blob: 103d1fcb44bbd2e542d07ce299008de524e4a63a [file] [log] [blame]
//===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "MipsISelLowering.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "MipsCCState.h"
#include "MipsInstrInfo.h"
#include "MipsMachineFunction.h"
#include "MipsRegisterInfo.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RuntimeLibcalls.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdint>
#include <deque>
#include <iterator>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "mips-lower"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool>
LargeGOT("mxgot", cl::Hidden,
cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
static cl::opt<bool>
NoZeroDivCheck("mno-check-zero-division", cl::Hidden,
cl::desc("MIPS: Don't trap on integer division by zero."),
cl::init(false));
extern cl::opt<bool> EmitJalrReloc;
static const MCPhysReg Mips64DPRegs[8] = {
Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
};
// If I is a shifted mask, set the size (Size) and the first bit of the
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
static bool isShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
if (!isShiftedMask_64(I))
return false;
Size = countPopulation(I);
Pos = countTrailingZeros(I);
return true;
}
// The MIPS MSA ABI passes vector arguments in the integer register set.
// The number of integer registers used is dependant on the ABI used.
MVT MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (VT.isVector()) {
if (Subtarget.isABI_O32()) {
return MVT::i32;
} else {
return (VT.getSizeInBits() == 32) ? MVT::i32 : MVT::i64;
}
}
return MipsTargetLowering::getRegisterType(Context, VT);
}
unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
CallingConv::ID CC,
EVT VT) const {
if (VT.isVector())
return std::max((VT.getSizeInBits() / (Subtarget.isABI_O32() ? 32 : 64)),
1U);
return MipsTargetLowering::getNumRegisters(Context, VT);
}
unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
unsigned &NumIntermediates, MVT &RegisterVT) const {
// Break down vector types to either 2 i64s or 4 i32s.
RegisterVT = getRegisterTypeForCallingConv(Context, CC, VT);
IntermediateVT = RegisterVT;
NumIntermediates = VT.getSizeInBits() < RegisterVT.getSizeInBits()
? VT.getVectorNumElements()
: VT.getSizeInBits() / RegisterVT.getSizeInBits();
return NumIntermediates;
}
SDValue MipsTargetLowering::getGlobalReg(SelectionDAG &DAG, EVT Ty) const {
MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
}
SDValue MipsTargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, 0, Flag);
}
SDValue MipsTargetLowering::getTargetNode(ExternalSymbolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
}
SDValue MipsTargetLowering::getTargetNode(BlockAddressSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
}
SDValue MipsTargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
}
SDValue MipsTargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty,
SelectionDAG &DAG,
unsigned Flag) const {
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
N->getOffset(), Flag);
}
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((MipsISD::NodeType)Opcode) {
case MipsISD::FIRST_NUMBER: break;
case MipsISD::JmpLink: return "MipsISD::JmpLink";
case MipsISD::TailCall: return "MipsISD::TailCall";
case MipsISD::Highest: return "MipsISD::Highest";
case MipsISD::Higher: return "MipsISD::Higher";
case MipsISD::Hi: return "MipsISD::Hi";
case MipsISD::Lo: return "MipsISD::Lo";
case MipsISD::GotHi: return "MipsISD::GotHi";
case MipsISD::TlsHi: return "MipsISD::TlsHi";
case MipsISD::GPRel: return "MipsISD::GPRel";
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
case MipsISD::Ret: return "MipsISD::Ret";
case MipsISD::ERet: return "MipsISD::ERet";
case MipsISD::EH_RETURN: return "MipsISD::EH_RETURN";
case MipsISD::FMS: return "MipsISD::FMS";
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
case MipsISD::FPCmp: return "MipsISD::FPCmp";
case MipsISD::FSELECT: return "MipsISD::FSELECT";
case MipsISD::MTC1_D64: return "MipsISD::MTC1_D64";
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
case MipsISD::TruncIntFP: return "MipsISD::TruncIntFP";
case MipsISD::MFHI: return "MipsISD::MFHI";
case MipsISD::MFLO: return "MipsISD::MFLO";
case MipsISD::MTLOHI: return "MipsISD::MTLOHI";
case MipsISD::Mult: return "MipsISD::Mult";
case MipsISD::Multu: return "MipsISD::Multu";
case MipsISD::MAdd: return "MipsISD::MAdd";
case MipsISD::MAddu: return "MipsISD::MAddu";
case MipsISD::MSub: return "MipsISD::MSub";
case MipsISD::MSubu: return "MipsISD::MSubu";
case MipsISD::DivRem: return "MipsISD::DivRem";
case MipsISD::DivRemU: return "MipsISD::DivRemU";
case MipsISD::DivRem16: return "MipsISD::DivRem16";
case MipsISD::DivRemU16: return "MipsISD::DivRemU16";
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
case MipsISD::Wrapper: return "MipsISD::Wrapper";
case MipsISD::DynAlloc: return "MipsISD::DynAlloc";
case MipsISD::Sync: return "MipsISD::Sync";
case MipsISD::Ext: return "MipsISD::Ext";
case MipsISD::Ins: return "MipsISD::Ins";
case MipsISD::CIns: return "MipsISD::CIns";
case MipsISD::LWL: return "MipsISD::LWL";
case MipsISD::LWR: return "MipsISD::LWR";
case MipsISD::SWL: return "MipsISD::SWL";
case MipsISD::SWR: return "MipsISD::SWR";
case MipsISD::LDL: return "MipsISD::LDL";
case MipsISD::LDR: return "MipsISD::LDR";
case MipsISD::SDL: return "MipsISD::SDL";
case MipsISD::SDR: return "MipsISD::SDR";
case MipsISD::EXTP: return "MipsISD::EXTP";
case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
case MipsISD::SHILO: return "MipsISD::SHILO";
case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
case MipsISD::MULSAQ_S_W_PH: return "MipsISD::MULSAQ_S_W_PH";
case MipsISD::MAQ_S_W_PHL: return "MipsISD::MAQ_S_W_PHL";
case MipsISD::MAQ_S_W_PHR: return "MipsISD::MAQ_S_W_PHR";
case MipsISD::MAQ_SA_W_PHL: return "MipsISD::MAQ_SA_W_PHL";
case MipsISD::MAQ_SA_W_PHR: return "MipsISD::MAQ_SA_W_PHR";
case MipsISD::DPAU_H_QBL: return "MipsISD::DPAU_H_QBL";
case MipsISD::DPAU_H_QBR: return "MipsISD::DPAU_H_QBR";
case MipsISD::DPSU_H_QBL: return "MipsISD::DPSU_H_QBL";
case MipsISD::DPSU_H_QBR: return "MipsISD::DPSU_H_QBR";
case MipsISD::DPAQ_S_W_PH: return "MipsISD::DPAQ_S_W_PH";
case MipsISD::DPSQ_S_W_PH: return "MipsISD::DPSQ_S_W_PH";
case MipsISD::DPAQ_SA_L_W: return "MipsISD::DPAQ_SA_L_W";
case MipsISD::DPSQ_SA_L_W: return "MipsISD::DPSQ_SA_L_W";
case MipsISD::DPA_W_PH: return "MipsISD::DPA_W_PH";
case MipsISD::DPS_W_PH: return "MipsISD::DPS_W_PH";
case MipsISD::DPAQX_S_W_PH: return "MipsISD::DPAQX_S_W_PH";
case MipsISD::DPAQX_SA_W_PH: return "MipsISD::DPAQX_SA_W_PH";
case MipsISD::DPAX_W_PH: return "MipsISD::DPAX_W_PH";
case MipsISD::DPSX_W_PH: return "MipsISD::DPSX_W_PH";
case MipsISD::DPSQX_S_W_PH: return "MipsISD::DPSQX_S_W_PH";
case MipsISD::DPSQX_SA_W_PH: return "MipsISD::DPSQX_SA_W_PH";
case MipsISD::MULSA_W_PH: return "MipsISD::MULSA_W_PH";
case MipsISD::MULT: return "MipsISD::MULT";
case MipsISD::MULTU: return "MipsISD::MULTU";
case MipsISD::MADD_DSP: return "MipsISD::MADD_DSP";
case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
case MipsISD::SHLL_DSP: return "MipsISD::SHLL_DSP";
case MipsISD::SHRA_DSP: return "MipsISD::SHRA_DSP";
case MipsISD::SHRL_DSP: return "MipsISD::SHRL_DSP";
case MipsISD::SETCC_DSP: return "MipsISD::SETCC_DSP";
case MipsISD::SELECT_CC_DSP: return "MipsISD::SELECT_CC_DSP";
case MipsISD::VALL_ZERO: return "MipsISD::VALL_ZERO";
case MipsISD::VANY_ZERO: return "MipsISD::VANY_ZERO";
case MipsISD::VALL_NONZERO: return "MipsISD::VALL_NONZERO";
case MipsISD::VANY_NONZERO: return "MipsISD::VANY_NONZERO";
case MipsISD::VCEQ: return "MipsISD::VCEQ";
case MipsISD::VCLE_S: return "MipsISD::VCLE_S";
case MipsISD::VCLE_U: return "MipsISD::VCLE_U";
case MipsISD::VCLT_S: return "MipsISD::VCLT_S";
case MipsISD::VCLT_U: return "MipsISD::VCLT_U";
case MipsISD::VEXTRACT_SEXT_ELT: return "MipsISD::VEXTRACT_SEXT_ELT";
case MipsISD::VEXTRACT_ZEXT_ELT: return "MipsISD::VEXTRACT_ZEXT_ELT";
case MipsISD::VNOR: return "MipsISD::VNOR";
case MipsISD::VSHF: return "MipsISD::VSHF";
case MipsISD::SHF: return "MipsISD::SHF";
case MipsISD::ILVEV: return "MipsISD::ILVEV";
case MipsISD::ILVOD: return "MipsISD::ILVOD";
case MipsISD::ILVL: return "MipsISD::ILVL";
case MipsISD::ILVR: return "MipsISD::ILVR";
case MipsISD::PCKEV: return "MipsISD::PCKEV";
case MipsISD::PCKOD: return "MipsISD::PCKOD";
case MipsISD::INSVE: return "MipsISD::INSVE";
}
return nullptr;
}
MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine &TM,
const MipsSubtarget &STI)
: TargetLowering(TM), Subtarget(STI), ABI(TM.getABI()) {
// Mips does not have i1 type, so use i32 for
// setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
// does. Integer booleans still use 0 and 1.
if (Subtarget.hasMips32r6())
setBooleanContents(ZeroOrOneBooleanContent,
ZeroOrNegativeOneBooleanContent);
// Load extented operations for i1 types must be promoted
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
}
// MIPS doesn't have extending float->double load/store. Set LoadExtAction
// for f32, f16
for (MVT VT : MVT::fp_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
}
// Set LoadExtAction for f16 vectors to Expand
for (MVT VT : MVT::fp_vector_valuetypes()) {
MVT F16VT = MVT::getVectorVT(MVT::f16, VT.getVectorNumElements());
if (F16VT.isValid())
setLoadExtAction(ISD::EXTLOAD, VT, F16VT, Expand);
}
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Used by legalize types to correctly generate the setcc result.
// Without this, every float setcc comes with a AND/OR with the result,
// we don't want this, since the fpcmp result goes to a flag register,
// which is used implicitly by brcond and select operations.
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
// Mips Custom Operations
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
if (!(TM.Options.NoNaNsFPMath || Subtarget.inAbs2008Mode())) {
setOperationAction(ISD::FABS, MVT::f32, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
if (Subtarget.isGP64bit()) {
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
}
if (!Subtarget.isGP64bit()) {
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
if (Subtarget.isGP64bit())
setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Operations not directly supported by Mips.
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
if (Subtarget.hasCnMips()) {
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
} else {
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
}
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
if (!Subtarget.hasMips32r2())
setOperationAction(ISD::ROTR, MVT::i32, Expand);
if (!Subtarget.hasMips64r2())
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
// Lower f16 conversion operations into library calls
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Custom);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
// Use the default for now
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
if (!Subtarget.isGP64bit()) {
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
}
if (!Subtarget.hasMips32r2()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
}
// MIPS16 lacks MIPS32's clz and clo instructions.
if (!Subtarget.hasMips32() || Subtarget.inMips16Mode())
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
if (!Subtarget.hasMips64())
setOperationAction(ISD::CTLZ, MVT::i64, Expand);
if (!Subtarget.hasMips32r2())
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
if (!Subtarget.hasMips64r2())
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
if (Subtarget.isGP64bit()) {
setLoadExtAction(ISD::SEXTLOAD, MVT::i64, MVT::i32, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, MVT::i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i64, MVT::i32, Custom);
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
}
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setTargetDAGCombine(ISD::SDIVREM);
setTargetDAGCombine(ISD::UDIVREM);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::AssertZext);
setTargetDAGCombine(ISD::SHL);
if (ABI.IsO32()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
setMinFunctionAlignment(Subtarget.isGP64bit() ? 3 : 2);
// The arguments on the stack are defined in terms of 4-byte slots on O32
// and 8-byte slots on N32/N64.
setMinStackArgumentAlignment((ABI.IsN32() || ABI.IsN64()) ? 8 : 4);
setStackPointerRegisterToSaveRestore(ABI.IsN64() ? Mips::SP_64 : Mips::SP);
MaxStoresPerMemcpy = 16;
isMicroMips = Subtarget.inMicroMipsMode();
}
const MipsTargetLowering *MipsTargetLowering::create(const MipsTargetMachine &TM,
const MipsSubtarget &STI) {
if (STI.inMips16Mode())
return createMips16TargetLowering(TM, STI);
return createMipsSETargetLowering(TM, STI);
}
// Create a fast isel object.
FastISel *
MipsTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
const MipsTargetMachine &TM =
static_cast<const MipsTargetMachine &>(funcInfo.MF->getTarget());
// We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
bool UseFastISel = TM.Options.EnableFastISel && Subtarget.hasMips32() &&
!Subtarget.hasMips32r6() && !Subtarget.inMips16Mode() &&
!Subtarget.inMicroMipsMode();
// Disable if either of the following is true:
// We do not generate PIC, the ABI is not O32, LargeGOT is being used.
if (!TM.isPositionIndependent() || !TM.getABI().IsO32() || LargeGOT)
UseFastISel = false;
return UseFastISel ? Mips::createFastISel(funcInfo, libInfo) : nullptr;
}
EVT MipsTargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
EVT VT) const {
if (!VT.isVector())
return MVT::i32;
return VT.changeVectorElementTypeToInteger();
}
static SDValue performDivRemCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT Ty = N->getValueType(0);
unsigned LO = (Ty == MVT::i32) ? Mips::LO0 : Mips::LO0_64;
unsigned HI = (Ty == MVT::i32) ? Mips::HI0 : Mips::HI0_64;
unsigned Opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem16 :
MipsISD::DivRemU16;
SDLoc DL(N);
SDValue DivRem = DAG.getNode(Opc, DL, MVT::Glue,
N->getOperand(0), N->getOperand(1));
SDValue InChain = DAG.getEntryNode();
SDValue InGlue = DivRem;
// insert MFLO
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, DL, LO, Ty,
InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// insert MFHI
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, DL,
HI, Ty, InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
}
return SDValue();
}
static Mips::CondCode condCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return Mips::FCOND_OEQ;
case ISD::SETUNE: return Mips::FCOND_UNE;
case ISD::SETLT:
case ISD::SETOLT: return Mips::FCOND_OLT;
case ISD::SETGT:
case ISD::SETOGT: return Mips::FCOND_OGT;
case ISD::SETLE:
case ISD::SETOLE: return Mips::FCOND_OLE;
case ISD::SETGE:
case ISD::SETOGE: return Mips::FCOND_OGE;
case ISD::SETULT: return Mips::FCOND_ULT;
case ISD::SETULE: return Mips::FCOND_ULE;
case ISD::SETUGT: return Mips::FCOND_UGT;
case ISD::SETUGE: return Mips::FCOND_UGE;
case ISD::SETUO: return Mips::FCOND_UN;
case ISD::SETO: return Mips::FCOND_OR;
case ISD::SETNE:
case ISD::SETONE: return Mips::FCOND_ONE;
case ISD::SETUEQ: return Mips::FCOND_UEQ;
}
}
/// This function returns true if the floating point conditional branches and
/// conditional moves which use condition code CC should be inverted.
static bool invertFPCondCodeUser(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return false;
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
"Illegal Condition Code");
return true;
}
// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue createFPCmp(SelectionDAG &DAG, const SDValue &Op) {
// must be a SETCC node
if (Op.getOpcode() != ISD::SETCC)
return Op;
SDValue LHS = Op.getOperand(0);
if (!LHS.getValueType().isFloatingPoint())
return Op;
SDValue RHS = Op.getOperand(1);
SDLoc DL(Op);
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
// node if necessary.
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
return DAG.getNode(MipsISD::FPCmp, DL, MVT::Glue, LHS, RHS,
DAG.getConstant(condCodeToFCC(CC), DL, MVT::i32));
}
// Creates and returns a CMovFPT/F node.
static SDValue createCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
SDValue False, const SDLoc &DL) {
ConstantSDNode *CC = cast<ConstantSDNode>(Cond.getOperand(2));
bool invert = invertFPCondCodeUser((Mips::CondCode)CC->getSExtValue());
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
True.getValueType(), True, FCC0, False, Cond);
}
static SDValue performSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue SetCC = N->getOperand(0);
if ((SetCC.getOpcode() != ISD::SETCC) ||
!SetCC.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue False = N->getOperand(2);
EVT FalseTy = False.getValueType();
if (!FalseTy.isInteger())
return SDValue();
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(False);
// If the RHS (False) is 0, we swap the order of the operands
// of ISD::SELECT (obviously also inverting the condition) so that we can
// take advantage of conditional moves using the $0 register.
// Example:
// return (a != 0) ? x : 0;
// load $reg, x
// movz $reg, $0, a
if (!FalseC)
return SDValue();
const SDLoc DL(N);
if (!FalseC->getZExtValue()) {
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
SDValue True = N->getOperand(1);
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
}
// If both operands are integer constants there's a possibility that we
// can do some interesting optimizations.
SDValue True = N->getOperand(1);
ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(True);
if (!TrueC || !True.getValueType().isInteger())
return SDValue();
// We'll also ignore MVT::i64 operands as this optimizations proves
// to be ineffective because of the required sign extensions as the result
// of a SETCC operator is always MVT::i32 for non-vector types.
if (True.getValueType() == MVT::i64)
return SDValue();
int64_t Diff = TrueC->getSExtValue() - FalseC->getSExtValue();
// 1) (a < x) ? y : y-1
// slti $reg1, a, x
// addiu $reg2, $reg1, y-1
if (Diff == 1)
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, False);
// 2) (a < x) ? y-1 : y
// slti $reg1, a, x
// xor $reg1, $reg1, 1
// addiu $reg2, $reg1, y-1
if (Diff == -1) {
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
return DAG.getNode(ISD::ADD, DL, SetCC.getValueType(), SetCC, True);
}
// Could not optimize.
return SDValue();
}
static SDValue performCMovFPCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue ValueIfTrue = N->getOperand(0), ValueIfFalse = N->getOperand(2);
ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(ValueIfFalse);
if (!FalseC || FalseC->getZExtValue())
return SDValue();
// Since RHS (False) is 0, we swap the order of the True/False operands
// (obviously also inverting the condition) so that we can
// take advantage of conditional moves using the $0 register.
// Example:
// return (a != 0) ? x : 0;
// load $reg, x
// movz $reg, $0, a
unsigned Opc = (N->getOpcode() == MipsISD::CMovFP_T) ? MipsISD::CMovFP_F :
MipsISD::CMovFP_T;
SDValue FCC = N->getOperand(1), Glue = N->getOperand(3);
return DAG.getNode(Opc, SDLoc(N), ValueIfFalse.getValueType(),
ValueIfFalse, FCC, ValueIfTrue, Glue);
}
static SDValue performANDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
return SDValue();
SDValue FirstOperand = N->getOperand(0);
unsigned FirstOperandOpc = FirstOperand.getOpcode();
SDValue Mask = N->getOperand(1);
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
uint64_t Pos = 0, SMPos, SMSize;
ConstantSDNode *CN;
SDValue NewOperand;
unsigned Opc;
// Op's second operand must be a shifted mask.
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
return SDValue();
if (FirstOperandOpc == ISD::SRA || FirstOperandOpc == ISD::SRL) {
// Pattern match EXT.
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
// => ext $dst, $src, pos, size
// The second operand of the shift must be an immediate.
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
return SDValue();
Pos = CN->getZExtValue();
// Return if the shifted mask does not start at bit 0 or the sum of its size
// and Pos exceeds the word's size.
if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
return SDValue();
Opc = MipsISD::Ext;
NewOperand = FirstOperand.getOperand(0);
} else if (FirstOperandOpc == ISD::SHL && Subtarget.hasCnMips()) {
// Pattern match CINS.
// $dst = and (shl $src , pos), mask
// => cins $dst, $src, pos, size
// mask is a shifted mask with consecutive 1's, pos = shift amount,
// size = population count.
// The second operand of the shift must be an immediate.
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))))
return SDValue();
Pos = CN->getZExtValue();
if (SMPos != Pos || Pos >= ValTy.getSizeInBits() || SMSize >= 32 ||
Pos + SMSize > ValTy.getSizeInBits())
return SDValue();
NewOperand = FirstOperand.getOperand(0);
// SMSize is 'location' (position) in this case, not size.
SMSize--;
Opc = MipsISD::CIns;
} else {
// Pattern match EXT.
// $dst = and $src, (2**size - 1) , if size > 16
// => ext $dst, $src, pos, size , pos = 0
// If the mask is <= 0xffff, andi can be used instead.
if (CN->getZExtValue() <= 0xffff)
return SDValue();
// Return if the mask doesn't start at position 0.
if (SMPos)
return SDValue();
Opc = MipsISD::Ext;
NewOperand = FirstOperand;
}
return DAG.getNode(Opc, DL, ValTy, NewOperand,
DAG.getConstant(Pos, DL, MVT::i32),
DAG.getConstant(SMSize, DL, MVT::i32));
}
static SDValue performORCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
// Pattern match INS.
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
// => ins $dst, $src, size, pos, $src1
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasExtractInsert())
return SDValue();
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
ConstantSDNode *CN, *CN1;
// See if Op's first operand matches (and $src1 , mask0).
if (And0.getOpcode() != ISD::AND)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
!isShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
return SDValue();
// See if Op's second operand matches (and (shl $src, pos), mask1).
if (And1.getOpcode() == ISD::AND &&
And1.getOperand(0).getOpcode() == ISD::SHL) {
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
!isShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
return SDValue();
// The shift masks must have the same position and size.
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
return SDValue();
SDValue Shl = And1.getOperand(0);
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
return SDValue();
unsigned Shamt = CN->getZExtValue();
// Return if the shift amount and the first bit position of mask are not the
// same.
EVT ValTy = N->getValueType(0);
if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
return SDValue();
SDLoc DL(N);
return DAG.getNode(MipsISD::Ins, DL, ValTy, Shl.getOperand(0),
DAG.getConstant(SMPos0, DL, MVT::i32),
DAG.getConstant(SMSize0, DL, MVT::i32),
And0.getOperand(0));
} else {
// Pattern match DINS.
// $dst = or (and $src, mask0), mask1
// where mask0 = ((1 << SMSize0) -1) << SMPos0
// => dins $dst, $src, pos, size
if (~CN->getSExtValue() == ((((int64_t)1 << SMSize0) - 1) << SMPos0) &&
((SMSize0 + SMPos0 <= 64 && Subtarget.hasMips64r2()) ||
(SMSize0 + SMPos0 <= 32))) {
// Check if AND instruction has constant as argument
bool isConstCase = And1.getOpcode() != ISD::AND;
if (And1.getOpcode() == ISD::AND) {
if (!(CN1 = dyn_cast<ConstantSDNode>(And1->getOperand(1))))
return SDValue();
} else {
if (!(CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1))))
return SDValue();
}
// Don't generate INS if constant OR operand doesn't fit into bits
// cleared by constant AND operand.
if (CN->getSExtValue() & CN1->getSExtValue())
return SDValue();
SDLoc DL(N);
EVT ValTy = N->getOperand(0)->getValueType(0);
SDValue Const1;
SDValue SrlX;
if (!isConstCase) {
Const1 = DAG.getConstant(SMPos0, DL, MVT::i32);
SrlX = DAG.getNode(ISD::SRL, DL, And1->getValueType(0), And1, Const1);
}
return DAG.getNode(
MipsISD::Ins, DL, N->getValueType(0),
isConstCase
? DAG.getConstant(CN1->getSExtValue() >> SMPos0, DL, ValTy)
: SrlX,
DAG.getConstant(SMPos0, DL, MVT::i32),
DAG.getConstant(ValTy.getSizeInBits() / 8 < 8 ? SMSize0 & 31
: SMSize0,
DL, MVT::i32),
And0->getOperand(0));
}
return SDValue();
}
}
static SDValue performMADD_MSUBCombine(SDNode *ROOTNode, SelectionDAG &CurDAG,
const MipsSubtarget &Subtarget) {
// ROOTNode must have a multiplication as an operand for the match to be
// successful.
if (ROOTNode->getOperand(0).getOpcode() != ISD::MUL &&
ROOTNode->getOperand(1).getOpcode() != ISD::MUL)
return SDValue();
// We don't handle vector types here.
if (ROOTNode->getValueType(0).isVector())
return SDValue();
// For MIPS64, madd / msub instructions are inefficent to use with 64 bit
// arithmetic. E.g.
// (add (mul a b) c) =>
// let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
// MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
// or
// MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
//
// The overhead of setting up the Hi/Lo registers and reassembling the
// result makes this a dubious optimzation for MIPS64. The core of the
// problem is that Hi/Lo contain the upper and lower 32 bits of the
// operand and result.
//
// It requires a chain of 4 add/mul for MIPS64R2 to get better code
// density than doing it naively, 5 for MIPS64. Additionally, using
// madd/msub on MIPS64 requires the operands actually be 32 bit sign
// extended operands, not true 64 bit values.
//
// FIXME: For the moment, disable this completely for MIPS64.
if (Subtarget.hasMips64())
return SDValue();
SDValue Mult = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
? ROOTNode->getOperand(0)
: ROOTNode->getOperand(1);
SDValue AddOperand = ROOTNode->getOperand(0).getOpcode() == ISD::MUL
? ROOTNode->getOperand(1)
: ROOTNode->getOperand(0);
// Transform this to a MADD only if the user of this node is the add.
// If there are other users of the mul, this function returns here.
if (!Mult.hasOneUse())
return SDValue();
// maddu and madd are unusual instructions in that on MIPS64 bits 63..31
// must be in canonical form, i.e. sign extended. For MIPS32, the operands
// of the multiply must have 32 or more sign bits, otherwise we cannot
// perform this optimization. We have to check this here as we're performing
// this optimization pre-legalization.
SDValue MultLHS = Mult->getOperand(0);
SDValue MultRHS = Mult->getOperand(1);
bool IsSigned = MultLHS->getOpcode() == ISD::SIGN_EXTEND &&
MultRHS->getOpcode() == ISD::SIGN_EXTEND;
bool IsUnsigned = MultLHS->getOpcode() == ISD::ZERO_EXTEND &&
MultRHS->getOpcode() == ISD::ZERO_EXTEND;
if (!IsSigned && !IsUnsigned)
return SDValue();
// Initialize accumulator.
SDLoc DL(ROOTNode);
SDValue TopHalf;
SDValue BottomHalf;
BottomHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
CurDAG.getIntPtrConstant(0, DL));
TopHalf = CurDAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, AddOperand,
CurDAG.getIntPtrConstant(1, DL));
SDValue ACCIn = CurDAG.getNode(MipsISD::MTLOHI, DL, MVT::Untyped,
BottomHalf,
TopHalf);
// Create MipsMAdd(u) / MipsMSub(u) node.
bool IsAdd = ROOTNode->getOpcode() == ISD::ADD;
unsigned Opcode = IsAdd ? (IsUnsigned ? MipsISD::MAddu : MipsISD::MAdd)
: (IsUnsigned ? MipsISD::MSubu : MipsISD::MSub);
SDValue MAddOps[3] = {
CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(0)),
CurDAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mult->getOperand(1)), ACCIn};
EVT VTs[2] = {MVT::i32, MVT::i32};
SDValue MAdd = CurDAG.getNode(Opcode, DL, VTs, MAddOps);
SDValue ResLo = CurDAG.getNode(MipsISD::MFLO, DL, MVT::i32, MAdd);
SDValue ResHi = CurDAG.getNode(MipsISD::MFHI, DL, MVT::i32, MAdd);
SDValue Combined =
CurDAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResLo, ResHi);
return Combined;
}
static SDValue performSUBCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
// (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
if (DCI.isBeforeLegalizeOps()) {
if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
!Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
return performMADD_MSUBCombine(N, DAG, Subtarget);
return SDValue();
}
return SDValue();
}
static SDValue performADDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
// (add v0 (mul v1, v2)) => (madd v1, v2, v0)
if (DCI.isBeforeLegalizeOps()) {
if (Subtarget.hasMips32() && !Subtarget.hasMips32r6() &&
!Subtarget.inMips16Mode() && N->getValueType(0) == MVT::i64)
return performMADD_MSUBCombine(N, DAG, Subtarget);
return SDValue();
}
// (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
SDValue Add = N->getOperand(1);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
SDValue Lo = Add.getOperand(1);
if ((Lo.getOpcode() != MipsISD::Lo) ||
(Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
return SDValue();
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
Add.getOperand(0));
return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
}
static SDValue performSHLCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget &Subtarget) {
// Pattern match CINS.
// $dst = shl (and $src , imm), pos
// => cins $dst, $src, pos, size
if (DCI.isBeforeLegalizeOps() || !Subtarget.hasCnMips())
return SDValue();
SDValue FirstOperand = N->getOperand(0);
unsigned FirstOperandOpc = FirstOperand.getOpcode();
SDValue SecondOperand = N->getOperand(1);
EVT ValTy = N->getValueType(0);
SDLoc DL(N);
uint64_t Pos = 0, SMPos, SMSize;
ConstantSDNode *CN;
SDValue NewOperand;
// The second operand of the shift must be an immediate.
if (!(CN = dyn_cast<ConstantSDNode>(SecondOperand)))
return SDValue();
Pos = CN->getZExtValue();
if (Pos >= ValTy.getSizeInBits())
return SDValue();
if (FirstOperandOpc != ISD::AND)
return SDValue();
// AND's second operand must be a shifted mask.
if (!(CN = dyn_cast<ConstantSDNode>(FirstOperand.getOperand(1))) ||
!isShiftedMask(CN->getZExtValue(), SMPos, SMSize))
return SDValue();
// Return if the shifted mask does not start at bit 0 or the sum of its size
// and Pos exceeds the word's size.
if (SMPos != 0 || SMSize > 32 || Pos + SMSize > ValTy.getSizeInBits())
return SDValue();
NewOperand = FirstOperand.getOperand(0);
// SMSize is 'location' (position) in this case, not size.
SMSize--;
return DAG.getNode(MipsISD::CIns, DL, ValTy, NewOperand,
DAG.getConstant(Pos, DL, MVT::i32),
DAG.getConstant(SMSize, DL, MVT::i32));
}
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
SelectionDAG &DAG = DCI.DAG;
unsigned Opc = N->getOpcode();
switch (Opc) {
default: break;
case ISD::SDIVREM:
case ISD::UDIVREM:
return performDivRemCombine(N, DAG, DCI, Subtarget);
case ISD::SELECT:
return performSELECTCombine(N, DAG, DCI, Subtarget);
case MipsISD::CMovFP_F:
case MipsISD::CMovFP_T:
return performCMovFPCombine(N, DAG, DCI, Subtarget);
case ISD::AND:
return performANDCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return performORCombine(N, DAG, DCI, Subtarget);
case ISD::ADD:
return performADDCombine(N, DAG, DCI, Subtarget);
case ISD::SHL:
return performSHLCombine(N, DAG, DCI, Subtarget);
case ISD::SUB:
return performSUBCombine(N, DAG, DCI, Subtarget);
}
return SDValue();
}
bool MipsTargetLowering::isCheapToSpeculateCttz() const {
return Subtarget.hasMips32();
}
bool MipsTargetLowering::isCheapToSpeculateCtlz() const {
return Subtarget.hasMips32();
}
void
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
void
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
return LowerOperationWrapper(N, Results, DAG);
}
SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
switch (Op.getOpcode())
{
case ISD::BRCOND: return lowerBRCOND(Op, DAG);
case ISD::ConstantPool: return lowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return lowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return lowerBlockAddress(Op, DAG);
case ISD::GlobalTLSAddress: return lowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return lowerJumpTable(Op, DAG);
case ISD::SELECT: return lowerSELECT(Op, DAG);
case ISD::SETCC: return lowerSETCC(Op, DAG);
case ISD::VASTART: return lowerVASTART(Op, DAG);
case ISD::VAARG: return lowerVAARG(Op, DAG);
case ISD::FCOPYSIGN: return lowerFCOPYSIGN(Op, DAG);
case ISD::FABS: return lowerFABS(Op, DAG);
case ISD::FRAMEADDR: return lowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR: return lowerRETURNADDR(Op, DAG);
case ISD::EH_RETURN: return lowerEH_RETURN(Op, DAG);
case ISD::ATOMIC_FENCE: return lowerATOMIC_FENCE(Op, DAG);
case ISD::SHL_PARTS: return lowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS: return lowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS: return lowerShiftRightParts(Op, DAG, false);
case ISD::LOAD: return lowerLOAD(Op, DAG);
case ISD::STORE: return lowerSTORE(Op, DAG);
case ISD::EH_DWARF_CFA: return lowerEH_DWARF_CFA(Op, DAG);
case ISD::FP_TO_SINT: return lowerFP_TO_SINT(Op, DAG);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Lower helper functions
//===----------------------------------------------------------------------===//
// addLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value. It also creates a corresponding
// virtual register for it.
static unsigned
addLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
{
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
MF.getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
static MachineBasicBlock *insertDivByZeroTrap(MachineInstr &MI,
MachineBasicBlock &MBB,
const TargetInstrInfo &TII,
bool Is64Bit, bool IsMicroMips) {
if (NoZeroDivCheck)
return &MBB;
// Insert instruction "teq $divisor_reg, $zero, 7".
MachineBasicBlock::iterator I(MI);
MachineInstrBuilder MIB;
MachineOperand &Divisor = MI.getOperand(2);
MIB = BuildMI(MBB, std::next(I), MI.getDebugLoc(),
TII.get(IsMicroMips ? Mips::TEQ_MM : Mips::TEQ))
.addReg(Divisor.getReg(), getKillRegState(Divisor.isKill()))
.addReg(Mips::ZERO)
.addImm(7);
// Use the 32-bit sub-register if this is a 64-bit division.
if (Is64Bit)
MIB->getOperand(0).setSubReg(Mips::sub_32);
// Clear Divisor's kill flag.
Divisor.setIsKill(false);
// We would normally delete the original instruction here but in this case
// we only needed to inject an additional instruction rather than replace it.
return &MBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected instr type to insert");
case Mips::ATOMIC_LOAD_ADD_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_ADD_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_ADD_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_ADD_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_AND_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_AND_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_AND_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_AND_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_OR_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_OR_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_OR_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_OR_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_XOR_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_XOR_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_XOR_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_XOR_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_NAND_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_NAND_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_NAND_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_NAND_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_SUB_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_LOAD_SUB_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_LOAD_SUB_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_LOAD_SUB_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_SWAP_I8:
return emitAtomicBinaryPartword(MI, BB, 1);
case Mips::ATOMIC_SWAP_I16:
return emitAtomicBinaryPartword(MI, BB, 2);
case Mips::ATOMIC_SWAP_I32:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_SWAP_I64:
return emitAtomicBinary(MI, BB);
case Mips::ATOMIC_CMP_SWAP_I8:
return emitAtomicCmpSwapPartword(MI, BB, 1);
case Mips::ATOMIC_CMP_SWAP_I16:
return emitAtomicCmpSwapPartword(MI, BB, 2);
case Mips::ATOMIC_CMP_SWAP_I32:
return emitAtomicCmpSwap(MI, BB);
case Mips::ATOMIC_CMP_SWAP_I64:
return emitAtomicCmpSwap(MI, BB);
case Mips::PseudoSDIV:
case Mips::PseudoUDIV:
case Mips::DIV:
case Mips::DIVU:
case Mips::MOD:
case Mips::MODU:
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false,
false);
case Mips::SDIV_MM_Pseudo:
case Mips::UDIV_MM_Pseudo:
case Mips::SDIV_MM:
case Mips::UDIV_MM:
case Mips::DIV_MMR6:
case Mips::DIVU_MMR6:
case Mips::MOD_MMR6:
case Mips::MODU_MMR6:
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), false, true);
case Mips::PseudoDSDIV:
case Mips::PseudoDUDIV:
case Mips::DDIV:
case Mips::DDIVU:
case Mips::DMOD:
case Mips::DMODU:
return insertDivByZeroTrap(MI, *BB, *Subtarget.getInstrInfo(), true, false);
case Mips::PseudoSELECT_I:
case Mips::PseudoSELECT_I64:
case Mips::PseudoSELECT_S:
case Mips::PseudoSELECT_D32:
case Mips::PseudoSELECT_D64:
return emitPseudoSELECT(MI, BB, false, Mips::BNE);
case Mips::PseudoSELECTFP_F_I:
case Mips::PseudoSELECTFP_F_I64:
case Mips::PseudoSELECTFP_F_S:
case Mips::PseudoSELECTFP_F_D32:
case Mips::PseudoSELECTFP_F_D64:
return emitPseudoSELECT(MI, BB, true, Mips::BC1F);
case Mips::PseudoSELECTFP_T_I:
case Mips::PseudoSELECTFP_T_I64:
case Mips::PseudoSELECTFP_T_S:
case Mips::PseudoSELECTFP_T_D32:
case Mips::PseudoSELECTFP_T_D64:
return emitPseudoSELECT(MI, BB, true, Mips::BC1T);
case Mips::PseudoD_SELECT_I:
case Mips::PseudoD_SELECT_I64:
return emitPseudoD_SELECT(MI, BB);
}
}
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::emitAtomicBinary(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned AtomicOp;
switch (MI.getOpcode()) {
case Mips::ATOMIC_LOAD_ADD_I32:
AtomicOp = Mips::ATOMIC_LOAD_ADD_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_SUB_I32:
AtomicOp = Mips::ATOMIC_LOAD_SUB_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_AND_I32:
AtomicOp = Mips::ATOMIC_LOAD_AND_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_OR_I32:
AtomicOp = Mips::ATOMIC_LOAD_OR_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_XOR_I32:
AtomicOp = Mips::ATOMIC_LOAD_XOR_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_NAND_I32:
AtomicOp = Mips::ATOMIC_LOAD_NAND_I32_POSTRA;
break;
case Mips::ATOMIC_SWAP_I32:
AtomicOp = Mips::ATOMIC_SWAP_I32_POSTRA;
break;
case Mips::ATOMIC_LOAD_ADD_I64:
AtomicOp = Mips::ATOMIC_LOAD_ADD_I64_POSTRA;
break;
case Mips::ATOMIC_LOAD_SUB_I64:
AtomicOp = Mips::ATOMIC_LOAD_SUB_I64_POSTRA;
break;
case Mips::ATOMIC_LOAD_AND_I64:
AtomicOp = Mips::ATOMIC_LOAD_AND_I64_POSTRA;
break;
case Mips::ATOMIC_LOAD_OR_I64:
AtomicOp = Mips::ATOMIC_LOAD_OR_I64_POSTRA;
break;
case Mips::ATOMIC_LOAD_XOR_I64:
AtomicOp = Mips::ATOMIC_LOAD_XOR_I64_POSTRA;
break;
case Mips::ATOMIC_LOAD_NAND_I64:
AtomicOp = Mips::ATOMIC_LOAD_NAND_I64_POSTRA;
break;
case Mips::ATOMIC_SWAP_I64:
AtomicOp = Mips::ATOMIC_SWAP_I64_POSTRA;
break;
default:
llvm_unreachable("Unknown pseudo atomic for replacement!");
}
unsigned OldVal = MI.getOperand(0).getReg();
unsigned Ptr = MI.getOperand(1).getReg();
unsigned Incr = MI.getOperand(2).getReg();
unsigned Scratch = RegInfo.createVirtualRegister(RegInfo.getRegClass(OldVal));
MachineBasicBlock::iterator II(MI);
// The scratch registers here with the EarlyClobber | Define | Implicit
// flags is used to persuade the register allocator and the machine
// verifier to accept the usage of this register. This has to be a real
// register which has an UNDEF value but is dead after the instruction which
// is unique among the registers chosen for the instruction.
// The EarlyClobber flag has the semantic properties that the operand it is
// attached to is clobbered before the rest of the inputs are read. Hence it
// must be unique among the operands to the instruction.
// The Define flag is needed to coerce the machine verifier that an Undef
// value isn't a problem.
// The Dead flag is needed as the value in scratch isn't used by any other
// instruction. Kill isn't used as Dead is more precise.
// The implicit flag is here due to the interaction between the other flags
// and the machine verifier.
// For correctness purpose, a new pseudo is introduced here. We need this
// new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
// that is spread over >1 basic blocks. A register allocator which
// introduces (or any codegen infact) a store, can violate the expectations
// of the hardware.
//
// An atomic read-modify-write sequence starts with a linked load
// instruction and ends with a store conditional instruction. The atomic
// read-modify-write sequence fails if any of the following conditions
// occur between the execution of ll and sc:
// * A coherent store is completed by another process or coherent I/O
// module into the block of synchronizable physical memory containing
// the word. The size and alignment of the block is
// implementation-dependent.
// * A coherent store is executed between an LL and SC sequence on the
// same processor to the block of synchornizable physical memory
// containing the word.
//
unsigned PtrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Ptr));
unsigned IncrCopy = RegInfo.createVirtualRegister(RegInfo.getRegClass(Incr));
BuildMI(*BB, II, DL, TII->get(Mips::COPY), IncrCopy).addReg(Incr);
BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
BuildMI(*BB, II, DL, TII->get(AtomicOp))
.addReg(OldVal, RegState::Define | RegState::EarlyClobber)
.addReg(PtrCopy)
.addReg(IncrCopy)
.addReg(Scratch, RegState::Define | RegState::EarlyClobber |
RegState::Implicit | RegState::Dead);
MI.eraseFromParent();
return BB;
}
MachineBasicBlock *MipsTargetLowering::emitSignExtendToI32InReg(
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size, unsigned DstReg,
unsigned SrcReg) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
const DebugLoc &DL = MI.getDebugLoc();
if (Subtarget.hasMips32r2() && Size == 1) {
BuildMI(BB, DL, TII->get(Mips::SEB), DstReg).addReg(SrcReg);
return BB;
}
if (Subtarget.hasMips32r2() && Size == 2) {
BuildMI(BB, DL, TII->get(Mips::SEH), DstReg).addReg(SrcReg);
return BB;
}
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
unsigned ScrReg = RegInfo.createVirtualRegister(RC);
assert(Size < 32);
int64_t ShiftImm = 32 - (Size * 8);
BuildMI(BB, DL, TII->get(Mips::SLL), ScrReg).addReg(SrcReg).addImm(ShiftImm);
BuildMI(BB, DL, TII->get(Mips::SRA), DstReg).addReg(ScrReg).addImm(ShiftImm);
return BB;
}
MachineBasicBlock *MipsTargetLowering::emitAtomicBinaryPartword(
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicBinaryPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const bool ArePtrs64bit = ABI.ArePtrs64bit();
const TargetRegisterClass *RCp =
getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Dest = MI.getOperand(0).getReg();
unsigned Ptr = MI.getOperand(1).getReg();
unsigned Incr = MI.getOperand(2).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned Scratch = RegInfo.createVirtualRegister(RC);
unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
unsigned Scratch3 = RegInfo.createVirtualRegister(RC);
unsigned AtomicOp = 0;
switch (MI.getOpcode()) {
case Mips::ATOMIC_LOAD_NAND_I8:
AtomicOp = Mips::ATOMIC_LOAD_NAND_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_NAND_I16:
AtomicOp = Mips::ATOMIC_LOAD_NAND_I16_POSTRA;
break;
case Mips::ATOMIC_SWAP_I8:
AtomicOp = Mips::ATOMIC_SWAP_I8_POSTRA;
break;
case Mips::ATOMIC_SWAP_I16:
AtomicOp = Mips::ATOMIC_SWAP_I16_POSTRA;
break;
case Mips::ATOMIC_LOAD_ADD_I8:
AtomicOp = Mips::ATOMIC_LOAD_ADD_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_ADD_I16:
AtomicOp = Mips::ATOMIC_LOAD_ADD_I16_POSTRA;
break;
case Mips::ATOMIC_LOAD_SUB_I8:
AtomicOp = Mips::ATOMIC_LOAD_SUB_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_SUB_I16:
AtomicOp = Mips::ATOMIC_LOAD_SUB_I16_POSTRA;
break;
case Mips::ATOMIC_LOAD_AND_I8:
AtomicOp = Mips::ATOMIC_LOAD_AND_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_AND_I16:
AtomicOp = Mips::ATOMIC_LOAD_AND_I16_POSTRA;
break;
case Mips::ATOMIC_LOAD_OR_I8:
AtomicOp = Mips::ATOMIC_LOAD_OR_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_OR_I16:
AtomicOp = Mips::ATOMIC_LOAD_OR_I16_POSTRA;
break;
case Mips::ATOMIC_LOAD_XOR_I8:
AtomicOp = Mips::ATOMIC_LOAD_XOR_I8_POSTRA;
break;
case Mips::ATOMIC_LOAD_XOR_I16:
AtomicOp = Mips::ATOMIC_LOAD_XOR_I16_POSTRA;
break;
default:
llvm_unreachable("Unknown subword atomic pseudo for expansion!");
}
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++BB->getIterator();
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(exitMBB, BranchProbability::getOne());
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// sll incr2,incr,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, DL, TII->get(ABI.GetPtrAddiuOp()), MaskLSB2)
.addReg(ABI.GetNullPtr()).addImm(-4);
BuildMI(BB, DL, TII->get(ABI.GetPtrAndOp()), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
.addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
if (Subtarget.isLittle()) {
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
} else {
unsigned Off = RegInfo.createVirtualRegister(RC);
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
}
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
.addReg(MaskUpper).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::SLLV), Incr2).addReg(Incr).addReg(ShiftAmt);
// The purposes of the flags on the scratch registers is explained in
// emitAtomicBinary. In summary, we need a scratch register which is going to
// be undef, that is unique among registers chosen for the instruction.
BuildMI(BB, DL, TII->get(AtomicOp))
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
.addReg(AlignedAddr)
.addReg(Incr2)
.addReg(Mask)
.addReg(Mask2)
.addReg(ShiftAmt)
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit)
.addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit)
.addReg(Scratch3, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit);
MI.eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
// Lower atomic compare and swap to a pseudo instruction, taking care to
// define a scratch register for the pseudo instruction's expansion. The
// instruction is expanded after the register allocator as to prevent
// the insertion of stores between the linked load and the store conditional.
MachineBasicBlock *
MipsTargetLowering::emitAtomicCmpSwap(MachineInstr &MI,
MachineBasicBlock *BB) const {
assert((MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ||
MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64) &&
"Unsupported atomic psseudo for EmitAtomicCmpSwap.");
const unsigned Size = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32 ? 4 : 8;
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
: Mips::ATOMIC_CMP_SWAP_I64_POSTRA;
unsigned Dest = MI.getOperand(0).getReg();
unsigned Ptr = MI.getOperand(1).getReg();
unsigned OldVal = MI.getOperand(2).getReg();
unsigned NewVal = MI.getOperand(3).getReg();
unsigned Scratch = MRI.createVirtualRegister(RC);
MachineBasicBlock::iterator II(MI);
// We need to create copies of the various registers and kill them at the
// atomic pseudo. If the copies are not made, when the atomic is expanded
// after fast register allocation, the spills will end up outside of the
// blocks that their values are defined in, causing livein errors.
unsigned DestCopy = MRI.createVirtualRegister(MRI.getRegClass(Dest));
unsigned PtrCopy = MRI.createVirtualRegister(MRI.getRegClass(Ptr));
unsigned OldValCopy = MRI.createVirtualRegister(MRI.getRegClass(OldVal));
unsigned NewValCopy = MRI.createVirtualRegister(MRI.getRegClass(NewVal));
BuildMI(*BB, II, DL, TII->get(Mips::COPY), DestCopy).addReg(Dest);
BuildMI(*BB, II, DL, TII->get(Mips::COPY), PtrCopy).addReg(Ptr);
BuildMI(*BB, II, DL, TII->get(Mips::COPY), OldValCopy).addReg(OldVal);
BuildMI(*BB, II, DL, TII->get(Mips::COPY), NewValCopy).addReg(NewVal);
// The purposes of the flags on the scratch registers is explained in
// emitAtomicBinary. In summary, we need a scratch register which is going to
// be undef, that is unique among registers chosen for the instruction.
BuildMI(*BB, II, DL, TII->get(AtomicOp))
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
.addReg(PtrCopy, RegState::Kill)
.addReg(OldValCopy, RegState::Kill)
.addReg(NewValCopy, RegState::Kill)
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit);
MI.eraseFromParent(); // The instruction is gone now.
return BB;
}
MachineBasicBlock *MipsTargetLowering::emitAtomicCmpSwapPartword(
MachineInstr &MI, MachineBasicBlock *BB, unsigned Size) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicCmpSwapPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const bool ArePtrs64bit = ABI.ArePtrs64bit();
const TargetRegisterClass *RCp =
getRegClassFor(ArePtrs64bit ? MVT::i64 : MVT::i32);
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
unsigned Dest = MI.getOperand(0).getReg();
unsigned Ptr = MI.getOperand(1).getReg();
unsigned CmpVal = MI.getOperand(2).getReg();
unsigned NewVal = MI.getOperand(3).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RCp);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RCp);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
unsigned AtomicOp = MI.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
: Mips::ATOMIC_CMP_SWAP_I16_POSTRA;
// The scratch registers here with the EarlyClobber | Define | Dead | Implicit
// flags are used to coerce the register allocator and the machine verifier to
// accept the usage of these registers.
// The EarlyClobber flag has the semantic properties that the operand it is
// attached to is clobbered before the rest of the inputs are read. Hence it
// must be unique among the operands to the instruction.
// The Define flag is needed to coerce the machine verifier that an Undef
// value isn't a problem.
// The Dead flag is needed as the value in scratch isn't used by any other
// instruction. Kill isn't used as Dead is more precise.
unsigned Scratch = RegInfo.createVirtualRegister(RC);
unsigned Scratch2 = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = ++BB->getIterator();
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(exitMBB, BranchProbability::getOne());
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// xori ptrlsb2,ptrlsb2,3 # Only for BE
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// andi maskedcmpval,cmpval,255
// sll shiftedcmpval,maskedcmpval,shiftamt
// andi maskednewval,newval,255
// sll shiftednewval,maskednewval,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::DADDiu : Mips::ADDiu), MaskLSB2)
.addReg(ABI.GetNullPtr()).addImm(-4);
BuildMI(BB, DL, TII->get(ArePtrs64bit ? Mips::AND64 : Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, DL, TII->get(Mips::ANDi), PtrLSB2)
.addReg(Ptr, 0, ArePtrs64bit ? Mips::sub_32 : 0).addImm(3);
if (Subtarget.isLittle()) {
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
} else {
unsigned Off = RegInfo.createVirtualRegister(RC);
BuildMI(BB, DL, TII->get(Mips::XORi), Off)
.addReg(PtrLSB2).addImm((Size == 1) ? 3 : 2);
BuildMI(BB, DL, TII->get(Mips::SLL), ShiftAmt).addReg(Off).addImm(3);
}
BuildMI(BB, DL, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), Mask)
.addReg(MaskUpper).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedCmpVal)
.addReg(CmpVal).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedCmpVal)
.addReg(MaskedCmpVal).addReg(ShiftAmt);
BuildMI(BB, DL, TII->get(Mips::ANDi), MaskedNewVal)
.addReg(NewVal).addImm(MaskImm);
BuildMI(BB, DL, TII->get(Mips::SLLV), ShiftedNewVal)
.addReg(MaskedNewVal).addReg(ShiftAmt);
// The purposes of the flags on the scratch registers are explained in
// emitAtomicBinary. In summary, we need a scratch register which is going to
// be undef, that is unique among the register chosen for the instruction.
BuildMI(BB, DL, TII->get(AtomicOp))
.addReg(Dest, RegState::Define | RegState::EarlyClobber)
.addReg(AlignedAddr)
.addReg(Mask)
.addReg(ShiftedCmpVal)
.addReg(Mask2)
.addReg(ShiftedNewVal)
.addReg(ShiftAmt)
.addReg(Scratch, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit)
.addReg(Scratch2, RegState::EarlyClobber | RegState::Define |
RegState::Dead | RegState::Implicit);
MI.eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
SDValue MipsTargetLowering::lowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
// The first operand is the chain, the second is the condition, the third is
// the block to branch to if the condition is true.
SDValue Chain = Op.getOperand(0);
SDValue Dest = Op.getOperand(2);
SDLoc DL(Op);
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
SDValue CondRes = createFPCmp(DAG, Op.getOperand(1));
// Return if flag is not set by a floating point comparison.
if (CondRes.getOpcode() != MipsISD::FPCmp)
return Op;
SDValue CCNode = CondRes.getOperand(2);
Mips::CondCode CC =
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
unsigned Opc = invertFPCondCodeUser(CC) ? Mips::BRANCH_F : Mips::BRANCH_T;
SDValue BrCode = DAG.getConstant(Opc, DL, MVT::i32);
SDValue FCC0 = DAG.getRegister(Mips::FCC0, MVT::i32);
return DAG.getNode(MipsISD::FPBrcond, DL, Op.getValueType(), Chain, BrCode,
FCC0, Dest, CondRes);
}
SDValue MipsTargetLowering::
lowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
SDValue Cond = createFPCmp(DAG, Op.getOperand(0));
// Return if flag is not set by a floating point comparison.
if (Cond.getOpcode() != MipsISD::FPCmp)
return Op;
return createCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
SDLoc(Op));
}
SDValue MipsTargetLowering::lowerSETCC(SDValue Op, SelectionDAG &DAG) const {
assert(!Subtarget.hasMips32r6() && !Subtarget.hasMips64r6());
SDValue Cond = createFPCmp(DAG, Op);
assert(Cond.getOpcode() == MipsISD::FPCmp &&
"Floating point operand expected.");
SDLoc DL(Op);
SDValue True = DAG.getConstant(1, DL, MVT::i32);
SDValue False = DAG.getConstant(0, DL, MVT::i32);
return createCMovFP(DAG, Cond, True, False, DL);
}
SDValue MipsTargetLowering::lowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
EVT Ty = Op.getValueType();
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = N->getGlobal();
if (!isPositionIndependent()) {
const MipsTargetObjectFile *TLOF =
static_cast<const MipsTargetObjectFile *>(
getTargetMachine().getObjFileLowering());
const GlobalObject *GO = GV->getBaseObject();
if (GO && TLOF->IsGlobalInSmallSection(GO, getTargetMachine()))
// %gp_rel relocation
return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
// %hi/%lo relocation
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
// %highest/%higher/%hi/%lo relocation
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
}
// Every other architecture would use shouldAssumeDSOLocal in here, but
// mips is special.
// * In PIC code mips requires got loads even for local statics!
// * To save on got entries, for local statics the got entry contains the
// page and an additional add instruction takes care of the low bits.
// * It is legal to access a hidden symbol with a non hidden undefined,
// so one cannot guarantee that all access to a hidden symbol will know
// it is hidden.
// * Mips linkers don't support creating a page and a full got entry for
// the same symbol.
// * Given all that, we have to use a full got entry for hidden symbols :-(
if (GV->hasLocalLinkage())
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
if (LargeGOT)
return getAddrGlobalLargeGOT(
N, SDLoc(N), Ty, DAG, MipsII::MO_GOT_HI16, MipsII::MO_GOT_LO16,
DAG.getEntryNode(),
MachinePointerInfo::getGOT(DAG.getMachineFunction()));
return getAddrGlobal(
N, SDLoc(N), Ty, DAG,
(ABI.IsN32() || ABI.IsN64()) ? MipsII::MO_GOT_DISP : MipsII::MO_GOT,
DAG.getEntryNode(), MachinePointerInfo::getGOT(DAG.getMachineFunction()));
}
SDValue MipsTargetLowering::lowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
EVT Ty = Op.getValueType();
if (!isPositionIndependent())
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}
SDValue MipsTargetLowering::
lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
// If the relocation model is PIC, use the General Dynamic TLS Model or
// Local Dynamic TLS model, otherwise use the Initial Exec or
// Local Exec TLS Model.
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().useEmulatedTLS())
return LowerToTLSEmulatedModel(GA, DAG);
SDLoc DL(GA);
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy(DAG.getDataLayout());
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
// General Dynamic and Local Dynamic TLS Model.
unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
: MipsII::MO_TLSGD;
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, Flag);
SDValue Argument = DAG.getNode(MipsISD::Wrapper, DL, PtrVT,
getGlobalReg(DAG, PtrVT), TGA);
unsigned PtrSize = PtrVT.getSizeInBits();
IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = PtrTy;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(DL)
.setChain(DAG.getEntryNode())
.setLibCallee(CallingConv::C, PtrTy, TlsGetAddr, std::move(Args));
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Ret = CallResult.first;
if (model != TLSModel::LocalDynamic)
return Ret;
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_DTPREL_HI);
SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_DTPREL_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
SDValue Add = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Ret);
return DAG.getNode(ISD::ADD, DL, PtrVT, Add, Lo);
}
SDValue Offset;
if (model == TLSModel::InitialExec) {
// Initial Exec TLS Model
SDValue TGA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_GOTTPREL);
TGA = DAG.getNode(MipsISD::Wrapper, DL, PtrVT, getGlobalReg(DAG, PtrVT),
TGA);
Offset =
DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), TGA, MachinePointerInfo());
} else {
// Local Exec TLS Model
assert(model == TLSModel::LocalExec);
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_TPREL_HI);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0,
MipsII::MO_TPREL_LO);
SDValue Hi = DAG.getNode(MipsISD::TlsHi, DL, PtrVT, TGAHi);
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, PtrVT, TGALo);
Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
}
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, DL, PtrVT);
return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadPointer, Offset);
}
SDValue MipsTargetLowering::
lowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
JumpTableSDNode *N = cast<JumpTableSDNode>(Op);
EVT Ty = Op.getValueType();
if (!isPositionIndependent())
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}
SDValue MipsTargetLowering::
lowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
EVT Ty = Op.getValueType();
if (!isPositionIndependent()) {
const MipsTargetObjectFile *TLOF =
static_cast<const MipsTargetObjectFile *>(
getTargetMachine().getObjFileLowering());
if (TLOF->IsConstantInSmallSection(DAG.getDataLayout(), N->getConstVal(),
getTargetMachine()))
// %gp_rel relocation
return getAddrGPRel(N, SDLoc(N), Ty, DAG, ABI.IsN64());
return Subtarget.hasSym32() ? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
}
return getAddrLocal(N, SDLoc(N), Ty, DAG, ABI.IsN32() || ABI.IsN64());
}
SDValue MipsTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
SDLoc DL(Op);
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy(MF.getDataLayout()));
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue MipsTargetLowering::lowerVAARG(SDValue Op, SelectionDAG &DAG) const {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue Chain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
unsigned Align = Node->getConstantOperandVal(3);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
SDLoc DL(Node);
unsigned ArgSlotSizeInBytes = (ABI.IsN32() || ABI.IsN64()) ? 8 : 4;
SDValue VAListLoad = DAG.getLoad(getPointerTy(DAG.getDataLayout()), DL, Chain,
VAListPtr, MachinePointerInfo(SV));
SDValue VAList = VAListLoad;
// Re-align the pointer if necessary.
// It should only ever be necessary for 64-bit types on O32 since the minimum
// argument alignment is the same as the maximum type alignment for N32/N64.
//
// FIXME: We currently align too often. The code generator doesn't notice
// when the pointer is still aligned from the last va_arg (or pair of
// va_args for the i64 on O32 case).
if (Align > getMinStackArgumentAlignment()) {
assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
VAList = DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
DAG.getConstant(Align - 1, DL, VAList.getValueType()));
VAList = DAG.getNode(ISD::AND, DL, VAList.getValueType(), VAList,
DAG.getConstant(-(int64_t)Align, DL,
VAList.getValueType()));
}
// Increment the pointer, VAList, to the next vaarg.
auto &TD = DAG.getDataLayout();
unsigned ArgSizeInBytes =
TD.getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext()));
SDValue Tmp3 =
DAG.getNode(ISD::ADD, DL, VAList.getValueType(), VAList,
DAG.getConstant(alignTo(ArgSizeInBytes, ArgSlotSizeInBytes),
DL, VAList.getValueType()));
// Store the incremented VAList to the legalized pointer
Chain = DAG.getStore(VAListLoad.getValue(1), DL, Tmp3, VAListPtr,
MachinePointerInfo(SV));
// In big-endian mode we must adjust the pointer when the load size is smaller
// than the argument slot size. We must also reduce the known alignment to
// match. For example in the N64 ABI, we must add 4 bytes to the offset to get
// the correct half of the slot, and reduce the alignment from 8 (slot
// alignment) down to 4 (type alignment).
if (!Subtarget.isLittle() && ArgSizeInBytes < ArgSlotSizeInBytes) {
unsigned Adjustment = ArgSlotSizeInBytes - ArgSizeInBytes;
VAList = DAG.getNode(ISD::ADD, DL, VAListPtr.getValueType(), VAList,
DAG.getIntPtrConstant(Adjustment, DL));
}
// Load the actual argument out of the pointer VAList
return DAG.getLoad(VT, DL, Chain, VAList, MachinePointerInfo());
}
static SDValue lowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
EVT TyX = Op.getOperand(0).getValueType();
EVT TyY = Op.getOperand(1).getValueType();
SDLoc DL(Op);
SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
SDValue Const31 = DAG.getConstant(31, DL, MVT::i32);
SDValue Res;
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (TyX == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
Const1);
SDValue Y = (TyY == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
Const1);
if (HasExtractInsert) {
// ext E, Y, 31, 1 ; extract bit31 of Y
// ins X, E, 31, 1 ; insert extracted bit at bit31 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
} else {
// sll SllX, X, 1
// srl SrlX, SllX, 1
// srl SrlY, Y, 31
// sll SllY, SrlX, 31
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
}
if (TyX == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0),
DAG.getConstant(0, DL, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue lowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
SDLoc DL(Op);
SDValue Const1 = DAG.getConstant(1, DL, MVT::i32);
// Bitcast to integer nodes.
SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
if (HasExtractInsert) {
// ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
// ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
DAG.getConstant(WidthY - 1, DL, MVT::i32), Const1);
if (WidthX > WidthY)
E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
else if (WidthY > WidthX)
E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
DAG.getConstant(WidthX - 1, DL, MVT::i32), Const1,
X);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
}
// (d)sll SllX, X, 1
// (d)srl SrlX, SllX, 1
// (d)srl SrlY, Y, width(Y)-1
// (d)sll SllY, SrlX, width(Y)-1
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
DAG.getConstant(WidthY - 1, DL, MVT::i32));
if (WidthX > WidthY)
SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
else if (WidthY > WidthX)
SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
DAG.getConstant(WidthX - 1, DL, MVT::i32));
SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
}
SDValue
MipsTargetLowering::lowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget.isGP64bit())
return lowerFCOPYSIGN64(Op, DAG, Subtarget.hasExtractInsert());
return lowerFCOPYSIGN32(Op, DAG, Subtarget.hasExtractInsert());
}
static SDValue lowerFABS32(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
SDLoc DL(Op);
SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (Op.getValueType() == MVT::f32)
? DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0))
: DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0), Const1);
// Clear MSB.
if (HasExtractInsert)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
DAG.getRegister(Mips::ZERO, MVT::i32),
DAG.getConstant(31, DL, MVT::i32), Const1, X);
else {
// TODO: Provide DAG patterns which transform (and x, cst)
// back to a (shl (srl x (clz cst)) (clz cst)) sequence.
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
}
if (Op.getValueType() == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
// FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
// Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
// should be able to drop the usage of mfc1/mtc1 and rewrite the register in
// place.
SDValue LowX =
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
DAG.getConstant(0, DL, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue lowerFABS64(SDValue Op, SelectionDAG &DAG,
bool HasExtractInsert) {
SDLoc DL(Op);
SDValue Res, Const1 = DAG.getConstant(1, DL, MVT::i32);
// Bitcast to integer node.
SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
// Clear MSB.
if (HasExtractInsert)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
DAG.getRegister(Mips::ZERO_64, MVT::i64),
DAG.getConstant(63, DL, MVT::i32), Const1, X);
else {
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
}
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
}
SDValue MipsTargetLowering::lowerFABS(SDValue Op, SelectionDAG &DAG) const {
if ((ABI.IsN32() || ABI.IsN64()) && (Op.getValueType() == MVT::f64))
return lowerFABS64(Op, DAG, Subtarget.hasExtractInsert());
return lowerFABS32(Op, DAG, Subtarget.hasExtractInsert());
}
SDValue MipsTargetLowering::
lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Frame address can only be determined for current frame.");
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc DL(Op);
SDValue FrameAddr = DAG.getCopyFromReg(
DAG.getEntryNode(), DL, ABI.IsN64() ? Mips::FP_64 : Mips::FP, VT);
return FrameAddr;
}
SDValue MipsTargetLowering::lowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Return address can be determined only for current frame.");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MVT VT = Op.getSimpleValueType();
unsigned RA = ABI.IsN64() ? Mips::RA_64 : Mips::RA;
MFI.setReturnAddressIsTaken(true);
// Return RA, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), Reg, VT);
}
// An EH_RETURN is the result of lowering llvm.eh.return which in turn is
// generated from __builtin_eh_return (offset, handler)
// The effect of this is to adjust the stack pointer by "offset"
// and then branch to "handler".
SDValue MipsTargetLowering::lowerEH_RETURN(SDValue Op, SelectionDAG &DAG)
const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setCallsEhReturn();
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc DL(Op);
EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
// Store stack offset in V1, store jump target in V0. Glue CopyToReg and
// EH_RETURN nodes, so that instructions are emitted back-to-back.
unsigned OffsetReg = ABI.IsN64() ? Mips::V1_64 : Mips::V1;
unsigned AddrReg = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
Chain = DAG.getCopyToReg(Chain, DL, OffsetReg, Offset, SDValue());
Chain = DAG.getCopyToReg(Chain, DL, AddrReg, Handler, Chain.getValue(1));
return DAG.getNode(MipsISD::EH_RETURN, DL, MVT::Other, Chain,
DAG.getRegister(OffsetReg, Ty),
DAG.getRegister(AddrReg, getPointerTy(MF.getDataLayout())),
Chain.getValue(1));
}
SDValue MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: Need pseudo-fence for 'singlethread' fences
// FIXME: Set SType for weaker fences where supported/appropriate.
unsigned SType = 0;
SDLoc DL(Op);
return DAG.getNode(MipsISD::Sync, DL, MVT::Other, Op.getOperand(0),
DAG.getConstant(SType, DL, MVT::i32));
}
SDValue MipsTargetLowering::lowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if shamt < (VT.bits):
// lo = (shl lo, shamt)
// hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
// else:
// lo = 0
// hi = (shl lo, shamt[4:0])
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, DL, MVT::i32));
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, VT, Lo,
DAG.getConstant(1, DL, VT));
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, ShiftRight1Lo, Not);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, Hi, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, VT, Lo, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond,
DAG.getConstant(0, DL, VT), ShiftLeftLo);
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftLeftLo, Or);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, DL);
}
SDValue MipsTargetLowering::lowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
bool IsSRA) const {
SDLoc DL(Op);
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
MVT VT = Subtarget.isGP64bit() ? MVT::i64 : MVT::i32;
// if shamt < (VT.bits):
// lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
// if isSRA:
// hi = (sra hi, shamt)
// else:
// hi = (srl hi, shamt)
// else:
// if isSRA:
// lo = (sra hi, shamt[4:0])
// hi = (sra hi, 31)
// else:
// lo = (srl hi, shamt[4:0])
// hi = 0
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, DL, MVT::i32));
SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, VT, Hi,
DAG.getConstant(1, DL, VT));
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, VT, ShiftLeft1Hi, Not);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, VT, Lo, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShiftLeftHi, ShiftRightLo);
SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL,
DL, VT, Hi, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(VT.getSizeInBits(), DL, MVT::i32));
SDValue Ext = DAG.getNode(ISD::SRA, DL, VT, Hi,
DAG.getConstant(VT.getSizeInBits() - 1, DL, VT));
if (!(Subtarget.hasMips4() || Subtarget.hasMips32())) {
SDVTList VTList = DAG.getVTList(VT, VT);
return DAG.getNode(Subtarget.isGP64bit() ? Mips::PseudoD_SELECT_I64
: Mips::PseudoD_SELECT_I,
DL, VTList, Cond, ShiftRightHi,
IsSRA ? Ext : DAG.getConstant(0, DL, VT), Or,
ShiftRightHi);
}
Lo = DAG.getNode(ISD::SELECT, DL, VT, Cond, ShiftRightHi, Or);
Hi = DAG.getNode(ISD::SELECT, DL, VT, Cond,
IsSRA ? Ext : DAG.getConstant(0, DL, VT), ShiftRightHi);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, DL);
}
static SDValue createLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
SDValue Chain, SDValue Src, unsigned Offset) {
SDValue Ptr = LD->getBasePtr();
EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
EVT BasePtrVT = Ptr.getValueType();
SDLoc DL(LD);
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, DL, BasePtrVT));
SDValue Ops[] = { Chain, Ptr, Src };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
LD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer load node.
SDValue MipsTargetLowering::lowerLOAD(SDValue Op, SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
if (Subtarget.systemSupportsUnalignedAccess())
return Op;
// Return if load is aligned or if MemVT is neither i32 nor i64.
if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
return SDValue();
bool IsLittle = Subtarget.isLittle();
EVT VT = Op.getValueType();
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
assert((VT == MVT::i32) || (VT == MVT::i64));
// Expand
// (set dst, (i64 (load baseptr)))
// to
// (set tmp, (ldl (add baseptr, 7), undef))
// (set dst, (ldr baseptr, tmp))
if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
SDValue LDL = createLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
IsLittle ? 7 : 0);
return createLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
IsLittle ? 0 : 7);
}
SDValue LWL = createLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
IsLittle ? 3 : 0);
SDValue LWR = createLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
IsLittle ? 0 : 3);
// Expand
// (set dst, (i32 (load baseptr))) or
// (set dst, (i64 (sextload baseptr))) or
// (set dst, (i64 (extload baseptr)))
// to
// (set tmp, (lwl (add baseptr, 3), undef))
// (set dst, (lwr baseptr, tmp))
if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
(ExtType == ISD::EXTLOAD))
return LWR;
assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
// Expand
// (set dst, (i64 (zextload baseptr)))
// to
// (set tmp0, (lwl (add baseptr, 3), undef))
// (set tmp1, (lwr baseptr, tmp0))
// (set tmp2, (shl tmp1, 32))
// (set dst, (srl tmp2, 32))
SDLoc DL(LD);
SDValue Const32 = DAG.getConstant(32, DL, MVT::i32);
SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
SDValue Ops[] = { SRL, LWR.getValue(1) };
return DAG.getMergeValues(Ops, DL);
}
static SDValue createStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
SDValue Chain, unsigned Offset) {
SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
SDLoc DL(SD);
SDVTList VTList = DAG.getVTList(MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, DL, BasePtrVT));
SDValue Ops[] = { Chain, Value, Ptr };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, MemVT,
SD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer store node.
static SDValue lowerUnalignedIntStore(StoreSDNode *SD, SelectionDAG &DAG,
bool IsLittle) {
SDValue Value = SD->getValue(), Chain = SD->getChain();
EVT VT = Value.getValueType();
// Expand
// (store val, baseptr) or
// (truncstore val, baseptr)
// to
// (swl val, (add baseptr, 3))
// (swr val, baseptr)
if ((VT == MVT::i32) || SD->isTruncatingStore()) {
SDValue SWL = createStoreLR(MipsISD::SWL, DAG, SD, Chain,
IsLittle ? 3 : 0);
return createStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
}
assert(VT == MVT::i64);
// Expand
// (store val, baseptr)
// to
// (sdl val, (add baseptr, 7))
// (sdr val, baseptr)
SDValue SDL = createStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
return createStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
}
// Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
static SDValue lowerFP_TO_SINT_STORE(StoreSDNode *SD, SelectionDAG &DAG,
bool SingleFloat) {
SDValue Val = SD->getValue();
if (Val.getOpcode() != ISD::FP_TO_SINT ||
(Val.getValueSizeInBits() > 32 && SingleFloat))
return SDValue();
EVT FPTy = EVT::getFloatingPointVT(Val.getValueSizeInBits());
SDValue Tr = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Val), FPTy,
Val.getOperand(0));
return DAG.getStore(SD->getChain(), SDLoc(SD), Tr, SD->getBasePtr(),
SD->getPointerInfo(), SD->getAlignment(),
SD->getMemOperand()->getFlags());
}
SDValue MipsTargetLowering::lowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *SD = cast<StoreSDNode>(Op);
EVT MemVT = SD->getMemoryVT();
// Lower unaligned integer stores.
if (!Subtarget.systemSupportsUnalignedAccess() &&
(SD->getAlignment() < MemVT.getSizeInBits() / 8) &&
((MemVT == MVT::i32) || (MemVT == MVT::i64)))
return lowerUnalignedIntStore(SD, DAG, Subtarget.isLittle());
return lowerFP_TO_SINT_STORE(SD, DAG, Subtarget.isSingleFloat());
}
SDValue MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op,
SelectionDAG &DAG) const {
// Return a fixed StackObject with offset 0 which points to the old stack
// pointer.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
EVT ValTy = Op->getValueType(0);
int FI = MFI.CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
return DAG.getFrameIndex(FI, ValTy);
}
SDValue MipsTargetLowering::lowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
if (Op.getValueSizeInBits() > 32 && Subtarget.isSingleFloat())
return SDValue();
EVT FPTy = EVT::getFloatingPointVT(Op.getValueSizeInBits());
SDValue Trunc = DAG.getNode(MipsISD::TruncIntFP, SDLoc(Op), FPTy,
Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, SDLoc(Op), Op.getValueType(), Trunc);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
// an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
// not used, it must be shadowed. If only A3 is available, shadow it and
// go to stack.
// vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
// vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
// with the remainder spilled to the stack.
// vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
// spilling the remainder to the stack.
//
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State, ArrayRef<MCPhysReg> F64Regs) {
const MipsSubtarget &Subtarget = static_cast<const MipsSubtarget &>(
State.getMachineFunction().getSubtarget());
static const MCPhysReg IntRegs[] = { Mips::A0, Mips::A1, Mips::A2, Mips::A3 };
const MipsCCState * MipsState = static_cast<MipsCCState *>(&State);
static const MCPhysReg F32Regs[] = { Mips::F12, Mips::F14 };
static const MCPhysReg FloatVectorIntRegs[] = { Mips::A0, Mips::A2 };
// Do not process byval args here.
if (ArgFlags.isByVal())
return true;
// Promote i8 and i16
if (ArgFlags.isInReg() && !Subtarget.isLittle()) {
if (LocVT == MVT::i8 || LocVT == MVT::i16 || LocVT == MVT::i32) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExtUpper;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExtUpper;
else
LocInfo = CCValAssign::AExtUpper;
}
}
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Reg;
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
// is true: function is vararg, argument is 3rd or higher, there is previous
// argument which is not f32 or f64.
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 ||
State.getFirstUnallocated(F32Regs) != ValNo;
unsigned OrigAlign = ArgFlags.getOrigAlign();
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
bool isVectorFloat = MipsState->WasOriginalArgVectorFloat(ValNo);
// The MIPS vector ABI for floats passes them in a pair of registers
if (ValVT == MVT::i32 && isVectorFloat) {
// This is the start of an vector that was scalarized into an unknown number
// of components. It doesn't matter how many there are. Allocate one of the
// notional 8 byte aligned registers which map onto the argument stack, and
// shadow the register lost to alignment requirements.
if (ArgFlags.isSplit()) {
Reg = State.AllocateReg(FloatVectorIntRegs);
if (Reg == Mips::A2)
State.AllocateReg(Mips::A1);
else if (Reg == 0)
State.AllocateReg(Mips::A3);
} else {
// If we're an intermediate component of the split, we can just attempt to
// allocate a register directly.
Reg = State.AllocateReg(IntRegs);
}
} else if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
Reg = State.AllocateReg(IntRegs);
// If this is the first part of an i64 arg,
// the allocated register must be either A0 or A2.
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
Reg = State.AllocateReg(IntRegs);
LocVT = MVT::i32;
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
// Allocate int register and shadow next int register. If first
// available register is Mips::A1 or Mips::A3, shadow it too.
Reg = State.AllocateReg(IntRegs);
if (Reg == Mips::A1 || Reg == Mips::A3)
Reg = State.AllocateReg(IntRegs);
State.AllocateReg(IntRegs);
LocVT = MVT::i32;
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
// we are guaranteed to find an available float register
if (ValVT == MVT::f32) {
Reg = State.AllocateReg(F32Regs);
// Shadow int register
State.AllocateReg(IntRegs);
} else {
Reg = State.AllocateReg(F64Regs);
// Shadow int registers
unsigned Reg2 = State.AllocateReg(IntRegs);
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
State.AllocateReg(IntRegs);
State.AllocateReg(IntRegs);
}
} else
llvm_unreachable("Cannot handle this ValVT.");
if (!Reg) {
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), OrigAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
} else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const MCPhysReg F64Regs[] = { Mips::D6, Mips::D7 };
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}
static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const MCPhysReg F64Regs[] = { Mips::D12_64, Mips::D14_64 };
return CC_MipsO32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State, F64Regs);
}
static bool CC_MipsO32(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
CCState &State) LLVM_ATTRIBUTE_UNUSED;
#include "MipsGenCallingConv.inc"
CCAssignFn *MipsTargetLowering::CCAssignFnForCall() const{
return CC_Mips;
}
CCAssignFn *MipsTargetLowering::CCAssignFnForReturn() const{
return RetCC_Mips;
}
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
// Return next O32 integer argument register.
static unsigned getNextIntArgReg(unsigned Reg) {
assert((Reg == Mips::A0) || (Reg == Mips::A2));
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
}
SDValue MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
SDValue Chain, SDValue Arg,
const SDLoc &DL, bool IsTailCall,
SelectionDAG &DAG) const {
if (!IsTailCall) {
SDValue PtrOff =
DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
DAG.getIntPtrConstant(Offset, DL));
return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo());
}
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
int FI = MFI.CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
/* Alignment = */ 0, MachineMemOperand::MOVolatile);
}
void MipsTargetLowering::
getOpndList(SmallVectorImpl<SDValue> &Ops,
std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
bool IsPICCall, bool GlobalOrExternal, bool InternalLinkage,
bool IsCallReloc, CallLoweringInfo &CLI, SDValue Callee,
SDValue Chain) const {
// Insert node "GP copy globalreg" before call to function.
//
// R_MIPS_CALL* operators (emitted when non-internal functions are called
// in PIC mode) allow symbols to be resolved via lazy binding.
// The lazy binding stub requires GP to point to the GOT.
// Note that we don't need GP to point to the GOT for indirect calls
// (when R_MIPS_CALL* is not used for the call) because Mips linker generates
// lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
// used for the function (that is, Mips linker doesn't generate lazy binding
// stub for a function whose address is taken in the program).
if (IsPICCall && !InternalLinkage && IsCallReloc) {
unsigned GPReg = ABI.IsN64() ? Mips::GP_64 : Mips::GP;
EVT Ty = ABI.IsN64() ? MVT::i64 : MVT::i32;
RegsToPass.push_back(std::make_pair(GPReg, getGlobalReg(CLI.DAG, Ty)));
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = CLI.DAG.getCopyToReg(Chain, CLI.DL, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(CLI.DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *Mask =
TRI->getCallPreservedMask(CLI.DAG.getMachineFunction(), CLI.CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
if (Subtarget.inMips16HardFloat()) {
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(CLI.Callee)) {
StringRef Sym = G->getGlobal()->getName();
Function *F = G->getGlobal()->getParent()->getFunction(Sym);
if (F && F->hasFnAttribute("__Mips16RetHelper")) {
Mask = MipsRegisterInfo::getMips16RetHelperMask();
}
}
}
Ops.push_back(CLI.DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
}
void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
switch (MI.getOpcode()) {
default:
return;
case Mips::JALR:
case Mips::JALRPseudo:
case Mips::JALR64:
case Mips::JALR64Pseudo:
case Mips::JALR16_MM:
case Mips::JALRC16_MMR6:
case Mips::TAILCALLREG:
case Mips::TAILCALLREG64:
case Mips::TAILCALLR6REG:
case Mips::TAILCALL64R6REG:
case Mips::TAILCALLREG_MM:
case Mips::TAILCALLREG_MMR6: {
if (!EmitJalrReloc ||
Subtarget.inMips16Mode() ||
!isPositionIndependent() ||
Node->getNumOperands() < 1 ||
Node->getOperand(0).getNumOperands() < 2) {
return;
}
// We are after the callee address, set by LowerCall().
// If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
// symbol.
const SDValue TargetAddr = Node->getOperand(0).getOperand(1);
StringRef Sym;
if (const GlobalAddressSDNode *G =
dyn_cast_or_null<const GlobalAddressSDNode>(TargetAddr)) {
Sym = G->getGlobal()->getName();
}
else if (const ExternalSymbolSDNode *ES =
dyn_cast_or_null<const ExternalSymbolSDNode>(TargetAddr)) {
Sym = ES->getSymbol();
}
if (Sym.empty())
return;
MachineFunction *MF = MI.getParent()->getParent();
MCSymbol *S = MF->getContext().getOrCreateSymbol(Sym);
MI.addOperand(MachineOperand::CreateMCSymbol(S, MipsII::MO_JALR));
}
}
}
/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc DL = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &IsTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool IsVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
bool IsPIC = isPositionIndependent();
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
MipsCCState CCInfo(
CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext(),
MipsCCState::getSpecialCallingConvForCallee(Callee.getNode(), Subtarget));
const ExternalSymbolSDNode *ES =
dyn_cast_or_null<const ExternalSymbolSDNode>(Callee.getNode());
// There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
// is during the lowering of a call with a byval argument which produces
// a call to memcpy. For the O32 case, this causes the caller to allocate
// stack space for the reserved argument area for the callee, then recursively
// again for the memcpy call. In the NEWABI case, this doesn't occur as those
// ABIs mandate that the callee allocates the reserved argument area. We do
// still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
//
// If the callee has a byval argument and memcpy is used, we are mandated
// to already have produced a reserved argument area for the callee for O32.
// Therefore, the reserved argument area can be reused for both calls.
//
// Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
// present, as we have yet to hook that node onto the chain.
//
// Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
// case. GCC does a similar trick, in that wherever possible, it calculates
// the maximum out going argument area (including the reserved area), and
// preallocates the stack space on entrance to the caller.
//
// FIXME: We should do the same for efficiency and space.
// Note: The check on the calling convention below must match
// MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
bool MemcpyInByVal = ES &&
StringRef(ES->getSymbol()) == StringRef("memcpy") &&
CallConv != CallingConv::Fast &&
Chain.getOpcode() == ISD::CALLSEQ_START;
// Allocate the reserved argument area. It seems strange to do this from the
// caller side but removing it breaks the frame size calculation.
unsigned ReservedArgArea =
MemcpyInByVal ? 0 : ABI.GetCalleeAllocdArgSizeInBytes(CallConv);
CCInfo.AllocateStack(ReservedArgArea, 1);
CCInfo.AnalyzeCallOperands(Outs, CC_Mips, CLI.getArgs(),
ES ? ES->getSymbol() : nullptr);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NextStackOffset = CCInfo.getNextStackOffset();
// Check if it's really possible to do a tail call. Restrict it to functions
// that are part of this compilation unit.
bool InternalLinkage = false;
if (IsTailCall) {
IsTailCall = isEligibleForTailCallOptimization(
CCInfo, NextStackOffset, *MF.getInfo<MipsFunctionInfo>());
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
InternalLinkage = G->getGlobal()->hasInternalLinkage();
IsTailCall &= (InternalLinkage || G->getGlobal()->hasLocalLinkage() ||
G->getGlobal()->hasPrivateLinkage() ||
G->getGlobal()->hasHiddenVisibility() ||
G->getGlobal()->hasProtectedVisibility());
}
}
if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall())
report_fatal_error("failed to perform tail call elimination on a call "
"site marked musttail");
if (IsTailCall)
++NumTailCalls;
// Chain is the output chain of the last Load/Store or CopyToReg node.
// ByValChain is the output chain of the last Memcpy node created for copying
// byval arguments to the stack.
unsigned StackAlignment = TFL->getStackAlignment();
NextStackOffset = alignTo(NextStackOffset, StackAlignment);
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, DL, true);
if (!(IsTailCall || MemcpyInByVal))
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffset, 0, DL);
SDValue StackPtr =
DAG.getCopyFromReg(Chain, DL, ABI.IsN64() ? Mips::SP_64 : Mips::SP,
getPointerTy(DAG.getDataLayout()));
std::deque<std::pair<unsigned, SDValue>> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
CCInfo.rewindByValRegsInfo();
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue Arg = OutVals[i];
CCValAssign &VA = ArgLocs[i];
MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
ISD::ArgFlagsTy Flags = Outs[i].Flags;
bool UseUpperBits = false;
// ByVal Arg.
if (Flags.isByVal()) {
unsigned FirstByValReg, LastByValReg;
unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValIdx < CCInfo.getInRegsParamsCount());
assert(!IsTailCall &&
"Do not tail-call optimize if there is a byval argument.");
passByValArg(Chain, DL, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
FirstByValReg, LastByValReg, Flags, Subtarget.isLittle(),
VA);
CCInfo.nextInRegsParam();
continue;
}
// Promote the value if needed.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (VA.isRegLoc()) {
if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
(ValVT == MVT::f64 && LocVT == MVT::i64) ||
(ValVT == MVT::i64 && LocVT == MVT::f64))
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Arg, DAG.getConstant(0, DL, MVT::i32));
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Arg, DAG.getConstant(1, DL, MVT::i32));
if (!Subtarget.isLittle())
std::swap(Lo, Hi);
unsigned LocRegLo = VA.getLocReg();
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
continue;
}
}
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, DL, LocVT, Arg);
break;
case CCValAssign::SExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, LocVT, Arg);
break;
case CCValAssign::ZExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, LocVT, Arg);
break;
case CCValAssign::AExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, DL, LocVT, Arg);
break;
}
if (UseUpperBits) {
unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
Arg = DAG.getNode(
ISD::SHL, DL, VA.getLocVT(), Arg,
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
// Register can't get to this point...
assert(VA.isMemLoc());
// emit ISD::STORE whichs stores the
// parameter value to a stack Location
MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
Chain, Arg, DL, IsTailCall, DAG));
}
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
EVT Ty = Callee.getValueType();
bool GlobalOrExternal = false, IsCallReloc = false;
// The long-calls feature is ignored in case of PIC.
// While we do not support -mshared / -mno-shared properly,
// ignore long-calls in case of -mabicalls too.
if (!Subtarget.isABICalls() && !IsPIC) {
// If the function should be called using "long call",
// get its address into a register to prevent using
// of the `jal` instruction for the direct call.
if (auto *N = dyn_cast<ExternalSymbolSDNode>(Callee)) {
if (Subtarget.useLongCalls())
Callee = Subtarget.hasSym32()
? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
} else if (auto *N = dyn_cast<GlobalAddressSDNode>(Callee)) {
bool UseLongCalls = Subtarget.useLongCalls();
// If the function has long-call/far/near attribute
// it overrides command line switch pased to the backend.
if (auto *F = dyn_cast<Function>(N->getGlobal())) {
if (F->hasFnAttribute("long-call"))
UseLongCalls = true;
else if (F->hasFnAttribute("short-call"))
UseLongCalls = false;
}
if (UseLongCalls)
Callee = Subtarget.hasSym32()
? getAddrNonPIC(N, SDLoc(N), Ty, DAG)
: getAddrNonPICSym64(N, SDLoc(N), Ty, DAG);
}
}
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (IsPIC) {
const GlobalValue *Val = G->getGlobal();
InternalLinkage = Val->hasInternalLinkage();
if (InternalLinkage)
Callee = getAddrLocal(G, DL, Ty, DAG, ABI.IsN32() || ABI.IsN64());
else if (LargeGOT) {
Callee = getAddrGlobalLargeGOT(G, DL, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Val));
IsCallReloc = true;
} else {
Callee = getAddrGlobal(G, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Val));
IsCallReloc = true;
}
} else
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL,
getPointerTy(DAG.getDataLayout()), 0,
MipsII::MO_NO_FLAG);
GlobalOrExternal = true;
}
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const char *Sym = S->getSymbol();
if (!IsPIC) // static
Callee = DAG.getTargetExternalSymbol(
Sym, getPointerTy(DAG.getDataLayout()), MipsII::MO_NO_FLAG);
else if (LargeGOT) {
Callee = getAddrGlobalLargeGOT(S, DL, Ty, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16, Chain,
FuncInfo->callPtrInfo(Sym));
IsCallReloc = true;
} else { // PIC
Callee = getAddrGlobal(S, DL, Ty, DAG, MipsII::MO_GOT_CALL, Chain,
FuncInfo->callPtrInfo(Sym));
IsCallReloc = true;
}
GlobalOrExternal = true;
}
SmallVector<SDValue, 8> Ops(1, Chain);
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
getOpndList(Ops, RegsToPass, IsPIC, GlobalOrExternal, InternalLinkage,
IsCallReloc, CLI, Callee, Chain);
if (IsTailCall) {
MF.getFrameInfo().setHasTailCall();
return DAG.getNode(MipsISD::TailCall, DL, MVT::Other, Ops);
}
Chain = DAG.getNode(MipsISD::JmpLink, DL, NodeTys, Ops);
SDValue InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node in the case of where it is not a call to
// memcpy.
if (!(MemcpyInByVal)) {
Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
InFlag = Chain.getValue(1);
}
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
InVals, CLI);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue MipsTargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
TargetLowering::CallLoweringInfo &CLI) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
const ExternalSymbolSDNode *ES =
dyn_cast_or_null<const ExternalSymbolSDNode>(CLI.Callee.getNode());
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips, CLI.RetTy,
ES ? ES->getSymbol() : nullptr);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue Val = DAG.getCopyFromReg(Chain, DL, RVLocs[i].getLocReg(),
RVLocs[i].getLocVT(), InFlag);
Chain = Val.getValue(1);
InFlag = Val.getValue(2);
if (VA.isUpperBitsInLoc()) {
unsigned ValSizeInBits = Ins[i].ArgVT.getSizeInBits();
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
unsigned Shift =
VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
Val = DAG.getNode(
Shift, DL, VA.getLocVT(), Val,
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
}
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
break;
case CCValAssign::AExt:
case CCValAssign::AExtUpper:
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::ZExt:
case CCValAssign::ZExtUpper:
Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
case CCValAssign::SExt:
case CCValAssign::SExtUpper:
Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
DAG.getValueType(VA.getValVT()));
Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
break;
}
InVals.push_back(Val);
}
return Chain;
}
static SDValue UnpackFromArgumentSlot(SDValue Val, const CCValAssign &VA,
EVT ArgVT, const SDLoc &DL,
SelectionDAG &DAG) {
MVT LocVT = VA.getLocVT();
EVT ValVT = VA.getValVT();
// Shift into the upper bits if necessary.
switch (VA.getLocInfo()) {
default:
break;
case CCValAssign::AExtUpper:
case CCValAssign::SExtUpper:
case CCValAssign::ZExtUpper: {
unsigned ValSizeInBits = ArgVT.getSizeInBits();
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
unsigned Opcode =
VA.getLocInfo() == CCValAssign::ZExtUpper ? ISD::SRL : ISD::SRA;
Val = DAG.getNode(
Opcode, DL, VA.getLocVT(), Val,
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
break;
}
}
// If this is an value smaller than the argument slot size (32-bit for O32,
// 64-bit for N32/N64), it has been promoted in some way to the argument slot
// size. Extract the value and insert any appropriate assertions regarding
// sign/zero extension.
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::AExtUpper:
case CCValAssign::AExt:
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::SExtUpper:
case CCValAssign::SExt:
Val = DAG.getNode(ISD::AssertSext, DL, LocVT, Val, DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::ZExtUpper:
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::AssertZext, DL, LocVT, Val, DAG.getValueType(ValVT));
Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
break;
}
return Val;
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue MipsTargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setVarArgsFrameIndex(0);
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
MipsCCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
CCInfo.AllocateStack(ABI.GetCalleeAllocdArgSizeInBytes(CallConv), 1);
const Function &Func = DAG.getMachineFunction().getFunction();
Function::const_arg_iterator FuncArg = Func.arg_begin();
if (Func.hasFnAttribute("interrupt") && !Func.arg_empty())
report_fatal_error(
"Functions with the interrupt attribute cannot have arguments!");
CCInfo.AnalyzeFormalArguments(Ins, CC_Mips_FixedArg);
MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
CCInfo.getInRegsParamsCount() > 0);
unsigned CurArgIdx = 0;
CCInfo.rewindByValRegsInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (Ins[i].isOrigArg()) {
std::advance(FuncArg, Ins[i].getOrigArgIndex() - CurArgIdx);
CurArgIdx = Ins[i].getOrigArgIndex();
}
EVT ValVT = VA.getValVT();
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool IsRegLoc = VA.isRegLoc();
if (Flags.isByVal()) {
assert(Ins[i].isOrigArg() && "Byval arguments cannot be implicit");
unsigned FirstByValReg, LastByValReg;
unsigned ByValIdx = CCInfo.getInRegsParamsProcessed();
CCInfo.getInRegsParamInfo(ByValIdx, FirstByValReg, LastByValReg);
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValIdx < CCInfo.getInRegsParamsCount());
copyByValRegs(Chain, DL, OutChains, DAG, Flags, InVals, &*FuncArg,
FirstByValReg, LastByValReg, VA, CCInfo);
CCInfo.nextInRegsParam();
continue;
}
// Arguments stored on registers
if (IsRegLoc) {
MVT RegVT = VA.getLocVT();
unsigned ArgReg = VA.getLocReg();
const TargetRegisterClass *RC = getRegClassFor(RegVT);
// Transform the arguments stored on
// physical registers into virtual ones
unsigned Reg = addLiveIn(DAG.getMachineFunction(), ArgReg, RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT);
ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
// Handle floating point arguments passed in integer registers and
// long double arguments passed in floating point registers.
if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
(RegVT == MVT::i64 && ValVT == MVT::f64) ||
(RegVT == MVT::f64 && ValVT == MVT::i64))
ArgValue = DAG.getNode(ISD::BITCAST, DL, ValVT, ArgValue);
else if (ABI.IsO32() && RegVT == MVT::i32 &&
ValVT == MVT::f64) {
unsigned Reg2 = addLiveIn(DAG.getMachineFunction(),
getNextIntArgReg(ArgReg), RC);
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, DL, Reg2, RegVT);
if (!Subtarget.isLittle())
std::swap(ArgValue, ArgValue2);
ArgValue = DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64,
ArgValue, ArgValue2);
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
MVT LocVT = VA.getLocVT();
if (ABI.IsO32()) {
// We ought to be able to use LocVT directly but O32 sets it to i32
// when allocating floating point values to integer registers.
// This shouldn't influence how we load the value into registers unless
// we are targeting softfloat.
if (VA.getValVT().isFloatingPoint() && !Subtarget.useSoftFloat())
LocVT = VA.getValVT();
}
// sanity check
assert(VA.isMemLoc());
// The stack pointer offset is relative to the caller stack frame.
int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
VA.getLocMemOffset(), true);
// Create load nodes to retrieve arguments from the stack
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue ArgValue = DAG.getLoad(
LocVT, DL, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
OutChains.push_back(ArgValue.getValue(1));
ArgValue = UnpackFromArgumentSlot(ArgValue, VA, Ins[i].ArgVT, DL, DAG);
InVals.push_back(ArgValue);
}
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (Ins[i].Flags.isSRet()) {
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(ABI.IsN64() ? MVT::i64 : MVT::i32));
MipsFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[i]);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
break;
}
}
if (IsVarArg)
writeVarArgRegs(OutChains, Chain, DL, DAG, CCInfo);
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Mips);
}
bool
MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
if ((ABI.IsN32() || ABI.IsN64()) && Type == MVT::i32)
return true;
return IsSigned;
}
SDValue
MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
const SDLoc &DL,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setISR();
return DAG.getNode(MipsISD::ERet, DL, MVT::Other, RetOps);
}
SDValue
MipsTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &DL, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
MachineFunction &MF = DAG.getMachineFunction();
// CCState - Info about the registers and stack slot.
MipsCCState CCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
// Analyze return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
SDValue Val = OutVals[i];
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
bool UseUpperBits = false;
switch (VA.getLocInfo()) {
default:
llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
break;
case CCValAssign::BCvt:
Val = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Val);
break;
case CCValAssign::AExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::AExt:
Val = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Val);
break;
case CCValAssign::ZExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::ZExt:
Val = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Val);
break;
case CCValAssign::SExtUpper:
UseUpperBits = true;
LLVM_FALLTHROUGH;
case CCValAssign::SExt:
Val = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Val);
break;
}
if (UseUpperBits) {
unsigned ValSizeInBits = Outs[i].ArgVT.getSizeInBits();
unsigned LocSizeInBits = VA.getLocVT().getSizeInBits();
Val = DAG.getNode(
ISD::SHL, DL, VA.getLocVT(), Val,
DAG.getConstant(LocSizeInBits - ValSizeInBits, DL, VA.getLocVT()));
}
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into $v0.
if (MF.getFunction().hasStructRetAttr()) {
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val =
DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
unsigned V0 = ABI.IsN64() ? Mips::V0_64 : Mips::V0;
Chain = DAG.getCopyToReg(Chain, DL, V0, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(V0, getPointerTy(DAG.getDataLayout())));
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
// ISRs must use "eret".
if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
return LowerInterruptReturn(RetOps, DL, DAG);
// Standard return on Mips is a "jr $ra"
return DAG.getNode(MipsISD::Ret, DL, MVT::Other, RetOps);
}
//===----------------------------------------------------------------------===//
// Mips Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType
MipsTargetLowering::getConstraintType(StringRef Constraint) const {
// Mips specific constraints
// GCC config/mips/constraints.md
//
// 'd' : An address register. Equivalent to r
// unless generating MIPS16 code.
// 'y' : Equivalent to r; retained for
// backwards compatibility.
// 'c' : A register suitable for use in an indirect
// jump. This will always be $25 for -mabicalls.
// 'l' : The lo register. 1 word storage.
// 'x' : The hilo register pair. Double word storage.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default : break;
case 'd':
case 'y':
case 'f':
case 'c':
case 'l':
case 'x':
return C_RegisterClass;
case 'R':
return C_Memory;
}
}
if (Constraint == "ZC")
return C_Memory;
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'd':
case 'y':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f': // FPU or MSA register
if (Subtarget.hasMSA() && type->isVectorTy() &&
cast<VectorType>(type)->getBitWidth() == 128)
weight = CW_Register;
else if (type->isFloatTy())
weight = CW_Register;
break;
case 'c': // $25 for indirect jumps
case 'l': // lo register
case 'x': // hilo register pair
if (type->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'I': // signed 16 bit immediate
case 'J': // integer zero
case 'K': // unsigned 16 bit immediate
case 'L': // signed 32 bit immediate where lower 16 bits are 0
case 'N': // immediate in the range of -65535 to -1 (inclusive)
case 'O': // signed 15 bit immediate (+- 16383)
case 'P': // immediate in the range of 65535 to 1 (inclusive)
if (isa<ConstantInt>(CallOperandVal))
weight = CW_Constant;
break;
case 'R':
weight = CW_Memory;
break;
}
return weight;
}
/// This is a helper function to parse a physical register string and split it
/// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
/// that is returned indicates whether parsing was successful. The second flag
/// is true if the numeric part exists.
static std::pair<bool, bool> parsePhysicalReg(StringRef C, StringRef &Prefix,
unsigned long long &Reg) {
if (C.front() != '{' || C.back() != '}')
return std::make_pair(false, false);
// Search for the first numeric character.
StringRef::const_iterator I, B = C.begin() + 1, E = C.end() - 1;
I = std::find_if(B, E, isdigit);
Prefix = StringRef(B, I - B);
// The second flag is set to false if no numeric characters were found.
if (I == E)
return std::make_pair(true, false);
// Parse the numeric characters.
return std::make_pair(!getAsUnsignedInteger(StringRef(I, E - I), 10, Reg),
true);
}
EVT MipsTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType) const {
bool Cond = !Subtarget.isABI_O32() && VT.getSizeInBits() == 32;
EVT MinVT = getRegisterType(Context, Cond ? MVT::i64 : MVT::i32);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
std::pair<unsigned, const TargetRegisterClass *> MipsTargetLowering::
parseRegForInlineAsmConstraint(StringRef C, MVT VT) const {
const TargetRegisterInfo *TRI =
Subtarget.getRegisterInfo();
const TargetRegisterClass *RC;
StringRef Prefix;
unsigned long long Reg;
std::pair<bool, bool> R = parsePhysicalReg(C, Prefix, Reg);
if (!R.first)
return std::make_pair(0U, nullptr);
if ((Prefix == "hi" || Prefix == "lo")) { // Parse hi/lo.
// No numeric characters follow "hi" or "lo".
if (R.second)
return std::make_pair(0U, nullptr);
RC = TRI->getRegClass(Prefix == "hi" ?
Mips::HI32RegClassID : Mips::LO32RegClassID);
return std::make_pair(*(RC->begin()), RC);
} else if (Prefix.startswith("$msa")) {
// Parse $msa(ir|csr|access|save|modify|request|map|unmap)
// No numeric characters follow the name.
if (R.second)
return std::make_pair(0U, nullptr);
Reg = StringSwitch<unsigned long long>(Prefix)
.Case("$msair", Mips::MSAIR)
.Case("$msacsr", Mips::MSACSR)
.Case("$msaaccess", Mips::MSAAccess)
.Case("$msasave", Mips::MSASave)
.Case("$msamodify", Mips::MSAModify)
.Case("$msarequest", Mips::MSARequest)
.Case("$msamap", Mips::MSAMap)
.Case("$msaunmap", Mips::MSAUnmap)
.Default(0);
if (!Reg)
return std::make_pair(0U, nullptr);
RC = TRI->getRegClass(Mips::MSACtrlRegClassID);
return std::make_pair(Reg, RC);
}
if (!R.second)
return std::make_pair(0U, nullptr);
if (Prefix == "$f") { // Parse $f0-$f31.
// If the size of FP registers is 64-bit or Reg is an even number, select
// the 64-bit register class. Otherwise, select the 32-bit register class.
if (VT == MVT::Other)
VT = (Subtarget.isFP64bit() || !(Reg % 2)) ? MVT::f64 : MVT::f32;
RC = getRegClassFor(VT);
if (RC == &Mips::AFGR64RegClass) {
assert(Reg % 2 == 0);
Reg >>= 1;
}
} else if (Prefix == "$fcc") // Parse $fcc0-$fcc7.
RC = TRI->getRegClass(Mips::FCCRegClassID);
else if (Prefix == "$w") { // Parse $w0-$w31.
RC = getRegClassFor((VT == MVT::Other) ? MVT::v16i8 : VT);
} else { // Parse $0-$31.
assert(Prefix == "$");
RC = getRegClassFor((VT == MVT::Other) ? MVT::i32 : VT);
}
assert(Reg < RC->getNumRegs());
return std::make_pair(*(RC->begin() + Reg), RC);
}
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass *>
MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
case 'y': // Same as 'r'. Exists for compatibility.
case 'r':
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
if (Subtarget.inMips16Mode())
return std::make_pair(0U, &Mips::CPU16RegsRegClass);
return std::make_pair(0U, &Mips::GPR32RegClass);
}
if (VT == MVT::i64 && !Subtarget.isGP64bit())
return std::make_pair(0U, &Mips::GPR32RegClass);
if (VT == MVT::i64 && Subtarget.isGP64bit())
return std::make_pair(0U, &Mips::GPR64RegClass);
// This will generate an error message
return std::make_pair(0U, nullptr);
case 'f': // FPU or MSA register
if (VT == MVT::v16i8)
return std::make_pair(0U, &Mips::MSA128BRegClass);
else if (VT == MVT::v8i16 || VT == MVT::v8f16)
return std::make_pair(0U, &Mips::MSA128HRegClass);
else if (VT == MVT::v4i32 || VT == MVT::v4f32)
return std::make_pair(0U, &Mips::MSA128WRegClass);
else if (VT == MVT::v2i64 || VT == MVT::v2f64)
return std::make_pair(0U, &Mips::MSA128DRegClass);
else if (VT == MVT::f32)
return std::make_pair(0U, &Mips::FGR32RegClass);
else if ((VT == MVT::f64) && (!Subtarget.isSingleFloat())) {
if (Subtarget.isFP64bit())
return std::make_pair(0U, &Mips::FGR64RegClass);
return std::make_pair(0U, &Mips::AFGR64RegClass);
}
break;
case 'c': // register suitable for indirect jump
if (VT == MVT::i32)
return std::make_pair((unsigned)Mips::T9, &Mips::GPR32RegClass);
if (VT == MVT::i64)
return std::make_pair((unsigned)Mips::T9_64, &Mips::GPR64RegClass);
// This will generate an error message
return std::make_pair(0U, nullptr);
case 'l': // use the `lo` register to store values
// that are no bigger than a word
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8)
return std::make_pair((unsigned)Mips::LO0, &Mips::LO32RegClass);
return std::make_pair((unsigned)Mips::LO0_64, &Mips::LO64RegClass);
case 'x': // use the concatenated `hi` and `lo` registers
// to store doubleword values
// Fixme: Not triggering the use of both hi and low
// This will generate an error message
return std::make_pair(0U, nullptr);
}
}
std::pair<unsigned, const TargetRegisterClass *> R;
R = parseRegForInlineAsmConstraint(Constraint, VT);
if (R.second)
return R;
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Result;
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break; // This will fall through to the generic implementation
case 'I': // Signed 16 bit constant
// If this fails, the parent routine will give an error
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if (isInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
case 'J': // integer zero
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getZExtValue();
if (Val == 0) {
Result = DAG.getTargetConstant(0, DL, Type);
break;
}
}
return;
case 'K': // unsigned 16 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
uint64_t Val = (uint64_t)C->getZExtValue();
if (isUInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
case 'L': // signed 32 bit immediate where lower 16 bits are 0
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
case 'N': // immediate in the range of -65535 to -1 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val >= -65535) && (Val <= -1)) {
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
case 'O': // signed 15 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<15>(Val))) {
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
case 'P': // immediate in the range of 1 to 65535 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val <= 65535) && (Val >= 1)) {
Result = DAG.getTargetConstant(Val, DL, Type);
break;
}
}
return;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
bool MipsTargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS, Instruction *I) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (!AM.HasBaseReg) // allow "r+i".
break;
return false; // disallow "r+r" or "r+r+i".
default:
return false;
}
return true;
}
bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Mips target isn't yet aware of offsets.
return false;
}
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
if (Subtarget.hasMips64())
return MVT::i64;
return MVT::i32;
}
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (VT != MVT::f32 && VT != MVT::f64)
return false;
if (Imm.isNegZero())
return false;
return Imm.isZero();
}
unsigned MipsTargetLowering::getJumpTableEncoding() const {
// FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
if (ABI.IsN64() && isPositionIndependent())
return MachineJumpTableInfo::EK_GPRel64BlockAddress;
return TargetLowering::getJumpTableEncoding();
}
bool MipsTargetLowering::useSoftFloat() const {
return Subtarget.useSoftFloat();
}
void MipsTargetLowering::copyByValRegs(
SDValue Chain, const SDLoc &DL, std::vector<SDValue> &OutChains,
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
unsigned FirstReg, unsigned LastReg, const CCValAssign &VA,
MipsCCState &State) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned GPRSizeInBytes = Subtarget.getGPRSizeInBytes();
unsigned NumRegs = LastReg - FirstReg;
unsigned RegAreaSize = NumRegs * GPRSizeInBytes;
unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
int FrameObjOffset;
ArrayRef<MCPhysReg> ByValArgRegs = ABI.GetByValArgRegs();
if (RegAreaSize)
FrameObjOffset =
(int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
(int)((ByValArgRegs.size() - FirstReg) * GPRSizeInBytes);
else
FrameObjOffset = VA.getLocMemOffset();
// Create frame object.
EVT PtrTy = getPointerTy(DAG.getDataLayout());
// Make the fixed object stored to mutable so that the load instructions
// referencing it have their memory dependencies added.
// Set the frame object as isAliased which clears the underlying objects
// vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
// stores as dependencies for loads referencing this fixed object.
int FI = MFI.CreateFixedObject(FrameObjSize, FrameObjOffset, false, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
InVals.push_back(FIN);
if (!NumRegs)
return;
// Copy arg registers.
MVT RegTy = MVT::getIntegerVT(GPRSizeInBytes * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
for (unsigned I = 0; I < NumRegs; ++I) {
unsigned ArgReg = ByValArgRegs[FirstReg + I];
unsigned VReg = addLiveIn(MF, ArgReg, RC);
unsigned Offset = I * GPRSizeInBytes;
SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
DAG.getConstant(Offset, DL, PtrTy));
SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
StorePtr, MachinePointerInfo(FuncArg, Offset));
OutChains.push_back(Store);
}
}
// Copy byVal arg to registers and stack.
void MipsTargetLowering::passByValArg(
SDValue Chain, const SDLoc &DL,
std::deque<std::pair<unsigned, SDValue>> &RegsToPass,
SmallVectorImpl<SDValue> &MemOpChains, SDValue StackPtr,
MachineFrameInfo &MFI, SelectionDAG &DAG, SDValue Arg, unsigned FirstReg,
unsigned LastReg, const ISD::ArgFlagsTy &Flags, bool isLittle,
const CCValAssign &VA) const {
unsigned ByValSizeInBytes = Flags.getByValSize();
unsigned OffsetInBytes = 0; // From beginning of struct
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
unsigned Alignment = std::min(Flags.getByValAlign(), RegSizeInBytes);
EVT PtrTy = getPointerTy(DAG.getDataLayout()),
RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
unsigned NumRegs = LastReg - FirstReg;
if (NumRegs) {
ArrayRef<MCPhysReg> ArgRegs = ABI.GetByValArgRegs();
bool LeftoverBytes = (NumRegs * RegSizeInBytes > ByValSizeInBytes);
unsigned I = 0;
// Copy words to registers.
for (; I < NumRegs - LeftoverBytes; ++I, OffsetInBytes += RegSizeInBytes) {
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(OffsetInBytes, DL, PtrTy));
SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
MachinePointerInfo(), Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
unsigned ArgReg = ArgRegs[FirstReg + I];
RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
}
// Return if the struct has been fully copied.
if (ByValSizeInBytes == OffsetInBytes)
return;
// Copy the remainder of the byval argument with sub-word loads and shifts.
if (LeftoverBytes) {
SDValue Val;
for (unsigned LoadSizeInBytes = RegSizeInBytes / 2, TotalBytesLoaded = 0;
OffsetInBytes < ByValSizeInBytes; LoadSizeInBytes /= 2) {
unsigned RemainingSizeInBytes = ByValSizeInBytes - OffsetInBytes;
if (RemainingSizeInBytes < LoadSizeInBytes)
continue;
// Load subword.
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(OffsetInBytes, DL,
PtrTy));
SDValue LoadVal = DAG.getExtLoad(
ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr, MachinePointerInfo(),
MVT::getIntegerVT(LoadSizeInBytes * 8), Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
// Shift the loaded value.
unsigned Shamt;
if (isLittle)
Shamt = TotalBytesLoaded * 8;
else
Shamt = (RegSizeInBytes - (TotalBytesLoaded + LoadSizeInBytes)) * 8;
SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
DAG.getConstant(Shamt, DL, MVT::i32));
if (Val.getNode())
Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
else
Val = Shift;
OffsetInBytes += LoadSizeInBytes;
TotalBytesLoaded += LoadSizeInBytes;
Alignment = std::min(Alignment, LoadSizeInBytes);
}
unsigned ArgReg = ArgRegs[FirstReg + I];
RegsToPass.push_back(std::make_pair(ArgReg, Val));
return;
}
}
// Copy remainder of byval arg to it with memcpy.
unsigned MemCpySize = ByValSizeInBytes - OffsetInBytes;
SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(OffsetInBytes, DL, PtrTy));
SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
DAG.getConstant(MemCpySize, DL, PtrTy),
Alignment, /*isVolatile=*/false, /*AlwaysInline=*/false,
/*isTailCall=*/false,
MachinePointerInfo(), MachinePointerInfo());
MemOpChains.push_back(Chain);
}
void MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
SDValue Chain, const SDLoc &DL,
SelectionDAG &DAG,
CCState &State) const {
ArrayRef<MCPhysReg> ArgRegs = ABI.GetVarArgRegs();
unsigned Idx = State.getFirstUnallocated(ArgRegs);
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
MVT RegTy = MVT::getIntegerVT(RegSizeInBytes * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
// Offset of the first variable argument from stack pointer.
int VaArgOffset;
if (ArgRegs.size() == Idx)
VaArgOffset = alignTo(State.getNextStackOffset(), RegSizeInBytes);
else {
VaArgOffset =
(int)ABI.GetCalleeAllocdArgSizeInBytes(State.getCallingConv()) -
(int)(RegSizeInBytes * (ArgRegs.size() - Idx));
}
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
MipsFI->setVarArgsFrameIndex(FI);
// Copy the integer registers that have not been used for argument passing
// to the argument register save area. For O32, the save area is allocated
// in the caller's stack frame, while for N32/64, it is allocated in the
// callee's stack frame.
for (unsigned I = Idx; I < ArgRegs.size();
++I, VaArgOffset += RegSizeInBytes) {
unsigned Reg = addLiveIn(MF, ArgRegs[I], RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
FI = MFI.CreateFixedObject(RegSizeInBytes, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Store =
DAG.getStore(Chain, DL, ArgValue, PtrOff, MachinePointerInfo());
cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(
(Value *)nullptr);
OutChains.push_back(Store);
}
}
void MipsTargetLowering::HandleByVal(CCState *State, unsigned &Size,
unsigned Align) const {
const TargetFrameLowering *TFL = Subtarget.getFrameLowering();
assert(Size && "Byval argument's size shouldn't be 0.");
Align = std::min(Align, TFL->getStackAlignment());
unsigned FirstReg = 0;
unsigned NumRegs = 0;
if (State->getCallingConv() != CallingConv::Fast) {
unsigned RegSizeInBytes = Subtarget.getGPRSizeInBytes();
ArrayRef<MCPhysReg> IntArgRegs = ABI.GetByValArgRegs();
// FIXME: The O32 case actually describes no shadow registers.
const MCPhysReg *ShadowRegs =
ABI.IsO32() ? IntArgRegs.data() : Mips64DPRegs;
// We used to check the size as well but we can't do that anymore since
// CCState::HandleByVal() rounds up the size after calling this function.
assert(!(Align % RegSizeInBytes) &&
"Byval argument's alignment should be a multiple of"
"RegSizeInBytes.");
FirstReg = State->getFirstUnallocated(IntArgRegs);
// If Align > RegSizeInBytes, the first arg register must be even.
// FIXME: This condition happens to do the right thing but it's not the
// right way to test it. We want to check that the stack frame offset
// of the register is aligned.
if ((Align > RegSizeInBytes) && (FirstReg % 2)) {
State->AllocateReg(IntArgRegs[FirstReg], ShadowRegs[FirstReg]);
++FirstReg;
}
// Mark the registers allocated.
Size = alignTo(Size, RegSizeInBytes);
for (unsigned I = FirstReg; Size > 0 && (I < IntArgRegs.size());
Size -= RegSizeInBytes, ++I, ++NumRegs)
State->AllocateReg(IntArgRegs[I], ShadowRegs[I]);
}
State->addInRegsParamInfo(FirstReg, FirstReg + NumRegs);
}
MachineBasicBlock *MipsTargetLowering::emitPseudoSELECT(MachineInstr &MI,
MachineBasicBlock *BB,
bool isFPCmp,
unsigned Opc) const {
assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
"Subtarget already supports SELECT nodes with the use of"
"conditional-move instructions.");
const TargetInstrInfo *TII =
Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
// To "insert" a SELECT instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
if (isFPCmp) {
// bc1[tf] cc, sinkMBB
BuildMI(BB, DL, TII->get(Opc))
.addReg(MI.getOperand(1).getReg())
.addMBB(sinkMBB);
} else {
// bne rs, $0, sinkMBB
BuildMI(BB, DL, TII->get(Opc))
.addReg(MI.getOperand(1).getReg())
.addReg(Mips::ZERO)
.addMBB(sinkMBB);
}
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(2).getReg())
.addMBB(thisMBB)
.addReg(MI.getOperand(3).getReg())
.addMBB(copy0MBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *MipsTargetLowering::emitPseudoD_SELECT(MachineInstr &MI,
MachineBasicBlock *BB) const {
assert(!(Subtarget.hasMips4() || Subtarget.hasMips32()) &&
"Subtarget already supports SELECT nodes with the use of"
"conditional-move instructions.");
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI.getDebugLoc();
// D_SELECT substitutes two SELECT nodes that goes one after another and
// have the same condition operand. On machines which don't have
// conditional-move instruction, it reduces unnecessary branch instructions
// which are result of using two diamond patterns that are result of two
// SELECT pseudo instructions.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// bne rs, $0, sinkMBB
BuildMI(BB, DL, TII->get(Mips::BNE))
.addReg(MI.getOperand(2).getReg())
.addReg(Mips::ZERO)
.addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
// Use two PHI nodes to select two reults
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(3).getReg())
.addMBB(thisMBB)
.addReg(MI.getOperand(5).getReg())
.addMBB(copy0MBB);
BuildMI(*BB, BB->begin(), DL, TII->get(Mips::PHI), MI.getOperand(1).getReg())
.addReg(MI.getOperand(4).getReg())
.addMBB(thisMBB)
.addReg(MI.getOperand(6).getReg())
.addMBB(copy0MBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned MipsTargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
// Named registers is expected to be fairly rare. For now, just support $28
// since the linux kernel uses it.
if (Subtarget.isGP64bit()) {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("$28", Mips::GP_64)
.Default(0);
if (Reg)
return Reg;
} else {
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("$28", Mips::GP)
.Default(0);
if (Reg)
return Reg;
}
report_fatal_error("Invalid register name global variable");
}