blob: f02c93dd7c46cf07a0e518348edeb91bf582a9f6 [file] [log] [blame]
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace LegalizeActions;
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
const GCNTargetMachine &TM) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
const LLT S1 = LLT::scalar(1);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S256 = LLT::scalar(256);
const LLT S512 = LLT::scalar(512);
const LLT V2S16 = LLT::vector(2, 16);
const LLT V4S16 = LLT::vector(4, 16);
const LLT V8S16 = LLT::vector(8, 16);
const LLT V2S32 = LLT::vector(2, 32);
const LLT V3S32 = LLT::vector(3, 32);
const LLT V4S32 = LLT::vector(4, 32);
const LLT V5S32 = LLT::vector(5, 32);
const LLT V6S32 = LLT::vector(6, 32);
const LLT V7S32 = LLT::vector(7, 32);
const LLT V8S32 = LLT::vector(8, 32);
const LLT V9S32 = LLT::vector(9, 32);
const LLT V10S32 = LLT::vector(10, 32);
const LLT V11S32 = LLT::vector(11, 32);
const LLT V12S32 = LLT::vector(12, 32);
const LLT V13S32 = LLT::vector(13, 32);
const LLT V14S32 = LLT::vector(14, 32);
const LLT V15S32 = LLT::vector(15, 32);
const LLT V16S32 = LLT::vector(16, 32);
const LLT V2S64 = LLT::vector(2, 64);
const LLT V3S64 = LLT::vector(3, 64);
const LLT V4S64 = LLT::vector(4, 64);
const LLT V5S64 = LLT::vector(5, 64);
const LLT V6S64 = LLT::vector(6, 64);
const LLT V7S64 = LLT::vector(7, 64);
const LLT V8S64 = LLT::vector(8, 64);
std::initializer_list<LLT> AllS32Vectors =
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
std::initializer_list<LLT> AllS64Vectors =
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
const LLT CodePtr = FlatPtr;
const LLT AddrSpaces[] = {
GlobalPtr,
ConstantPtr,
LocalPtr,
FlatPtr,
PrivatePtr
};
setAction({G_BRCOND, S1}, Legal);
setAction({G_ADD, S32}, Legal);
setAction({G_ASHR, S32}, Legal);
setAction({G_SUB, S32}, Legal);
setAction({G_MUL, S32}, Legal);
// FIXME: 64-bit ones only legal for scalar
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({S32, S1, S64, V2S32});
getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
.legalFor({{S32, S1}});
setAction({G_BITCAST, V2S16}, Legal);
setAction({G_BITCAST, 1, S32}, Legal);
setAction({G_BITCAST, S32}, Legal);
setAction({G_BITCAST, 1, V2S16}, Legal);
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64, S16});
// G_IMPLICIT_DEF is a no-op so we can make it legal for any value type that
// can fit in a register.
// FIXME: We need to legalize several more operations before we can add
// a test case for size > 512.
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getSizeInBits() <= 512;
})
.clampScalar(0, S1, S512);
// FIXME: i1 operands to intrinsics should always be legal, but other i1
// values may not be legal. We need to figure out how to distinguish
// between these two scenarios.
// FIXME: Pointer types
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64, V2S32, V2S16})
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0);
setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
getActionDefinitionsBuilder(
{ G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA})
.legalFor({S32, S64});
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor({{S32, S64}});
getActionDefinitionsBuilder(G_FPEXT)
.legalFor({{S64, S32}, {S32, S16}})
.lowerFor({{S64, S16}}); // FIXME: Implement
// Use actual fsub instruction
setAction({G_FSUB, S32}, Legal);
// Must use fadd + fneg
setAction({G_FSUB, S64}, Lower);
setAction({G_FCMP, S1}, Legal);
setAction({G_FCMP, 1, S32}, Legal);
setAction({G_FCMP, 1, S64}, Legal);
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
.legalFor({{S64, S32}, {S32, S16}, {S64, S16}});
setAction({G_FPTOSI, S32}, Legal);
setAction({G_FPTOSI, 1, S32}, Legal);
setAction({G_SITOFP, S32}, Legal);
setAction({G_SITOFP, 1, S32}, Legal);
setAction({G_UITOFP, S32}, Legal);
setAction({G_UITOFP, 1, S32}, Legal);
setAction({G_FPTOUI, S32}, Legal);
setAction({G_FPTOUI, 1, S32}, Legal);
setAction({G_FPOW, S32}, Legal);
setAction({G_FEXP2, S32}, Legal);
setAction({G_FLOG2, S32}, Legal);
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND})
.legalFor({S32, S64});
for (LLT PtrTy : AddrSpaces) {
LLT IdxTy = LLT::scalar(PtrTy.getSizeInBits());
setAction({G_GEP, PtrTy}, Legal);
setAction({G_GEP, 1, IdxTy}, Legal);
}
setAction({G_BLOCK_ADDR, CodePtr}, Legal);
setAction({G_ICMP, S1}, Legal);
setAction({G_ICMP, 1, S32}, Legal);
setAction({G_CTLZ, S32}, Legal);
setAction({G_CTLZ_ZERO_UNDEF, S32}, Legal);
setAction({G_CTTZ, S32}, Legal);
setAction({G_CTTZ_ZERO_UNDEF, S32}, Legal);
setAction({G_BSWAP, S32}, Legal);
setAction({G_CTPOP, S32}, Legal);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalIf([](const LegalityQuery &Query) {
return true;
});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalIf([](const LegalityQuery &Query) {
return true;
});
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.legalIf([=, &ST](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
// TODO: Decompose private loads into 4-byte components.
// TODO: Illegal flat loads on SI
switch (Ty0.getSizeInBits()) {
case 32:
case 64:
case 128:
return true;
case 96:
// XXX hasLoadX3
return (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS);
case 256:
case 512:
// TODO: constant loads
default:
return false;
}
});
auto &Atomics = getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
{S64, GlobalPtr}, {S64, LocalPtr}});
if (ST.hasFlatAddressSpace()) {
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
}
// TODO: Pointer types, any 32-bit or 64-bit vector
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{S32, S1}, {S64, S1}, {V2S32, S1}, {V2S16, S1}})
.clampScalar(0, S32, S64);
setAction({G_SHL, S32}, Legal);
// FIXME: When RegBankSelect inserts copies, it will only create new
// registers with scalar types. This means we can end up with
// G_LOAD/G_STORE/G_GEP instruction with scalar types for their pointer
// operands. In assert builds, the instruction selector will assert
// if it sees a generic instruction which isn't legal, so we need to
// tell it that scalar types are legal for pointer operands
setAction({G_GEP, S64}, Legal);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[1];
const LLT &IdxTy = Query.Types[2];
return VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= 512 &&
IdxTy.getSizeInBits() == 32;
});
}
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
const LLT &Ty1 = Query.Types[1];
return (Ty0.getSizeInBits() % 32 == 0) &&
(Ty1.getSizeInBits() % 32 == 0);
});
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalForCartesianProduct(AllS32Vectors, {S32})
.legalForCartesianProduct(AllS64Vectors, {S64})
.clampNumElements(0, V16S32, V16S32)
.clampNumElements(0, V2S64, V8S64)
.minScalarSameAs(1, 0);
// TODO: Support any combination of v2s32
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor({{V4S32, V2S32},
{V8S32, V2S32},
{V8S32, V4S32},
{V4S64, V2S64},
{V4S16, V2S16},
{V8S16, V2S16},
{V8S16, V4S16}});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
auto scalarize =
[=](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
return std::make_pair(TypeIdx, Ty.getElementType());
};
getActionDefinitionsBuilder(Op)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
[=](const LegalityQuery &Query) { return scalarize(Query, 0); })
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
[=](const LegalityQuery &Query) { return scalarize(Query, 1); })
.clampScalar(BigTyIdx, S32, S512)
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 16 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, S16, S256)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
return false;
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
return false;
return BigTy.getSizeInBits() % 16 == 0 &&
LitTy.getSizeInBits() % 16 == 0 &&
BigTy.getSizeInBits() <= 512;
})
// Any vectors left are the wrong size. Scalarize them.
.fewerElementsIf([](const LegalityQuery &Query) {
return Query.Types[0].isVector();
},
[](const LegalityQuery &Query) {
return std::make_pair(
0, Query.Types[0].getElementType());
})
.fewerElementsIf([](const LegalityQuery &Query) {
return Query.Types[1].isVector();
},
[](const LegalityQuery &Query) {
return std::make_pair(
1, Query.Types[1].getElementType());
});
}
computeTables();
verify(*ST.getInstrInfo());
}