blob: 66cb9ae572e2655dac883f696b7bc299dbade68f [file] [log] [blame]
//==- AArch64AsmParser.cpp - Parse AArch64 assembly to MCInst instructions -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "MCTargetDesc/AArch64MCExpr.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "MCTargetDesc/AArch64TargetStreamer.h"
#include "AArch64InstrInfo.h"
#include "Utils/AArch64BaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCLinkerOptimizationHint.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cctype>
#include <cstdint>
#include <cstdio>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
enum class RegKind {
Scalar,
NeonVector,
SVEDataVector,
SVEPredicateVector
};
enum RegConstraintEqualityTy {
EqualsReg,
EqualsSuperReg,
EqualsSubReg
};
class AArch64AsmParser : public MCTargetAsmParser {
private:
StringRef Mnemonic; ///< Instruction mnemonic.
// Map of register aliases registers via the .req directive.
StringMap<std::pair<RegKind, unsigned>> RegisterReqs;
class PrefixInfo {
public:
static PrefixInfo CreateFromInst(const MCInst &Inst, uint64_t TSFlags) {
PrefixInfo Prefix;
switch (Inst.getOpcode()) {
case AArch64::MOVPRFX_ZZ:
Prefix.Active = true;
Prefix.Dst = Inst.getOperand(0).getReg();
break;
case AArch64::MOVPRFX_ZPmZ_B:
case AArch64::MOVPRFX_ZPmZ_H:
case AArch64::MOVPRFX_ZPmZ_S:
case AArch64::MOVPRFX_ZPmZ_D:
Prefix.Active = true;
Prefix.Predicated = true;
Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
"No destructive element size set for movprfx");
Prefix.Dst = Inst.getOperand(0).getReg();
Prefix.Pg = Inst.getOperand(2).getReg();
break;
case AArch64::MOVPRFX_ZPzZ_B:
case AArch64::MOVPRFX_ZPzZ_H:
case AArch64::MOVPRFX_ZPzZ_S:
case AArch64::MOVPRFX_ZPzZ_D:
Prefix.Active = true;
Prefix.Predicated = true;
Prefix.ElementSize = TSFlags & AArch64::ElementSizeMask;
assert(Prefix.ElementSize != AArch64::ElementSizeNone &&
"No destructive element size set for movprfx");
Prefix.Dst = Inst.getOperand(0).getReg();
Prefix.Pg = Inst.getOperand(1).getReg();
break;
default:
break;
}
return Prefix;
}
PrefixInfo() : Active(false), Predicated(false) {}
bool isActive() const { return Active; }
bool isPredicated() const { return Predicated; }
unsigned getElementSize() const {
assert(Predicated);
return ElementSize;
}
unsigned getDstReg() const { return Dst; }
unsigned getPgReg() const {
assert(Predicated);
return Pg;
}
private:
bool Active;
bool Predicated;
unsigned ElementSize;
unsigned Dst;
unsigned Pg;
} NextPrefix;
AArch64TargetStreamer &getTargetStreamer() {
MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
return static_cast<AArch64TargetStreamer &>(TS);
}
SMLoc getLoc() const { return getParser().getTok().getLoc(); }
bool parseSysAlias(StringRef Name, SMLoc NameLoc, OperandVector &Operands);
void createSysAlias(uint16_t Encoding, OperandVector &Operands, SMLoc S);
AArch64CC::CondCode parseCondCodeString(StringRef Cond);
bool parseCondCode(OperandVector &Operands, bool invertCondCode);
unsigned matchRegisterNameAlias(StringRef Name, RegKind Kind);
bool parseRegister(OperandVector &Operands);
bool parseSymbolicImmVal(const MCExpr *&ImmVal);
bool parseNeonVectorList(OperandVector &Operands);
bool parseOptionalMulOperand(OperandVector &Operands);
bool parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode);
bool showMatchError(SMLoc Loc, unsigned ErrCode, uint64_t ErrorInfo,
OperandVector &Operands);
bool parseDirectiveArch(SMLoc L);
bool parseDirectiveArchExtension(SMLoc L);
bool parseDirectiveCPU(SMLoc L);
bool parseDirectiveInst(SMLoc L);
bool parseDirectiveTLSDescCall(SMLoc L);
bool parseDirectiveLOH(StringRef LOH, SMLoc L);
bool parseDirectiveLtorg(SMLoc L);
bool parseDirectiveReq(StringRef Name, SMLoc L);
bool parseDirectiveUnreq(SMLoc L);
bool parseDirectiveCFINegateRAState();
bool parseDirectiveCFIBKeyFrame();
bool validateInstruction(MCInst &Inst, SMLoc &IDLoc,
SmallVectorImpl<SMLoc> &Loc);
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) override;
/// @name Auto-generated Match Functions
/// {
#define GET_ASSEMBLER_HEADER
#include "AArch64GenAsmMatcher.inc"
/// }
OperandMatchResultTy tryParseScalarRegister(unsigned &Reg);
OperandMatchResultTy tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
RegKind MatchKind);
OperandMatchResultTy tryParseOptionalShiftExtend(OperandVector &Operands);
OperandMatchResultTy tryParseBarrierOperand(OperandVector &Operands);
OperandMatchResultTy tryParseMRSSystemRegister(OperandVector &Operands);
OperandMatchResultTy tryParseSysReg(OperandVector &Operands);
OperandMatchResultTy tryParseSysCROperand(OperandVector &Operands);
template <bool IsSVEPrefetch = false>
OperandMatchResultTy tryParsePrefetch(OperandVector &Operands);
OperandMatchResultTy tryParsePSBHint(OperandVector &Operands);
OperandMatchResultTy tryParseBTIHint(OperandVector &Operands);
OperandMatchResultTy tryParseAdrpLabel(OperandVector &Operands);
OperandMatchResultTy tryParseAdrLabel(OperandVector &Operands);
template<bool AddFPZeroAsLiteral>
OperandMatchResultTy tryParseFPImm(OperandVector &Operands);
OperandMatchResultTy tryParseImmWithOptionalShift(OperandVector &Operands);
OperandMatchResultTy tryParseGPR64sp0Operand(OperandVector &Operands);
bool tryParseNeonVectorRegister(OperandVector &Operands);
OperandMatchResultTy tryParseVectorIndex(OperandVector &Operands);
OperandMatchResultTy tryParseGPRSeqPair(OperandVector &Operands);
template <bool ParseShiftExtend,
RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg>
OperandMatchResultTy tryParseGPROperand(OperandVector &Operands);
template <bool ParseShiftExtend, bool ParseSuffix>
OperandMatchResultTy tryParseSVEDataVector(OperandVector &Operands);
OperandMatchResultTy tryParseSVEPredicateVector(OperandVector &Operands);
template <RegKind VectorKind>
OperandMatchResultTy tryParseVectorList(OperandVector &Operands,
bool ExpectMatch = false);
OperandMatchResultTy tryParseSVEPattern(OperandVector &Operands);
public:
enum AArch64MatchResultTy {
Match_InvalidSuffix = FIRST_TARGET_MATCH_RESULT_TY,
#define GET_OPERAND_DIAGNOSTIC_TYPES
#include "AArch64GenAsmMatcher.inc"
};
bool IsILP32;
AArch64AsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options, STI, MII) {
IsILP32 = Options.getABIName() == "ilp32";
MCAsmParserExtension::Initialize(Parser);
MCStreamer &S = getParser().getStreamer();
if (S.getTargetStreamer() == nullptr)
new AArch64TargetStreamer(S);
// Alias .hword/.word/xword to the target-independent .2byte/.4byte/.8byte
// directives as they have the same form and semantics:
/// ::= (.hword | .word | .xword ) [ expression (, expression)* ]
Parser.addAliasForDirective(".hword", ".2byte");
Parser.addAliasForDirective(".word", ".4byte");
Parser.addAliasForDirective(".xword", ".8byte");
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
}
bool regsEqual(const MCParsedAsmOperand &Op1,
const MCParsedAsmOperand &Op2) const override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseDirective(AsmToken DirectiveID) override;
unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
unsigned Kind) override;
static bool classifySymbolRef(const MCExpr *Expr,
AArch64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend);
};
/// AArch64Operand - Instances of this class represent a parsed AArch64 machine
/// instruction.
class AArch64Operand : public MCParsedAsmOperand {
private:
enum KindTy {
k_Immediate,
k_ShiftedImm,
k_CondCode,
k_Register,
k_VectorList,
k_VectorIndex,
k_Token,
k_SysReg,
k_SysCR,
k_Prefetch,
k_ShiftExtend,
k_FPImm,
k_Barrier,
k_PSBHint,
k_BTIHint,
} Kind;
SMLoc StartLoc, EndLoc;
struct TokOp {
const char *Data;
unsigned Length;
bool IsSuffix; // Is the operand actually a suffix on the mnemonic.
};
// Separate shift/extend operand.
struct ShiftExtendOp {
AArch64_AM::ShiftExtendType Type;
unsigned Amount;
bool HasExplicitAmount;
};
struct RegOp {
unsigned RegNum;
RegKind Kind;
int ElementWidth;
// The register may be allowed as a different register class,
// e.g. for GPR64as32 or GPR32as64.
RegConstraintEqualityTy EqualityTy;
// In some cases the shift/extend needs to be explicitly parsed together
// with the register, rather than as a separate operand. This is needed
// for addressing modes where the instruction as a whole dictates the
// scaling/extend, rather than specific bits in the instruction.
// By parsing them as a single operand, we avoid the need to pass an
// extra operand in all CodeGen patterns (because all operands need to
// have an associated value), and we avoid the need to update TableGen to
// accept operands that have no associated bits in the instruction.
//
// An added benefit of parsing them together is that the assembler
// can give a sensible diagnostic if the scaling is not correct.
//
// The default is 'lsl #0' (HasExplicitAmount = false) if no
// ShiftExtend is specified.
ShiftExtendOp ShiftExtend;
};
struct VectorListOp {
unsigned RegNum;
unsigned Count;
unsigned NumElements;
unsigned ElementWidth;
RegKind RegisterKind;
};
struct VectorIndexOp {
unsigned Val;
};
struct ImmOp {
const MCExpr *Val;
};
struct ShiftedImmOp {
const MCExpr *Val;
unsigned ShiftAmount;
};
struct CondCodeOp {
AArch64CC::CondCode Code;
};
struct FPImmOp {
uint64_t Val; // APFloat value bitcasted to uint64_t.
bool IsExact; // describes whether parsed value was exact.
};
struct BarrierOp {
const char *Data;
unsigned Length;
unsigned Val; // Not the enum since not all values have names.
};
struct SysRegOp {
const char *Data;
unsigned Length;
uint32_t MRSReg;
uint32_t MSRReg;
uint32_t PStateField;
};
struct SysCRImmOp {
unsigned Val;
};
struct PrefetchOp {
const char *Data;
unsigned Length;
unsigned Val;
};
struct PSBHintOp {
const char *Data;
unsigned Length;
unsigned Val;
};
struct BTIHintOp {
const char *Data;
unsigned Length;
unsigned Val;
};
struct ExtendOp {
unsigned Val;
};
union {
struct TokOp Tok;
struct RegOp Reg;
struct VectorListOp VectorList;
struct VectorIndexOp VectorIndex;
struct ImmOp Imm;
struct ShiftedImmOp ShiftedImm;
struct CondCodeOp CondCode;
struct FPImmOp FPImm;
struct BarrierOp Barrier;
struct SysRegOp SysReg;
struct SysCRImmOp SysCRImm;
struct PrefetchOp Prefetch;
struct PSBHintOp PSBHint;
struct BTIHintOp BTIHint;
struct ShiftExtendOp ShiftExtend;
};
// Keep the MCContext around as the MCExprs may need manipulated during
// the add<>Operands() calls.
MCContext &Ctx;
public:
AArch64Operand(KindTy K, MCContext &Ctx) : Kind(K), Ctx(Ctx) {}
AArch64Operand(const AArch64Operand &o) : MCParsedAsmOperand(), Ctx(o.Ctx) {
Kind = o.Kind;
StartLoc = o.StartLoc;
EndLoc = o.EndLoc;
switch (Kind) {
case k_Token:
Tok = o.Tok;
break;
case k_Immediate:
Imm = o.Imm;
break;
case k_ShiftedImm:
ShiftedImm = o.ShiftedImm;
break;
case k_CondCode:
CondCode = o.CondCode;
break;
case k_FPImm:
FPImm = o.FPImm;
break;
case k_Barrier:
Barrier = o.Barrier;
break;
case k_Register:
Reg = o.Reg;
break;
case k_VectorList:
VectorList = o.VectorList;
break;
case k_VectorIndex:
VectorIndex = o.VectorIndex;
break;
case k_SysReg:
SysReg = o.SysReg;
break;
case k_SysCR:
SysCRImm = o.SysCRImm;
break;
case k_Prefetch:
Prefetch = o.Prefetch;
break;
case k_PSBHint:
PSBHint = o.PSBHint;
break;
case k_BTIHint:
BTIHint = o.BTIHint;
break;
case k_ShiftExtend:
ShiftExtend = o.ShiftExtend;
break;
}
}
/// getStartLoc - Get the location of the first token of this operand.
SMLoc getStartLoc() const override { return StartLoc; }
/// getEndLoc - Get the location of the last token of this operand.
SMLoc getEndLoc() const override { return EndLoc; }
StringRef getToken() const {
assert(Kind == k_Token && "Invalid access!");
return StringRef(Tok.Data, Tok.Length);
}
bool isTokenSuffix() const {
assert(Kind == k_Token && "Invalid access!");
return Tok.IsSuffix;
}
const MCExpr *getImm() const {
assert(Kind == k_Immediate && "Invalid access!");
return Imm.Val;
}
const MCExpr *getShiftedImmVal() const {
assert(Kind == k_ShiftedImm && "Invalid access!");
return ShiftedImm.Val;
}
unsigned getShiftedImmShift() const {
assert(Kind == k_ShiftedImm && "Invalid access!");
return ShiftedImm.ShiftAmount;
}
AArch64CC::CondCode getCondCode() const {
assert(Kind == k_CondCode && "Invalid access!");
return CondCode.Code;
}
APFloat getFPImm() const {
assert (Kind == k_FPImm && "Invalid access!");
return APFloat(APFloat::IEEEdouble(), APInt(64, FPImm.Val, true));
}
bool getFPImmIsExact() const {
assert (Kind == k_FPImm && "Invalid access!");
return FPImm.IsExact;
}
unsigned getBarrier() const {
assert(Kind == k_Barrier && "Invalid access!");
return Barrier.Val;
}
StringRef getBarrierName() const {
assert(Kind == k_Barrier && "Invalid access!");
return StringRef(Barrier.Data, Barrier.Length);
}
unsigned getReg() const override {
assert(Kind == k_Register && "Invalid access!");
return Reg.RegNum;
}
RegConstraintEqualityTy getRegEqualityTy() const {
assert(Kind == k_Register && "Invalid access!");
return Reg.EqualityTy;
}
unsigned getVectorListStart() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.RegNum;
}
unsigned getVectorListCount() const {
assert(Kind == k_VectorList && "Invalid access!");
return VectorList.Count;
}
unsigned getVectorIndex() const {
assert(Kind == k_VectorIndex && "Invalid access!");
return VectorIndex.Val;
}
StringRef getSysReg() const {
assert(Kind == k_SysReg && "Invalid access!");
return StringRef(SysReg.Data, SysReg.Length);
}
unsigned getSysCR() const {
assert(Kind == k_SysCR && "Invalid access!");
return SysCRImm.Val;
}
unsigned getPrefetch() const {
assert(Kind == k_Prefetch && "Invalid access!");
return Prefetch.Val;
}
unsigned getPSBHint() const {
assert(Kind == k_PSBHint && "Invalid access!");
return PSBHint.Val;
}
StringRef getPSBHintName() const {
assert(Kind == k_PSBHint && "Invalid access!");
return StringRef(PSBHint.Data, PSBHint.Length);
}
unsigned getBTIHint() const {
assert(Kind == k_BTIHint && "Invalid access!");
return BTIHint.Val;
}
StringRef getBTIHintName() const {
assert(Kind == k_BTIHint && "Invalid access!");
return StringRef(BTIHint.Data, BTIHint.Length);
}
StringRef getPrefetchName() const {
assert(Kind == k_Prefetch && "Invalid access!");
return StringRef(Prefetch.Data, Prefetch.Length);
}
AArch64_AM::ShiftExtendType getShiftExtendType() const {
if (Kind == k_ShiftExtend)
return ShiftExtend.Type;
if (Kind == k_Register)
return Reg.ShiftExtend.Type;
llvm_unreachable("Invalid access!");
}
unsigned getShiftExtendAmount() const {
if (Kind == k_ShiftExtend)
return ShiftExtend.Amount;
if (Kind == k_Register)
return Reg.ShiftExtend.Amount;
llvm_unreachable("Invalid access!");
}
bool hasShiftExtendAmount() const {
if (Kind == k_ShiftExtend)
return ShiftExtend.HasExplicitAmount;
if (Kind == k_Register)
return Reg.ShiftExtend.HasExplicitAmount;
llvm_unreachable("Invalid access!");
}
bool isImm() const override { return Kind == k_Immediate; }
bool isMem() const override { return false; }
bool isUImm6() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= 0 && Val < 64);
}
template <int Width> bool isSImm() const { return isSImmScaled<Width, 1>(); }
template <int Bits, int Scale> DiagnosticPredicate isSImmScaled() const {
return isImmScaled<Bits, Scale>(true);
}
template <int Bits, int Scale> DiagnosticPredicate isUImmScaled() const {
return isImmScaled<Bits, Scale>(false);
}
template <int Bits, int Scale>
DiagnosticPredicate isImmScaled(bool Signed) const {
if (!isImm())
return DiagnosticPredicateTy::NoMatch;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return DiagnosticPredicateTy::NoMatch;
int64_t MinVal, MaxVal;
if (Signed) {
int64_t Shift = Bits - 1;
MinVal = (int64_t(1) << Shift) * -Scale;
MaxVal = ((int64_t(1) << Shift) - 1) * Scale;
} else {
MinVal = 0;
MaxVal = ((int64_t(1) << Bits) - 1) * Scale;
}
int64_t Val = MCE->getValue();
if (Val >= MinVal && Val <= MaxVal && (Val % Scale) == 0)
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
DiagnosticPredicate isSVEPattern() const {
if (!isImm())
return DiagnosticPredicateTy::NoMatch;
auto *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return DiagnosticPredicateTy::NoMatch;
int64_t Val = MCE->getValue();
if (Val >= 0 && Val < 32)
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
bool isSymbolicUImm12Offset(const MCExpr *Expr) const {
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind, DarwinRefKind,
Addend)) {
// If we don't understand the expression, assume the best and
// let the fixup and relocation code deal with it.
return true;
}
if (DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
ELFRefKind == AArch64MCExpr::VK_LO12 ||
ELFRefKind == AArch64MCExpr::VK_GOT_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_GOTTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) {
// Note that we don't range-check the addend. It's adjusted modulo page
// size when converted, so there is no "out of range" condition when using
// @pageoff.
return true;
} else if (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) {
// @gotpageoff/@tlvppageoff can only be used directly, not with an addend.
return Addend == 0;
}
return false;
}
template <int Scale> bool isUImm12Offset() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return isSymbolicUImm12Offset(getImm());
int64_t Val = MCE->getValue();
return (Val % Scale) == 0 && Val >= 0 && (Val / Scale) < 0x1000;
}
template <int N, int M>
bool isImmInRange() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
return (Val >= N && Val <= M);
}
// NOTE: Also used for isLogicalImmNot as anything that can be represented as
// a logical immediate can always be represented when inverted.
template <typename T>
bool isLogicalImm() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
int64_t Val = MCE->getValue();
int64_t SVal = typename std::make_signed<T>::type(Val);
int64_t UVal = typename std::make_unsigned<T>::type(Val);
if (Val != SVal && Val != UVal)
return false;
return AArch64_AM::isLogicalImmediate(UVal, sizeof(T) * 8);
}
bool isShiftedImm() const { return Kind == k_ShiftedImm; }
/// Returns the immediate value as a pair of (imm, shift) if the immediate is
/// a shifted immediate by value 'Shift' or '0', or if it is an unshifted
/// immediate that can be shifted by 'Shift'.
template <unsigned Width>
Optional<std::pair<int64_t, unsigned> > getShiftedVal() const {
if (isShiftedImm() && Width == getShiftedImmShift())
if (auto *CE = dyn_cast<MCConstantExpr>(getShiftedImmVal()))
return std::make_pair(CE->getValue(), Width);
if (isImm())
if (auto *CE = dyn_cast<MCConstantExpr>(getImm())) {
int64_t Val = CE->getValue();
if ((Val != 0) && (uint64_t(Val >> Width) << Width) == uint64_t(Val))
return std::make_pair(Val >> Width, Width);
else
return std::make_pair(Val, 0u);
}
return {};
}
bool isAddSubImm() const {
if (!isShiftedImm() && !isImm())
return false;
const MCExpr *Expr;
// An ADD/SUB shifter is either 'lsl #0' or 'lsl #12'.
if (isShiftedImm()) {
unsigned Shift = ShiftedImm.ShiftAmount;
Expr = ShiftedImm.Val;
if (Shift != 0 && Shift != 12)
return false;
} else {
Expr = getImm();
}
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (AArch64AsmParser::classifySymbolRef(Expr, ELFRefKind,
DarwinRefKind, Addend)) {
return DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF
|| DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF
|| (DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGEOFF && Addend == 0)
|| ELFRefKind == AArch64MCExpr::VK_LO12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12
|| ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC
|| ELFRefKind == AArch64MCExpr::VK_TPREL_HI12
|| ELFRefKind == AArch64MCExpr::VK_TPREL_LO12
|| ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC
|| ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12
|| ELFRefKind == AArch64MCExpr::VK_SECREL_HI12
|| ELFRefKind == AArch64MCExpr::VK_SECREL_LO12;
}
// If it's a constant, it should be a real immediate in range.
if (auto ShiftedVal = getShiftedVal<12>())
return ShiftedVal->first >= 0 && ShiftedVal->first <= 0xfff;
// If it's an expression, we hope for the best and let the fixup/relocation
// code deal with it.
return true;
}
bool isAddSubImmNeg() const {
if (!isShiftedImm() && !isImm())
return false;
// Otherwise it should be a real negative immediate in range.
if (auto ShiftedVal = getShiftedVal<12>())
return ShiftedVal->first < 0 && -ShiftedVal->first <= 0xfff;
return false;
}
// Signed value in the range -128 to +127. For element widths of
// 16 bits or higher it may also be a signed multiple of 256 in the
// range -32768 to +32512.
// For element-width of 8 bits a range of -128 to 255 is accepted,
// since a copy of a byte can be either signed/unsigned.
template <typename T>
DiagnosticPredicate isSVECpyImm() const {
if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
return DiagnosticPredicateTy::NoMatch;
bool IsByte =
std::is_same<int8_t, typename std::make_signed<T>::type>::value;
if (auto ShiftedImm = getShiftedVal<8>())
if (!(IsByte && ShiftedImm->second) &&
AArch64_AM::isSVECpyImm<T>(uint64_t(ShiftedImm->first)
<< ShiftedImm->second))
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
// Unsigned value in the range 0 to 255. For element widths of
// 16 bits or higher it may also be a signed multiple of 256 in the
// range 0 to 65280.
template <typename T> DiagnosticPredicate isSVEAddSubImm() const {
if (!isShiftedImm() && (!isImm() || !isa<MCConstantExpr>(getImm())))
return DiagnosticPredicateTy::NoMatch;
bool IsByte =
std::is_same<int8_t, typename std::make_signed<T>::type>::value;
if (auto ShiftedImm = getShiftedVal<8>())
if (!(IsByte && ShiftedImm->second) &&
AArch64_AM::isSVEAddSubImm<T>(ShiftedImm->first
<< ShiftedImm->second))
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
template <typename T> DiagnosticPredicate isSVEPreferredLogicalImm() const {
if (isLogicalImm<T>() && !isSVECpyImm<T>())
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NoMatch;
}
bool isCondCode() const { return Kind == k_CondCode; }
bool isSIMDImmType10() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return false;
return AArch64_AM::isAdvSIMDModImmType10(MCE->getValue());
}
template<int N>
bool isBranchTarget() const {
if (!isImm())
return false;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
return true;
int64_t Val = MCE->getValue();
if (Val & 0x3)
return false;
assert(N > 0 && "Branch target immediate cannot be 0 bits!");
return (Val >= -((1<<(N-1)) << 2) && Val <= (((1<<(N-1))-1) << 2));
}
bool
isMovWSymbol(ArrayRef<AArch64MCExpr::VariantKind> AllowedModifiers) const {
if (!isImm())
return false;
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (!AArch64AsmParser::classifySymbolRef(getImm(), ELFRefKind,
DarwinRefKind, Addend)) {
return false;
}
if (DarwinRefKind != MCSymbolRefExpr::VK_None)
return false;
for (unsigned i = 0; i != AllowedModifiers.size(); ++i) {
if (ELFRefKind == AllowedModifiers[i])
return true;
}
return false;
}
bool isMovZSymbolG3() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
}
bool isMovZSymbolG2() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G2, AArch64MCExpr::VK_ABS_G2_S,
AArch64MCExpr::VK_TPREL_G2,
AArch64MCExpr::VK_DTPREL_G2});
}
bool isMovZSymbolG1() const {
return isMovWSymbol({
AArch64MCExpr::VK_ABS_G1, AArch64MCExpr::VK_ABS_G1_S,
AArch64MCExpr::VK_GOTTPREL_G1, AArch64MCExpr::VK_TPREL_G1,
AArch64MCExpr::VK_DTPREL_G1,
});
}
bool isMovZSymbolG0() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G0, AArch64MCExpr::VK_ABS_G0_S,
AArch64MCExpr::VK_TPREL_G0,
AArch64MCExpr::VK_DTPREL_G0});
}
bool isMovKSymbolG3() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G3);
}
bool isMovKSymbolG2() const {
return isMovWSymbol(AArch64MCExpr::VK_ABS_G2_NC);
}
bool isMovKSymbolG1() const {
return isMovWSymbol({AArch64MCExpr::VK_ABS_G1_NC,
AArch64MCExpr::VK_TPREL_G1_NC,
AArch64MCExpr::VK_DTPREL_G1_NC});
}
bool isMovKSymbolG0() const {
return isMovWSymbol(
{AArch64MCExpr::VK_ABS_G0_NC, AArch64MCExpr::VK_GOTTPREL_G0_NC,
AArch64MCExpr::VK_TPREL_G0_NC, AArch64MCExpr::VK_DTPREL_G0_NC});
}
template<int RegWidth, int Shift>
bool isMOVZMovAlias() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return AArch64_AM::isMOVZMovAlias(Value, Shift, RegWidth);
}
template<int RegWidth, int Shift>
bool isMOVNMovAlias() const {
if (!isImm()) return false;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return false;
uint64_t Value = CE->getValue();
return AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth);
}
bool isFPImm() const {
return Kind == k_FPImm &&
AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt()) != -1;
}
bool isBarrier() const { return Kind == k_Barrier; }
bool isSysReg() const { return Kind == k_SysReg; }
bool isMRSSystemRegister() const {
if (!isSysReg()) return false;
return SysReg.MRSReg != -1U;
}
bool isMSRSystemRegister() const {
if (!isSysReg()) return false;
return SysReg.MSRReg != -1U;
}
bool isSystemPStateFieldWithImm0_1() const {
if (!isSysReg()) return false;
return (SysReg.PStateField == AArch64PState::PAN ||
SysReg.PStateField == AArch64PState::DIT ||
SysReg.PStateField == AArch64PState::UAO ||
SysReg.PStateField == AArch64PState::SSBS);
}
bool isSystemPStateFieldWithImm0_15() const {
if (!isSysReg() || isSystemPStateFieldWithImm0_1()) return false;
return SysReg.PStateField != -1U;
}
bool isReg() const override {
return Kind == k_Register;
}
bool isScalarReg() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar;
}
bool isNeonVectorReg() const {
return Kind == k_Register && Reg.Kind == RegKind::NeonVector;
}
bool isNeonVectorRegLo() const {
return Kind == k_Register && Reg.Kind == RegKind::NeonVector &&
AArch64MCRegisterClasses[AArch64::FPR128_loRegClassID].contains(
Reg.RegNum);
}
template <unsigned Class> bool isSVEVectorReg() const {
RegKind RK;
switch (Class) {
case AArch64::ZPRRegClassID:
case AArch64::ZPR_3bRegClassID:
case AArch64::ZPR_4bRegClassID:
RK = RegKind::SVEDataVector;
break;
case AArch64::PPRRegClassID:
case AArch64::PPR_3bRegClassID:
RK = RegKind::SVEPredicateVector;
break;
default:
llvm_unreachable("Unsupport register class");
}
return (Kind == k_Register && Reg.Kind == RK) &&
AArch64MCRegisterClasses[Class].contains(getReg());
}
template <unsigned Class> bool isFPRasZPR() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[Class].contains(getReg());
}
template <int ElementWidth, unsigned Class>
DiagnosticPredicate isSVEPredicateVectorRegOfWidth() const {
if (Kind != k_Register || Reg.Kind != RegKind::SVEPredicateVector)
return DiagnosticPredicateTy::NoMatch;
if (isSVEVectorReg<Class>() &&
(ElementWidth == 0 || Reg.ElementWidth == ElementWidth))
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
template <int ElementWidth, unsigned Class>
DiagnosticPredicate isSVEDataVectorRegOfWidth() const {
if (Kind != k_Register || Reg.Kind != RegKind::SVEDataVector)
return DiagnosticPredicateTy::NoMatch;
if (isSVEVectorReg<Class>() &&
(ElementWidth == 0 || Reg.ElementWidth == ElementWidth))
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
template <int ElementWidth, unsigned Class,
AArch64_AM::ShiftExtendType ShiftExtendTy, int ShiftWidth,
bool ShiftWidthAlwaysSame>
DiagnosticPredicate isSVEDataVectorRegWithShiftExtend() const {
auto VectorMatch = isSVEDataVectorRegOfWidth<ElementWidth, Class>();
if (!VectorMatch.isMatch())
return DiagnosticPredicateTy::NoMatch;
// Give a more specific diagnostic when the user has explicitly typed in
// a shift-amount that does not match what is expected, but for which
// there is also an unscaled addressing mode (e.g. sxtw/uxtw).
bool MatchShift = getShiftExtendAmount() == Log2_32(ShiftWidth / 8);
if (!MatchShift && (ShiftExtendTy == AArch64_AM::UXTW ||
ShiftExtendTy == AArch64_AM::SXTW) &&
!ShiftWidthAlwaysSame && hasShiftExtendAmount() && ShiftWidth == 8)
return DiagnosticPredicateTy::NoMatch;
if (MatchShift && ShiftExtendTy == getShiftExtendType())
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
bool isGPR32as64() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(Reg.RegNum);
}
bool isGPR64as32() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(Reg.RegNum);
}
bool isWSeqPair() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID].contains(
Reg.RegNum);
}
bool isXSeqPair() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID].contains(
Reg.RegNum);
}
template<int64_t Angle, int64_t Remainder>
DiagnosticPredicate isComplexRotation() const {
if (!isImm()) return DiagnosticPredicateTy::NoMatch;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
if (!CE) return DiagnosticPredicateTy::NoMatch;
uint64_t Value = CE->getValue();
if (Value % Angle == Remainder && Value <= 270)
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
template <unsigned RegClassID> bool isGPR64() const {
return Kind == k_Register && Reg.Kind == RegKind::Scalar &&
AArch64MCRegisterClasses[RegClassID].contains(getReg());
}
template <unsigned RegClassID, int ExtWidth>
DiagnosticPredicate isGPR64WithShiftExtend() const {
if (Kind != k_Register || Reg.Kind != RegKind::Scalar)
return DiagnosticPredicateTy::NoMatch;
if (isGPR64<RegClassID>() && getShiftExtendType() == AArch64_AM::LSL &&
getShiftExtendAmount() == Log2_32(ExtWidth / 8))
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
/// Is this a vector list with the type implicit (presumably attached to the
/// instruction itself)?
template <RegKind VectorKind, unsigned NumRegs>
bool isImplicitlyTypedVectorList() const {
return Kind == k_VectorList && VectorList.Count == NumRegs &&
VectorList.NumElements == 0 &&
VectorList.RegisterKind == VectorKind;
}
template <RegKind VectorKind, unsigned NumRegs, unsigned NumElements,
unsigned ElementWidth>
bool isTypedVectorList() const {
if (Kind != k_VectorList)
return false;
if (VectorList.Count != NumRegs)
return false;
if (VectorList.RegisterKind != VectorKind)
return false;
if (VectorList.ElementWidth != ElementWidth)
return false;
return VectorList.NumElements == NumElements;
}
template <int Min, int Max>
DiagnosticPredicate isVectorIndex() const {
if (Kind != k_VectorIndex)
return DiagnosticPredicateTy::NoMatch;
if (VectorIndex.Val >= Min && VectorIndex.Val <= Max)
return DiagnosticPredicateTy::Match;
return DiagnosticPredicateTy::NearMatch;
}
bool isToken() const override { return Kind == k_Token; }
bool isTokenEqual(StringRef Str) const {
return Kind == k_Token && getToken() == Str;
}
bool isSysCR() const { return Kind == k_SysCR; }
bool isPrefetch() const { return Kind == k_Prefetch; }
bool isPSBHint() const { return Kind == k_PSBHint; }
bool isBTIHint() const { return Kind == k_BTIHint; }
bool isShiftExtend() const { return Kind == k_ShiftExtend; }
bool isShifter() const {
if (!isShiftExtend())
return false;
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR || ST == AArch64_AM::ROR ||
ST == AArch64_AM::MSL);
}
template <unsigned ImmEnum> DiagnosticPredicate isExactFPImm() const {
if (Kind != k_FPImm)
return DiagnosticPredicateTy::NoMatch;
if (getFPImmIsExact()) {
// Lookup the immediate from table of supported immediates.
auto *Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmEnum);
assert(Desc && "Unknown enum value");
// Calculate its FP value.
APFloat RealVal(APFloat::IEEEdouble());
if (RealVal.convertFromString(Desc->Repr, APFloat::rmTowardZero) !=
APFloat::opOK)
llvm_unreachable("FP immediate is not exact");
if (getFPImm().bitwiseIsEqual(RealVal))
return DiagnosticPredicateTy::Match;
}
return DiagnosticPredicateTy::NearMatch;
}
template <unsigned ImmA, unsigned ImmB>
DiagnosticPredicate isExactFPImm() const {
DiagnosticPredicate Res = DiagnosticPredicateTy::NoMatch;
if ((Res = isExactFPImm<ImmA>()))
return DiagnosticPredicateTy::Match;
if ((Res = isExactFPImm<ImmB>()))
return DiagnosticPredicateTy::Match;
return Res;
}
bool isExtend() const {
if (!isShiftExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTB || ET == AArch64_AM::SXTB ||
ET == AArch64_AM::UXTH || ET == AArch64_AM::SXTH ||
ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW ||
ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
ET == AArch64_AM::LSL) &&
getShiftExtendAmount() <= 4;
}
bool isExtend64() const {
if (!isExtend())
return false;
// UXTX and SXTX require a 64-bit source register (the ExtendLSL64 class).
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return ET != AArch64_AM::UXTX && ET != AArch64_AM::SXTX;
}
bool isExtendLSL64() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTX || ET == AArch64_AM::SXTX ||
ET == AArch64_AM::LSL) &&
getShiftExtendAmount() <= 4;
}
template<int Width> bool isMemXExtend() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::LSL || ET == AArch64_AM::SXTX) &&
(getShiftExtendAmount() == Log2_32(Width / 8) ||
getShiftExtendAmount() == 0);
}
template<int Width> bool isMemWExtend() const {
if (!isExtend())
return false;
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
return (ET == AArch64_AM::UXTW || ET == AArch64_AM::SXTW) &&
(getShiftExtendAmount() == Log2_32(Width / 8) ||
getShiftExtendAmount() == 0);
}
template <unsigned width>
bool isArithmeticShifter() const {
if (!isShifter())
return false;
// An arithmetic shifter is LSL, LSR, or ASR.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR) && getShiftExtendAmount() < width;
}
template <unsigned width>
bool isLogicalShifter() const {
if (!isShifter())
return false;
// A logical shifter is LSL, LSR, ASR or ROR.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
return (ST == AArch64_AM::LSL || ST == AArch64_AM::LSR ||
ST == AArch64_AM::ASR || ST == AArch64_AM::ROR) &&
getShiftExtendAmount() < width;
}
bool isMovImm32Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0, 16, 32, or 48.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
if (ST != AArch64_AM::LSL)
return false;
uint64_t Val = getShiftExtendAmount();
return (Val == 0 || Val == 16);
}
bool isMovImm64Shifter() const {
if (!isShifter())
return false;
// A MOVi shifter is LSL of 0 or 16.
AArch64_AM::ShiftExtendType ST = getShiftExtendType();
if (ST != AArch64_AM::LSL)
return false;
uint64_t Val = getShiftExtendAmount();
return (Val == 0 || Val == 16 || Val == 32 || Val == 48);
}
bool isLogicalVecShifter() const {
if (!isShifter())
return false;
// A logical vector shifter is a left shift by 0, 8, 16, or 24.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::LSL &&
(Shift == 0 || Shift == 8 || Shift == 16 || Shift == 24);
}
bool isLogicalVecHalfWordShifter() const {
if (!isLogicalVecShifter())
return false;
// A logical vector shifter is a left shift by 0 or 8.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::LSL &&
(Shift == 0 || Shift == 8);
}
bool isMoveVecShifter() const {
if (!isShiftExtend())
return false;
// A logical vector shifter is a left shift by 8 or 16.
unsigned Shift = getShiftExtendAmount();
return getShiftExtendType() == AArch64_AM::MSL &&
(Shift == 8 || Shift == 16);
}
// Fallback unscaled operands are for aliases of LDR/STR that fall back
// to LDUR/STUR when the offset is not legal for the former but is for
// the latter. As such, in addition to checking for being a legal unscaled
// address, also check that it is not a legal scaled address. This avoids
// ambiguity in the matcher.
template<int Width>
bool isSImm9OffsetFB() const {
return isSImm<9>() && !isUImm12Offset<Width / 8>();
}
bool isAdrpLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (4096 * (1LL << (21 - 1)));
int64_t Max = 4096 * ((1LL << (21 - 1)) - 1);
return (Val % 4096) == 0 && Val >= Min && Val <= Max;
}
return true;
}
bool isAdrLabel() const {
// Validation was handled during parsing, so we just sanity check that
// something didn't go haywire.
if (!isImm())
return false;
if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
int64_t Val = CE->getValue();
int64_t Min = - (1LL << (21 - 1));
int64_t Max = ((1LL << (21 - 1)) - 1);
return Val >= Min && Val <= Max;
}
return true;
}
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::createImm(0));
else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::createImm(CE->getValue()));
else
Inst.addOperand(MCOperand::createExpr(Expr));
}
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addGPR32as64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::GPR64RegClassID].contains(getReg()));
const MCRegisterInfo *RI = Ctx.getRegisterInfo();
uint32_t Reg = RI->getRegClass(AArch64::GPR32RegClassID).getRegister(
RI->getEncodingValue(getReg()));
Inst.addOperand(MCOperand::createReg(Reg));
}
void addGPR64as32Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::GPR32RegClassID].contains(getReg()));
const MCRegisterInfo *RI = Ctx.getRegisterInfo();
uint32_t Reg = RI->getRegClass(AArch64::GPR64RegClassID).getRegister(
RI->getEncodingValue(getReg()));
Inst.addOperand(MCOperand::createReg(Reg));
}
template <int Width>
void addFPRasZPRRegOperands(MCInst &Inst, unsigned N) const {
unsigned Base;
switch (Width) {
case 8: Base = AArch64::B0; break;
case 16: Base = AArch64::H0; break;
case 32: Base = AArch64::S0; break;
case 64: Base = AArch64::D0; break;
case 128: Base = AArch64::Q0; break;
default:
llvm_unreachable("Unsupported width");
}
Inst.addOperand(MCOperand::createReg(AArch64::Z0 + getReg() - Base));
}
void addVectorReg64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
Inst.addOperand(MCOperand::createReg(AArch64::D0 + getReg() - AArch64::Q0));
}
void addVectorReg128Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(
AArch64MCRegisterClasses[AArch64::FPR128RegClassID].contains(getReg()));
Inst.addOperand(MCOperand::createReg(getReg()));
}
void addVectorRegLoOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createReg(getReg()));
}
enum VecListIndexType {
VecListIdx_DReg = 0,
VecListIdx_QReg = 1,
VecListIdx_ZReg = 2,
};
template <VecListIndexType RegTy, unsigned NumRegs>
void addVectorListOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
static const unsigned FirstRegs[][5] = {
/* DReg */ { AArch64::Q0,
AArch64::D0, AArch64::D0_D1,
AArch64::D0_D1_D2, AArch64::D0_D1_D2_D3 },
/* QReg */ { AArch64::Q0,
AArch64::Q0, AArch64::Q0_Q1,
AArch64::Q0_Q1_Q2, AArch64::Q0_Q1_Q2_Q3 },
/* ZReg */ { AArch64::Z0,
AArch64::Z0, AArch64::Z0_Z1,
AArch64::Z0_Z1_Z2, AArch64::Z0_Z1_Z2_Z3 }
};
assert((RegTy != VecListIdx_ZReg || NumRegs <= 4) &&
" NumRegs must be <= 4 for ZRegs");
unsigned FirstReg = FirstRegs[(unsigned)RegTy][NumRegs];
Inst.addOperand(MCOperand::createReg(FirstReg + getVectorListStart() -
FirstRegs[(unsigned)RegTy][0]));
}
void addVectorIndexOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getVectorIndex()));
}
template <unsigned ImmIs0, unsigned ImmIs1>
void addExactFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
assert(bool(isExactFPImm<ImmIs0, ImmIs1>()) && "Invalid operand");
Inst.addOperand(MCOperand::createImm(bool(isExactFPImm<ImmIs1>())));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
// If this is a pageoff symrefexpr with an addend, adjust the addend
// to be only the page-offset portion. Otherwise, just add the expr
// as-is.
addExpr(Inst, getImm());
}
template <int Shift>
void addImmWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (auto ShiftedVal = getShiftedVal<Shift>()) {
Inst.addOperand(MCOperand::createImm(ShiftedVal->first));
Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
} else if (isShiftedImm()) {
addExpr(Inst, getShiftedImmVal());
Inst.addOperand(MCOperand::createImm(getShiftedImmShift()));
} else {
addExpr(Inst, getImm());
Inst.addOperand(MCOperand::createImm(0));
}
}
template <int Shift>
void addImmNegWithOptionalShiftOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
if (auto ShiftedVal = getShiftedVal<Shift>()) {
Inst.addOperand(MCOperand::createImm(-ShiftedVal->first));
Inst.addOperand(MCOperand::createImm(ShiftedVal->second));
} else
llvm_unreachable("Not a shifted negative immediate");
}
void addCondCodeOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getCondCode()));
}
void addAdrpLabelOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE)
addExpr(Inst, getImm());
else
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 12));
}
void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
addImmOperands(Inst, N);
}
template<int Scale>
void addUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
Inst.addOperand(MCOperand::createExpr(getImm()));
return;
}
Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
}
void addUImm6Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue()));
}
template <int Scale>
void addImmScaledOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue() / Scale));
}
template <typename T>
void addLogicalImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
typename std::make_unsigned<T>::type Val = MCE->getValue();
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
Inst.addOperand(MCOperand::createImm(encoding));
}
template <typename T>
void addLogicalImmNotOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
typename std::make_unsigned<T>::type Val = ~MCE->getValue();
uint64_t encoding = AArch64_AM::encodeLogicalImmediate(Val, sizeof(T) * 8);
Inst.addOperand(MCOperand::createImm(encoding));
}
void addSIMDImmType10Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
uint64_t encoding = AArch64_AM::encodeAdvSIMDModImmType10(MCE->getValue());
Inst.addOperand(MCOperand::createImm(encoding));
}
void addBranchTarget26Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addPCRelLabel19Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addBranchTarget14Operands(MCInst &Inst, unsigned N) const {
// Branch operands don't encode the low bits, so shift them off
// here. If it's a label, however, just put it on directly as there's
// not enough information now to do anything.
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(getImm());
if (!MCE) {
addExpr(Inst, getImm());
return;
}
assert(MCE && "Invalid constant immediate operand!");
Inst.addOperand(MCOperand::createImm(MCE->getValue() >> 2));
}
void addFPImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(
AArch64_AM::getFP64Imm(getFPImm().bitcastToAPInt())));
}
void addBarrierOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getBarrier()));
}
void addMRSSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.MRSReg));
}
void addMSRSystemRegisterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.MSRReg));
}
void addSystemPStateFieldWithImm0_1Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
}
void addSystemPStateFieldWithImm0_15Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(SysReg.PStateField));
}
void addSysCROperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getSysCR()));
}
void addPrefetchOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getPrefetch()));
}
void addPSBHintOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getPSBHint()));
}
void addBTIHintOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
Inst.addOperand(MCOperand::createImm(getBTIHint()));
}
void addShifterOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
unsigned Imm =
AArch64_AM::getShifterImm(getShiftExtendType(), getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTW;
unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addExtend64Operands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
if (ET == AArch64_AM::LSL) ET = AArch64_AM::UXTX;
unsigned Imm = AArch64_AM::getArithExtendImm(ET, getShiftExtendAmount());
Inst.addOperand(MCOperand::createImm(Imm));
}
void addMemExtendOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
Inst.addOperand(MCOperand::createImm(IsSigned));
Inst.addOperand(MCOperand::createImm(getShiftExtendAmount() != 0));
}
// For 8-bit load/store instructions with a register offset, both the
// "DoShift" and "NoShift" variants have a shift of 0. Because of this,
// they're disambiguated by whether the shift was explicit or implicit rather
// than its size.
void addMemExtend8Operands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands!");
AArch64_AM::ShiftExtendType ET = getShiftExtendType();
bool IsSigned = ET == AArch64_AM::SXTW || ET == AArch64_AM::SXTX;
Inst.addOperand(MCOperand::createImm(IsSigned));
Inst.addOperand(MCOperand::createImm(hasShiftExtendAmount()));
}
template<int Shift>
void addMOVZMovAliasOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
Inst.addOperand(MCOperand::createImm((Value >> Shift) & 0xffff));
}
template<int Shift>
void addMOVNMovAliasOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *CE = cast<MCConstantExpr>(getImm());
uint64_t Value = CE->getValue();
Inst.addOperand(MCOperand::createImm((~Value >> Shift) & 0xffff));
}
void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm(MCE->getValue() / 90));
}
void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands!");
const MCConstantExpr *MCE = cast<MCConstantExpr>(getImm());
Inst.addOperand(MCOperand::createImm((MCE->getValue() - 90) / 180));
}
void print(raw_ostream &OS) const override;
static std::unique_ptr<AArch64Operand>
CreateToken(StringRef Str, bool IsSuffix, SMLoc S, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Token, Ctx);
Op->Tok.Data = Str.data();
Op->Tok.Length = Str.size();
Op->Tok.IsSuffix = IsSuffix;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateReg(unsigned RegNum, RegKind Kind, SMLoc S, SMLoc E, MCContext &Ctx,
RegConstraintEqualityTy EqTy = RegConstraintEqualityTy::EqualsReg,
AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
unsigned ShiftAmount = 0,
unsigned HasExplicitAmount = false) {
auto Op = make_unique<AArch64Operand>(k_Register, Ctx);
Op->Reg.RegNum = RegNum;
Op->Reg.Kind = Kind;
Op->Reg.ElementWidth = 0;
Op->Reg.EqualityTy = EqTy;
Op->Reg.ShiftExtend.Type = ExtTy;
Op->Reg.ShiftExtend.Amount = ShiftAmount;
Op->Reg.ShiftExtend.HasExplicitAmount = HasExplicitAmount;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateVectorReg(unsigned RegNum, RegKind Kind, unsigned ElementWidth,
SMLoc S, SMLoc E, MCContext &Ctx,
AArch64_AM::ShiftExtendType ExtTy = AArch64_AM::LSL,
unsigned ShiftAmount = 0,
unsigned HasExplicitAmount = false) {
assert((Kind == RegKind::NeonVector || Kind == RegKind::SVEDataVector ||
Kind == RegKind::SVEPredicateVector) &&
"Invalid vector kind");
auto Op = CreateReg(RegNum, Kind, S, E, Ctx, EqualsReg, ExtTy, ShiftAmount,
HasExplicitAmount);
Op->Reg.ElementWidth = ElementWidth;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateVectorList(unsigned RegNum, unsigned Count, unsigned NumElements,
unsigned ElementWidth, RegKind RegisterKind, SMLoc S, SMLoc E,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_VectorList, Ctx);
Op->VectorList.RegNum = RegNum;
Op->VectorList.Count = Count;
Op->VectorList.NumElements = NumElements;
Op->VectorList.ElementWidth = ElementWidth;
Op->VectorList.RegisterKind = RegisterKind;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_VectorIndex, Ctx);
Op->VectorIndex.Val = Idx;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateImm(const MCExpr *Val, SMLoc S,
SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Immediate, Ctx);
Op->Imm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateShiftedImm(const MCExpr *Val,
unsigned ShiftAmount,
SMLoc S, SMLoc E,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_ShiftedImm, Ctx);
Op->ShiftedImm .Val = Val;
Op->ShiftedImm.ShiftAmount = ShiftAmount;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateCondCode(AArch64CC::CondCode Code, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_CondCode, Ctx);
Op->CondCode.Code = Code;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateFPImm(APFloat Val, bool IsExact, SMLoc S, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_FPImm, Ctx);
Op->FPImm.Val = Val.bitcastToAPInt().getSExtValue();
Op->FPImm.IsExact = IsExact;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateBarrier(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Barrier, Ctx);
Op->Barrier.Val = Val;
Op->Barrier.Data = Str.data();
Op->Barrier.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateSysReg(StringRef Str, SMLoc S,
uint32_t MRSReg,
uint32_t MSRReg,
uint32_t PStateField,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_SysReg, Ctx);
Op->SysReg.Data = Str.data();
Op->SysReg.Length = Str.size();
Op->SysReg.MRSReg = MRSReg;
Op->SysReg.MSRReg = MSRReg;
Op->SysReg.PStateField = PStateField;
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateSysCR(unsigned Val, SMLoc S,
SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_SysCR, Ctx);
Op->SysCRImm.Val = Val;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
static std::unique_ptr<AArch64Operand> CreatePrefetch(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_Prefetch, Ctx);
Op->Prefetch.Val = Val;
Op->Barrier.Data = Str.data();
Op->Barrier.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreatePSBHint(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_PSBHint, Ctx);
Op->PSBHint.Val = Val;
Op->PSBHint.Data = Str.data();
Op->PSBHint.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand> CreateBTIHint(unsigned Val,
StringRef Str,
SMLoc S,
MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_BTIHint, Ctx);
Op->BTIHint.Val = Val << 1 | 32;
Op->BTIHint.Data = Str.data();
Op->BTIHint.Length = Str.size();
Op->StartLoc = S;
Op->EndLoc = S;
return Op;
}
static std::unique_ptr<AArch64Operand>
CreateShiftExtend(AArch64_AM::ShiftExtendType ShOp, unsigned Val,
bool HasExplicitAmount, SMLoc S, SMLoc E, MCContext &Ctx) {
auto Op = make_unique<AArch64Operand>(k_ShiftExtend, Ctx);
Op->ShiftExtend.Type = ShOp;
Op->ShiftExtend.Amount = Val;
Op->ShiftExtend.HasExplicitAmount = HasExplicitAmount;
Op->StartLoc = S;
Op->EndLoc = E;
return Op;
}
};
} // end anonymous namespace.
void AArch64Operand::print(raw_ostream &OS) const {
switch (Kind) {
case k_FPImm:
OS << "<fpimm " << getFPImm().bitcastToAPInt().getZExtValue();
if (!getFPImmIsExact())
OS << " (inexact)";
OS << ">";
break;
case k_Barrier: {
StringRef Name = getBarrierName();
if (!Name.empty())
OS << "<barrier " << Name << ">";
else
OS << "<barrier invalid #" << getBarrier() << ">";
break;
}
case k_Immediate:
OS << *getImm();
break;
case k_ShiftedImm: {
unsigned Shift = getShiftedImmShift();
OS << "<shiftedimm ";
OS << *getShiftedImmVal();
OS << ", lsl #" << AArch64_AM::getShiftValue(Shift) << ">";
break;
}
case k_CondCode:
OS << "<condcode " << getCondCode() << ">";
break;
case k_VectorList: {
OS << "<vectorlist ";
unsigned Reg = getVectorListStart();
for (unsigned i = 0, e = getVectorListCount(); i != e; ++i)
OS << Reg + i << " ";
OS << ">";
break;
}
case k_VectorIndex:
OS << "<vectorindex " << getVectorIndex() << ">";
break;
case k_SysReg:
OS << "<sysreg: " << getSysReg() << '>';
break;
case k_Token:
OS << "'" << getToken() << "'";
break;
case k_SysCR:
OS << "c" << getSysCR();
break;
case k_Prefetch: {
StringRef Name = getPrefetchName();
if (!Name.empty())
OS << "<prfop " << Name << ">";
else
OS << "<prfop invalid #" << getPrefetch() << ">";
break;
}
case k_PSBHint:
OS << getPSBHintName();
break;
case k_Register:
OS << "<register " << getReg() << ">";
if (!getShiftExtendAmount() && !hasShiftExtendAmount())
break;
LLVM_FALLTHROUGH;
case k_BTIHint:
OS << getBTIHintName();
break;
case k_ShiftExtend:
OS << "<" << AArch64_AM::getShiftExtendName(getShiftExtendType()) << " #"
<< getShiftExtendAmount();
if (!hasShiftExtendAmount())
OS << "<imp>";
OS << '>';
break;
}
}
/// @name Auto-generated Match Functions
/// {
static unsigned MatchRegisterName(StringRef Name);
/// }
static unsigned MatchNeonVectorRegName(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("v0", AArch64::Q0)
.Case("v1", AArch64::Q1)
.Case("v2", AArch64::Q2)
.Case("v3", AArch64::Q3)
.Case("v4", AArch64::Q4)
.Case("v5", AArch64::Q5)
.Case("v6", AArch64::Q6)
.Case("v7", AArch64::Q7)
.Case("v8", AArch64::Q8)
.Case("v9", AArch64::Q9)
.Case("v10", AArch64::Q10)
.Case("v11", AArch64::Q11)
.Case("v12", AArch64::Q12)
.Case("v13", AArch64::Q13)
.Case("v14", AArch64::Q14)
.Case("v15", AArch64::Q15)
.Case("v16", AArch64::Q16)
.Case("v17", AArch64::Q17)
.Case("v18", AArch64::Q18)
.Case("v19", AArch64::Q19)
.Case("v20", AArch64::Q20)
.Case("v21", AArch64::Q21)
.Case("v22", AArch64::Q22)
.Case("v23", AArch64::Q23)
.Case("v24", AArch64::Q24)
.Case("v25", AArch64::Q25)
.Case("v26", AArch64::Q26)
.Case("v27", AArch64::Q27)
.Case("v28", AArch64::Q28)
.Case("v29", AArch64::Q29)
.Case("v30", AArch64::Q30)
.Case("v31", AArch64::Q31)
.Default(0);
}
/// Returns an optional pair of (#elements, element-width) if Suffix
/// is a valid vector kind. Where the number of elements in a vector
/// or the vector width is implicit or explicitly unknown (but still a
/// valid suffix kind), 0 is used.
static Optional<std::pair<int, int>> parseVectorKind(StringRef Suffix,
RegKind VectorKind) {
std::pair<int, int> Res = {-1, -1};
switch (VectorKind) {
case RegKind::NeonVector:
Res =
StringSwitch<std::pair<int, int>>(Suffix.lower())
.Case("", {0, 0})
.Case(".1d", {1, 64})
.Case(".1q", {1, 128})
// '.2h' needed for fp16 scalar pairwise reductions
.Case(".2h", {2, 16})
.Case(".2s", {2, 32})
.Case(".2d", {2, 64})
// '.4b' is another special case for the ARMv8.2a dot product
// operand
.Case(".4b", {4, 8})
.Case(".4h", {4, 16})
.Case(".4s", {4, 32})
.Case(".8b", {8, 8})
.Case(".8h", {8, 16})
.Case(".16b", {16, 8})
// Accept the width neutral ones, too, for verbose syntax. If those
// aren't used in the right places, the token operand won't match so
// all will work out.
.Case(".b", {0, 8})
.Case(".h", {0, 16})
.Case(".s", {0, 32})
.Case(".d", {0, 64})
.Default({-1, -1});
break;
case RegKind::SVEPredicateVector:
case RegKind::SVEDataVector:
Res = StringSwitch<std::pair<int, int>>(Suffix.lower())
.Case("", {0, 0})
.Case(".b", {0, 8})
.Case(".h", {0, 16})
.Case(".s", {0, 32})
.Case(".d", {0, 64})
.Case(".q", {0, 128})
.Default({-1, -1});
break;
default:
llvm_unreachable("Unsupported RegKind");
}
if (Res == std::make_pair(-1, -1))
return Optional<std::pair<int, int>>();
return Optional<std::pair<int, int>>(Res);
}
static bool isValidVectorKind(StringRef Suffix, RegKind VectorKind) {
return parseVectorKind(Suffix, VectorKind).hasValue();
}
static unsigned matchSVEDataVectorRegName(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("z0", AArch64::Z0)
.Case("z1", AArch64::Z1)
.Case("z2", AArch64::Z2)
.Case("z3", AArch64::Z3)
.Case("z4", AArch64::Z4)
.Case("z5", AArch64::Z5)
.Case("z6", AArch64::Z6)
.Case("z7", AArch64::Z7)
.Case("z8", AArch64::Z8)
.Case("z9", AArch64::Z9)
.Case("z10", AArch64::Z10)
.Case("z11", AArch64::Z11)
.Case("z12", AArch64::Z12)
.Case("z13", AArch64::Z13)
.Case("z14", AArch64::Z14)
.Case("z15", AArch64::Z15)
.Case("z16", AArch64::Z16)
.Case("z17", AArch64::Z17)
.Case("z18", AArch64::Z18)
.Case("z19", AArch64::Z19)
.Case("z20", AArch64::Z20)
.Case("z21", AArch64::Z21)
.Case("z22", AArch64::Z22)
.Case("z23", AArch64::Z23)
.Case("z24", AArch64::Z24)
.Case("z25", AArch64::Z25)
.Case("z26", AArch64::Z26)
.Case("z27", AArch64::Z27)
.Case("z28", AArch64::Z28)
.Case("z29", AArch64::Z29)
.Case("z30", AArch64::Z30)
.Case("z31", AArch64::Z31)
.Default(0);
}
static unsigned matchSVEPredicateVectorRegName(StringRef Name) {
return StringSwitch<unsigned>(Name.lower())
.Case("p0", AArch64::P0)
.Case("p1", AArch64::P1)
.Case("p2", AArch64::P2)
.Case("p3", AArch64::P3)
.Case("p4", AArch64::P4)
.Case("p5", AArch64::P5)
.Case("p6", AArch64::P6)
.Case("p7", AArch64::P7)
.Case("p8", AArch64::P8)
.Case("p9", AArch64::P9)
.Case("p10", AArch64::P10)
.Case("p11", AArch64::P11)
.Case("p12", AArch64::P12)
.Case("p13", AArch64::P13)
.Case("p14", AArch64::P14)
.Case("p15", AArch64::P15)
.Default(0);
}
bool AArch64AsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
StartLoc = getLoc();
auto Res = tryParseScalarRegister(RegNo);
EndLoc = SMLoc::getFromPointer(getLoc().getPointer() - 1);
return Res != MatchOperand_Success;
}
// Matches a register name or register alias previously defined by '.req'
unsigned AArch64AsmParser::matchRegisterNameAlias(StringRef Name,
RegKind Kind) {
unsigned RegNum = 0;
if ((RegNum = matchSVEDataVectorRegName(Name)))
return Kind == RegKind::SVEDataVector ? RegNum : 0;
if ((RegNum = matchSVEPredicateVectorRegName(Name)))
return Kind == RegKind::SVEPredicateVector ? RegNum : 0;
if ((RegNum = MatchNeonVectorRegName(Name)))
return Kind == RegKind::NeonVector ? RegNum : 0;
// The parsed register must be of RegKind Scalar
if ((RegNum = MatchRegisterName(Name)))
return Kind == RegKind::Scalar ? RegNum : 0;
if (!RegNum) {
// Handle a few common aliases of registers.
if (auto RegNum = StringSwitch<unsigned>(Name.lower())
.Case("fp", AArch64::FP)
.Case("lr", AArch64::LR)
.Case("x31", AArch64::XZR)
.Case("w31", AArch64::WZR)
.Default(0))
return Kind == RegKind::Scalar ? RegNum : 0;
// Check for aliases registered via .req. Canonicalize to lower case.
// That's more consistent since register names are case insensitive, and
// it's how the original entry was passed in from MC/MCParser/AsmParser.
auto Entry = RegisterReqs.find(Name.lower());
if (Entry == RegisterReqs.end())
return 0;
// set RegNum if the match is the right kind of register
if (Kind == Entry->getValue().first)
RegNum = Entry->getValue().second;
}
return RegNum;
}
/// tryParseScalarRegister - Try to parse a register name. The token must be an
/// Identifier when called, and if it is a register name the token is eaten and
/// the register is added to the operand list.
OperandMatchResultTy
AArch64AsmParser::tryParseScalarRegister(unsigned &RegNum) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
std::string lowerCase = Tok.getString().lower();
unsigned Reg = matchRegisterNameAlias(lowerCase, RegKind::Scalar);
if (Reg == 0)
return MatchOperand_NoMatch;
RegNum = Reg;
Parser.Lex(); // Eat identifier token.
return MatchOperand_Success;
}
/// tryParseSysCROperand - Try to parse a system instruction CR operand name.
OperandMatchResultTy
AArch64AsmParser::tryParseSysCROperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().isNot(AsmToken::Identifier)) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
StringRef Tok = Parser.getTok().getIdentifier();
if (Tok[0] != 'c' && Tok[0] != 'C') {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
uint32_t CRNum;
bool BadNum = Tok.drop_front().getAsInteger(10, CRNum);
if (BadNum || CRNum > 15) {
Error(S, "Expected cN operand where 0 <= N <= 15");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(
AArch64Operand::CreateSysCR(CRNum, S, getLoc(), getContext()));
return MatchOperand_Success;
}
/// tryParsePrefetch - Try to parse a prefetch operand.
template <bool IsSVEPrefetch>
OperandMatchResultTy
AArch64AsmParser::tryParsePrefetch(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
auto LookupByName = [](StringRef N) {
if (IsSVEPrefetch) {
if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByName(N))
return Optional<unsigned>(Res->Encoding);
} else if (auto Res = AArch64PRFM::lookupPRFMByName(N))
return Optional<unsigned>(Res->Encoding);
return Optional<unsigned>();
};
auto LookupByEncoding = [](unsigned E) {
if (IsSVEPrefetch) {
if (auto Res = AArch64SVEPRFM::lookupSVEPRFMByEncoding(E))
return Optional<StringRef>(Res->Name);
} else if (auto Res = AArch64PRFM::lookupPRFMByEncoding(E))
return Optional<StringRef>(Res->Name);
return Optional<StringRef>();
};
unsigned MaxVal = IsSVEPrefetch ? 15 : 31;
// Either an identifier for named values or a 5-bit immediate.
// Eat optional hash.
if (parseOptionalToken(AsmToken::Hash) ||
Tok.is(AsmToken::Integer)) {
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for prefetch operand");
return MatchOperand_ParseFail;
}
unsigned prfop = MCE->getValue();
if (prfop > MaxVal) {
TokError("prefetch operand out of range, [0," + utostr(MaxVal) +
"] expected");
return MatchOperand_ParseFail;
}
auto PRFM = LookupByEncoding(MCE->getValue());
Operands.push_back(AArch64Operand::CreatePrefetch(
prfop, PRFM.getValueOr(""), S, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("prefetch hint expected");
return MatchOperand_ParseFail;
}
auto PRFM = LookupByName(Tok.getString());
if (!PRFM) {
TokError("prefetch hint expected");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(AArch64Operand::CreatePrefetch(
*PRFM, Tok.getString(), S, getContext()));
return MatchOperand_Success;
}
/// tryParsePSBHint - Try to parse a PSB operand, mapped to Hint command
OperandMatchResultTy
AArch64AsmParser::tryParsePSBHint(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
auto PSB = AArch64PSBHint::lookupPSBByName(Tok.getString());
if (!PSB) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(AArch64Operand::CreatePSBHint(
PSB->Encoding, Tok.getString(), S, getContext()));
return MatchOperand_Success;
}
/// tryParseBTIHint - Try to parse a BTI operand, mapped to Hint command
OperandMatchResultTy
AArch64AsmParser::tryParseBTIHint(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
auto BTI = AArch64BTIHint::lookupBTIByName(Tok.getString());
if (!BTI) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat identifier token.
Operands.push_back(AArch64Operand::CreateBTIHint(
BTI->Encoding, Tok.getString(), S, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrpLabel - Parse and validate a source label for the ADRP
/// instruction.
OperandMatchResultTy
AArch64AsmParser::tryParseAdrpLabel(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const MCExpr *Expr;
if (Parser.getTok().is(AsmToken::Hash)) {
Parser.Lex(); // Eat hash token.
}
if (parseSymbolicImmVal(Expr))
return MatchOperand_ParseFail;
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
ELFRefKind == AArch64MCExpr::VK_INVALID) {
// No modifier was specified at all; this is the syntax for an ELF basic
// ADRP relocation (unfortunately).
Expr =
AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS_PAGE, getContext());
} else if ((DarwinRefKind == MCSymbolRefExpr::VK_GOTPAGE ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGE) &&
Addend != 0) {
Error(S, "gotpage label reference not allowed an addend");
return MatchOperand_ParseFail;
} else if (DarwinRefKind != MCSymbolRefExpr::VK_PAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_GOTPAGE &&
DarwinRefKind != MCSymbolRefExpr::VK_TLVPPAGE &&
ELFRefKind != AArch64MCExpr::VK_GOT_PAGE &&
ELFRefKind != AArch64MCExpr::VK_GOTTPREL_PAGE &&
ELFRefKind != AArch64MCExpr::VK_TLSDESC_PAGE) {
// The operand must be an @page or @gotpage qualified symbolref.
Error(S, "page or gotpage label reference expected");
return MatchOperand_ParseFail;
}
}
// We have either a label reference possibly with addend or an immediate. The
// addend is a raw value here. The linker will adjust it to only reference the
// page.
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseAdrLabel - Parse and validate a source label for the ADR
/// instruction.
OperandMatchResultTy
AArch64AsmParser::tryParseAdrLabel(OperandVector &Operands) {
SMLoc S = getLoc();
const MCExpr *Expr;
// Leave anything with a bracket to the default for SVE
if (getParser().getTok().is(AsmToken::LBrac))
return MatchOperand_NoMatch;
if (getParser().getTok().is(AsmToken::Hash))
getParser().Lex(); // Eat hash token.
if (parseSymbolicImmVal(Expr))
return MatchOperand_ParseFail;
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
if (DarwinRefKind == MCSymbolRefExpr::VK_None &&
ELFRefKind == AArch64MCExpr::VK_INVALID) {
// No modifier was specified at all; this is the syntax for an ELF basic
// ADR relocation (unfortunately).
Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_ABS, getContext());
} else {
Error(S, "unexpected adr label");
return MatchOperand_ParseFail;
}
}
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return MatchOperand_Success;
}
/// tryParseFPImm - A floating point immediate expression operand.
template<bool AddFPZeroAsLiteral>
OperandMatchResultTy
AArch64AsmParser::tryParseFPImm(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
bool Hash = parseOptionalToken(AsmToken::Hash);
// Handle negation, as that still comes through as a separate token.
bool isNegative = parseOptionalToken(AsmToken::Minus);
const AsmToken &Tok = Parser.getTok();
if (!Tok.is(AsmToken::Real) && !Tok.is(AsmToken::Integer)) {
if (!Hash)
return MatchOperand_NoMatch;
TokError("invalid floating point immediate");
return MatchOperand_ParseFail;
}
// Parse hexadecimal representation.
if (Tok.is(AsmToken::Integer) && Tok.getString().startswith("0x")) {
if (Tok.getIntVal() > 255 || isNegative) {
TokError("encoded floating point value out of range");
return MatchOperand_ParseFail;
}
APFloat F((double)AArch64_AM::getFPImmFloat(Tok.getIntVal()));
Operands.push_back(
AArch64Operand::CreateFPImm(F, true, S, getContext()));
} else {
// Parse FP representation.
APFloat RealVal(APFloat::IEEEdouble());
auto Status =
RealVal.convertFromString(Tok.getString(), APFloat::rmTowardZero);
if (isNegative)
RealVal.changeSign();
if (AddFPZeroAsLiteral && RealVal.isPosZero()) {
Operands.push_back(
AArch64Operand::CreateToken("#0", false, S, getContext()));
Operands.push_back(
AArch64Operand::CreateToken(".0", false, S, getContext()));
} else
Operands.push_back(AArch64Operand::CreateFPImm(
RealVal, Status == APFloat::opOK, S, getContext()));
}
Parser.Lex(); // Eat the token.
return MatchOperand_Success;
}
/// tryParseImmWithOptionalShift - Parse immediate operand, optionally with
/// a shift suffix, for example '#1, lsl #12'.
OperandMatchResultTy
AArch64AsmParser::tryParseImmWithOptionalShift(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
if (Parser.getTok().is(AsmToken::Hash))
Parser.Lex(); // Eat '#'
else if (Parser.getTok().isNot(AsmToken::Integer))
// Operand should start from # or should be integer, emit error otherwise.
return MatchOperand_NoMatch;
const MCExpr *Imm;
if (parseSymbolicImmVal(Imm))
return MatchOperand_ParseFail;
else if (Parser.getTok().isNot(AsmToken::Comma)) {
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(
AArch64Operand::CreateImm(Imm, S, E, getContext()));
return MatchOperand_Success;
}
// Eat ','
Parser.Lex();
// The optional operand must be "lsl #N" where N is non-negative.
if (!Parser.getTok().is(AsmToken::Identifier) ||
!Parser.getTok().getIdentifier().equals_lower("lsl")) {
Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
return MatchOperand_ParseFail;
}
// Eat 'lsl'
Parser.Lex();
parseOptionalToken(AsmToken::Hash);
if (Parser.getTok().isNot(AsmToken::Integer)) {
Error(Parser.getTok().getLoc(), "only 'lsl #+N' valid after immediate");
return MatchOperand_ParseFail;
}
int64_t ShiftAmount = Parser.getTok().getIntVal();
if (ShiftAmount < 0) {
Error(Parser.getTok().getLoc(), "positive shift amount required");
return MatchOperand_ParseFail;
}
Parser.Lex(); // Eat the number
// Just in case the optional lsl #0 is used for immediates other than zero.
if (ShiftAmount == 0 && Imm != 0) {
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateImm(Imm, S, E, getContext()));
return MatchOperand_Success;
}
SMLoc E = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateShiftedImm(Imm, ShiftAmount,
S, E, getContext()));
return MatchOperand_Success;
}
/// parseCondCodeString - Parse a Condition Code string.
AArch64CC::CondCode AArch64AsmParser::parseCondCodeString(StringRef Cond) {
AArch64CC::CondCode CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
.Case("eq", AArch64CC::EQ)
.Case("ne", AArch64CC::NE)
.Case("cs", AArch64CC::HS)
.Case("hs", AArch64CC::HS)
.Case("cc", AArch64CC::LO)
.Case("lo", AArch64CC::LO)
.Case("mi", AArch64CC::MI)
.Case("pl", AArch64CC::PL)
.Case("vs", AArch64CC::VS)
.Case("vc", AArch64CC::VC)
.Case("hi", AArch64CC::HI)
.Case("ls", AArch64CC::LS)
.Case("ge", AArch64CC::GE)
.Case("lt", AArch64CC::LT)
.Case("gt", AArch64CC::GT)
.Case("le", AArch64CC::LE)
.Case("al", AArch64CC::AL)
.Case("nv", AArch64CC::NV)
.Default(AArch64CC::Invalid);
if (CC == AArch64CC::Invalid &&
getSTI().getFeatureBits()[AArch64::FeatureSVE])
CC = StringSwitch<AArch64CC::CondCode>(Cond.lower())
.Case("none", AArch64CC::EQ)
.Case("any", AArch64CC::NE)
.Case("nlast", AArch64CC::HS)
.Case("last", AArch64CC::LO)
.Case("first", AArch64CC::MI)
.Case("nfrst", AArch64CC::PL)
.Case("pmore", AArch64CC::HI)
.Case("plast", AArch64CC::LS)
.Case("tcont", AArch64CC::GE)
.Case("tstop", AArch64CC::LT)
.Default(AArch64CC::Invalid);
return CC;
}
/// parseCondCode - Parse a Condition Code operand.
bool AArch64AsmParser::parseCondCode(OperandVector &Operands,
bool invertCondCode) {
MCAsmParser &Parser = getParser();
SMLoc S = getLoc();
const AsmToken &Tok = Parser.getTok();
assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
StringRef Cond = Tok.getString();
AArch64CC::CondCode CC = parseCondCodeString(Cond);
if (CC == AArch64CC::Invalid)
return TokError("invalid condition code");
Parser.Lex(); // Eat identifier token.
if (invertCondCode) {
if (CC == AArch64CC::AL || CC == AArch64CC::NV)
return TokError("condition codes AL and NV are invalid for this instruction");
CC = AArch64CC::getInvertedCondCode(AArch64CC::CondCode(CC));
}
Operands.push_back(
AArch64Operand::CreateCondCode(CC, S, getLoc(), getContext()));
return false;
}
/// tryParseOptionalShift - Some operands take an optional shift argument. Parse
/// them if present.
OperandMatchResultTy
AArch64AsmParser::tryParseOptionalShiftExtend(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
std::string LowerID = Tok.getString().lower();
AArch64_AM::ShiftExtendType ShOp =
StringSwitch<AArch64_AM::ShiftExtendType>(LowerID)
.Case("lsl", AArch64_AM::LSL)
.Case("lsr", AArch64_AM::LSR)
.Case("asr", AArch64_AM::ASR)
.Case("ror", AArch64_AM::ROR)
.Case("msl", AArch64_AM::MSL)
.Case("uxtb", AArch64_AM::UXTB)
.Case("uxth", AArch64_AM::UXTH)
.Case("uxtw", AArch64_AM::UXTW)
.Case("uxtx", AArch64_AM::UXTX)
.Case("sxtb", AArch64_AM::SXTB)
.Case("sxth", AArch64_AM::SXTH)
.Case("sxtw", AArch64_AM::SXTW)
.Case("sxtx", AArch64_AM::SXTX)
.Default(AArch64_AM::InvalidShiftExtend);
if (ShOp == AArch64_AM::InvalidShiftExtend)
return MatchOperand_NoMatch;
SMLoc S = Tok.getLoc();
Parser.Lex();
bool Hash = parseOptionalToken(AsmToken::Hash);
if (!Hash && getLexer().isNot(AsmToken::Integer)) {
if (ShOp == AArch64_AM::LSL || ShOp == AArch64_AM::LSR ||
ShOp == AArch64_AM::ASR || ShOp == AArch64_AM::ROR ||
ShOp == AArch64_AM::MSL) {
// We expect a number here.
TokError("expected #imm after shift specifier");
return MatchOperand_ParseFail;
}
// "extend" type operations don't need an immediate, #0 is implicit.
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(
AArch64Operand::CreateShiftExtend(ShOp, 0, false, S, E, getContext()));
return MatchOperand_Success;
}
// Make sure we do actually have a number, identifier or a parenthesized
// expression.
SMLoc E = Parser.getTok().getLoc();
if (!Parser.getTok().is(AsmToken::Integer) &&
!Parser.getTok().is(AsmToken::LParen) &&
!Parser.getTok().is(AsmToken::Identifier)) {
Error(E, "expected integer shift amount");
return MatchOperand_ParseFail;
}
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
Error(E, "expected constant '#imm' after shift specifier");
return MatchOperand_ParseFail;
}
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateShiftExtend(
ShOp, MCE->getValue(), true, S, E, getContext()));
return MatchOperand_Success;
}
static const struct Extension {
const char *Name;
const FeatureBitset Features;
} ExtensionMap[] = {
{"crc", {AArch64::FeatureCRC}},
{"sm4", {AArch64::FeatureSM4}},
{"sha3", {AArch64::FeatureSHA3}},
{"sha2", {AArch64::FeatureSHA2}},
{"aes", {AArch64::FeatureAES}},
{"crypto", {AArch64::FeatureCrypto}},
{"fp", {AArch64::FeatureFPARMv8}},
{"simd", {AArch64::FeatureNEON}},
{"ras", {AArch64::FeatureRAS}},
{"lse", {AArch64::FeatureLSE}},
{"predres", {AArch64::FeaturePredRes}},
{"ccdp", {AArch64::FeatureCacheDeepPersist}},
{"mte", {AArch64::FeatureMTE}},
{"tlb-rmi", {AArch64::FeatureTLB_RMI}},
{"pan-rwv", {AArch64::FeaturePAN_RWV}},
{"ccpp", {AArch64::FeatureCCPP}},
{"sve", {AArch64::FeatureSVE}},
// FIXME: Unsupported extensions
{"pan", {}},
{"lor", {}},
{"rdma", {}},
{"profile", {}},
};
static void setRequiredFeatureString(FeatureBitset FBS, std::string &Str) {
if (FBS[AArch64::HasV8_1aOps])
Str += "ARMv8.1a";
else if (FBS[AArch64::HasV8_2aOps])
Str += "ARMv8.2a";
else if (FBS[AArch64::HasV8_3aOps])
Str += "ARMv8.3a";
else if (FBS[AArch64::HasV8_4aOps])
Str += "ARMv8.4a";
else if (FBS[AArch64::HasV8_5aOps])
Str += "ARMv8.5a";
else {
auto ext = std::find_if(std::begin(ExtensionMap),
std::end(ExtensionMap),
[&](const Extension& e)
// Use & in case multiple features are enabled
{ return (FBS & e.Features) != FeatureBitset(); }
);
Str += ext != std::end(ExtensionMap) ? ext->Name : "(unknown)";
}
}
void AArch64AsmParser::createSysAlias(uint16_t Encoding, OperandVector &Operands,
SMLoc S) {
const uint16_t Op2 = Encoding & 7;
const uint16_t Cm = (Encoding & 0x78) >> 3;
const uint16_t Cn = (Encoding & 0x780) >> 7;
const uint16_t Op1 = (Encoding & 0x3800) >> 11;
const MCExpr *Expr = MCConstantExpr::create(Op1, getContext());
Operands.push_back(
AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
Operands.push_back(
AArch64Operand::CreateSysCR(Cn, S, getLoc(), getContext()));
Operands.push_back(
AArch64Operand::CreateSysCR(Cm, S, getLoc(), getContext()));
Expr = MCConstantExpr::create(Op2, getContext());
Operands.push_back(
AArch64Operand::CreateImm(Expr, S, getLoc(), getContext()));
}
/// parseSysAlias - The IC, DC, AT, and TLBI instructions are simple aliases for
/// the SYS instruction. Parse them specially so that we create a SYS MCInst.
bool AArch64AsmParser::parseSysAlias(StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
if (Name.find('.') != StringRef::npos)
return TokError("invalid operand");
Mnemonic = Name;
Operands.push_back(
AArch64Operand::CreateToken("sys", false, NameLoc, getContext()));
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
StringRef Op = Tok.getString();
SMLoc S = Tok.getLoc();
if (Mnemonic == "ic") {
const AArch64IC::IC *IC = AArch64IC::lookupICByName(Op);
if (!IC)
return TokError("invalid operand for IC instruction");
else if (!IC->haveFeatures(getSTI().getFeatureBits())) {
std::string Str("IC " + std::string(IC->Name) + " requires ");
setRequiredFeatureString(IC->getRequiredFeatures(), Str);
return TokError(Str.c_str());
}
createSysAlias(IC->Encoding, Operands, S);
} else if (Mnemonic == "dc") {
const AArch64DC::DC *DC = AArch64DC::lookupDCByName(Op);
if (!DC)
return TokError("invalid operand for DC instruction");
else if (!DC->haveFeatures(getSTI().getFeatureBits())) {
std::string Str("DC " + std::string(DC->Name) + " requires ");
setRequiredFeatureString(DC->getRequiredFeatures(), Str);
return TokError(Str.c_str());
}
createSysAlias(DC->Encoding, Operands, S);
} else if (Mnemonic == "at") {
const AArch64AT::AT *AT = AArch64AT::lookupATByName(Op);
if (!AT)
return TokError("invalid operand for AT instruction");
else if (!AT->haveFeatures(getSTI().getFeatureBits())) {
std::string Str("AT " + std::string(AT->Name) + " requires ");
setRequiredFeatureString(AT->getRequiredFeatures(), Str);
return TokError(Str.c_str());
}
createSysAlias(AT->Encoding, Operands, S);
} else if (Mnemonic == "tlbi") {
const AArch64TLBI::TLBI *TLBI = AArch64TLBI::lookupTLBIByName(Op);
if (!TLBI)
return TokError("invalid operand for TLBI instruction");
else if (!TLBI->haveFeatures(getSTI().getFeatureBits())) {
std::string Str("TLBI " + std::string(TLBI->Name) + " requires ");
setRequiredFeatureString(TLBI->getRequiredFeatures(), Str);
return TokError(Str.c_str());
}
createSysAlias(TLBI->Encoding, Operands, S);
} else if (Mnemonic == "cfp" || Mnemonic == "dvp" || Mnemonic == "cpp") {
const AArch64PRCTX::PRCTX *PRCTX = AArch64PRCTX::lookupPRCTXByName(Op);
if (!PRCTX)
return TokError("invalid operand for prediction restriction instruction");
else if (!PRCTX->haveFeatures(getSTI().getFeatureBits())) {
std::string Str(
Mnemonic.upper() + std::string(PRCTX->Name) + " requires ");
setRequiredFeatureString(PRCTX->getRequiredFeatures(), Str);
return TokError(Str.c_str());
}
uint16_t PRCTX_Op2 =
Mnemonic == "cfp" ? 4 :
Mnemonic == "dvp" ? 5 :
Mnemonic == "cpp" ? 7 :
0;
assert(PRCTX_Op2 && "Invalid mnemonic for prediction restriction instruction");
createSysAlias(PRCTX->Encoding << 3 | PRCTX_Op2 , Operands, S);
}
Parser.Lex(); // Eat operand.
bool ExpectRegister = (Op.lower().find("all") == StringRef::npos);
bool HasRegister = false;
// Check for the optional register operand.
if (parseOptionalToken(AsmToken::Comma)) {
if (Tok.isNot(AsmToken::Identifier) || parseRegister(Operands))
return TokError("expected register operand");
HasRegister = true;
}
if (ExpectRegister && !HasRegister)
return TokError("specified " + Mnemonic + " op requires a register");
else if (!ExpectRegister && HasRegister)
return TokError("specified " + Mnemonic + " op does not use a register");
if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
return true;
return false;
}
OperandMatchResultTy
AArch64AsmParser::tryParseBarrierOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Mnemonic == "tsb" && Tok.isNot(AsmToken::Identifier)) {
TokError("'csync' operand expected");
return MatchOperand_ParseFail;
// Can be either a #imm style literal or an option name
} else if (parseOptionalToken(AsmToken::Hash) || Tok.is(AsmToken::Integer)) {
// Immediate operand.
const MCExpr *ImmVal;
SMLoc ExprLoc = getLoc();
if (getParser().parseExpression(ImmVal))
return MatchOperand_ParseFail;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
Error(ExprLoc, "immediate value expected for barrier operand");
return MatchOperand_ParseFail;
}
if (MCE->getValue() < 0 || MCE->getValue() > 15) {
Error(ExprLoc, "barrier operand out of range");
return MatchOperand_ParseFail;
}
auto DB = AArch64DB::lookupDBByEncoding(MCE->getValue());
Operands.push_back(AArch64Operand::CreateBarrier(
MCE->getValue(), DB ? DB->Name : "", ExprLoc, getContext()));
return MatchOperand_Success;
}
if (Tok.isNot(AsmToken::Identifier)) {
TokError("invalid operand for instruction");
return MatchOperand_ParseFail;
}
auto TSB = AArch64TSB::lookupTSBByName(Tok.getString());
// The only valid named option for ISB is 'sy'
auto DB = AArch64DB::lookupDBByName(Tok.getString());
if (Mnemonic == "isb" && (!DB || DB->Encoding != AArch64DB::sy)) {
TokError("'sy' or #imm operand expected");
return MatchOperand_ParseFail;
// The only valid named option for TSB is 'csync'
} else if (Mnemonic == "tsb" && (!TSB || TSB->Encoding != AArch64TSB::csync)) {
TokError("'csync' operand expected");
return MatchOperand_ParseFail;
} else if (!DB && !TSB) {
TokError("invalid barrier option name");
return MatchOperand_ParseFail;
}
Operands.push_back(AArch64Operand::CreateBarrier(
DB ? DB->Encoding : TSB->Encoding, Tok.getString(), getLoc(), getContext()));
Parser.Lex(); // Consume the option
return MatchOperand_Success;
}
OperandMatchResultTy
AArch64AsmParser::tryParseSysReg(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int MRSReg, MSRReg;
auto SysReg = AArch64SysReg::lookupSysRegByName(Tok.getString());
if (SysReg && SysReg->haveFeatures(getSTI().getFeatureBits())) {
MRSReg = SysReg->Readable ? SysReg->Encoding : -1;
MSRReg = SysReg->Writeable ? SysReg->Encoding : -1;
} else
MRSReg = MSRReg = AArch64SysReg::parseGenericRegister(Tok.getString());
auto PState = AArch64PState::lookupPStateByName(Tok.getString());
unsigned PStateImm = -1;
if (PState && PState->haveFeatures(getSTI().getFeatureBits()))
PStateImm = PState->Encoding;
Operands.push_back(
AArch64Operand::CreateSysReg(Tok.getString(), getLoc(), MRSReg, MSRReg,
PStateImm, getContext()));
Parser.Lex(); // Eat identifier
return MatchOperand_Success;
}
/// tryParseNeonVectorRegister - Parse a vector register operand.
bool AArch64AsmParser::tryParseNeonVectorRegister(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Identifier))
return true;
SMLoc S = getLoc();
// Check for a vector register specifier first.
StringRef Kind;
unsigned Reg;
OperandMatchResultTy Res =
tryParseVectorRegister(Reg, Kind, RegKind::NeonVector);
if (Res != MatchOperand_Success)
return true;
const auto &KindRes = parseVectorKind(Kind, RegKind::NeonVector);
if (!KindRes)
return true;
unsigned ElementWidth = KindRes->second;
Operands.push_back(
AArch64Operand::CreateVectorReg(Reg, RegKind::NeonVector, ElementWidth,
S, getLoc(), getContext()));
// If there was an explicit qualifier, that goes on as a literal text
// operand.
if (!Kind.empty())
Operands.push_back(
AArch64Operand::CreateToken(Kind, false, S, getContext()));
return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
}
OperandMatchResultTy
AArch64AsmParser::tryParseVectorIndex(OperandVector &Operands) {
SMLoc SIdx = getLoc();
if (parseOptionalToken(AsmToken::LBrac)) {
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal))
return MatchOperand_NoMatch;
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE) {
TokError("immediate value expected for vector index");
return MatchOperand_ParseFail;;
}
SMLoc E = getLoc();
if (parseToken(AsmToken::RBrac, "']' expected"))
return MatchOperand_ParseFail;;
Operands.push_back(AArch64Operand::CreateVectorIndex(MCE->getValue(), SIdx,
E, getContext()));
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
// tryParseVectorRegister - Try to parse a vector register name with
// optional kind specifier. If it is a register specifier, eat the token
// and return it.
OperandMatchResultTy
AArch64AsmParser::tryParseVectorRegister(unsigned &Reg, StringRef &Kind,
RegKind MatchKind) {
MCAsmParser &Parser = getParser();
const AsmToken &Tok = Parser.getTok();
if (Tok.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
StringRef Name = Tok.getString();
// If there is a kind specifier, it's separated from the register name by
// a '.'.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
unsigned RegNum = matchRegisterNameAlias(Head, MatchKind);
if (RegNum) {
if (Next != StringRef::npos) {
Kind = Name.slice(Next, StringRef::npos);
if (!isValidVectorKind(Kind, MatchKind)) {
TokError("invalid vector kind qualifier");
return MatchOperand_ParseFail;
}
}
Parser.Lex(); // Eat the register token.
Reg = RegNum;
return MatchOperand_Success;
}
return MatchOperand_NoMatch;
}
/// tryParseSVEPredicateVector - Parse a SVE predicate register operand.
OperandMatchResultTy
AArch64AsmParser::tryParseSVEPredicateVector(OperandVector &Operands) {
// Check for a SVE predicate register specifier first.
const SMLoc S = getLoc();
StringRef Kind;
unsigned RegNum;
auto Res = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);
if (Res != MatchOperand_Success)
return Res;
const auto &KindRes = parseVectorKind(Kind, RegKind::SVEPredicateVector);
if (!KindRes)
return MatchOperand_NoMatch;
unsigned ElementWidth = KindRes->second;
Operands.push_back(AArch64Operand::CreateVectorReg(
RegNum, RegKind::SVEPredicateVector, ElementWidth, S,
getLoc(), getContext()));
// Not all predicates are followed by a '/m' or '/z'.
MCAsmParser &Parser = getParser();
if (Parser.getTok().isNot(AsmToken::Slash))
return MatchOperand_Success;
// But when they do they shouldn't have an element type suffix.
if (!Kind.empty()) {
Error(S, "not expecting size suffix");
return MatchOperand_ParseFail;
}
// Add a literal slash as operand
Operands.push_back(
AArch64Operand::CreateToken("/" , false, getLoc(), getContext()));
Parser.Lex(); // Eat the slash.
// Zeroing or merging?
auto Pred = Parser.getTok().getString().lower();
if (Pred != "z" && Pred != "m") {
Error(getLoc(), "expecting 'm' or 'z' predication");
return MatchOperand_ParseFail;
}
// Add zero/merge token.
const char *ZM = Pred == "z" ? "z" : "m";
Operands.push_back(
AArch64Operand::CreateToken(ZM, false, getLoc(), getContext()));
Parser.Lex(); // Eat zero/merge token.
return MatchOperand_Success;
}
/// parseRegister - Parse a register operand.
bool AArch64AsmParser::parseRegister(OperandVector &Operands) {
// Try for a Neon vector register.
if (!tryParseNeonVectorRegister(Operands))
return false;
// Otherwise try for a scalar register.
if (tryParseGPROperand<false>(Operands) == MatchOperand_Success)
return false;
return true;
}
bool AArch64AsmParser::parseSymbolicImmVal(const MCExpr *&ImmVal) {
MCAsmParser &Parser = getParser();
bool HasELFModifier = false;
AArch64MCExpr::VariantKind RefKind;
if (parseOptionalToken(AsmToken::Colon)) {
HasELFModifier = true;
if (Parser.getTok().isNot(AsmToken::Identifier))
return TokError("expect relocation specifier in operand after ':'");
std::string LowerCase = Parser.getTok().getIdentifier().lower();
RefKind = StringSwitch<AArch64MCExpr::VariantKind>(LowerCase)
.Case("lo12", AArch64MCExpr::VK_LO12)
.Case("abs_g3", AArch64MCExpr::VK_ABS_G3)
.Case("abs_g2", AArch64MCExpr::VK_ABS_G2)
.Case("abs_g2_s", AArch64MCExpr::VK_ABS_G2_S)
.Case("abs_g2_nc", AArch64MCExpr::VK_ABS_G2_NC)
.Case("abs_g1", AArch64MCExpr::VK_ABS_G1)
.Case("abs_g1_s", AArch64MCExpr::VK_ABS_G1_S)
.Case("abs_g1_nc", AArch64MCExpr::VK_ABS_G1_NC)
.Case("abs_g0", AArch64MCExpr::VK_ABS_G0)
.Case("abs_g0_s", AArch64MCExpr::VK_ABS_G0_S)
.Case("abs_g0_nc", AArch64MCExpr::VK_ABS_G0_NC)
.Case("dtprel_g2", AArch64MCExpr::VK_DTPREL_G2)
.Case("dtprel_g1", AArch64MCExpr::VK_DTPREL_G1)
.Case("dtprel_g1_nc", AArch64MCExpr::VK_DTPREL_G1_NC)
.Case("dtprel_g0", AArch64MCExpr::VK_DTPREL_G0)
.Case("dtprel_g0_nc", AArch64MCExpr::VK_DTPREL_G0_NC)
.Case("dtprel_hi12", AArch64MCExpr::VK_DTPREL_HI12)
.Case("dtprel_lo12", AArch64MCExpr::VK_DTPREL_LO12)
.Case("dtprel_lo12_nc", AArch64MCExpr::VK_DTPREL_LO12_NC)
.Case("tprel_g2", AArch64MCExpr::VK_TPREL_G2)
.Case("tprel_g1", AArch64MCExpr::VK_TPREL_G1)
.Case("tprel_g1_nc", AArch64MCExpr::VK_TPREL_G1_NC)
.Case("tprel_g0", AArch64MCExpr::VK_TPREL_G0)
.Case("tprel_g0_nc", AArch64MCExpr::VK_TPREL_G0_NC)
.Case("tprel_hi12", AArch64MCExpr::VK_TPREL_HI12)
.Case("tprel_lo12", AArch64MCExpr::VK_TPREL_LO12)
.Case("tprel_lo12_nc", AArch64MCExpr::VK_TPREL_LO12_NC)
.Case("tlsdesc_lo12", AArch64MCExpr::VK_TLSDESC_LO12)
.Case("got", AArch64MCExpr::VK_GOT_PAGE)
.Case("got_lo12", AArch64MCExpr::VK_GOT_LO12)
.Case("gottprel", AArch64MCExpr::VK_GOTTPREL_PAGE)
.Case("gottprel_lo12", AArch64MCExpr::VK_GOTTPREL_LO12_NC)
.Case("gottprel_g1", AArch64MCExpr::VK_GOTTPREL_G1)
.Case("gottprel_g0_nc", AArch64MCExpr::VK_GOTTPREL_G0_NC)
.Case("tlsdesc", AArch64MCExpr::VK_TLSDESC_PAGE)
.Case("secrel_lo12", AArch64MCExpr::VK_SECREL_LO12)
.Case("secrel_hi12", AArch64MCExpr::VK_SECREL_HI12)
.Default(AArch64MCExpr::VK_INVALID);
if (RefKind == AArch64MCExpr::VK_INVALID)
return TokError("expect relocation specifier in operand after ':'");
Parser.Lex(); // Eat identifier
if (parseToken(AsmToken::Colon, "expect ':' after relocation specifier"))
return true;
}
if (getParser().parseExpression(ImmVal))
return true;
if (HasELFModifier)
ImmVal = AArch64MCExpr::create(ImmVal, RefKind, getContext());
return false;
}
template <RegKind VectorKind>
OperandMatchResultTy
AArch64AsmParser::tryParseVectorList(OperandVector &Operands,
bool ExpectMatch) {
MCAsmParser &Parser = getParser();
if (!Parser.getTok().is(AsmToken::LCurly))
return MatchOperand_NoMatch;
// Wrapper around parse function
auto ParseVector = [this, &Parser](unsigned &Reg, StringRef &Kind, SMLoc Loc,
bool NoMatchIsError) {
auto RegTok = Parser.getTok();
auto ParseRes = tryParseVectorRegister(Reg, Kind, VectorKind);
if (ParseRes == MatchOperand_Success) {
if (parseVectorKind(Kind, VectorKind))
return ParseRes;
llvm_unreachable("Expected a valid vector kind");
}
if (RegTok.isNot(AsmToken::Identifier) ||
ParseRes == MatchOperand_ParseFail ||
(ParseRes == MatchOperand_NoMatch && NoMatchIsError)) {
Error(Loc, "vector register expected");
return MatchOperand_ParseFail;
}
return MatchOperand_NoMatch;
};
SMLoc S = getLoc();
auto LCurly = Parser.getTok();
Parser.Lex(); // Eat left bracket token.
StringRef Kind;
unsigned FirstReg;
auto ParseRes = ParseVector(FirstReg, Kind, getLoc(), ExpectMatch);
// Put back the original left bracket if there was no match, so that
// different types of list-operands can be matched (e.g. SVE, Neon).
if (ParseRes == MatchOperand_NoMatch)
Parser.getLexer().UnLex(LCurly);
if (ParseRes != MatchOperand_Success)
return ParseRes;
int64_t PrevReg = FirstReg;
unsigned Count = 1;
if (parseOptionalToken(AsmToken::Minus)) {
SMLoc Loc = getLoc();
StringRef NextKind;
unsigned Reg;
ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
if (ParseRes != MatchOperand_Success)
return ParseRes;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind) {
Error(Loc, "mismatched register size suffix");
return MatchOperand_ParseFail;
}
unsigned Space = (PrevReg < Reg) ? (Reg - PrevReg) : (Reg + 32 - PrevReg);
if (Space == 0 || Space > 3) {
Error(Loc, "invalid number of vectors");
return MatchOperand_ParseFail;
}
Count += Space;
}
else {
while (parseOptionalToken(AsmToken::Comma)) {
SMLoc Loc = getLoc();
StringRef NextKind;
unsigned Reg;
ParseRes = ParseVector(Reg, NextKind, getLoc(), true);
if (ParseRes != MatchOperand_Success)
return ParseRes;
// Any Kind suffices must match on all regs in the list.
if (Kind != NextKind) {
Error(Loc, "mismatched register size suffix");
return MatchOperand_ParseFail;
}
// Registers must be incremental (with wraparound at 31)
if (getContext().getRegisterInfo()->getEncodingValue(Reg) !=
(getContext().getRegisterInfo()->getEncodingValue(PrevReg) + 1) % 32) {
Error(Loc, "registers must be sequential");
return MatchOperand_ParseFail;
}
PrevReg = Reg;
++Count;
}
}
if (parseToken(AsmToken::RCurly, "'}' expected"))
return MatchOperand_ParseFail;
if (Count > 4) {
Error(S, "invalid number of vectors");
return MatchOperand_ParseFail;
}
unsigned NumElements = 0;
unsigned ElementWidth = 0;
if (!Kind.empty()) {
if (const auto &VK = parseVectorKind(Kind, VectorKind))
std::tie(NumElements, ElementWidth) = *VK;
}
Operands.push_back(AArch64Operand::CreateVectorList(
FirstReg, Count, NumElements, ElementWidth, VectorKind, S, getLoc(),
getContext()));
return MatchOperand_Success;
}
/// parseNeonVectorList - Parse a vector list operand for AdvSIMD instructions.
bool AArch64AsmParser::parseNeonVectorList(OperandVector &Operands) {
auto ParseRes = tryParseVectorList<RegKind::NeonVector>(Operands, true);
if (ParseRes != MatchOperand_Success)
return true;
return tryParseVectorIndex(Operands) == MatchOperand_ParseFail;
}
OperandMatchResultTy
AArch64AsmParser::tryParseGPR64sp0Operand(OperandVector &Operands) {
SMLoc StartLoc = getLoc();
unsigned RegNum;
OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
if (Res != MatchOperand_Success)
return Res;
if (!parseOptionalToken(AsmToken::Comma)) {
Operands.push_back(AArch64Operand::CreateReg(
RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
return MatchOperand_Success;
}
parseOptionalToken(AsmToken::Hash);
if (getParser().getTok().isNot(AsmToken::Integer)) {
Error(getLoc(), "index must be absent or #0");
return MatchOperand_ParseFail;
}
const MCExpr *ImmVal;
if (getParser().parseExpression(ImmVal) || !isa<MCConstantExpr>(ImmVal) ||
cast<MCConstantExpr>(ImmVal)->getValue() != 0) {
Error(getLoc(), "index must be absent or #0");
return MatchOperand_ParseFail;
}
Operands.push_back(AArch64Operand::CreateReg(
RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext()));
return MatchOperand_Success;
}
template <bool ParseShiftExtend, RegConstraintEqualityTy EqTy>
OperandMatchResultTy
AArch64AsmParser::tryParseGPROperand(OperandVector &Operands) {
SMLoc StartLoc = getLoc();
unsigned RegNum;
OperandMatchResultTy Res = tryParseScalarRegister(RegNum);
if (Res != MatchOperand_Success)
return Res;
// No shift/extend is the default.
if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
Operands.push_back(AArch64Operand::CreateReg(
RegNum, RegKind::Scalar, StartLoc, getLoc(), getContext(), EqTy));
return MatchOperand_Success;
}
// Eat the comma
getParser().Lex();
// Match the shift
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
Res = tryParseOptionalShiftExtend(ExtOpnd);
if (Res != MatchOperand_Success)
return Res;
auto Ext = static_cast<AArch64Operand*>(ExtOpnd.back().get());
Operands.push_back(AArch64Operand::CreateReg(
RegNum, RegKind::Scalar, StartLoc, Ext->getEndLoc(), getContext(), EqTy,
Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
Ext->hasShiftExtendAmount()));
return MatchOperand_Success;
}
bool AArch64AsmParser::parseOptionalMulOperand(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
// Some SVE instructions have a decoration after the immediate, i.e.
// "mul vl". We parse them here and add tokens, which must be present in the
// asm string in the tablegen instruction.
bool NextIsVL = Parser.getLexer().peekTok().getString().equals_lower("vl");
bool NextIsHash = Parser.getLexer().peekTok().is(AsmToken::Hash);
if (!Parser.getTok().getString().equals_lower("mul") ||
!(NextIsVL || NextIsHash))
return true;
Operands.push_back(
AArch64Operand::CreateToken("mul", false, getLoc(), getContext()));
Parser.Lex(); // Eat the "mul"
if (NextIsVL) {
Operands.push_back(
AArch64Operand::CreateToken("vl", false, getLoc(), getContext()));
Parser.Lex(); // Eat the "vl"
return false;
}
if (NextIsHash) {
Parser.Lex(); // Eat the #
SMLoc S = getLoc();
// Parse immediate operand.
const MCExpr *ImmVal;
if (!Parser.parseExpression(ImmVal))
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal)) {
Operands.push_back(AArch64Operand::CreateImm(
MCConstantExpr::create(MCE->getValue(), getContext()), S, getLoc(),
getContext()));
return MatchOperand_Success;
}
}
return Error(getLoc(), "expected 'vl' or '#<imm>'");
}
/// parseOperand - Parse a arm instruction operand. For now this parses the
/// operand regardless of the mnemonic.
bool AArch64AsmParser::parseOperand(OperandVector &Operands, bool isCondCode,
bool invertCondCode) {
MCAsmParser &Parser = getParser();
OperandMatchResultTy ResTy =
MatchOperandParserImpl(Operands, Mnemonic, /*ParseForAllFeatures=*/ true);
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Nothing custom, so do general case parsing.
SMLoc S, E;
switch (getLexer().getKind()) {
default: {
SMLoc S = getLoc();
const MCExpr *Expr;
if (parseSymbolicImmVal(Expr))
return Error(S, "invalid operand");
SMLoc E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(Expr, S, E, getContext()));
return false;
}
case AsmToken::LBrac: {
SMLoc Loc = Parser.getTok().getLoc();
Operands.push_back(AArch64Operand::CreateToken("[", false, Loc,
getContext()));
Parser.Lex(); // Eat '['
// There's no comma after a '[', so we can parse the next operand
// immediately.
return parseOperand(Operands, false, false);
}
case AsmToken::LCurly:
return parseNeonVectorList(Operands);
case AsmToken::Identifier: {
// If we're expecting a Condition Code operand, then just parse that.
if (isCondCode)
return parseCondCode(Operands, invertCondCode);
// If it's a register name, parse it.
if (!parseRegister(Operands))
return false;
// See if this is a "mul vl" decoration or "mul #<int>" operand used
// by SVE instructions.
if (!parseOptionalMulOperand(Operands))
return false;
// This could be an optional "shift" or "extend" operand.
OperandMatchResultTy GotShift = tryParseOptionalShiftExtend(Operands);
// We can only continue if no tokens were eaten.
if (GotShift != MatchOperand_NoMatch)
return GotShift;
// This was not a register so parse other operands that start with an
// identifier (like labels) as expressions and create them as immediates.
const MCExpr *IdVal;
S = getLoc();
if (getParser().parseExpression(IdVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(IdVal, S, E, getContext()));
return false;
}
case AsmToken::Integer:
case AsmToken::Real:
case AsmToken::Hash: {
// #42 -> immediate.
S = getLoc();
parseOptionalToken(AsmToken::Hash);
// Parse a negative sign
bool isNegative = false;
if (Parser.getTok().is(AsmToken::Minus)) {
isNegative = true;
// We need to consume this token only when we have a Real, otherwise
// we let parseSymbolicImmVal take care of it
if (Parser.getLexer().peekTok().is(AsmToken::Real))
Parser.Lex();
}
// The only Real that should come through here is a literal #0.0 for
// the fcmp[e] r, #0.0 instructions. They expect raw token operands,
// so convert the value.
const AsmToken &Tok = Parser.getTok();
if (Tok.is(AsmToken::Real)) {
APFloat RealVal(APFloat::IEEEdouble(), Tok.getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
if (Mnemonic != "fcmp" && Mnemonic != "fcmpe" && Mnemonic != "fcmeq" &&
Mnemonic != "fcmge" && Mnemonic != "fcmgt" && Mnemonic != "fcmle" &&
Mnemonic != "fcmlt" && Mnemonic != "fcmne")
return TokError("unexpected floating point literal");
else if (IntVal != 0 || isNegative)
return TokError("expected floating-point constant #0.0");
Parser.Lex(); // Eat the token.
Operands.push_back(
AArch64Operand::CreateToken("#0", false, S, getContext()));
Operands.push_back(
AArch64Operand::CreateToken(".0", false, S, getContext()));
return false;
}
const MCExpr *ImmVal;
if (parseSymbolicImmVal(ImmVal))
return true;
E = SMLoc::getFromPointer(getLoc().getPointer() - 1);
Operands.push_back(AArch64Operand::CreateImm(ImmVal, S, E, getContext()));
return false;
}
case AsmToken::Equal: {
SMLoc Loc = getLoc();
if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
return TokError("unexpected token in operand");
Parser.Lex(); // Eat '='
const MCExpr *SubExprVal;
if (getParser().parseExpression(SubExprVal))
return true;
if (Operands.size() < 2 ||
!static_cast<AArch64Operand &>(*Operands[1]).isScalarReg())
return Error(Loc, "Only valid when first operand is register");
bool IsXReg =
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Operands[1]->getReg());
MCContext& Ctx = getContext();
E = SMLoc::getFromPointer(Loc.getPointer() - 1);
// If the op is an imm and can be fit into a mov, then replace ldr with mov.
if (isa<MCConstantExpr>(SubExprVal)) {
uint64_t Imm = (cast<MCConstantExpr>(SubExprVal))->getValue();
uint32_t ShiftAmt = 0, MaxShiftAmt = IsXReg ? 48 : 16;
while(Imm > 0xFFFF && countTrailingZeros(Imm) >= 16) {
ShiftAmt += 16;
Imm >>= 16;
}
if (ShiftAmt <= MaxShiftAmt && Imm <= 0xFFFF) {
Operands[0] = AArch64Operand::CreateToken("movz", false, Loc, Ctx);
Operands.push_back(AArch64Operand::CreateImm(
MCConstantExpr::create(Imm, Ctx), S, E, Ctx));
if (ShiftAmt)
Operands.push_back(AArch64Operand::CreateShiftExtend(AArch64_AM::LSL,
ShiftAmt, true, S, E, Ctx));
return false;
}
APInt Simm = APInt(64, Imm << ShiftAmt);
// check if the immediate is an unsigned or signed 32-bit int for W regs
if (!IsXReg && !(Simm.isIntN(32) || Simm.isSignedIntN(32)))
return Error(Loc, "Immediate too large for register");
}
// If it is a label or an imm that cannot fit in a movz, put it into CP.
const MCExpr *CPLoc =
getTargetStreamer().addConstantPoolEntry(SubExprVal, IsXReg ? 8 : 4, Loc);
Operands.push_back(AArch64Operand::CreateImm(CPLoc, S, E, Ctx));
return false;
}
}
}
bool AArch64AsmParser::regsEqual(const MCParsedAsmOperand &Op1,
const MCParsedAsmOperand &Op2) const {
auto &AOp1 = static_cast<const AArch64Operand&>(Op1);
auto &AOp2 = static_cast<const AArch64Operand&>(Op2);
if (AOp1.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg &&
AOp2.getRegEqualityTy() == RegConstraintEqualityTy::EqualsReg)
return MCTargetAsmParser::regsEqual(Op1, Op2);
assert(AOp1.isScalarReg() && AOp2.isScalarReg() &&
"Testing equality of non-scalar registers not supported");
// Check if a registers match their sub/super register classes.
if (AOp1.getRegEqualityTy() == EqualsSuperReg)
return getXRegFromWReg(Op1.getReg()) == Op2.getReg();
if (AOp1.getRegEqualityTy() == EqualsSubReg)
return getWRegFromXReg(Op1.getReg()) == Op2.getReg();
if (AOp2.getRegEqualityTy() == EqualsSuperReg)
return getXRegFromWReg(Op2.getReg()) == Op1.getReg();
if (AOp2.getRegEqualityTy() == EqualsSubReg)
return getWRegFromXReg(Op2.getReg()) == Op1.getReg();
return false;
}
/// ParseInstruction - Parse an AArch64 instruction mnemonic followed by its
/// operands.
bool AArch64AsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
MCAsmParser &Parser = getParser();
Name = StringSwitch<StringRef>(Name.lower())
.Case("beq", "b.eq")
.Case("bne", "b.ne")
.Case("bhs", "b.hs")
.Case("bcs", "b.cs")
.Case("blo", "b.lo")
.Case("bcc", "b.cc")
.Case("bmi", "b.mi")
.Case("bpl", "b.pl")
.Case("bvs", "b.vs")
.Case("bvc", "b.vc")
.Case("bhi", "b.hi")
.Case("bls", "b.ls")
.Case("bge", "b.ge")
.Case("blt", "b.lt")
.Case("bgt", "b.gt")
.Case("ble", "b.le")
.Case("bal", "b.al")
.Case("bnv", "b.nv")
.Default(Name);
// First check for the AArch64-specific .req directive.
if (Parser.getTok().is(AsmToken::Identifier) &&
Parser.getTok().getIdentifier() == ".req") {
parseDirectiveReq(Name, NameLoc);
// We always return 'error' for this, as we're done with this
// statement and don't need to match the 'instruction."
return true;
}
// Create the leading tokens for the mnemonic, split by '.' characters.
size_t Start = 0, Next = Name.find('.');
StringRef Head = Name.slice(Start, Next);
// IC, DC, AT, TLBI and Prediction invalidation instructions are aliases for
// the SYS instruction.
if (Head == "ic" || Head == "dc" || Head == "at" || Head == "tlbi" ||
Head == "cfp" || Head == "dvp" || Head == "cpp")
return parseSysAlias(Head, NameLoc, Operands);
Operands.push_back(
AArch64Operand::CreateToken(Head, false, NameLoc, getContext()));
Mnemonic = Head;
// Handle condition codes for a branch mnemonic
if (Head == "b" && Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start + 1, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()));
AArch64CC::CondCode CC = parseCondCodeString(Head);
if (CC == AArch64CC::Invalid)
return Error(SuffixLoc, "invalid condition code");
Operands.push_back(
AArch64Operand::CreateToken(".", true, SuffixLoc, getContext()));
Operands.push_back(
AArch64Operand::CreateCondCode(CC, NameLoc, NameLoc, getContext()));
}
// Add the remaining tokens in the mnemonic.
while (Next != StringRef::npos) {
Start = Next;
Next = Name.find('.', Start + 1);
Head = Name.slice(Start, Next);
SMLoc SuffixLoc = SMLoc::getFromPointer(NameLoc.getPointer() +
(Head.data() - Name.data()) + 1);
Operands.push_back(
AArch64Operand::CreateToken(Head, true, SuffixLoc, getContext()));
}
// Conditional compare instructions have a Condition Code operand, which needs
// to be parsed and an immediate operand created.
bool condCodeFourthOperand =
(Head == "ccmp" || Head == "ccmn" || Head == "fccmp" ||
Head == "fccmpe" || Head == "fcsel" || Head == "csel" ||
Head == "csinc" || Head == "csinv" || Head == "csneg");
// These instructions are aliases to some of the conditional select
// instructions. However, the condition code is inverted in the aliased
// instruction.
//
// FIXME: Is this the correct way to handle these? Or should the parser
// generate the aliased instructions directly?
bool condCodeSecondOperand = (Head == "cset" || Head == "csetm");
bool condCodeThirdOperand =
(Head == "cinc" || Head == "cinv" || Head == "cneg");
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
unsigned N = 1;
do {
// Parse and remember the operand.
if (parseOperand(Operands, (N == 4 && condCodeFourthOperand) ||
(N == 3 && condCodeThirdOperand) ||
(N == 2 && condCodeSecondOperand),
condCodeSecondOperand || condCodeThirdOperand)) {
return true;
}
// After successfully parsing some operands there are two special cases to
// consider (i.e. notional operands not separated by commas). Both are due
// to memory specifiers:
// + An RBrac will end an address for load/store/prefetch
// + An '!' will indicate a pre-indexed operation.
//
// It's someone else's responsibility to make sure these tokens are sane
// in the given context!
SMLoc RLoc = Parser.getTok().getLoc();
if (parseOptionalToken(AsmToken::RBrac))
Operands.push_back(
AArch64Operand::CreateToken("]", false, RLoc, getContext()));
SMLoc ELoc = Parser.getTok().getLoc();
if (parseOptionalToken(AsmToken::Exclaim))
Operands.push_back(
AArch64Operand::CreateToken("!", false, ELoc, getContext()));
++N;
} while (parseOptionalToken(AsmToken::Comma));
}
if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
return true;
return false;
}
static inline bool isMatchingOrAlias(unsigned ZReg, unsigned Reg) {
assert((ZReg >= AArch64::Z0) && (ZReg <= AArch64::Z31));
return (ZReg == ((Reg - AArch64::B0) + AArch64::Z0)) ||
(ZReg == ((Reg - AArch64::H0) + AArch64::Z0)) ||
(ZReg == ((Reg - AArch64::S0) + AArch64::Z0)) ||
(ZReg == ((Reg - AArch64::D0) + AArch64::Z0)) ||
(ZReg == ((Reg - AArch64::Q0) + AArch64::Z0)) ||
(ZReg == ((Reg - AArch64::Z0) + AArch64::Z0));
}
// FIXME: This entire function is a giant hack to provide us with decent
// operand range validation/diagnostics until TableGen/MC can be extended
// to support autogeneration of this kind of validation.
bool AArch64AsmParser::validateInstruction(MCInst &Inst, SMLoc &IDLoc,
SmallVectorImpl<SMLoc> &Loc) {
const MCRegisterInfo *RI = getContext().getRegisterInfo();
const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
// A prefix only applies to the instruction following it. Here we extract
// prefix information for the next instruction before validating the current
// one so that in the case of failure we don't erronously continue using the
// current prefix.
PrefixInfo Prefix = NextPrefix;
NextPrefix = PrefixInfo::CreateFromInst(Inst, MCID.TSFlags);
// Before validating the instruction in isolation we run through the rules
// applicable when it follows a prefix instruction.
// NOTE: brk & hlt can be prefixed but require no additional validation.
if (Prefix.isActive() &&
(Inst.getOpcode() != AArch64::BRK) &&
(Inst.getOpcode() != AArch64::HLT)) {
// Prefixed intructions must have a destructive operand.
if ((MCID.TSFlags & AArch64::DestructiveInstTypeMask) ==
AArch64::NotDestructive)
return Error(IDLoc, "instruction is unpredictable when following a"
" movprfx, suggest replacing movprfx with mov");
// Destination operands must match.
if (Inst.getOperand(0).getReg() != Prefix.getDstReg())
return Error(Loc[0], "instruction is unpredictable when following a"
" movprfx writing to a different destination");
// Destination operand must not be used in any other location.
for (unsigned i = 1; i < Inst.getNumOperands(); ++i) {
if (Inst.getOperand(i).isReg() &&
(MCID.getOperandConstraint(i, MCOI::TIED_TO) == -1) &&
isMatchingOrAlias(Prefix.getDstReg(), Inst.getOperand(i).getReg()))
return Error(Loc[0], "instruction is unpredictable when following a"
" movprfx and destination also used as non-destructive"
" source");
}
auto PPRRegClass = AArch64MCRegisterClasses[AArch64::PPRRegClassID];
if (Prefix.isPredicated()) {
int PgIdx = -1;
// Find the instructions general predicate.
for (unsigned i = 1; i < Inst.getNumOperands(); ++i)
if (Inst.getOperand(i).isReg() &&
PPRRegClass.contains(Inst.getOperand(i).getReg())) {
PgIdx = i;
break;
}
// Instruction must be predicated if the movprfx is predicated.
if (PgIdx == -1 ||
(MCID.TSFlags & AArch64::ElementSizeMask) == AArch64::ElementSizeNone)
return Error(IDLoc, "instruction is unpredictable when following a"
" predicated movprfx, suggest using unpredicated movprfx");
// Instruction must use same general predicate as the movprfx.
if (Inst.getOperand(PgIdx).getReg() != Prefix.getPgReg())
return Error(IDLoc, "instruction is unpredictable when following a"
" predicated movprfx using a different general predicate");
// Instruction element type must match the movprfx.
if ((MCID.TSFlags & AArch64::ElementSizeMask) != Prefix.getElementSize())
return Error(IDLoc, "instruction is unpredictable when following a"
" predicated movprfx with a different element size");
}
}
// Check for indexed addressing modes w/ the base register being the
// same as a destination/source register or pair load where
// the Rt == Rt2. All of those are undefined behaviour.
switch (Inst.getOpcode()) {
case AArch64::LDPSWpre:
case AArch64::LDPWpost:
case AArch64::LDPWpre:
case AArch64::LDPXpost:
case AArch64::LDPXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
unsigned Rn = Inst.getOperand(3).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDP instruction, writeback base "
"is also a destination");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable LDP instruction, writeback base "
"is also a destination");
LLVM_FALLTHROUGH;
}
case AArch64::LDPDi:
case AArch64::LDPQi:
case AArch64::LDPSi:
case AArch64::LDPSWi:
case AArch64::LDPWi:
case AArch64::LDPXi: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rt2 = Inst.getOperand(1).getReg();
if (Rt == Rt2)
return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
break;
}
case AArch64::LDPDpost:
case AArch64::LDPDpre:
case AArch64::LDPQpost:
case AArch64::LDPQpre:
case AArch64::LDPSpost:
case AArch64::LDPSpre:
case AArch64::LDPSWpost: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
if (Rt == Rt2)
return Error(Loc[1], "unpredictable LDP instruction, Rt2==Rt");
break;
}
case AArch64::STPDpost:
case AArch64::STPDpre:
case AArch64::STPQpost:
case AArch64::STPQpre:
case AArch64::STPSpost:
case AArch64::STPSpre:
case AArch64::STPWpost:
case AArch64::STPWpre:
case AArch64::STPXpost:
case AArch64::STPXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
unsigned Rn = Inst.getOperand(3).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STP instruction, writeback base "
"is also a source");
if (RI->isSubRegisterEq(Rn, Rt2))
return Error(Loc[1], "unpredictable STP instruction, writeback base "
"is also a source");
break;
}
case AArch64::LDRBBpre:
case AArch64::LDRBpre:
case AArch64::LDRHHpre:
case AArch64::LDRHpre:
case AArch64::LDRSBWpre:
case AArch64::LDRSBXpre:
case AArch64::LDRSHWpre:
case AArch64::LDRSHXpre:
case AArch64::LDRSWpre:
case AArch64::LDRWpre:
case AArch64::LDRXpre:
case AArch64::LDRBBpost:
case AArch64::LDRBpost:
case AArch64::LDRHHpost:
case AArch64::LDRHpost:
case AArch64::LDRSBWpost:
case AArch64::LDRSBXpost:
case AArch64::LDRSHWpost:
case AArch64::LDRSHXpost:
case AArch64::LDRSWpost:
case AArch64::LDRWpost:
case AArch64::LDRXpost: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable LDR instruction, writeback base "
"is also a source");
break;
}
case AArch64::STRBBpost:
case AArch64::STRBpost:
case AArch64::STRHHpost:
case AArch64::STRHpost:
case AArch64::STRWpost:
case AArch64::STRXpost:
case AArch64::STRBBpre:
case AArch64::STRBpre:
case AArch64::STRHHpre:
case AArch64::STRHpre:
case AArch64::STRWpre:
case AArch64::STRXpre: {
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rn, Rt))
return Error(Loc[0], "unpredictable STR instruction, writeback base "
"is also a source");
break;
}
case AArch64::STXRB:
case AArch64::STXRH:
case AArch64::STXRW:
case AArch64::STXRX:
case AArch64::STLXRB:
case AArch64::STLXRH:
case AArch64::STLXRW:
case AArch64::STLXRX: {
unsigned Rs = Inst.getOperand(0).getReg();
unsigned Rt = Inst.getOperand(1).getReg();
unsigned Rn = Inst.getOperand(2).getReg();
if (RI->isSubRegisterEq(Rt, Rs) ||
(RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
return Error(Loc[0],
"unpredictable STXR instruction, status is also a source");
break;
}
case AArch64::STXPW:
case AArch64::STXPX:
case AArch64::STLXPW:
case AArch64::STLXPX: {
unsigned Rs = Inst.getOperand(0).getReg();
unsigned Rt1 = Inst.getOperand(1).getReg();
unsigned Rt2 = Inst.getOperand(2).getReg();
unsigned Rn = Inst.getOperand(3).getReg();
if (RI->isSubRegisterEq(Rt1, Rs) || RI->isSubRegisterEq(Rt2, Rs) ||
(RI->isSubRegisterEq(Rn, Rs) && Rn != AArch64::SP))
return Error(Loc[0],
"unpredictable STXP instruction, status is also a source");
break;
}
case AArch64::LDGV: {
unsigned Rt = Inst.getOperand(0).getReg();
unsigned Rn = Inst.getOperand(1).getReg();
if (RI->isSubRegisterEq(Rt, Rn)) {
return Error(Loc[0],
"unpredictable LDGV instruction, writeback register is also "
"the target register");
}
}
}
// Now check immediate ranges. Separate from the above as there is overlap
// in the instructions being checked and this keeps the nested conditionals
// to a minimum.
switch (Inst.getOpcode()) {
case AArch64::ADDSWri:
case AArch64::ADDSXri:
case AArch64::ADDWri:
case AArch64::ADDXri:
case AArch64::SUBSWri:
case AArch64::SUBSXri:
case AArch64::SUBWri:
case AArch64::SUBXri: {
// Annoyingly we can't do this in the isAddSubImm predicate, so there is
// some slight duplication here.
if (Inst.getOperand(2).isExpr()) {
const MCExpr *Expr = Inst.getOperand(2).getExpr();
AArch64MCExpr::VariantKind ELFRefKind;
MCSymbolRefExpr::VariantKind DarwinRefKind;
int64_t Addend;
if (classifySymbolRef(Expr, ELFRefKind, DarwinRefKind, Addend)) {
// Only allow these with ADDXri.
if ((DarwinRefKind == MCSymbolRefExpr::VK_PAGEOFF ||
DarwinRefKind == MCSymbolRefExpr::VK_TLVPPAGEOFF) &&
Inst.getOpcode() == AArch64::ADDXri)
return false;
// Only allow these with ADDXri/ADDWri
if ((ELFRefKind == AArch64MCExpr::VK_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_HI12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_DTPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TPREL_HI12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_TPREL_LO12_NC ||
ELFRefKind == AArch64MCExpr::VK_TLSDESC_LO12 ||
ELFRefKind == AArch64MCExpr::VK_SECREL_LO12 ||
ELFRefKind == AArch64MCExpr::VK_SECREL_HI12) &&
(Inst.getOpcode() == AArch64::ADDXri ||
Inst.getOpcode() == AArch64::ADDWri))
return false;
// Don't allow symbol refs in the immediate field otherwise
// Note: Loc.back() may be Loc[1] or Loc[2] depending on the number of
// operands of the original instruction (i.e. 'add w0, w1, borked' vs
// 'cmp w0, 'borked')
return Error(Loc.back(), "invalid immediate expression");
}
// We don't validate more complex expressions here
}
return false;
}
default:
return false;
}
}
static std::string AArch64MnemonicSpellCheck(StringRef S, uint64_t FBS,
unsigned VariantID = 0);
bool AArch64AsmParser::showMatchError(SMLoc Loc, unsigned ErrCode,
uint64_t ErrorInfo,
OperandVector &Operands) {
switch (ErrCode) {
case Match_InvalidTiedOperand: {
RegConstraintEqualityTy EqTy =
static_cast<const AArch64Operand &>(*Operands[ErrorInfo])
.getRegEqualityTy();
switch (EqTy) {
case RegConstraintEqualityTy::EqualsSubReg:
return Error(Loc, "operand must be 64-bit form of destination register");
case RegConstraintEqualityTy::EqualsSuperReg:
return Error(Loc, "operand must be 32-bit form of destination register");
case RegConstraintEqualityTy::EqualsReg:
return Error(Loc, "operand must match destination register");
}
llvm_unreachable("Unknown RegConstraintEqualityTy");
}
case Match_MissingFeature:
return Error(Loc,
"instruction requires a CPU feature not currently enabled");
case Match_InvalidOperand:
return Error(Loc, "invalid operand for instruction");
case Match_InvalidSuffix:
return Error(Loc, "invalid type suffix for instruction");
case Match_InvalidCondCode:
return Error(Loc, "expected AArch64 condition code");
case Match_AddSubRegExtendSmall:
return Error(Loc,
"expected '[su]xt[bhw]' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubRegExtendLarge:
return Error(Loc,
"expected 'sxtx' 'uxtx' or 'lsl' with optional integer in range [0, 4]");
case Match_AddSubSecondSource:
return Error(Loc,
"expected compatible register, symbol or integer in range [0, 4095]");
case Match_LogicalSecondSource:
return Error(Loc, "expected compatible register or logical immediate");
case Match_InvalidMovImm32Shift:
return Error(Loc, "expected 'lsl' with optional integer 0 or 16");
case Match_InvalidMovImm64Shift:
return Error(Loc, "expected 'lsl' with optional integer 0, 16, 32 or 48");
case Match_AddSubRegShift32:
return Error(Loc,
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 31]");
case Match_AddSubRegShift64:
return Error(Loc,
"expected 'lsl', 'lsr' or 'asr' with optional integer in range [0, 63]");
case Match_InvalidFPImm:
return Error(Loc,
"expected compatible register or floating-point constant");
case Match_InvalidMemoryIndexedSImm6:
return Error(Loc, "index must be an integer in range [-32, 31].");
case Match_InvalidMemoryIndexedSImm5:
return Error(Loc, "index must be an integer in range [-16, 15].");
case Match_InvalidMemoryIndexed1SImm4:
return Error(Loc, "index must be an integer in range [-8, 7].");
case Match_InvalidMemoryIndexed2SImm4:
return Error(Loc, "index must be a multiple of 2 in range [-16, 14].");
case Match_InvalidMemoryIndexed3SImm4:
return Error(Loc, "index must be a multiple of 3 in range [-24, 21].");
case Match_InvalidMemoryIndexed4SImm4:
return Error(Loc, "index must be a multiple of 4 in range [-32, 28].");
case Match_InvalidMemoryIndexed16SImm4:
return Error(Loc, "index must be a multiple of 16 in range [-128, 112].");
case Match_InvalidMemoryIndexed1SImm6:
return Error(Loc, "index must be an integer in range [-32, 31].");
case Match_InvalidMemoryIndexedSImm8:
return Error(Loc, "index must be an integer in range [-128, 127].");
case Match_InvalidMemoryIndexedSImm9:
return Error(Loc, "index must be an integer in range [-256, 255].");
case Match_InvalidMemoryIndexed16SImm9:
return Error(Loc, "index must be a multiple of 16 in range [-4096, 4080].");
case Match_InvalidMemoryIndexed8SImm10:
return Error(Loc, "index must be a multiple of 8 in range [-4096, 4088].");
case Match_InvalidMemoryIndexed4SImm7:
return Error(Loc, "index must be a multiple of 4 in range [-256, 252].");
case Match_InvalidMemoryIndexed8SImm7:
return Error(Loc, "index must be a multiple of 8 in range [-512, 504].");
case Match_InvalidMemoryIndexed16SImm7:
return Error(Loc, "index must be a multiple of 16 in range [-1024, 1008].");
case Match_InvalidMemoryIndexed8UImm5:
return Error(Loc, "index must be a multiple of 8 in range [0, 248].");
case Match_InvalidMemoryIndexed4UImm5:
return Error(Loc, "index must be a multiple of 4 in range [0, 124].");
case Match_InvalidMemoryIndexed2UImm5:
return Error(Loc, "index must be a multiple of 2 in range [0, 62].");
case Match_InvalidMemoryIndexed8UImm6:
return Error(Loc, "index must be a multiple of 8 in range [0, 504].");
case Match_InvalidMemoryIndexed16UImm6:
return Error(Loc, "index must be a multiple of 16 in range [0, 1008].");
case Match_InvalidMemoryIndexed4UImm6:
return Error(Loc, "index must be a multiple of 4 in range [0, 252].");
case Match_InvalidMemoryIndexed2UImm6:
return Error(Loc, "index must be a multiple of 2 in range [0, 126].");
case Match_InvalidMemoryIndexed1UImm6:
return Error(Loc, "index must be in range [0, 63].");
case Match_InvalidMemoryWExtend8:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0");
case Match_InvalidMemoryWExtend16:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #1");
case Match_InvalidMemoryWExtend32:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #2");
case Match_InvalidMemoryWExtend64:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #3");
case Match_InvalidMemoryWExtend128:
return Error(Loc,
"expected 'uxtw' or 'sxtw' with optional shift of #0 or #4");
case Match_InvalidMemoryXExtend8:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0");
case Match_InvalidMemoryXExtend16:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #1");
case Match_InvalidMemoryXExtend32:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #2");
case Match_InvalidMemoryXExtend64:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #3");
case Match_InvalidMemoryXExtend128:
return Error(Loc,
"expected 'lsl' or 'sxtx' with optional shift of #0 or #4");
case Match_InvalidMemoryIndexed1:
return Error(Loc, "index must be an integer in range [0, 4095].");
case Match_InvalidMemoryIndexed2:
return Error(Loc, "index must be a multiple of 2 in range [0, 8190].");
case Match_InvalidMemoryIndexed4:
return Error(Loc, "index must be a multiple of 4 in range [0, 16380].");
case Match_InvalidMemoryIndexed8:
return Error(Loc, "index must be a multiple of 8 in range [0, 32760].");
case Match_InvalidMemoryIndexed16:
return Error(Loc, "index must be a multiple of 16 in range [0, 65520].");
case Match_InvalidImm0_1:
return Error(Loc, "immediate must be an integer in range [0, 1].");
case Match_InvalidImm0_7:
return Error(Loc, "immediate must be an integer in range [0, 7].");
case Match_InvalidImm0_15:
return Error(Loc, "immediate must be an integer in range [0, 15].");
case Match_InvalidImm0_31:
return Error(Loc, "immediate must be an integer in range [0, 31].");
case Match_InvalidImm0_63:
return Error(Loc, "immediate must be an integer in range [0, 63].");
case Match_InvalidImm0_127:
return Error(Loc, "immediate must be an integer in range [0, 127].");
case Match_InvalidImm0_255:
return Error(Loc, "immediate must be an integer in range [0, 255].");
case Match_InvalidImm0_65535:
return Error(Loc, "immediate must be an integer in range [0, 65535].");
case Match_InvalidImm1_8:
return Error(Loc, "immediate must be an integer in range [1, 8].");
case Match_InvalidImm1_16:
return Error(Loc, "immediate must be an integer in range [1, 16].");
case Match_InvalidImm1_32:
return Error(Loc, "immediate must be an integer in range [1, 32].");
case Match_InvalidImm1_64:
return Error(Loc, "immediate must be an integer in range [1, 64].");
case Match_InvalidSVEAddSubImm8:
return Error(Loc, "immediate must be an integer in range [0, 255]"
" with a shift amount of 0");
case Match_InvalidSVEAddSubImm16:
case Match_InvalidSVEAddSubImm32:
case Match_InvalidSVEAddSubImm64:
return Error(Loc, "immediate must be an integer in range [0, 255] or a "
"multiple of 256 in range [256, 65280]");
case Match_InvalidSVECpyImm8:
return Error(Loc, "immediate must be an integer in range [-128, 255]"
" with a shift amount of 0");
case Match_InvalidSVECpyImm16:
return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
"multiple of 256 in range [-32768, 65280]");
case Match_InvalidSVECpyImm32:
case Match_InvalidSVECpyImm64:
return Error(Loc, "immediate must be an integer in range [-128, 127] or a "
"multiple of 256 in range [-32768, 32512]");
case Match_InvalidIndexRange1_1:
return Error(Loc, "expected lane specifier '[1]'");
case Match_InvalidIndexRange0_15:
return Error(Loc, "vector lane must be an integer in range [0, 15].");
case Match_InvalidIndexRange0_7:
return Error(Loc, "vector lane must be an integer in range [0, 7].");
case Match_InvalidIndexRange0_3:
return Error(Loc, "vector lane must be an integer in range [0, 3].");
case Match_InvalidIndexRange0_1:
return Error(Loc, "vector lane must be an integer in range [0, 1].");
case Match_InvalidSVEIndexRange0_63:
return Error(Loc, "vector lane must be an integer in range [0, 63].");
case Match_InvalidSVEIndexRange0_31:
return Error(Loc, "vector lane must be an integer in range [0, 31].");
case Match_InvalidSVEIndexRange0_15:
return Error(Loc, "vector lane must be an integer in range [0, 15].");
case Match_InvalidSVEIndexRange0_7:
return Error(Loc, "vector lane must be an integer in range [0, 7].");
case Match_InvalidSVEIndexRange0_3:
return Error(Loc, "vector lane must be an integer in range [0, 3].");
case Match_InvalidLabel:
return Error(Loc, "expected label or encodable integer pc offset");
case Match_MRS:
return Error(Loc, "expected readable system register");
case Match_MSR:
return Error(Loc, "expected writable system register or pstate");
case Match_InvalidComplexRotationEven:
return Error(Loc, "complex rotation must be 0, 90, 180 or 270.");
case Match_InvalidComplexRotationOdd:
return Error(Loc, "complex rotation must be 90 or 270.");
case Match_MnemonicFail: {
std::string Suggestion = AArch64MnemonicSpellCheck(
((AArch64Operand &)*Operands[0]).getToken(),
ComputeAvailableFeatures(STI->getFeatureBits()));
return Error(Loc, "unrecognized instruction mnemonic" + Suggestion);
}
case Match_InvalidGPR64shifted8:
return Error(Loc, "register must be x0..x30 or xzr, without shift");
case Match_InvalidGPR64shifted16:
return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #1'");
case Match_InvalidGPR64shifted32:
return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #2'");
case Match_InvalidGPR64shifted64:
return Error(Loc, "register must be x0..x30 or xzr, with required shift 'lsl #3'");
case Match_InvalidGPR64NoXZRshifted8:
return Error(Loc, "register must be x0..x30 without shift");
case Match_InvalidGPR64NoXZRshifted16:
return Error(Loc, "register must be x0..x30 with required shift 'lsl #1'");
case Match_InvalidGPR64NoXZRshifted32:
return Error(Loc, "register must be x0..x30 with required shift 'lsl #2'");
case Match_InvalidGPR64NoXZRshifted64:
return Error(Loc, "register must be x0..x30 with required shift 'lsl #3'");
case Match_InvalidZPR32UXTW8:
case Match_InvalidZPR32SXTW8:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'");
case Match_InvalidZPR32UXTW16:
case Match_InvalidZPR32SXTW16:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #1'");
case Match_InvalidZPR32UXTW32:
case Match_InvalidZPR32SXTW32:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'");
case Match_InvalidZPR32UXTW64:
case Match_InvalidZPR32SXTW64:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #3'");
case Match_InvalidZPR64UXTW8:
case Match_InvalidZPR64SXTW8:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (uxtw|sxtw)'");
case Match_InvalidZPR64UXTW16:
case Match_InvalidZPR64SXTW16:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #1'");
case Match_InvalidZPR64UXTW32:
case Match_InvalidZPR64SXTW32:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'");
case Match_InvalidZPR64UXTW64:
case Match_InvalidZPR64SXTW64:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #3'");
case Match_InvalidZPR32LSL8:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s'");
case Match_InvalidZPR32LSL16:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #1'");
case Match_InvalidZPR32LSL32:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #2'");
case Match_InvalidZPR32LSL64:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].s, lsl #3'");
case Match_InvalidZPR64LSL8:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d'");
case Match_InvalidZPR64LSL16:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #1'");
case Match_InvalidZPR64LSL32:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #2'");
case Match_InvalidZPR64LSL64:
return Error(Loc, "invalid shift/extend specified, expected 'z[0..31].d, lsl #3'");
case Match_InvalidZPR0:
return Error(Loc, "expected register without element width sufix");
case Match_InvalidZPR8:
case Match_InvalidZPR16:
case Match_InvalidZPR32:
case Match_InvalidZPR64:
case Match_InvalidZPR128:
return Error(Loc, "invalid element width");
case Match_InvalidZPR_3b8:
return Error(Loc, "Invalid restricted vector register, expected z0.b..z7.b");
case Match_InvalidZPR_3b16:
return Error(Loc, "Invalid restricted vector register, expected z0.h..z7.h");
case Match_InvalidZPR_3b32:
return Error(Loc, "Invalid restricted vector register, expected z0.s..z7.s");
case Match_InvalidZPR_4b16:
return Error(Loc, "Invalid restricted vector register, expected z0.h..z15.h");
case Match_InvalidZPR_4b32:
return Error(Loc, "Invalid restricted vector register, expected z0.s..z15.s");
case Match_InvalidZPR_4b64:
return Error(Loc, "Invalid restricted vector register, expected z0.d..z15.d");
case Match_InvalidSVEPattern:
return Error(Loc, "invalid predicate pattern");
case Match_InvalidSVEPredicateAnyReg:
case Match_InvalidSVEPredicateBReg:
case Match_InvalidSVEPredicateHReg:
case Match_InvalidSVEPredicateSReg:
case Match_InvalidSVEPredicateDReg:
return Error(Loc, "invalid predicate register.");
case Match_InvalidSVEPredicate3bAnyReg:
case Match_InvalidSVEPredicate3bBReg:
case Match_InvalidSVEPredicate3bHReg:
case Match_InvalidSVEPredicate3bSReg:
case Match_InvalidSVEPredicate3bDReg:
return Error(Loc, "restricted predicate has range [0, 7].");
case Match_InvalidSVEExactFPImmOperandHalfOne:
return Error(Loc, "Invalid floating point constant, expected 0.5 or 1.0.");
case Match_InvalidSVEExactFPImmOperandHalfTwo:
return Error(Loc, "Invalid floating point constant, expected 0.5 or 2.0.");
case Match_InvalidSVEExactFPImmOperandZeroOne:
return Error(Loc, "Invalid floating point constant, expected 0.0 or 1.0.");
default:
llvm_unreachable("unexpected error code!");
}
}
static const char *getSubtargetFeatureName(uint64_t Val);
bool AArch64AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
uint64_t &ErrorInfo,
bool MatchingInlineAsm) {
assert(!Operands.empty() && "Unexpect empty operand list!");
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[0]);
assert(Op.isToken() && "Leading operand should always be a mnemonic!");
StringRef Tok = Op.getToken();
unsigned NumOperands = Operands.size();
if (NumOperands == 4 && Tok == "lsl") {
AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
if (Op2.isScalarReg() && Op3.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
if (Op3CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t NewOp3Val = 0;
uint64_t NewOp4Val = 0;
if (AArch64MCRegisterClasses[AArch64::GPR32allRegClassID].contains(
Op2.getReg())) {
NewOp3Val = (32 - Op3Val) & 0x1f;
NewOp4Val = 31 - Op3Val;
} else {
NewOp3Val = (64 - Op3Val) & 0x3f;
NewOp4Val = 63 - Op3Val;
}
const MCExpr *NewOp3 = MCConstantExpr::create(NewOp3Val, getContext());
const MCExpr *NewOp4 = MCConstantExpr::create(NewOp4Val, getContext());
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
Operands.push_back(AArch64Operand::CreateImm(
NewOp4, Op3.getStartLoc(), Op3.getEndLoc(), getContext()));
Operands[3] = AArch64Operand::CreateImm(NewOp3, Op3.getStartLoc(),
Op3.getEndLoc(), getContext());
}
}
} else if (NumOperands == 4 && Tok == "bfc") {
// FIXME: Horrible hack to handle BFC->BFM alias.
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand LSBOp = static_cast<AArch64Operand &>(*Operands[2]);
AArch64Operand WidthOp = static_cast<AArch64Operand &>(*Operands[3]);
if (Op1.isScalarReg() && LSBOp.isImm() && WidthOp.isImm()) {
const MCConstantExpr *LSBCE = dyn_cast<MCConstantExpr>(LSBOp.getImm());
const MCConstantExpr *WidthCE = dyn_cast<MCConstantExpr>(WidthOp.getImm());
if (LSBCE && WidthCE) {
uint64_t LSB = LSBCE->getValue();
uint64_t Width = WidthCE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (LSB >= RegWidth)
return Error(LSBOp.getStartLoc(),
"expected integer in range [0, 31]");
if (Width < 1 || Width > RegWidth)
return Error(WidthOp.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t ImmR = 0;
if (RegWidth == 32)
ImmR = (32 - LSB) & 0x1f;
else
ImmR = (64 - LSB) & 0x3f;
uint64_t ImmS = Width - 1;
if (ImmR != 0 && ImmS >= ImmR)
return Error(WidthOp.getStartLoc(),
"requested insert overflows register");
const MCExpr *ImmRExpr = MCConstantExpr::create(ImmR, getContext());
const MCExpr *ImmSExpr = MCConstantExpr::create(ImmS, getContext());
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
Operands[2] = AArch64Operand::CreateReg(
RegWidth == 32 ? AArch64::WZR : AArch64::XZR, RegKind::Scalar,
SMLoc(), SMLoc(), getContext());
Operands[3] = AArch64Operand::CreateImm(
ImmRExpr, LSBOp.getStartLoc(), LSBOp.getEndLoc(), getContext());
Operands.emplace_back(
AArch64Operand::CreateImm(ImmSExpr, WidthOp.getStartLoc(),
WidthOp.getEndLoc(), getContext()));
}
}
} else if (NumOperands == 5) {
// FIXME: Horrible hack to handle the BFI -> BFM, SBFIZ->SBFM, and
// UBFIZ -> UBFM aliases.
if (Tok == "bfi" || Tok == "sbfiz" || Tok == "ubfiz") {
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (Op3Val >= RegWidth)
return Error(Op3.getStartLoc(),
"expected integer in range [0, 31]");
if (Op4Val < 1 || Op4Val > RegWidth)
return Error(Op4.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t NewOp3Val = 0;
if (RegWidth == 32)
NewOp3Val = (32 - Op3Val) & 0x1f;
else
NewOp3Val = (64 - Op3Val) & 0x3f;
uint64_t NewOp4Val = Op4Val - 1;
if (NewOp3Val != 0 && NewOp4Val >= NewOp3Val)
return Error(Op4.getStartLoc(),
"requested insert overflows register");
const MCExpr *NewOp3 =
MCConstantExpr::create(NewOp3Val, getContext());
const MCExpr *NewOp4 =
MCConstantExpr::create(NewOp4Val, getContext());
Operands[3] = AArch64Operand::CreateImm(
NewOp3, Op3.getStartLoc(), Op3.getEndLoc(), getContext());
Operands[4] = AArch64Operand::CreateImm(
NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
if (Tok == "bfi")
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
else if (Tok == "sbfiz")
Operands[0] = AArch64Operand::CreateToken(
"sbfm", false, Op.getStartLoc(), getContext());
else if (Tok == "ubfiz")
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
}
}
// FIXME: Horrible hack to handle the BFXIL->BFM, SBFX->SBFM, and
// UBFX -> UBFM aliases.
} else if (NumOperands == 5 &&
(Tok == "bfxil" || Tok == "sbfx" || Tok == "ubfx")) {
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
AArch64Operand &Op4 = static_cast<AArch64Operand &>(*Operands[4]);
if (Op1.isScalarReg() && Op3.isImm() && Op4.isImm()) {
const MCConstantExpr *Op3CE = dyn_cast<MCConstantExpr>(Op3.getImm());
const MCConstantExpr *Op4CE = dyn_cast<MCConstantExpr>(Op4.getImm());
if (Op3CE && Op4CE) {
uint64_t Op3Val = Op3CE->getValue();
uint64_t Op4Val = Op4CE->getValue();
uint64_t RegWidth = 0;
if (AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op1.getReg()))
RegWidth = 64;
else
RegWidth = 32;
if (Op3Val >= RegWidth)
return Error(Op3.getStartLoc(),
"expected integer in range [0, 31]");
if (Op4Val < 1 || Op4Val > RegWidth)
return Error(Op4.getStartLoc(),
"expected integer in range [1, 32]");
uint64_t NewOp4Val = Op3Val + Op4Val - 1;
if (NewOp4Val >= RegWidth || NewOp4Val < Op3Val)
return Error(Op4.getStartLoc(),
"requested extract overflows register");
const MCExpr *NewOp4 =
MCConstantExpr::create(NewOp4Val, getContext());
Operands[4] = AArch64Operand::CreateImm(
NewOp4, Op4.getStartLoc(), Op4.getEndLoc(), getContext());
if (Tok == "bfxil")
Operands[0] = AArch64Operand::CreateToken(
"bfm", false, Op.getStartLoc(), getContext());
else if (Tok == "sbfx")
Operands[0] = AArch64Operand::CreateToken(
"sbfm", false, Op.getStartLoc(), getContext());
else if (Tok == "ubfx")
Operands[0] = AArch64Operand::CreateToken(
"ubfm", false, Op.getStartLoc(), getContext());
else
llvm_unreachable("No valid mnemonic for alias?");
}
}
}
}
// The Cyclone CPU and early successors didn't execute the zero-cycle zeroing
// instruction for FP registers correctly in some rare circumstances. Convert
// it to a safe instruction and warn (because silently changing someone's
// assembly is rude).
if (getSTI().getFeatureBits()[AArch64::FeatureZCZeroingFPWorkaround] &&
NumOperands == 4 && Tok == "movi") {
AArch64Operand &Op1 = static_cast<AArch64Operand &>(*Operands[1]);
AArch64Operand &Op2 = static_cast<AArch64Operand &>(*Operands[2]);
AArch64Operand &Op3 = static_cast<AArch64Operand &>(*Operands[3]);
if ((Op1.isToken() && Op2.isNeonVectorReg() && Op3.isImm()) ||
(Op1.isNeonVectorReg() && Op2.isToken() && Op3.isImm())) {
StringRef Suffix = Op1.isToken() ? Op1.getToken() : Op2.getToken();
if (Suffix.lower() == ".2d" &&
cast<MCConstantExpr>(Op3.getImm())->getValue() == 0) {
Warning(IDLoc, "instruction movi.2d with immediate #0 may not function"
" correctly on this CPU, converting to equivalent movi.16b");
// Switch the suffix to .16b.
unsigned Idx = Op1.isToken() ? 1 : 2;
Operands[Idx] = AArch64Operand::CreateToken(".16b", false, IDLoc,
getContext());
}
}
}
// FIXME: Horrible hack for sxtw and uxtw with Wn src and Xd dst operands.
// InstAlias can't quite handle this since the reg classes aren't
// subclasses.
if (NumOperands == 3 && (Tok == "sxtw" || Tok == "uxtw")) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
if (Op.isScalarReg()) {
unsigned Reg = getXRegFromWReg(Op.getReg());
Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
Op.getStartLoc(), Op.getEndLoc(),
getContext());
}
}
// FIXME: Likewise for sxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "sxtb" || Tok == "sxth")) {
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isScalarReg() &&
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op.getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR64. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[2]);
if (Op.isScalarReg()) {
unsigned Reg = getXRegFromWReg(Op.getReg());
Operands[2] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
}
// FIXME: Likewise for uxt[bh] with a Xd dst operand
else if (NumOperands == 3 && (Tok == "uxtb" || Tok == "uxth")) {
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isScalarReg() &&
AArch64MCRegisterClasses[AArch64::GPR64allRegClassID].contains(
Op.getReg())) {
// The source register can be Wn here, but the matcher expects a
// GPR32. Twiddle it here if necessary.
AArch64Operand &Op = static_cast<AArch64Operand &>(*Operands[1]);
if (Op.isScalarReg()) {
unsigned Reg = getWRegFromXReg(Op.getReg());
Operands[1] = AArch64Operand::CreateReg(Reg, RegKind::Scalar,
Op.getStartLoc(),
Op.getEndLoc(), getContext());
}
}
}
MCInst Inst;
// First try to match against the secondary set of tables containing the
// short-form NEON instructions (e.g. "fadd.2s v0, v1, v2").
unsigned MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 1);
// If that fails, try against the alternate table containing long-form NEON:
// "fadd v0.2s, v1.2s, v2.2s"
if (MatchResult != Match_Success) {
// But first, save the short-form match result: we can use it in case the
// long-form match also fails.
auto ShortFormNEONErrorInfo = ErrorInfo;
auto ShortFormNEONMatchResult = MatchResult;
MatchResult =
MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm, 0);
// Now, both matches failed, and the long-form match failed on the mnemonic
// suffix token operand. The short-form match failure is probably more
// relevant: use it instead.
if (MatchResult == Match_InvalidOperand && ErrorInfo == 1 &&
Operands.size() > 1 && ((AArch64Operand &)*Operands[1]).isToken() &&
((AArch64Operand &)*Operands[1]).isTokenSuffix()) {
MatchResult = ShortFormNEONMatchResult;
ErrorInfo = ShortFormNEONErrorInfo;
}
}
switch (MatchResult) {
case Match_Success: {
// Perform range checking and other semantic validations
SmallVector<SMLoc, 8> OperandLocs;
NumOperands = Operands.size();
for (unsigned i = 1; i < NumOperands; ++i)
OperandLocs.push_back(Operands[i]->getStartLoc());
if (validateInstruction(Inst, IDLoc, OperandLocs))
return true;
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, getSTI());
return false;
}
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing (neon, e.g.).
std::string Msg = "instruction requires:";
uint64_t Mask = 1;
for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_MnemonicFail:
return showMatchError(IDLoc, MatchResult, ErrorInfo, Operands);
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0ULL) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction",
SMRange(IDLoc, getTok().getLoc()));
ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
// If the match failed on a suffix token operand, tweak the diagnostic
// accordingly.
if (((AArch64Operand &)*Operands[ErrorInfo]).isToken() &&
((AArch64Operand &)*Operands[ErrorInfo]).isTokenSuffix())
MatchResult = Match_InvalidSuffix;
return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
}
case Match_InvalidTiedOperand:
case Match_InvalidMemoryIndexed1:
case Match_InvalidMemoryIndexed2:
case Match_InvalidMemoryIndexed4:
case Match_InvalidMemoryIndexed8:
case Match_InvalidMemoryIndexed16:
case Match_InvalidCondCode:
case Match_AddSubRegExtendSmall:
case Match_AddSubRegExtendLarge:
case Match_AddSubSecondSource:
case Match_LogicalSecondSource:
case Match_AddSubRegShift32:
case Match_AddSubRegShift64:
case Match_InvalidMovImm32Shift:
case Match_InvalidMovImm64Shift:
case Match_InvalidFPImm:
case Match_InvalidMemoryWExtend8:
case Match_InvalidMemoryWExtend16:
case Match_InvalidMemoryWExtend32:
case Match_InvalidMemoryWExtend64:
case Match_InvalidMemoryWExtend128:
case Match_InvalidMemoryXExtend8:
case Match_InvalidMemoryXExtend16:
case Match_InvalidMemoryXExtend32:
case Match_InvalidMemoryXExtend64:
case Match_InvalidMemoryXExtend128:
case Match_InvalidMemoryIndexed1SImm4:
case Match_InvalidMemoryIndexed2SImm4:
case Match_InvalidMemoryIndexed3SImm4:
case Match_InvalidMemoryIndexed4SImm4:
case Match_InvalidMemoryIndexed1SImm6:
case Match_InvalidMemoryIndexed16SImm4:
case Match_InvalidMemoryIndexed4SImm7:
case Match_InvalidMemoryIndexed8SImm7:
case Match_InvalidMemoryIndexed16SImm7:
case Match_InvalidMemoryIndexed8UImm5:
case Match_InvalidMemoryIndexed4UImm5:
case Match_InvalidMemoryIndexed2UImm5:
case Match_InvalidMemoryIndexed1UImm6:
case Match_InvalidMemoryIndexed2UImm6:
case Match_InvalidMemoryIndexed4UImm6:
case Match_InvalidMemoryIndexed8UImm6:
case Match_InvalidMemoryIndexed16UImm6:
case Match_InvalidMemoryIndexedSImm6:
case Match_InvalidMemoryIndexedSImm5:
case Match_InvalidMemoryIndexedSImm8:
case Match_InvalidMemoryIndexedSImm9:
case Match_InvalidMemoryIndexed16SImm9:
case Match_InvalidMemoryIndexed8SImm10:
case Match_InvalidImm0_1:
case Match_InvalidImm0_7:
case Match_InvalidImm0_15:
case Match_InvalidImm0_31:
case Match_InvalidImm0_63:
case Match_InvalidImm0_127:
case Match_InvalidImm0_255:
case Match_InvalidImm0_65535:
case Match_InvalidImm1_8:
case Match_InvalidImm1_16:
case Match_InvalidImm1_32:
case Match_InvalidImm1_64:
case Match_InvalidSVEAddSubImm8:
case Match_InvalidSVEAddSubImm16:
case Match_InvalidSVEAddSubImm32:
case Match_InvalidSVEAddSubImm64:
case Match_InvalidSVECpyImm8:
case Match_InvalidSVECpyImm16:
case Match_InvalidSVECpyImm32:
case Match_InvalidSVECpyImm64:
case Match_InvalidIndexRange1_1:
case Match_InvalidIndexRange0_15:
case Match_InvalidIndexRange0_7:
case Match_InvalidIndexRange0_3:
case Match_InvalidIndexRange0_1:
case Match_InvalidSVEIndexRange0_63:
case Match_InvalidSVEIndexRange0_31:
case Match_InvalidSVEIndexRange0_15:
case Match_InvalidSVEIndexRange0_7:
case Match_InvalidSVEIndexRange0_3:
case Match_InvalidLabel:
case Match_InvalidComplexRotationEven:
case Match_InvalidComplexRotationOdd:
case Match_InvalidGPR64shifted8:
case Match_InvalidGPR64shifted16:
case Match_InvalidGPR64shifted32:
case Match_InvalidGPR64shifted64:
case Match_InvalidGPR64NoXZRshifted8:
case Match_InvalidGPR64NoXZRshifted16:
case Match_InvalidGPR64NoXZRshifted32:
case Match_InvalidGPR64NoXZRshifted64:
case Match_InvalidZPR32UXTW8:
case Match_InvalidZPR32UXTW16:
case Match_InvalidZPR32UXTW32:
case Match_InvalidZPR32UXTW64:
case Match_InvalidZPR32SXTW8:
case Match_InvalidZPR32SXTW16:
case Match_InvalidZPR32SXTW32:
case Match_InvalidZPR32SXTW64:
case Match_InvalidZPR64UXTW8:
case Match_InvalidZPR64SXTW8:
case Match_InvalidZPR64UXTW16:
case Match_InvalidZPR64SXTW16:
case Match_InvalidZPR64UXTW32:
case Match_InvalidZPR64SXTW32:
case Match_InvalidZPR64UXTW64:
case Match_InvalidZPR64SXTW64:
case Match_InvalidZPR32LSL8:
case Match_InvalidZPR32LSL16:
case Match_InvalidZPR32LSL32:
case Match_InvalidZPR32LSL64:
case Match_InvalidZPR64LSL8:
case Match_InvalidZPR64LSL16:
case Match_InvalidZPR64LSL32:
case Match_InvalidZPR64LSL64:
case Match_InvalidZPR0:
case Match_InvalidZPR8:
case Match_InvalidZPR16:
case Match_InvalidZPR32:
case Match_InvalidZPR64:
case Match_InvalidZPR128:
case Match_InvalidZPR_3b8:
case Match_InvalidZPR_3b16:
case Match_InvalidZPR_3b32:
case Match_InvalidZPR_4b16:
case Match_InvalidZPR_4b32:
case Match_InvalidZPR_4b64:
case Match_InvalidSVEPredicateAnyReg:
case Match_InvalidSVEPattern:
case Match_InvalidSVEPredicateBReg:
case Match_InvalidSVEPredicateHReg:
case Match_InvalidSVEPredicateSReg:
case Match_InvalidSVEPredicateDReg:
case Match_InvalidSVEPredicate3bAnyReg:
case Match_InvalidSVEPredicate3bBReg:
case Match_InvalidSVEPredicate3bHReg:
case Match_InvalidSVEPredicate3bSReg:
case Match_InvalidSVEPredicate3bDReg:
case Match_InvalidSVEExactFPImmOperandHalfOne:
case Match_InvalidSVEExactFPImmOperandHalfTwo:
case Match_InvalidSVEExactFPImmOperandZeroOne:
case Match_MSR:
case Match_MRS: {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction", SMRange(IDLoc, (*Operands.back()).getEndLoc()));
// Any time we get here, there's nothing fancy to do. Just get the
// operand SMLoc and display the diagnostic.
SMLoc ErrorLoc = ((AArch64Operand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
return showMatchError(ErrorLoc, MatchResult, ErrorInfo, Operands);
}
}
llvm_unreachable("Implement any new match types added!");
}
/// ParseDirective parses the arm specific directives
bool AArch64AsmParser::ParseDirective(AsmToken DirectiveID) {
const MCObjectFileInfo::Environment Format =
getContext().getObjectFileInfo()->getObjectFileType();
bool IsMachO = Format == MCObjectFileInfo::IsMachO;
StringRef IDVal = DirectiveID.getIdentifier();
SMLoc Loc = DirectiveID.getLoc();
if (IDVal == ".arch")
parseDirectiveArch(Loc);
else if (IDVal == ".cpu")
parseDirectiveCPU(Loc);
else if (IDVal == ".tlsdesccall")
parseDirectiveTLSDescCall(Loc);
else if (IDVal == ".ltorg" || IDVal == ".pool")
parseDirectiveLtorg(Loc);
else if (IDVal == ".unreq")
parseDirectiveUnreq(Loc);
else if (IDVal == ".inst")
parseDirectiveInst(Loc);
else if (IDVal == ".cfi_negate_ra_state")
parseDirectiveCFINegateRAState();
else if (IDVal == ".cfi_b_key_frame")
parseDirectiveCFIBKeyFrame();
else if (IDVal == ".arch_extension")
parseDirectiveArchExtension(Loc);
else if (IsMachO) {
if (IDVal == MCLOHDirectiveName())
parseDirectiveLOH(IDVal, Loc);
else
return true;
} else
return true;
return false;
}
static void ExpandCryptoAEK(AArch64::ArchKind ArchKind,
SmallVector<StringRef, 4> &RequestedExtensions) {
const bool NoCrypto =
(std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
"nocrypto") != std::end(RequestedExtensions));
const bool Crypto =
(std::find(RequestedExtensions.begin(), RequestedExtensions.end(),
"crypto") != std::end(RequestedExtensions));
if (!NoCrypto && Crypto) {
switch (ArchKind) {
default:
// Map 'generic' (and others) to sha2 and aes, because
// that was the traditional meaning of crypto.
case AArch64::ArchKind::ARMV8_1A:
case AArch64::ArchKind::ARMV8_2A:
case AArch64::ArchKind::ARMV8_3A:
RequestedExtensions.push_back("sha2");
RequestedExtensions.push_back("aes");
break;
case AArch64::ArchKind::ARMV8_4A:
case AArch64::ArchKind::ARMV8_5A:
RequestedExtensions.push_back("sm4");
RequestedExtensions.push_back("sha3");
RequestedExtensions.push_back("sha2");
RequestedExtensions.push_back("aes");
break;
}
} else if (NoCrypto) {
switch (ArchKind) {
default:
// Map 'generic' (and others) to sha2 and aes, because
// that was the traditional meaning of crypto.
case AArch64::ArchKind::ARMV8_1A:
case AArch64::ArchKind::ARMV8_2A:
case AArch64::ArchKind::ARMV8_3A:
RequestedExtensions.push_back("nosha2");
RequestedExtensions.push_back("noaes");
break;
case AArch64::ArchKind::ARMV8_4A:
case AArch64::ArchKind::ARMV8_5A:
RequestedExtensions.push_back("nosm4");
RequestedExtensions.push_back("nosha3");
RequestedExtensions.push_back("nosha2");
RequestedExtensions.push_back("noaes");
break;
}
}
}
/// parseDirectiveArch
/// ::= .arch token
bool AArch64AsmParser::parseDirectiveArch(SMLoc L) {
SMLoc ArchLoc = getLoc();
StringRef Arch, ExtensionString;
std::tie(Arch, ExtensionString) =
getParser().parseStringToEndOfStatement().trim().split('+');
AArch64::ArchKind ID = AArch64::parseArch(Arch);
if (ID == AArch64::ArchKind::INVALID)
return Error(ArchLoc, "unknown arch name");
if (parseToken(AsmToken::EndOfStatement))
return true;
// Get the architecture and extension features.
std::vector<StringRef> AArch64Features;
AArch64::getArchFeatures(ID, AArch64Features);
AArch64::getExtensionFeatures(AArch64::getDefaultExtensions("generic", ID),
AArch64Features);
MCSubtargetInfo &STI = copySTI();
std::vector<std::string> ArchFeatures(AArch64Features.begin(), AArch64Features.end());
STI.setDefaultFeatures("generic", join(ArchFeatures.begin(), ArchFeatures.end(), ","));
SmallVector<StringRef, 4> RequestedExtensions;
if (!ExtensionString.empty())
ExtensionString.split(RequestedExtensions, '+');
ExpandCryptoAEK(ID, RequestedExtensions);
FeatureBitset Features = STI.getFeatureBits();
for (auto Name : RequestedExtensions) {
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
for (const auto &Extension : ExtensionMap) {
if (Extension.Name != Name)
continue;
if (Extension.Features.none())
report_fatal_error("unsupported architectural extension: " + Name);
FeatureBitset ToggleFeatures = EnableFeature
? (~Features & Extension.Features)
: ( Features & Extension.Features);
uint64_t Features =
ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
setAvailableFeatures(Features);
break;
}
}
return false;
}
/// parseDirectiveArchExtension
/// ::= .arch_extension [no]feature
bool AArch64AsmParser::parseDirectiveArchExtension(SMLoc L) {
MCAsmParser &Parser = getParser();
if (getLexer().isNot(AsmToken::Identifier))
return Error(getLexer().getLoc(), "expected architecture extension name");
const AsmToken &Tok = Parser.getTok();
StringRef Name = Tok.getString();
SMLoc ExtLoc = Tok.getLoc();
Lex();
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.arch_extension' directive"))
return true;
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
MCSubtargetInfo &STI = copySTI();
FeatureBitset Features = STI.getFeatureBits();
for (const auto &Extension : ExtensionMap) {
if (Extension.Name != Name)
continue;
if (Extension.Features.none())
return Error(ExtLoc, "unsupported architectural extension: " + Name);
FeatureBitset ToggleFeatures = EnableFeature
? (~Features & Extension.Features)
: (Features & Extension.Features);
uint64_t Features =
ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
setAvailableFeatures(Features);
return false;
}
return Error(ExtLoc, "unknown architectural extension: " + Name);
}
static SMLoc incrementLoc(SMLoc L, int Offset) {
return SMLoc::getFromPointer(L.getPointer() + Offset);
}
/// parseDirectiveCPU
/// ::= .cpu id
bool AArch64AsmParser::parseDirectiveCPU(SMLoc L) {
SMLoc CurLoc = getLoc();
StringRef CPU, ExtensionString;
std::tie(CPU, ExtensionString) =
getParser().parseStringToEndOfStatement().trim().split('+');
if (parseToken(AsmToken::EndOfStatement))
return true;
SmallVector<StringRef, 4> RequestedExtensions;
if (!ExtensionString.empty())
ExtensionString.split(RequestedExtensions, '+');
// FIXME This is using tablegen data, but should be moved to ARMTargetParser
// once that is tablegen'ed
if (!getSTI().isCPUStringValid(CPU)) {
Error(CurLoc, "unknown CPU name");
return false;
}
MCSubtargetInfo &STI = copySTI();
STI.setDefaultFeatures(CPU, "");
CurLoc = incrementLoc(CurLoc, CPU.size());
ExpandCryptoAEK(llvm::AArch64::getCPUArchKind(CPU), RequestedExtensions);
FeatureBitset Features = STI.getFeatureBits();
for (auto Name : RequestedExtensions) {
// Advance source location past '+'.
CurLoc = incrementLoc(CurLoc, 1);
bool EnableFeature = true;
if (Name.startswith_lower("no")) {
EnableFeature = false;
Name = Name.substr(2);
}
bool FoundExtension = false;
for (const auto &Extension : ExtensionMap) {
if (Extension.Name != Name)
continue;
if (Extension.Features.none())
report_fatal_error("unsupported architectural extension: " + Name);
FeatureBitset ToggleFeatures = EnableFeature
? (~Features & Extension.Features)
: ( Features & Extension.Features);
uint64_t Features =
ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
setAvailableFeatures(Features);
FoundExtension = true;
break;
}
if (!FoundExtension)
Error(CurLoc, "unsupported architectural extension");
CurLoc = incrementLoc(CurLoc, Name.size());
}
return false;
}
/// parseDirectiveInst
/// ::= .inst opcode [, ...]
bool AArch64AsmParser::parseDirectiveInst(SMLoc Loc) {
if (getLexer().is(AsmToken::EndOfStatement))
return Error(Loc, "expected expression following '.inst' directive");
auto parseOp = [&]() -> bool {
SMLoc L = getLoc();
const MCExpr *Expr;
if (check(getParser().parseExpression(Expr), L, "expected expression"))
return true;
const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
if (check(!Value, L, "expected constant expression"))
return true;
getTargetStreamer().emitInst(Value->getValue());
return false;
};
if (parseMany(parseOp))
return addErrorSuffix(" in '.inst' directive");
return false;
}
// parseDirectiveTLSDescCall:
// ::= .tlsdesccall symbol
bool AArch64AsmParser::parseDirectiveTLSDescCall(SMLoc L) {
StringRef Name;
if (check(getParser().parseIdentifier(Name), L,
"expected symbol after directive") ||
parseToken(AsmToken::EndOfStatement))
return true;
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
Expr = AArch64MCExpr::create(Expr, AArch64MCExpr::VK_TLSDESC, getContext());
MCInst Inst;
Inst.setOpcode(AArch64::TLSDESCCALL);
Inst.addOperand(MCOperand::createExpr(Expr));
getParser().getStreamer().EmitInstruction(Inst, getSTI());
return false;
}
/// ::= .loh <lohName | lohId> label1, ..., labelN
/// The number of arguments depends on the loh identifier.
bool AArch64AsmParser::parseDirectiveLOH(StringRef IDVal, SMLoc Loc) {
MCLOHType Kind;
if (getParser().getTok().isNot(AsmToken::Identifier)) {
if (getParser().getTok().isNot(AsmToken::Integer))
return TokError("expected an identifier or a number in directive");
// We successfully get a numeric value for the identifier.
// Check if it is valid.
int64_t Id = getParser().getTok().getIntVal();
if (Id <= -1U && !isValidMCLOHType(Id))
return TokError("invalid numeric identifier in directive");
Kind = (MCLOHType)Id;
} else {
StringRef Name = getTok().getIdentifier();
// We successfully parse an identifier.
// Check if it is a recognized one.
int Id = MCLOHNameToId(Name);
if (Id == -1)
return TokError("invalid identifier in directive");
Kind = (MCLOHType)Id;
}
// Consume the identifier.
Lex();
// Get the number of arguments of this LOH.
int NbArgs = MCLOHIdToNbArgs(Kind);
assert(NbArgs != -1 && "Invalid number of arguments");
SmallVector<MCSymbol *, 3> Args;
for (int Idx = 0; Idx < NbArgs; ++Idx) {
StringRef Name;
if (getParser().parseIdentifier(Name))
return TokError("expected identifier in directive");
Args.push_back(getContext().getOrCreateSymbol(Name));
if (Idx + 1 == NbArgs)
break;
if (parseToken(AsmToken::Comma,
"unexpected token in '" + Twine(IDVal) + "' directive"))
return true;
}
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '" + Twine(IDVal) + "' directive"))
return true;
getStreamer().EmitLOHDirective((MCLOHType)Kind, Args);
return false;
}
/// parseDirectiveLtorg
/// ::= .ltorg | .pool
bool AArch64AsmParser::parseDirectiveLtorg(SMLoc L) {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
getTargetStreamer().emitCurrentConstantPool();
return false;
}
/// parseDirectiveReq
/// ::= name .req registername
bool AArch64AsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
MCAsmParser &Parser = getParser();
Parser.Lex(); // Eat the '.req' token.
SMLoc SRegLoc = getLoc();
RegKind RegisterKind = RegKind::Scalar;
unsigned RegNum;
OperandMatchResultTy ParseRes = tryParseScalarRegister(RegNum);
if (ParseRes != MatchOperand_Success) {
StringRef Kind;
RegisterKind = RegKind::NeonVector;
ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::NeonVector);
if (ParseRes == MatchOperand_ParseFail)
return true;
if (ParseRes == MatchOperand_Success && !Kind.empty())
return Error(SRegLoc, "vector register without type specifier expected");
}
if (ParseRes != MatchOperand_Success) {
StringRef Kind;
RegisterKind = RegKind::SVEDataVector;
ParseRes =
tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);
if (ParseRes == MatchOperand_ParseFail)
return true;
if (ParseRes == MatchOperand_Success && !Kind.empty())
return Error(SRegLoc,
"sve vector register without type specifier expected");
}
if (ParseRes != MatchOperand_Success) {
StringRef Kind;
RegisterKind = RegKind::SVEPredicateVector;
ParseRes = tryParseVectorRegister(RegNum, Kind, RegKind::SVEPredicateVector);
if (ParseRes == MatchOperand_ParseFail)
return true;
if (ParseRes == MatchOperand_Success && !Kind.empty())
return Error(SRegLoc,
"sve predicate register without type specifier expected");
}
if (ParseRes != MatchOperand_Success)
return Error(SRegLoc, "register name or alias expected");
// Shouldn't be anything else.
if (parseToken(AsmToken::EndOfStatement,
"unexpected input in .req directive"))
return true;
auto pair = std::make_pair(RegisterKind, (unsigned) RegNum);
if (RegisterReqs.insert(std::make_pair(Name, pair)).first->second != pair)
Warning(L, "ignoring redefinition of register alias '" + Name + "'");
return false;
}
/// parseDirectiveUneq
/// ::= .unreq registername
bool AArch64AsmParser::parseDirectiveUnreq(SMLoc L) {
MCAsmParser &Parser = getParser();
if (getTok().isNot(AsmToken::Identifier))
return TokError("unexpected input in .unreq directive.");
RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
Parser.Lex(); // Eat the identifier.
if (parseToken(AsmToken::EndOfStatement))
return addErrorSuffix("in '.unreq' directive");
return false;
}
bool AArch64AsmParser::parseDirectiveCFINegateRAState() {
if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
return true;
getStreamer().EmitCFINegateRAState();
return false;
}
/// parseDirectiveCFIBKeyFrame
/// ::= .cfi_b_key
bool AArch64AsmParser::parseDirectiveCFIBKeyFrame() {
if (parseToken(AsmToken::EndOfStatement,
"unexpected token in '.cfi_b_key_frame'"))
return true;
getStreamer().EmitCFIBKeyFrame();
return false;
}
bool
AArch64AsmParser::classifySymbolRef(const MCExpr *Expr,
AArch64MCExpr::VariantKind &ELFRefKind,
MCSymbolRefExpr::VariantKind &DarwinRefKind,
int64_t &Addend) {
ELFRefKind = AArch64MCExpr::VK_INVALID;
DarwinRefKind = MCSymbolRefExpr::VK_None;
Addend = 0;
if (const AArch64MCExpr *AE = dyn_cast<AArch64MCExpr>(Expr)) {
ELFRefKind = AE->getKind();
Expr = AE->getSubExpr();
}
const MCSymbolRefExpr *SE = dyn_cast<MCSymbolRefExpr>(Expr);
if (SE) {
// It's a simple symbol reference with no addend.
DarwinRefKind = SE->getKind();
return true;
}
// Check that it looks like a symbol + an addend
MCValue Res;
bool Relocatable = Expr->evaluateAsRelocatable(Res, nullptr, nullptr);
if (!Relocatable || Res.getSymB())
return false;
// Treat expressions with an ELFRefKind (like ":abs_g1:3", or
// ":abs_g1:x" where x is constant) as symbolic even if there is no symbol.
if (!Res.getSymA() && ELFRefKind == AArch64MCExpr::VK_INVALID)
return false;
if (Res.getSymA())
DarwinRefKind = Res.getSymA()->getKind();
Addend = Res.getConstant();
// It's some symbol reference + a constant addend, but really
// shouldn't use both Darwin and ELF syntax.
return ELFRefKind == AArch64MCExpr::VK_INVALID ||
DarwinRefKind == MCSymbolRefExpr::VK_None;
}
/// Force static initialization.
extern "C" void LLVMInitializeAArch64AsmParser() {
RegisterMCAsmParser<AArch64AsmParser> X(getTheAArch64leTarget());
RegisterMCAsmParser<AArch64AsmParser> Y(getTheAArch64beTarget());
RegisterMCAsmParser<AArch64AsmParser> Z(getTheARM64Target());
}
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#define GET_MNEMONIC_SPELL_CHECKER
#include "AArch64GenAsmMatcher.inc"
// Define this matcher function after the auto-generated include so we
// have the match class enum definitions.
unsigned AArch64AsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
unsigned Kind) {
AArch64Operand &Op = static_cast<AArch64Operand &>(AsmOp);
// If the kind is a token for a literal immediate, check if our asm
// operand matches. This is for InstAliases which have a fixed-value
// immediate in the syntax.
int64_t ExpectedVal;
switch (Kind) {
default:
return Match_InvalidOperand;
case MCK__35_0:
ExpectedVal = 0;
break;
case MCK__35_1:
ExpectedVal = 1;
break;
case MCK__35_12:
ExpectedVal = 12;
break;
case MCK__35_16:
ExpectedVal = 16;
break;
case MCK__35_2:
ExpectedVal = 2;
break;
case MCK__35_24:
ExpectedVal = 24;
break;
case MCK__35_3:
ExpectedVal = 3;
break;
case MCK__35_32:
ExpectedVal = 32;
break;
case MCK__35_4:
ExpectedVal = 4;
break;
case MCK__35_48:
ExpectedVal = 48;
break;
case MCK__35_6:
ExpectedVal = 6;
break;
case MCK__35_64:
ExpectedVal = 64;
break;
case MCK__35_8:
ExpectedVal = 8;
break;
}
if (!Op.isImm())
return Match_InvalidOperand;
const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
if (!CE)
return Match_InvalidOperand;
if (CE->getValue() == ExpectedVal)
return Match_Success;
return Match_InvalidOperand;
}
OperandMatchResultTy
AArch64AsmParser::tryParseGPRSeqPair(OperandVector &Operands) {
SMLoc S = getLoc();
if (getParser().getTok().isNot(AsmToken::Identifier)) {
Error(S, "expected register");
return MatchOperand_ParseFail;
}
unsigned FirstReg;
OperandMatchResultTy Res = tryParseScalarRegister(FirstReg);
if (Res != MatchOperand_Success)
return MatchOperand_ParseFail;
const MCRegisterClass &WRegClass =
AArch64MCRegisterClasses[AArch64::GPR32RegClassID];
const MCRegisterClass &XRegClass =
AArch64MCRegisterClasses[AArch64::GPR64RegClassID];
bool isXReg = XRegClass.contains(FirstReg),
isWReg = WRegClass.contains(FirstReg);
if (!isXReg && !isWReg) {
Error(S, "expected first even register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
const MCRegisterInfo *RI = getContext().getRegisterInfo();
unsigned FirstEncoding = RI->getEncodingValue(FirstReg);
if (FirstEncoding & 0x1) {
Error(S, "expected first even register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
if (getParser().getTok().isNot(AsmToken::Comma)) {
Error(getLoc(), "expected comma");
return MatchOperand_ParseFail;
}
// Eat the comma
getParser().Lex();
SMLoc E = getLoc();
unsigned SecondReg;
Res = tryParseScalarRegister(SecondReg);
if (Res != MatchOperand_Success)
return MatchOperand_ParseFail;
if (RI->getEncodingValue(SecondReg) != FirstEncoding + 1 ||
(isXReg && !XRegClass.contains(SecondReg)) ||
(isWReg && !WRegClass.contains(SecondReg))) {
Error(E,"expected second odd register of a "
"consecutive same-size even/odd register pair");
return MatchOperand_ParseFail;
}
unsigned Pair = 0;
if (isXReg) {
Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube64,
&AArch64MCRegisterClasses[AArch64::XSeqPairsClassRegClassID]);
} else {
Pair = RI->getMatchingSuperReg(FirstReg, AArch64::sube32,
&AArch64MCRegisterClasses[AArch64::WSeqPairsClassRegClassID]);
}
Operands.push_back(AArch64Operand::CreateReg(Pair, RegKind::Scalar, S,
getLoc(), getContext()));
return MatchOperand_Success;
}
template <bool ParseShiftExtend, bool ParseSuffix>
OperandMatchResultTy
AArch64AsmParser::tryParseSVEDataVector(OperandVector &Operands) {
const SMLoc S = getLoc();
// Check for a SVE vector register specifier first.
unsigned RegNum;
StringRef Kind;
OperandMatchResultTy Res =
tryParseVectorRegister(RegNum, Kind, RegKind::SVEDataVector);
if (Res != MatchOperand_Success)
return Res;
if (ParseSuffix && Kind.empty())
return MatchOperand_NoMatch;
const auto &KindRes = parseVectorKind(Kind, RegKind::SVEDataVector);
if (!KindRes)
return MatchOperand_NoMatch;
unsigned ElementWidth = KindRes->second;
// No shift/extend is the default.
if (!ParseShiftExtend || getParser().getTok().isNot(AsmToken::Comma)) {
Operands.push_back(AArch64Operand::CreateVectorReg(
RegNum, RegKind::SVEDataVector, ElementWidth, S, S, getContext()));
OperandMatchResultTy Res = tryParseVectorIndex(Operands);
if (Res == MatchOperand_ParseFail)
return MatchOperand_ParseFail;
return MatchOperand_Success;
}
// Eat the comma
getParser().Lex();
// Match the shift
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> ExtOpnd;
Res = tryParseOptionalShiftExtend(ExtOpnd);
if (Res != MatchOperand_Success)
return Res;
auto Ext = static_cast<AArch64Operand *>(ExtOpnd.back().get());
Operands.push_back(AArch64Operand::CreateVectorReg(
RegNum, RegKind::SVEDataVector, ElementWidth, S, Ext->getEndLoc(),
getContext(), Ext->getShiftExtendType(), Ext->getShiftExtendAmount(),
Ext->hasShiftExtendAmount()));
return MatchOperand_Success;
}
OperandMatchResultTy
AArch64AsmParser::tryParseSVEPattern(OperandVector &Operands) {
MCAsmParser &Parser = getParser();
SMLoc SS = getLoc();
const AsmToken &TokE = Parser.getTok();
bool IsHash = TokE.is(AsmToken::Hash);
if (!IsHash && TokE.isNot(AsmToken::Identifier))
return MatchOperand_NoMatch;
int64_t Pattern;
if (IsHash) {
Parser.Lex(); // Eat hash
// Parse the immediate operand.
const MCExpr *ImmVal;
SS = getLoc();
if (Parser.parseExpression(ImmVal))
return MatchOperand_ParseFail;
auto *MCE = dyn_cast<MCConstantExpr>(ImmVal);
if (!MCE)
return MatchOperand_ParseFail;
Pattern = MCE->getValue();
} else {
// Parse the pattern
auto Pat = AArch64SVEPredPattern::lookupSVEPREDPATByName(TokE.getString());
if (!Pat)
return MatchOperand_NoMatch;
Parser.Lex();
Pattern = Pat->Encoding;
assert(Pattern >= 0 && Pattern < 32);
}
Operands.push_back(
AArch64Operand::CreateImm(MCConstantExpr::create(Pattern, getContext()),
SS, getLoc(), getContext()));
return MatchOperand_Success;
}