: %[[i3:.+]] = or i64 %[[i0]], 3 |
| ; INTERLEAVE: %[[i4:.+]] = or i64 %[[i0]], 4 |
| ; INTERLEAVE: %[[i5:.+]] = or i64 %[[i0]], 5 |
| ; INTERLEAVE: %[[i6:.+]] = or i64 %[[i0]], 6 |
| ; INTERLEAVE: %[[i7:.+]] = or i64 %[[i0]], 7 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i0]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i1]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i2]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i3]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i4]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i5]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i6]], i32 1 |
| ; INTERLEAVE: getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %[[i7]], i32 1 |
| |
| define void @scalarize_induction_variable_04(i32* %a, %pair.i32* %p, i32 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ %i.next, %for.body ], [ 0, %entry] |
| %0 = shl nsw i64 %i, 2 |
| %1 = getelementptr inbounds i32, i32* %a, i64 %0 |
| %2 = load i32, i32* %1, align 1 |
| %3 = getelementptr inbounds %pair.i32, %pair.i32* %p, i64 %i, i32 1 |
| store i32 %2, i32* %3, align 1 |
| %i.next = add nuw nsw i64 %i, 1 |
| %4 = trunc i64 %i.next to i32 |
| %cond = icmp eq i32 %4, %n |
| br i1 %cond, label %for.end, label %for.body |
| |
| for.end: |
| ret void |
| } |
| |
| ; PR30542. Ensure we generate all the scalar steps for the induction variable. |
| ; The scalar induction variable is used by a getelementptr instruction |
| ; (uniform), and a udiv (non-uniform). |
| ; |
| ; int sum = 0; |
| ; for (int i = 0; i < n; ++i) { |
| ; int x = a[i]; |
| ; if (c) |
| ; x /= i; |
| ; sum += x; |
| ; } |
| ; |
| ; CHECK-LABEL: @scalarize_induction_variable_05( |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] |
| ; CHECK: %[[I0:.+]] = add i32 %index, 0 |
| ; CHECK: getelementptr inbounds i32, i32* %a, i32 %[[I0]] |
| ; CHECK: pred.udiv.if: |
| ; CHECK: udiv i32 {{.*}}, %[[I0]] |
| ; CHECK: pred.udiv.if{{[0-9]+}}: |
| ; CHECK: %[[I1:.+]] = add i32 %index, 1 |
| ; CHECK: udiv i32 {{.*}}, %[[I1]] |
| ; |
| ; UNROLL-NO_IC-LABEL: @scalarize_induction_variable_05( |
| ; UNROLL-NO-IC: vector.body: |
| ; UNROLL-NO-IC: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] |
| ; UNROLL-NO-IC: %[[I0:.+]] = add i32 %index, 0 |
| ; UNROLL-NO-IC: %[[I2:.+]] = add i32 %index, 2 |
| ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I0]] |
| ; UNROLL-NO-IC: getelementptr inbounds i32, i32* %a, i32 %[[I2]] |
| ; UNROLL-NO-IC: pred.udiv.if: |
| ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I0]] |
| ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL-NO-IC: %[[I1:.+]] = add i32 %index, 1 |
| ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I1]] |
| ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I2]] |
| ; UNROLL-NO-IC: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL-NO-IC: %[[I3:.+]] = add i32 %index, 3 |
| ; UNROLL-NO-IC: udiv i32 {{.*}}, %[[I3]] |
| ; |
| ; IND-LABEL: @scalarize_induction_variable_05( |
| ; IND: vector.body: |
| ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] |
| ; IND: %[[E0:.+]] = sext i32 %index to i64 |
| ; IND: getelementptr inbounds i32, i32* %a, i64 %[[E0]] |
| ; IND: pred.udiv.if: |
| ; IND: udiv i32 {{.*}}, %index |
| ; IND: pred.udiv.if{{[0-9]+}}: |
| ; IND: %[[I1:.+]] = or i32 %index, 1 |
| ; IND: udiv i32 {{.*}}, %[[I1]] |
| ; |
| ; UNROLL-LABEL: @scalarize_induction_variable_05( |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %pred.udiv.continue{{[0-9]+}} ] |
| ; UNROLL: %[[I2:.+]] = or i32 %index, 2 |
| ; UNROLL: %[[E0:.+]] = sext i32 %index to i64 |
| ; UNROLL: %[[G0:.+]] = getelementptr inbounds i32, i32* %a, i64 %[[E0]] |
| ; UNROLL: getelementptr inbounds i32, i32* %[[G0]], i64 2 |
| ; UNROLL: pred.udiv.if: |
| ; UNROLL: udiv i32 {{.*}}, %index |
| ; UNROLL: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL: %[[I1:.+]] = or i32 %index, 1 |
| ; UNROLL: udiv i32 {{.*}}, %[[I1]] |
| ; UNROLL: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL: udiv i32 {{.*}}, %[[I2]] |
| ; UNROLL: pred.udiv.if{{[0-9]+}}: |
| ; UNROLL: %[[I3:.+]] = or i32 %index, 3 |
| ; UNROLL: udiv i32 {{.*}}, %[[I3]] |
| |
| define i32 @scalarize_induction_variable_05(i32* %a, i32 %x, i1 %c, i32 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i32 [ 0, %entry ], [ %i.next, %if.end ] |
| %sum = phi i32 [ 0, %entry ], [ %tmp4, %if.end ] |
| %tmp0 = getelementptr inbounds i32, i32* %a, i32 %i |
| %tmp1 = load i32, i32* %tmp0, align 4 |
| br i1 %c, label %if.then, label %if.end |
| |
| if.then: |
| %tmp2 = udiv i32 %tmp1, %i |
| br label %if.end |
| |
| if.end: |
| %tmp3 = phi i32 [ %tmp2, %if.then ], [ %tmp1, %for.body ] |
| %tmp4 = add i32 %tmp3, %sum |
| %i.next = add nuw nsw i32 %i, 1 |
| %cond = icmp slt i32 %i.next, %n |
| br i1 %cond, label %for.body, label %for.end |
| |
| for.end: |
| %tmp5 = phi i32 [ %tmp4, %if.end ] |
| ret i32 %tmp5 |
| } |
| |
| ; Ensure we generate both a vector and a scalar induction variable. In this |
| ; test, the induction variable is used by an instruction that will be |
| ; vectorized (trunc) as well as an instruction that will remain in scalar form |
| ; (gepelementptr). |
| ; |
| ; CHECK-LABEL: @iv_vector_and_scalar_users( |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: %vec.ind = phi <2 x i64> [ <i64 0, i64 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; CHECK: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] |
| ; CHECK: %[[i0:.+]] = add i64 %index, 0 |
| ; CHECK: %[[i1:.+]] = add i64 %index, 1 |
| ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i0]], i32 1 |
| ; CHECK: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 |
| ; CHECK: %index.next = add i64 %index, 2 |
| ; CHECK: %vec.ind.next = add <2 x i64> %vec.ind, <i64 2, i64 2> |
| ; CHECK: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> |
| ; |
| ; IND-LABEL: @iv_vector_and_scalar_users( |
| ; IND: vector.body: |
| ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND: %vec.ind1 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next2, %vector.body ] |
| ; IND: %[[i1:.+]] = or i64 %index, 1 |
| ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 |
| ; IND: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 |
| ; IND: %index.next = add i64 %index, 2 |
| ; IND: %vec.ind.next2 = add <2 x i32> %vec.ind1, <i32 2, i32 2> |
| ; |
| ; UNROLL-LABEL: @iv_vector_and_scalar_users( |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL: %vec.ind2 = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next5, %vector.body ] |
| ; UNROLL: %[[i1:.+]] = or i64 %index, 1 |
| ; UNROLL: %[[i2:.+]] = or i64 %index, 2 |
| ; UNROLL: %[[i3:.+]] = or i64 %index, 3 |
| ; UNROLL: %step.add3 = add <2 x i32> %vec.ind2, <i32 2, i32 2> |
| ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %index, i32 1 |
| ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i1]], i32 1 |
| ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i2]], i32 1 |
| ; UNROLL: getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %[[i3]], i32 1 |
| ; UNROLL: %index.next = add i64 %index, 4 |
| ; UNROLL: %vec.ind.next5 = add <2 x i32> %vec.ind2, <i32 4, i32 4> |
| |
| %pair.i16 = type { i16, i16 } |
| define void @iv_vector_and_scalar_users(%pair.i16* %p, i32 %a, i32 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] |
| %0 = trunc i64 %i to i32 |
| %1 = add i32 %a, %0 |
| %2 = trunc i32 %1 to i16 |
| %3 = getelementptr inbounds %pair.i16, %pair.i16* %p, i64 %i, i32 1 |
| store i16 %2, i16* %3, align 2 |
| %i.next = add nuw nsw i64 %i, 1 |
| %4 = trunc i64 %i.next to i32 |
| %cond = icmp eq i32 %4, %n |
| br i1 %cond, label %for.end, label %for.body |
| |
| for.end: |
| ret void |
| } |
| |
| ; Make sure that the loop exit count computation does not overflow for i8 and |
| ; i16. The exit count of these loops is i8/i16 max + 1. If we don't cast the |
| ; induction variable to a bigger type the exit count computation will overflow |
| ; to 0. |
| ; PR17532 |
| |
| ; CHECK-LABEL: i8_loop |
| ; CHECK: icmp eq i32 {{.*}}, 256 |
| define i32 @i8_loop() nounwind readnone ssp uwtable { |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i8 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i8 %b.0, -1 |
| %4 = icmp eq i8 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; CHECK-LABEL: i16_loop |
| ; CHECK: icmp eq i32 {{.*}}, 65536 |
| |
| define i32 @i16_loop() nounwind readnone ssp uwtable { |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i16 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i16 %b.0, -1 |
| %4 = icmp eq i16 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; This loop has a backedge taken count of i32_max. We need to check for this |
| ; condition and branch directly to the scalar loop. |
| |
| ; CHECK-LABEL: max_i32_backedgetaken |
| ; CHECK: br i1 true, label %scalar.ph, label %vector.ph |
| |
| ; CHECK: middle.block: |
| ; CHECK: %[[v9:.+]] = extractelement <2 x i32> %bin.rdx, i32 0 |
| ; CHECK: scalar.ph: |
| ; CHECK: %bc.resume.val = phi i32 [ 0, %middle.block ], [ 0, %[[v0:.+]] ] |
| ; CHECK: %bc.merge.rdx = phi i32 [ 1, %[[v0:.+]] ], [ %[[v9]], %middle.block ] |
| |
| define i32 @max_i32_backedgetaken() nounwind readnone ssp uwtable { |
| |
| br label %1 |
| |
| ; <label>:1 ; preds = %1, %0 |
| %a.0 = phi i32 [ 1, %0 ], [ %2, %1 ] |
| %b.0 = phi i32 [ 0, %0 ], [ %3, %1 ] |
| %2 = and i32 %a.0, 4 |
| %3 = add i32 %b.0, -1 |
| %4 = icmp eq i32 %3, 0 |
| br i1 %4, label %5, label %1 |
| |
| ; <label>:5 ; preds = %1 |
| ret i32 %2 |
| } |
| |
| ; When generating the overflow check we must sure that the induction start value |
| ; is defined before the branch to the scalar preheader. |
| |
| ; CHECK-LABEL: testoverflowcheck |
| ; CHECK: entry |
| ; CHECK: %[[LOAD:.*]] = load i8 |
| ; CHECK: br |
| |
| ; CHECK: scalar.ph |
| ; CHECK: phi i8 [ %{{.*}}, %middle.block ], [ %[[LOAD]], %entry ] |
| |
| @e = global i8 1, align 1 |
| @d = common global i32 0, align 4 |
| @c = common global i32 0, align 4 |
| define i32 @testoverflowcheck() { |
| entry: |
| %.pr.i = load i8, i8* @e, align 1 |
| %0 = load i32, i32* @d, align 4 |
| %c.promoted.i = load i32, i32* @c, align 4 |
| br label %cond.end.i |
| |
| cond.end.i: |
| %inc4.i = phi i8 [ %.pr.i, %entry ], [ %inc.i, %cond.end.i ] |
| %and3.i = phi i32 [ %c.promoted.i, %entry ], [ %and.i, %cond.end.i ] |
| %and.i = and i32 %0, %and3.i |
| %inc.i = add i8 %inc4.i, 1 |
| %tobool.i = icmp eq i8 %inc.i, 0 |
| br i1 %tobool.i, label %loopexit, label %cond.end.i |
| |
| loopexit: |
| ret i32 %and.i |
| } |
| |
| ; The SCEV expression of %sphi is (zext i8 {%t,+,1}<%loop> to i32) |
| ; In order to recognize %sphi as an induction PHI and vectorize this loop, |
| ; we need to convert the SCEV expression into an AddRecExpr. |
| ; The expression gets converted to {zext i8 %t to i32,+,1}. |
| |
| ; CHECK-LABEL: wrappingindvars1 |
| ; CHECK-LABEL: vector.scevcheck |
| ; CHECK-LABEL: vector.ph |
| ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 1> |
| ; CHECK-LABEL: vector.body |
| ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] |
| ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 2, i32 2> |
| define void @wrappingindvars1(i8 %t, i32 %len, i32 *%A) { |
| entry: |
| %st = zext i8 %t to i16 |
| %ext = zext i8 %t to i32 |
| %ecmp = icmp ult i16 %st, 42 |
| br i1 %ecmp, label %loop, label %exit |
| |
| loop: |
| |
| %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] |
| %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] |
| %sphi = phi i32 [ %ext, %entry ], [%idx.inc.ext, %loop] |
| |
| %ptr = getelementptr inbounds i32, i32* %A, i8 %idx |
| store i32 %sphi, i32* %ptr |
| |
| %idx.inc = add i8 %idx, 1 |
| %idx.inc.ext = zext i8 %idx.inc to i32 |
| %idx.b.inc = add nuw nsw i32 %idx.b, 1 |
| |
| %c = icmp ult i32 %idx.b, %len |
| br i1 %c, label %loop, label %exit |
| |
| exit: |
| ret void |
| } |
| |
| ; The SCEV expression of %sphi is (4 * (zext i8 {%t,+,1}<%loop> to i32)) |
| ; In order to recognize %sphi as an induction PHI and vectorize this loop, |
| ; we need to convert the SCEV expression into an AddRecExpr. |
| ; The expression gets converted to ({4 * (zext %t to i32),+,4}). |
| ; CHECK-LABEL: wrappingindvars2 |
| ; CHECK-LABEL: vector.scevcheck |
| ; CHECK-LABEL: vector.ph |
| ; CHECK: %[[START:.*]] = add <2 x i32> %{{.*}}, <i32 0, i32 4> |
| ; CHECK-LABEL: vector.body |
| ; CHECK: %[[PHI:.*]] = phi <2 x i32> [ %[[START]], %vector.ph ], [ %[[STEP:.*]], %vector.body ] |
| ; CHECK: %[[STEP]] = add <2 x i32> %[[PHI]], <i32 8, i32 8> |
| define void @wrappingindvars2(i8 %t, i32 %len, i32 *%A) { |
| |
| entry: |
| %st = zext i8 %t to i16 |
| %ext = zext i8 %t to i32 |
| %ext.mul = mul i32 %ext, 4 |
| |
| %ecmp = icmp ult i16 %st, 42 |
| br i1 %ecmp, label %loop, label %exit |
| |
| loop: |
| |
| %idx = phi i8 [ %t, %entry ], [ %idx.inc, %loop ] |
| %sphi = phi i32 [ %ext.mul, %entry ], [%mul, %loop] |
| %idx.b = phi i32 [ 0, %entry ], [ %idx.b.inc, %loop ] |
| |
| %ptr = getelementptr inbounds i32, i32* %A, i8 %idx |
| store i32 %sphi, i32* %ptr |
| |
| %idx.inc = add i8 %idx, 1 |
| %idx.inc.ext = zext i8 %idx.inc to i32 |
| %mul = mul i32 %idx.inc.ext, 4 |
| %idx.b.inc = add nuw nsw i32 %idx.b, 1 |
| |
| %c = icmp ult i32 %idx.b, %len |
| br i1 %c, label %loop, label %exit |
| |
| exit: |
| ret void |
| } |
| |
| ; Check that we generate vectorized IVs in the pre-header |
| ; instead of widening the scalar IV inside the loop, when |
| ; we know how to do that. |
| ; IND-LABEL: veciv |
| ; IND: vector.body: |
| ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; IND: %index.next = add i32 %index, 2 |
| ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; IND: %[[CMP:.*]] = icmp eq i32 %index.next |
| ; IND: br i1 %[[CMP]] |
| ; UNROLL-LABEL: veciv |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL: %vec.ind = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; UNROLL: %index.next = add i32 %index, 4 |
| ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> |
| ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next |
| ; UNROLL: br i1 %[[CMP]] |
| define void @veciv(i32* nocapture %a, i32 %start, i32 %k) { |
| for.body.preheader: |
| br label %for.body |
| |
| for.body: |
| %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] |
| %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv |
| store i32 %indvars.iv, i32* %arrayidx, align 4 |
| %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 |
| %exitcond = icmp eq i32 %indvars.iv.next, %k |
| br i1 %exitcond, label %exit, label %for.body |
| |
| exit: |
| ret void |
| } |
| |
| ; IND-LABEL: trunciv |
| ; IND: vector.body: |
| ; IND: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND: %[[VECIND:.*]] = phi <2 x i32> [ <i32 0, i32 1>, %vector.ph ], [ %[[STEPADD:.*]], %vector.body ] |
| ; IND: %index.next = add i64 %index, 2 |
| ; IND: %[[STEPADD]] = add <2 x i32> %[[VECIND]], <i32 2, i32 2> |
| ; IND: %[[CMP:.*]] = icmp eq i64 %index.next |
| ; IND: br i1 %[[CMP]] |
| define void @trunciv(i32* nocapture %a, i32 %start, i64 %k) { |
| for.body.preheader: |
| br label %for.body |
| |
| for.body: |
| %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ] |
| %trunc.iv = trunc i64 %indvars.iv to i32 |
| %arrayidx = getelementptr inbounds i32, i32* %a, i32 %trunc.iv |
| store i32 %trunc.iv, i32* %arrayidx, align 4 |
| %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 |
| %exitcond = icmp eq i64 %indvars.iv.next, %k |
| br i1 %exitcond, label %exit, label %for.body |
| |
| exit: |
| ret void |
| } |
| |
| ; CHECK-LABEL: @nonprimary( |
| ; CHECK: vector.ph: |
| ; CHECK: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 |
| ; CHECK: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer |
| ; CHECK: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> |
| ; CHECK: vector.body: |
| ; CHECK: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; CHECK: %offset.idx = add i32 %i, %index |
| ; CHECK: %[[A1:.*]] = add i32 %offset.idx, 0 |
| ; CHECK: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i32 %[[A1]] |
| ; CHECK: %[[G3:.*]] = getelementptr inbounds i32, i32* %[[G1]], i32 0 |
| ; CHECK: %[[B1:.*]] = bitcast i32* %[[G3]] to <2 x i32>* |
| ; CHECK: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] |
| ; CHECK: %index.next = add i32 %index, 2 |
| ; CHECK: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; CHECK: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec |
| ; CHECK: br i1 %[[CMP]] |
| ; |
| ; IND-LABEL: @nonprimary( |
| ; IND: vector.ph: |
| ; IND: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 |
| ; IND: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer |
| ; IND: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> |
| ; IND: vector.body: |
| ; IND: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; IND: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; IND: %[[A1:.*]] = add i32 %index, %i |
| ; IND: %[[S1:.*]] = sext i32 %[[A1]] to i64 |
| ; IND: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] |
| ; IND: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* |
| ; IND: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] |
| ; IND: %index.next = add i32 %index, 2 |
| ; IND: %vec.ind.next = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; IND: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec |
| ; IND: br i1 %[[CMP]] |
| ; |
| ; UNROLL-LABEL: @nonprimary( |
| ; UNROLL: vector.ph: |
| ; UNROLL: %[[INSERT:.*]] = insertelement <2 x i32> undef, i32 %i, i32 0 |
| ; UNROLL: %[[SPLAT:.*]] = shufflevector <2 x i32> %[[INSERT]], <2 x i32> undef, <2 x i32> zeroinitializer |
| ; UNROLL: %[[START:.*]] = add <2 x i32> %[[SPLAT]], <i32 0, i32 1> |
| ; UNROLL: vector.body: |
| ; UNROLL: %index = phi i32 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; UNROLL: %vec.ind = phi <2 x i32> [ %[[START]], %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; UNROLL: %step.add = add <2 x i32> %vec.ind, <i32 2, i32 2> |
| ; UNROLL: %[[A1:.*]] = add i32 %index, %i |
| ; UNROLL: %[[S1:.*]] = sext i32 %[[A1]] to i64 |
| ; UNROLL: %[[G1:.*]] = getelementptr inbounds i32, i32* %a, i64 %[[S1]] |
| ; UNROLL: %[[B1:.*]] = bitcast i32* %[[G1]] to <2 x i32>* |
| ; UNROLL: store <2 x i32> %vec.ind, <2 x i32>* %[[B1]] |
| ; UNROLL: %[[G2:.*]] = getelementptr inbounds i32, i32* %[[G1]], i64 2 |
| ; UNROLL: %[[B2:.*]] = bitcast i32* %[[G2]] to <2 x i32>* |
| ; UNROLL: store <2 x i32> %step.add, <2 x i32>* %[[B2]] |
| ; UNROLL: %index.next = add i32 %index, 4 |
| ; UNROLL: %vec.ind.next = add <2 x i32> %vec.ind, <i32 4, i32 4> |
| ; UNROLL: %[[CMP:.*]] = icmp eq i32 %index.next, %n.vec |
| ; UNROLL: br i1 %[[CMP]] |
| define void @nonprimary(i32* nocapture %a, i32 %start, i32 %i, i32 %k) { |
| for.body.preheader: |
| br label %for.body |
| |
| for.body: |
| %indvars.iv = phi i32 [ %indvars.iv.next, %for.body ], [ %i, %for.body.preheader ] |
| %arrayidx = getelementptr inbounds i32, i32* %a, i32 %indvars.iv |
| store i32 %indvars.iv, i32* %arrayidx, align 4 |
| %indvars.iv.next = add nuw nsw i32 %indvars.iv, 1 |
| %exitcond = icmp eq i32 %indvars.iv.next, %k |
| br i1 %exitcond, label %exit, label %for.body |
| |
| exit: |
| ret void |
| } |
| |
| ; CHECK-LABEL: @non_primary_iv_trunc( |
| ; CHECK: vector.body: |
| ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK: [[VEC_IND:%.*]] = phi <2 x i32> [ <i32 0, i32 2>, %vector.ph ], [ [[VEC_IND_NEXT:%.*]], %vector.body ] |
| ; CHECK: [[TMP3:%.*]] = add i64 %index, 0 |
| ; CHECK-NEXT: [[TMP4:%.*]] = getelementptr inbounds i32, i32* %a, i64 [[TMP3]] |
| ; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, i32* [[TMP4]], i32 0 |
| ; CHECK-NEXT: [[TMP6:%.*]] = bitcast i32* [[TMP5]] to <2 x i32>* |
| ; CHECK-NEXT: store <2 x i32> [[VEC_IND]], <2 x i32>* [[TMP6]], align 4 |
| ; CHECK-NEXT: %index.next = add i64 %index, 2 |
| ; CHECK: [[VEC_IND_NEXT]] = add <2 x i32> [[VEC_IND]], <i32 4, i32 4> |
| ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body |
| define void @non_primary_iv_trunc(i32* %a, i64 %n) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i64 [ %i.next, %for.body ], [ 0, %entry ] |
| %j = phi i64 [ %j.next, %for.body ], [ 0, %entry ] |
| %tmp0 = getelementptr inbounds i32, i32* %a, i64 %i |
| %tmp1 = trunc i64 %j to i32 |
| store i32 %tmp1, i32* %tmp0, align 4 |
| %i.next = add nuw nsw i64 %i, 1 |
| %j.next = add nuw nsw i64 %j, 2 |
| %cond = icmp slt i64 %i.next, %n |
| br i1 %cond, label %for.body, label %for.end |
| |
| for.end: |
| ret void |
| } |
| |
| ; PR32419. Ensure we transform truncated non-primary induction variables. In |
| ; the test case below we replace %tmp1 with a new induction variable. Because |
| ; the truncated value is non-primary, we must compute an offset from the |
| ; primary induction variable. |
| ; |
| ; CHECK-LABEL: @PR32419( |
| ; CHECK: vector.body: |
| ; CHECK-NEXT: [[INDEX:%.*]] = phi i32 [ 0, %vector.ph ], [ [[INDEX_NEXT:%.*]], %[[PRED_UREM_CONTINUE4:.*]] ] |
| ; CHECK: [[OFFSET_IDX:%.*]] = add i32 -20, [[INDEX]] |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[OFFSET_IDX]] to i16 |
| ; CHECK: [[TMP8:%.*]] = add i16 [[TMP1]], 0 |
| ; CHECK-NEXT: [[TMP9:%.*]] = urem i16 %b, [[TMP8]] |
| ; CHECK: [[TMP15:%.*]] = add i16 [[TMP1]], 1 |
| ; CHECK-NEXT: [[TMP16:%.*]] = urem i16 %b, [[TMP15]] |
| ; CHECK: [[PRED_UREM_CONTINUE4]]: |
| ; CHECK: br i1 {{.*}}, label %middle.block, label %vector.body |
| ; |
| define i32 @PR32419(i32 %a, i16 %b) { |
| entry: |
| br label %for.body |
| |
| for.body: |
| %i = phi i32 [ -20, %entry ], [ %i.next, %for.inc ] |
| %tmp0 = phi i32 [ %a, %entry ], [ %tmp6, %for.inc ] |
| %tmp1 = trunc i32 %i to i16 |
| %tmp2 = icmp eq i16 %tmp1, 0 |
| br i1 %tmp2, label %for.inc, label %for.cond |
| |
| for.cond: |
| %tmp3 = urem i16 %b, %tmp1 |
| br label %for.inc |
| |
| for.inc: |
| %tmp4 = phi i16 [ %tmp3, %for.cond ], [ 0, %for.body ] |
| %tmp5 = sext i16 %tmp4 to i32 |
| %tmp6 = or i32 %tmp0, %tmp5 |
| %i.next = add nsw i32 %i, 1 |
| %cond = icmp eq i32 %i.next, 0 |
| br i1 %cond, label %for.end, label %for.body |
| |
| for.end: |
| %tmp7 = phi i32 [ %tmp6, %for.inc ] |
| ret i32 %tmp7 |
| } |
| |
| ; Ensure that the shuffle vector for first order recurrence is inserted |
| ; correctly after all the phis. These new phis correspond to new IVs |
| ; that are generated by optimizing non-free truncs of IVs to IVs themselves |
| define i64 @trunc_with_first_order_recurrence() { |
| ; CHECK-LABEL: trunc_with_first_order_recurrence |
| ; CHECK-LABEL: vector.body: |
| ; CHECK-NEXT: %index = phi i64 [ 0, %vector.ph ], [ %index.next, %vector.body ] |
| ; CHECK-NEXT: %vec.phi = phi <2 x i64> |
| ; CHECK-NEXT: %vec.ind = phi <2 x i64> [ <i64 1, i64 2>, %vector.ph ], [ %vec.ind.next, %vector.body ] |
| ; CHECK-NEXT: %vec.ind2 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next3, %vector.body ] |
| ; CHECK-NEXT: %vector.recur = phi <2 x i32> [ <i32 undef, i32 42>, %vector.ph ], [ %vec.ind5, %vector.body ] |
| ; CHECK-NEXT: %vec.ind5 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next6, %vector.body ] |
| ; CHECK-NEXT: %vec.ind7 = phi <2 x i32> [ <i32 1, i32 2>, %vector.ph ], [ %vec.ind.next8, %vector.body ] |
| ; CHECK-NEXT: shufflevector <2 x i32> %vector.recur, <2 x i32> %vec.ind5, <2 x i32> <i32 1, i32 2> |
| entry: |
| br label %loop |
| |
| exit: ; preds = %loop |
| %.lcssa = phi i64 [ %c23, %loop ] |
| ret i64 %.lcssa |
| |
| loop: ; preds = %loop, %entry |
| %c5 = phi i64 [ %c23, %loop ], [ 0, %entry ] |
| %indvars.iv = phi i64 [ %indvars.iv.next, %loop ], [ 1, %entry ] |
| %x = phi i32 [ %c24, %loop ], [ 1, %entry ] |
| %y = phi i32 [ %c6, %loop ], [ 42, %entry ] |
| %c6 = trunc i64 %indvars.iv to i32 |
| %c8 = mul i32 %x, %c6 |
| %c9 = add i32 %c8, 42 |
| %c10 = add i32 %y, %c6 |
| %c11 = add i32 %c10, %c9 |
| %c12 = sext i32 %c11 to i64 |
| %c13 = add i64 %c5, %c12 |
| %indvars.iv.tr = trunc i64 %indvars.iv to i32 |
| %c14 = shl i32 %indvars.iv.tr, 1 |
| %c15 = add i32 %c9, %c14 |
| %c16 = sext i32 %c15 to i64 |
| %c23 = add i64 %c13, %c16 |
| %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1 |
| %c24 = add nuw nsw i32 %x, 1 |
| %exitcond.i = icmp eq i64 %indvars.iv.next, 114 |
| br i1 %exitcond.i, label %exit, label %loop |
| |
| } |