blob: ab2cebcb58ee827acad25dc9e80cafc7bb1a0bdc [file] [log] [blame]
//===------- ShadowCallStack.cpp - Shadow Call Stack pass -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The ShadowCallStack pass instruments function prologs/epilogs to check that
// the return address has not been corrupted during the execution of the
// function. The return address is stored in a 'shadow call stack' addressed
// using the %gs segment register.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
class ShadowCallStack : public MachineFunctionPass {
public:
static char ID;
ShadowCallStack() : MachineFunctionPass(ID) {
initializeShadowCallStackPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &Fn) override;
private:
// Do not instrument leaf functions with this many or fewer instructions. The
// shadow call stack instrumented prolog/epilog are slightly race-y reading
// and checking the saved return address, so it is better to not instrument
// functions that have fewer instructions than the instrumented prolog/epilog
// race.
static const size_t SkipLeafInstructions = 3;
};
char ShadowCallStack::ID = 0;
} // end anonymous namespace.
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL);
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL,
MCPhysReg FreeRegister);
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB);
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB,
MCPhysReg FreeRegister);
// Generate a longer epilog that only uses r10 when a tailcall branches to r11.
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB);
// Helper function to add ModR/M references for [Seg: Reg + Offset] memory
// accesses
static inline const MachineInstrBuilder &
addSegmentedMem(const MachineInstrBuilder &MIB, MCPhysReg Seg, MCPhysReg Reg,
int Offset = 0) {
return MIB.addReg(Reg).addImm(1).addReg(0).addImm(Offset).addReg(Seg);
}
static void addProlog(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL) {
const MCPhysReg ReturnReg = X86::R10;
const MCPhysReg OffsetReg = X86::R11;
auto MBBI = MBB.begin();
// mov r10, [rsp]
addDirectMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(ReturnReg),
X86::RSP);
// xor r11, r11
BuildMI(MBB, MBBI, DL, TII->get(X86::XOR64rr))
.addDef(OffsetReg)
.addReg(OffsetReg, RegState::Undef)
.addReg(OffsetReg, RegState::Undef);
// add QWORD [gs:r11], 8
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::ADD64mi8)), X86::GS,
OffsetReg)
.addImm(8);
// mov r11, [gs:r11]
addSegmentedMem(
BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64rm)).addDef(OffsetReg), X86::GS,
OffsetReg);
// mov [gs:r11], r10
addSegmentedMem(BuildMI(MBB, MBBI, DL, TII->get(X86::MOV64mr)), X86::GS,
OffsetReg)
.addReg(ReturnReg);
}
static void addPrologLeaf(MachineFunction &Fn, const TargetInstrInfo *TII,
MachineBasicBlock &MBB, const DebugLoc &DL,
MCPhysReg FreeRegister) {
// mov REG, [rsp]
addDirectMem(BuildMI(MBB, MBB.begin(), DL, TII->get(X86::MOV64rm))
.addDef(FreeRegister),
X86::RSP);
}
static void addEpilog(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB) {
const DebugLoc &DL = MI.getDebugLoc();
// xor r11, r11
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
.addDef(X86::R11)
.addReg(X86::R11, RegState::Undef)
.addReg(X86::R11, RegState::Undef);
// mov r10, [gs:r11]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R11);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// sub QWORD [gs:r11], 8
// This instruction should not be moved up to avoid a signal race.
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)),
X86::GS, X86::R11)
.addImm(8);
// cmp [rsp], r10
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(X86::R10);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB,
MCPhysReg FreeRegister) {
const DebugLoc &DL = MI.getDebugLoc();
// cmp [rsp], REG
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(FreeRegister);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB) {
const DebugLoc &DL = MI.getDebugLoc();
// xor r10, r10
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
.addDef(X86::R10)
.addReg(X86::R10, RegState::Undef)
.addReg(X86::R10, RegState::Undef);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// sub QWORD [gs:0], 8
// This instruction should not be moved up to avoid a signal race.
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)), X86::GS, 0)
.addImm(8);
// cmp [rsp], r10
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(X86::R10);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
bool ShadowCallStack::runOnMachineFunction(MachineFunction &Fn) {
if (!Fn.getFunction().hasFnAttribute(Attribute::ShadowCallStack) ||
Fn.getFunction().hasFnAttribute(Attribute::Naked))
return false;
if (Fn.empty() || !Fn.getRegInfo().tracksLiveness())
return false;
// FIXME: Skip functions that have r10 or r11 live on entry (r10 can be live
// on entry for parameters with the nest attribute.)
if (Fn.front().isLiveIn(X86::R10) || Fn.front().isLiveIn(X86::R11))
return false;
// FIXME: Skip functions with conditional and r10 tail calls for now.
bool HasReturn = false;
for (auto &MBB : Fn) {
if (MBB.empty())
continue;
const MachineInstr &MI = MBB.instr_back();
if (MI.isReturn())
HasReturn = true;
if (MI.isReturn() && MI.isCall()) {
if (MI.findRegisterUseOperand(X86::EFLAGS))
return false;
// This should only be possible on Windows 64 (see GR64_TC versus
// GR64_TCW64.)
if (MI.findRegisterUseOperand(X86::R10) ||
MI.hasRegisterImplicitUseOperand(X86::R10))
return false;
}
}
if (!HasReturn)
return false;
// For leaf functions:
// 1. Do not instrument very short functions where it would not improve that
// function's security.
// 2. Detect if there is an unused caller-saved register we can reserve to
// hold the return address instead of writing/reading it from the shadow
// call stack.
MCPhysReg LeafFuncRegister = X86::NoRegister;
if (!Fn.getFrameInfo().adjustsStack()) {
size_t InstructionCount = 0;
std::bitset<X86::NUM_TARGET_REGS> UsedRegs;
for (auto &MBB : Fn) {
for (auto &LiveIn : MBB.liveins())
UsedRegs.set(LiveIn.PhysReg);
for (auto &MI : MBB) {
if (!MI.isDebugValue() && !MI.isCFIInstruction() && !MI.isLabel())
InstructionCount++;
for (auto &Op : MI.operands())
if (Op.isReg() && Op.isDef())
UsedRegs.set(Op.getReg());
}
}
if (InstructionCount <= SkipLeafInstructions)
return false;
std::bitset<X86::NUM_TARGET_REGS> CalleeSavedRegs;
const MCPhysReg *CSRegs = Fn.getRegInfo().getCalleeSavedRegs();
for (size_t i = 0; CSRegs[i]; i++)
CalleeSavedRegs.set(CSRegs[i]);
const TargetRegisterInfo *TRI = Fn.getSubtarget().getRegisterInfo();
for (auto &Reg : X86::GR64_NOSPRegClass.getRegisters()) {
// FIXME: Optimization opportunity: spill/restore a callee-saved register
// if a caller-saved register is unavailable.
if (CalleeSavedRegs.test(Reg))
continue;
bool Used = false;
for (MCSubRegIterator SR(Reg, TRI, true); SR.isValid(); ++SR)
if ((Used = UsedRegs.test(*SR)))
break;
if (!Used) {
LeafFuncRegister = Reg;
break;
}
}
}
const bool LeafFuncOptimization = LeafFuncRegister != X86::NoRegister;
if (LeafFuncOptimization)
// Mark the leaf function register live-in for all MBBs except the entry MBB
for (auto I = ++Fn.begin(), E = Fn.end(); I != E; ++I)
I->addLiveIn(LeafFuncRegister);
MachineBasicBlock &MBB = Fn.front();
const MachineBasicBlock *NonEmpty = MBB.empty() ? MBB.getFallThrough() : &MBB;
const DebugLoc &DL = NonEmpty->front().getDebugLoc();
const TargetInstrInfo *TII = Fn.getSubtarget().getInstrInfo();
if (LeafFuncOptimization)
addPrologLeaf(Fn, TII, MBB, DL, LeafFuncRegister);
else
addProlog(Fn, TII, MBB, DL);
MachineBasicBlock *Trap = nullptr;
for (auto &MBB : Fn) {
if (MBB.empty())
continue;
MachineInstr &MI = MBB.instr_back();
if (MI.isReturn()) {
if (!Trap) {
Trap = Fn.CreateMachineBasicBlock();
BuildMI(Trap, MI.getDebugLoc(), TII->get(X86::TRAP));
Fn.push_back(Trap);
}
if (LeafFuncOptimization)
addEpilogLeaf(TII, MBB, MI, *Trap, LeafFuncRegister);
else if (MI.findRegisterUseOperand(X86::R11))
addEpilogOnlyR10(TII, MBB, MI, *Trap);
else
addEpilog(TII, MBB, MI, *Trap);
}
}
return true;
}
INITIALIZE_PASS(ShadowCallStack, "shadow-call-stack", "Shadow Call Stack",
false, false)
FunctionPass *llvm::createShadowCallStackPass() {
return new ShadowCallStack();
}