blob: 72fad87dd0d4d89aa44c874a968a2dd85d0f4e7e [file] [log] [blame]
//===-- llvm/Support/Alignment.h - Useful alignment functions ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains types to represent alignments.
// They are instrumented to guarantee some invariants are preserved and prevent
// invalid manipulations.
//
// - Align represents an alignment in bytes, it is always set and always a valid
// power of two, its minimum value is 1 which means no alignment requirements.
//
// - MaybeAlign is an optional type, it may be undefined or set. When it's set
// you can get the underlying Align type by using the getValue() method.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_ALIGNMENT_H_
#define LLVM_SUPPORT_ALIGNMENT_H_
#include "llvm/ADT/Optional.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <limits>
namespace llvm {
#define ALIGN_CHECK_ISPOSITIVE(decl) \
assert(decl > 0 && (#decl " should be defined"))
#define ALIGN_CHECK_ISSET(decl) \
assert(decl.hasValue() && (#decl " should be defined"))
/// This struct is a compact representation of a valid (non-zero power of two)
/// alignment.
/// It is suitable for use as static global constants.
struct Align {
private:
uint8_t ShiftValue = 0; /// The log2 of the required alignment.
/// ShiftValue is less than 64 by construction.
friend struct MaybeAlign;
friend unsigned Log2(Align);
friend bool operator==(Align Lhs, Align Rhs);
friend bool operator!=(Align Lhs, Align Rhs);
friend bool operator<=(Align Lhs, Align Rhs);
friend bool operator>=(Align Lhs, Align Rhs);
friend bool operator<(Align Lhs, Align Rhs);
friend bool operator>(Align Lhs, Align Rhs);
friend unsigned encode(struct MaybeAlign A);
friend struct MaybeAlign decodeMaybeAlign(unsigned Value);
/// A trivial type to allow construction of constexpr Align.
/// This is currently needed to workaround a bug in GCC 5.3 which prevents
/// definition of constexpr assign operators.
/// https://stackoverflow.com/questions/46756288/explicitly-defaulted-function-cannot-be-declared-as-constexpr-because-the-implic
/// FIXME: Remove this, make all assign operators constexpr and introduce user
/// defined literals when we don't have to support GCC 5.3 anymore.
/// https://llvm.org/docs/GettingStarted.html#getting-a-modern-host-c-toolchain
struct LogValue {
uint8_t Log;
};
public:
/// Default is byte-aligned.
constexpr Align() = default;
/// Do not perform checks in case of copy/move construct/assign, because the
/// checks have been performed when building `Other`.
constexpr Align(const Align &Other) = default;
constexpr Align(Align &&Other) = default;
Align &operator=(const Align &Other) = default;
Align &operator=(Align &&Other) = default;
explicit Align(uint64_t Value) {
assert(Value > 0 && "Value must not be 0");
assert(llvm::isPowerOf2_64(Value) && "Alignment is not a power of 2");
ShiftValue = Log2_64(Value);
assert(ShiftValue < 64 && "Broken invariant");
}
/// This is a hole in the type system and should not be abused.
/// Needed to interact with C for instance.
uint64_t value() const { return uint64_t(1) << ShiftValue; }
/// Returns a default constructed Align which corresponds to no alignment.
/// This is useful to test for unalignment as it conveys clear semantic.
/// `if (A != Align::None())`
/// would be better than
/// `if (A > Align(1))`
constexpr static const Align None() { return Align(); }
/// Allow constructions of constexpr Align.
template <size_t kValue> constexpr static LogValue Constant() {
return LogValue{static_cast<uint8_t>(CTLog2<kValue>())};
}
/// Allow constructions of constexpr Align from types.
/// Compile time equivalent to Align(alignof(T)).
template <typename T> constexpr static LogValue Of() {
return Constant<std::alignment_of<T>::value>();
}
/// Constexpr constructor from LogValue type.
constexpr Align(LogValue CA) : ShiftValue(CA.Log) {}
};
/// Treats the value 0 as a 1, so Align is always at least 1.
inline Align assumeAligned(uint64_t Value) {
return Value ? Align(Value) : Align();
}
/// This struct is a compact representation of a valid (power of two) or
/// undefined (0) alignment.
struct MaybeAlign : public llvm::Optional<Align> {
private:
using UP = llvm::Optional<Align>;
public:
/// Default is undefined.
MaybeAlign() = default;
/// Do not perform checks in case of copy/move construct/assign, because the
/// checks have been performed when building `Other`.
MaybeAlign(const MaybeAlign &Other) = default;
MaybeAlign &operator=(const MaybeAlign &Other) = default;
MaybeAlign(MaybeAlign &&Other) = default;
MaybeAlign &operator=(MaybeAlign &&Other) = default;
/// Use llvm::Optional<Align> constructor.
using UP::UP;
explicit MaybeAlign(uint64_t Value) {
assert((Value == 0 || llvm::isPowerOf2_64(Value)) &&
"Alignment is neither 0 nor a power of 2");
if (Value)
emplace(Value);
}
/// For convenience, returns a valid alignment or 1 if undefined.
Align valueOrOne() const { return hasValue() ? getValue() : Align(); }
};
/// Checks that SizeInBytes is a multiple of the alignment.
inline bool isAligned(Align Lhs, uint64_t SizeInBytes) {
return SizeInBytes % Lhs.value() == 0;
}
/// Checks that SizeInBytes is a multiple of the alignment.
/// Returns false if the alignment is undefined.
inline bool isAligned(MaybeAlign Lhs, uint64_t SizeInBytes) {
ALIGN_CHECK_ISSET(Lhs);
return SizeInBytes % (*Lhs).value() == 0;
}
/// Checks that Addr is a multiple of the alignment.
inline bool isAddrAligned(Align Lhs, const void *Addr) {
return isAligned(Lhs, reinterpret_cast<uintptr_t>(Addr));
}
/// Returns a multiple of A needed to store `Size` bytes.
inline uint64_t alignTo(uint64_t Size, Align A) {
const uint64_t value = A.value();
// The following line is equivalent to `(Size + value - 1) / value * value`.
// The division followed by a multiplication can be thought of as a right
// shift followed by a left shift which zeros out the extra bits produced in
// the bump; `~(value - 1)` is a mask where all those bits being zeroed out
// are just zero.
// Most compilers can generate this code but the pattern may be missed when
// multiple functions gets inlined.
return (Size + value - 1) & ~(value - 1);
}
/// Returns a multiple of A needed to store `Size` bytes.
/// Returns `Size` if current alignment is undefined.
inline uint64_t alignTo(uint64_t Size, MaybeAlign A) {
return A ? alignTo(Size, A.getValue()) : Size;
}
/// Aligns `Addr` to `Alignment` bytes, rounding up.
inline uintptr_t alignAddr(const void *Addr, Align Alignment) {
uintptr_t ArithAddr = reinterpret_cast<uintptr_t>(Addr);
assert(static_cast<uintptr_t>(ArithAddr + Alignment.value() - 1) >=
ArithAddr && "Overflow");
return alignTo(ArithAddr, Alignment);
}
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align.
inline uint64_t offsetToAlignment(uint64_t Value, Align Alignment) {
return alignTo(Value, Alignment) - Value;
}
/// Returns the necessary adjustment for aligning `Addr` to `Alignment`
/// bytes, rounding up.
inline uint64_t offsetToAlignedAddr(const void *Addr, Align Alignment) {
return offsetToAlignment(reinterpret_cast<uintptr_t>(Addr), Alignment);
}
/// Returns the log2 of the alignment.
inline unsigned Log2(Align A) { return A.ShiftValue; }
/// Returns the log2 of the alignment.
/// \pre A must be defined.
inline unsigned Log2(MaybeAlign A) {
ALIGN_CHECK_ISSET(A);
return Log2(A.getValue());
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline Align commonAlignment(Align A, Align B) { return std::min(A, B); }
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline Align commonAlignment(Align A, uint64_t Offset) {
return Align(MinAlign(A.value(), Offset));
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline MaybeAlign commonAlignment(MaybeAlign A, MaybeAlign B) {
return A && B ? commonAlignment(*A, *B) : A ? A : B;
}
/// Returns the alignment that satisfies both alignments.
/// Same semantic as MinAlign.
inline MaybeAlign commonAlignment(MaybeAlign A, uint64_t Offset) {
return MaybeAlign(MinAlign((*A).value(), Offset));
}
/// Returns a representation of the alignment that encodes undefined as 0.
inline unsigned encode(MaybeAlign A) { return A ? A->ShiftValue + 1 : 0; }
/// Dual operation of the encode function above.
inline MaybeAlign decodeMaybeAlign(unsigned Value) {
if (Value == 0)
return MaybeAlign();
Align Out;
Out.ShiftValue = Value - 1;
return Out;
}
/// Returns a representation of the alignment, the encoded value is positive by
/// definition.
inline unsigned encode(Align A) { return encode(MaybeAlign(A)); }
/// Comparisons between Align and scalars. Rhs must be positive.
inline bool operator==(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() == Rhs;
}
inline bool operator!=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() != Rhs;
}
inline bool operator<=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() <= Rhs;
}
inline bool operator>=(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() >= Rhs;
}
inline bool operator<(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() < Rhs;
}
inline bool operator>(Align Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISPOSITIVE(Rhs);
return Lhs.value() > Rhs;
}
/// Comparisons between MaybeAlign and scalars.
inline bool operator==(MaybeAlign Lhs, uint64_t Rhs) {
return Lhs ? (*Lhs).value() == Rhs : Rhs == 0;
}
inline bool operator!=(MaybeAlign Lhs, uint64_t Rhs) {
return Lhs ? (*Lhs).value() != Rhs : Rhs != 0;
}
inline bool operator<=(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() <= Rhs;
}
inline bool operator>=(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() >= Rhs;
}
inline bool operator<(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() < Rhs;
}
inline bool operator>(MaybeAlign Lhs, uint64_t Rhs) {
ALIGN_CHECK_ISSET(Lhs);
ALIGN_CHECK_ISPOSITIVE(Rhs);
return (*Lhs).value() > Rhs;
}
/// Comparisons operators between Align.
inline bool operator==(Align Lhs, Align Rhs) {
return Lhs.ShiftValue == Rhs.ShiftValue;
}
inline bool operator!=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue != Rhs.ShiftValue;
}
inline bool operator<=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue <= Rhs.ShiftValue;
}
inline bool operator>=(Align Lhs, Align Rhs) {
return Lhs.ShiftValue >= Rhs.ShiftValue;
}
inline bool operator<(Align Lhs, Align Rhs) {
return Lhs.ShiftValue < Rhs.ShiftValue;
}
inline bool operator>(Align Lhs, Align Rhs) {
return Lhs.ShiftValue > Rhs.ShiftValue;
}
/// Comparisons operators between Align and MaybeAlign.
inline bool operator==(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() == (*Rhs).value();
}
inline bool operator!=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() != (*Rhs).value();
}
inline bool operator<=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() <= (*Rhs).value();
}
inline bool operator>=(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() >= (*Rhs).value();
}
inline bool operator<(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() < (*Rhs).value();
}
inline bool operator>(Align Lhs, MaybeAlign Rhs) {
ALIGN_CHECK_ISSET(Rhs);
return Lhs.value() > (*Rhs).value();
}
/// Comparisons operators between MaybeAlign and Align.
inline bool operator==(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() == Rhs.value();
}
inline bool operator!=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() != Rhs.value();
}
inline bool operator<=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() <= Rhs.value();
}
inline bool operator>=(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() >= Rhs.value();
}
inline bool operator<(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() < Rhs.value();
}
inline bool operator>(MaybeAlign Lhs, Align Rhs) {
ALIGN_CHECK_ISSET(Lhs);
return Lhs && (*Lhs).value() > Rhs.value();
}
inline Align operator/(Align Lhs, uint64_t Divisor) {
assert(llvm::isPowerOf2_64(Divisor) &&
"Divisor must be positive and a power of 2");
assert(Lhs != 1 && "Can't halve byte alignment");
return Align(Lhs.value() / Divisor);
}
inline MaybeAlign operator/(MaybeAlign Lhs, uint64_t Divisor) {
assert(llvm::isPowerOf2_64(Divisor) &&
"Divisor must be positive and a power of 2");
return Lhs ? Lhs.getValue() / Divisor : MaybeAlign();
}
inline Align max(MaybeAlign Lhs, Align Rhs) {
return Lhs && *Lhs > Rhs ? *Lhs : Rhs;
}
inline Align max(Align Lhs, MaybeAlign Rhs) {
return Rhs && *Rhs > Lhs ? *Rhs : Lhs;
}
#undef ALIGN_CHECK_ISPOSITIVE
#undef ALIGN_CHECK_ISSET
} // namespace llvm
#endif // LLVM_SUPPORT_ALIGNMENT_H_