blob: 71e19cec307577af4a684acd938ff1e50c2688be [file] [log] [blame]
//===- CodeGenInstruction.cpp - CodeGen Instruction Class Wrapper ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the CodeGenInstruction class.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// CGIOperandList Implementation
//===----------------------------------------------------------------------===//
CGIOperandList::CGIOperandList(Record *R) : TheDef(R) {
isPredicable = false;
hasOptionalDef = false;
isVariadic = false;
DagInit *OutDI = R->getValueAsDag("OutOperandList");
if (DefInit *Init = dyn_cast<DefInit>(OutDI->getOperator())) {
if (Init->getDef()->getName() != "outs")
PrintFatalError(R->getName() + ": invalid def name for output list: use 'outs'");
} else
PrintFatalError(R->getName() + ": invalid output list: use 'outs'");
NumDefs = OutDI->getNumArgs();
DagInit *InDI = R->getValueAsDag("InOperandList");
if (DefInit *Init = dyn_cast<DefInit>(InDI->getOperator())) {
if (Init->getDef()->getName() != "ins")
PrintFatalError(R->getName() + ": invalid def name for input list: use 'ins'");
} else
PrintFatalError(R->getName() + ": invalid input list: use 'ins'");
unsigned MIOperandNo = 0;
std::set<std::string> OperandNames;
unsigned e = InDI->getNumArgs() + OutDI->getNumArgs();
OperandList.reserve(e);
for (unsigned i = 0; i != e; ++i){
Init *ArgInit;
StringRef ArgName;
if (i < NumDefs) {
ArgInit = OutDI->getArg(i);
ArgName = OutDI->getArgNameStr(i);
} else {
ArgInit = InDI->getArg(i-NumDefs);
ArgName = InDI->getArgNameStr(i-NumDefs);
}
DefInit *Arg = dyn_cast<DefInit>(ArgInit);
if (!Arg)
PrintFatalError("Illegal operand for the '" + R->getName() + "' instruction!");
Record *Rec = Arg->getDef();
std::string PrintMethod = "printOperand";
std::string EncoderMethod;
std::string OperandType = "OPERAND_UNKNOWN";
std::string OperandNamespace = "MCOI";
unsigned NumOps = 1;
DagInit *MIOpInfo = nullptr;
if (Rec->isSubClassOf("RegisterOperand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
OperandNamespace = Rec->getValueAsString("OperandNamespace");
EncoderMethod = Rec->getValueAsString("EncoderMethod");
} else if (Rec->isSubClassOf("Operand")) {
PrintMethod = Rec->getValueAsString("PrintMethod");
OperandType = Rec->getValueAsString("OperandType");
OperandNamespace = Rec->getValueAsString("OperandNamespace");
// If there is an explicit encoder method, use it.
EncoderMethod = Rec->getValueAsString("EncoderMethod");
MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
// Verify that MIOpInfo has an 'ops' root value.
if (!isa<DefInit>(MIOpInfo->getOperator()) ||
cast<DefInit>(MIOpInfo->getOperator())->getDef()->getName() != "ops")
PrintFatalError("Bad value for MIOperandInfo in operand '" + Rec->getName() +
"'\n");
// If we have MIOpInfo, then we have #operands equal to number of entries
// in MIOperandInfo.
if (unsigned NumArgs = MIOpInfo->getNumArgs())
NumOps = NumArgs;
if (Rec->isSubClassOf("PredicateOp"))
isPredicable = true;
else if (Rec->isSubClassOf("OptionalDefOperand"))
hasOptionalDef = true;
} else if (Rec->getName() == "variable_ops") {
isVariadic = true;
continue;
} else if (Rec->isSubClassOf("RegisterClass")) {
OperandType = "OPERAND_REGISTER";
} else if (!Rec->isSubClassOf("PointerLikeRegClass") &&
!Rec->isSubClassOf("unknown_class"))
PrintFatalError("Unknown operand class '" + Rec->getName() +
"' in '" + R->getName() + "' instruction!");
// Check that the operand has a name and that it's unique.
if (ArgName.empty())
PrintFatalError("In instruction '" + R->getName() + "', operand #" +
Twine(i) + " has no name!");
if (!OperandNames.insert(ArgName).second)
PrintFatalError("In instruction '" + R->getName() + "', operand #" +
Twine(i) + " has the same name as a previous operand!");
OperandList.emplace_back(Rec, ArgName, PrintMethod, EncoderMethod,
OperandNamespace + "::" + OperandType, MIOperandNo,
NumOps, MIOpInfo);
MIOperandNo += NumOps;
}
// Make sure the constraints list for each operand is large enough to hold
// constraint info, even if none is present.
for (OperandInfo &OpInfo : OperandList)
OpInfo.Constraints.resize(OpInfo.MINumOperands);
}
/// getOperandNamed - Return the index of the operand with the specified
/// non-empty name. If the instruction does not have an operand with the
/// specified name, abort.
///
unsigned CGIOperandList::getOperandNamed(StringRef Name) const {
unsigned OpIdx;
if (hasOperandNamed(Name, OpIdx)) return OpIdx;
PrintFatalError("'" + TheDef->getName() +
"' does not have an operand named '$" + Name + "'!");
}
/// hasOperandNamed - Query whether the instruction has an operand of the
/// given name. If so, return true and set OpIdx to the index of the
/// operand. Otherwise, return false.
bool CGIOperandList::hasOperandNamed(StringRef Name, unsigned &OpIdx) const {
assert(!Name.empty() && "Cannot search for operand with no name!");
for (unsigned i = 0, e = OperandList.size(); i != e; ++i)
if (OperandList[i].Name == Name) {
OpIdx = i;
return true;
}
return false;
}
std::pair<unsigned,unsigned>
CGIOperandList::ParseOperandName(const std::string &Op, bool AllowWholeOp) {
if (Op.empty() || Op[0] != '$')
PrintFatalError(TheDef->getName() + ": Illegal operand name: '" + Op + "'");
std::string OpName = Op.substr(1);
std::string SubOpName;
// Check to see if this is $foo.bar.
std::string::size_type DotIdx = OpName.find_first_of('.');
if (DotIdx != std::string::npos) {
SubOpName = OpName.substr(DotIdx+1);
if (SubOpName.empty())
PrintFatalError(TheDef->getName() + ": illegal empty suboperand name in '" +Op +"'");
OpName = OpName.substr(0, DotIdx);
}
unsigned OpIdx = getOperandNamed(OpName);
if (SubOpName.empty()) { // If no suboperand name was specified:
// If one was needed, throw.
if (OperandList[OpIdx].MINumOperands > 1 && !AllowWholeOp &&
SubOpName.empty())
PrintFatalError(TheDef->getName() + ": Illegal to refer to"
" whole operand part of complex operand '" + Op + "'");
// Otherwise, return the operand.
return std::make_pair(OpIdx, 0U);
}
// Find the suboperand number involved.
DagInit *MIOpInfo = OperandList[OpIdx].MIOperandInfo;
if (!MIOpInfo)
PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'");
// Find the operand with the right name.
for (unsigned i = 0, e = MIOpInfo->getNumArgs(); i != e; ++i)
if (MIOpInfo->getArgNameStr(i) == SubOpName)
return std::make_pair(OpIdx, i);
// Otherwise, didn't find it!
PrintFatalError(TheDef->getName() + ": unknown suboperand name in '" + Op + "'");
return std::make_pair(0U, 0U);
}
static void ParseConstraint(const std::string &CStr, CGIOperandList &Ops,
Record *Rec) {
// EARLY_CLOBBER: @early $reg
std::string::size_type wpos = CStr.find_first_of(" \t");
std::string::size_type start = CStr.find_first_not_of(" \t");
std::string Tok = CStr.substr(start, wpos - start);
if (Tok == "@earlyclobber") {
std::string Name = CStr.substr(wpos+1);
wpos = Name.find_first_not_of(" \t");
if (wpos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Illegal format for @earlyclobber constraint in '" +
Rec->getName() + "': '" + CStr + "'");
Name = Name.substr(wpos);
std::pair<unsigned,unsigned> Op = Ops.ParseOperandName(Name, false);
// Build the string for the operand
if (!Ops[Op.first].Constraints[Op.second].isNone())
PrintFatalError(
Rec->getLoc(), "Operand '" + Name + "' of '" + Rec->getName() +
"' cannot have multiple constraints!");
Ops[Op.first].Constraints[Op.second] =
CGIOperandList::ConstraintInfo::getEarlyClobber();
return;
}
// Only other constraint is "TIED_TO" for now.
std::string::size_type pos = CStr.find_first_of('=');
if (pos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Unrecognized constraint '" + CStr +
"' in '" + Rec->getName() + "'");
start = CStr.find_first_not_of(" \t");
// TIED_TO: $src1 = $dst
wpos = CStr.find_first_of(" \t", start);
if (wpos == std::string::npos || wpos > pos)
PrintFatalError(
Rec->getLoc(), "Illegal format for tied-to constraint in '" +
Rec->getName() + "': '" + CStr + "'");
std::string LHSOpName = StringRef(CStr).substr(start, wpos - start);
std::pair<unsigned,unsigned> LHSOp = Ops.ParseOperandName(LHSOpName, false);
wpos = CStr.find_first_not_of(" \t", pos + 1);
if (wpos == std::string::npos)
PrintFatalError(
Rec->getLoc(), "Illegal format for tied-to constraint: '" + CStr + "'");
std::string RHSOpName = StringRef(CStr).substr(wpos);
std::pair<unsigned,unsigned> RHSOp = Ops.ParseOperandName(RHSOpName, false);
// Sort the operands into order, which should put the output one
// first. But keep the original order, for use in diagnostics.
bool FirstIsDest = (LHSOp < RHSOp);
std::pair<unsigned,unsigned> DestOp = (FirstIsDest ? LHSOp : RHSOp);
StringRef DestOpName = (FirstIsDest ? LHSOpName : RHSOpName);
std::pair<unsigned,unsigned> SrcOp = (FirstIsDest ? RHSOp : LHSOp);
StringRef SrcOpName = (FirstIsDest ? RHSOpName : LHSOpName);
// Ensure one operand is a def and the other is a use.
if (DestOp.first >= Ops.NumDefs)
PrintFatalError(
Rec->getLoc(), "Input operands '" + LHSOpName + "' and '" + RHSOpName +
"' of '" + Rec->getName() + "' cannot be tied!");
if (SrcOp.first < Ops.NumDefs)
PrintFatalError(
Rec->getLoc(), "Output operands '" + LHSOpName + "' and '" + RHSOpName +
"' of '" + Rec->getName() + "' cannot be tied!");
// The constraint has to go on the operand with higher index, i.e.
// the source one. Check there isn't another constraint there
// already.
if (!Ops[SrcOp.first].Constraints[SrcOp.second].isNone())
PrintFatalError(
Rec->getLoc(), "Operand '" + SrcOpName + "' of '" + Rec->getName() +
"' cannot have multiple constraints!");
unsigned DestFlatOpNo = Ops.getFlattenedOperandNumber(DestOp);
auto NewConstraint = CGIOperandList::ConstraintInfo::getTied(DestFlatOpNo);
// Check that the earlier operand is not the target of another tie
// before making it the target of this one.
for (const CGIOperandList::OperandInfo &Op : Ops) {
for (unsigned i = 0; i < Op.MINumOperands; i++)
if (Op.Constraints[i] == NewConstraint)
PrintFatalError(
Rec->getLoc(), "Operand '" + DestOpName + "' of '" + Rec->getName() +
"' cannot have multiple operands tied to it!");
}
Ops[SrcOp.first].Constraints[SrcOp.second] = NewConstraint;
}
static void ParseConstraints(const std::string &CStr, CGIOperandList &Ops,
Record *Rec) {
if (CStr.empty()) return;
const std::string delims(",");
std::string::size_type bidx, eidx;
bidx = CStr.find_first_not_of(delims);
while (bidx != std::string::npos) {
eidx = CStr.find_first_of(delims, bidx);
if (eidx == std::string::npos)
eidx = CStr.length();
ParseConstraint(CStr.substr(bidx, eidx - bidx), Ops, Rec);
bidx = CStr.find_first_not_of(delims, eidx);
}
}
void CGIOperandList::ProcessDisableEncoding(std::string DisableEncoding) {
while (1) {
std::pair<StringRef, StringRef> P = getToken(DisableEncoding, " ,\t");
std::string OpName = P.first;
DisableEncoding = P.second;
if (OpName.empty()) break;
// Figure out which operand this is.
std::pair<unsigned,unsigned> Op = ParseOperandName(OpName, false);
// Mark the operand as not-to-be encoded.
if (Op.second >= OperandList[Op.first].DoNotEncode.size())
OperandList[Op.first].DoNotEncode.resize(Op.second+1);
OperandList[Op.first].DoNotEncode[Op.second] = true;
}
}
//===----------------------------------------------------------------------===//
// CodeGenInstruction Implementation
//===----------------------------------------------------------------------===//
CodeGenInstruction::CodeGenInstruction(Record *R)
: TheDef(R), Operands(R), InferredFrom(nullptr) {
Namespace = R->getValueAsString("Namespace");
AsmString = R->getValueAsString("AsmString");
isReturn = R->getValueAsBit("isReturn");
isEHScopeReturn = R->getValueAsBit("isEHScopeReturn");
isBranch = R->getValueAsBit("isBranch");
isIndirectBranch = R->getValueAsBit("isIndirectBranch");
isCompare = R->getValueAsBit("isCompare");
isMoveImm = R->getValueAsBit("isMoveImm");
isMoveReg = R->getValueAsBit("isMoveReg");
isBitcast = R->getValueAsBit("isBitcast");
isSelect = R->getValueAsBit("isSelect");
isBarrier = R->getValueAsBit("isBarrier");
isCall = R->getValueAsBit("isCall");
isAdd = R->getValueAsBit("isAdd");
isTrap = R->getValueAsBit("isTrap");
canFoldAsLoad = R->getValueAsBit("canFoldAsLoad");
isPredicable = Operands.isPredicable || R->getValueAsBit("isPredicable");
isConvertibleToThreeAddress = R->getValueAsBit("isConvertibleToThreeAddress");
isCommutable = R->getValueAsBit("isCommutable");
isTerminator = R->getValueAsBit("isTerminator");
isReMaterializable = R->getValueAsBit("isReMaterializable");
hasDelaySlot = R->getValueAsBit("hasDelaySlot");
usesCustomInserter = R->getValueAsBit("usesCustomInserter");
hasPostISelHook = R->getValueAsBit("hasPostISelHook");
hasCtrlDep = R->getValueAsBit("hasCtrlDep");
isNotDuplicable = R->getValueAsBit("isNotDuplicable");
isRegSequence = R->getValueAsBit("isRegSequence");
isExtractSubreg = R->getValueAsBit("isExtractSubreg");
isInsertSubreg = R->getValueAsBit("isInsertSubreg");
isConvergent = R->getValueAsBit("isConvergent");
hasNoSchedulingInfo = R->getValueAsBit("hasNoSchedulingInfo");
FastISelShouldIgnore = R->getValueAsBit("FastISelShouldIgnore");
variadicOpsAreDefs = R->getValueAsBit("variadicOpsAreDefs");
bool Unset;
mayLoad = R->getValueAsBitOrUnset("mayLoad", Unset);
mayLoad_Unset = Unset;
mayStore = R->getValueAsBitOrUnset("mayStore", Unset);
mayStore_Unset = Unset;
hasSideEffects = R->getValueAsBitOrUnset("hasSideEffects", Unset);
hasSideEffects_Unset = Unset;
isAsCheapAsAMove = R->getValueAsBit("isAsCheapAsAMove");
hasExtraSrcRegAllocReq = R->getValueAsBit("hasExtraSrcRegAllocReq");
hasExtraDefRegAllocReq = R->getValueAsBit("hasExtraDefRegAllocReq");
isCodeGenOnly = R->getValueAsBit("isCodeGenOnly");
isPseudo = R->getValueAsBit("isPseudo");
ImplicitDefs = R->getValueAsListOfDefs("Defs");
ImplicitUses = R->getValueAsListOfDefs("Uses");
// This flag is only inferred from the pattern.
hasChain = false;
hasChain_Inferred = false;
// Parse Constraints.
ParseConstraints(R->getValueAsString("Constraints"), Operands, R);
// Parse the DisableEncoding field.
Operands.ProcessDisableEncoding(R->getValueAsString("DisableEncoding"));
// First check for a ComplexDeprecationPredicate.
if (R->getValue("ComplexDeprecationPredicate")) {
HasComplexDeprecationPredicate = true;
DeprecatedReason = R->getValueAsString("ComplexDeprecationPredicate");
} else if (RecordVal *Dep = R->getValue("DeprecatedFeatureMask")) {
// Check if we have a Subtarget feature mask.
HasComplexDeprecationPredicate = false;
DeprecatedReason = Dep->getValue()->getAsString();
} else {
// This instruction isn't deprecated.
HasComplexDeprecationPredicate = false;
DeprecatedReason = "";
}
}
/// HasOneImplicitDefWithKnownVT - If the instruction has at least one
/// implicit def and it has a known VT, return the VT, otherwise return
/// MVT::Other.
MVT::SimpleValueType CodeGenInstruction::
HasOneImplicitDefWithKnownVT(const CodeGenTarget &TargetInfo) const {
if (ImplicitDefs.empty()) return MVT::Other;
// Check to see if the first implicit def has a resolvable type.
Record *FirstImplicitDef = ImplicitDefs[0];
assert(FirstImplicitDef->isSubClassOf("Register"));
const std::vector<ValueTypeByHwMode> &RegVTs =
TargetInfo.getRegisterVTs(FirstImplicitDef);
if (RegVTs.size() == 1 && RegVTs[0].isSimple())
return RegVTs[0].getSimple().SimpleTy;
return MVT::Other;
}
/// FlattenAsmStringVariants - Flatten the specified AsmString to only
/// include text from the specified variant, returning the new string.
std::string CodeGenInstruction::
FlattenAsmStringVariants(StringRef Cur, unsigned Variant) {
std::string Res = "";
for (;;) {
// Find the start of the next variant string.
size_t VariantsStart = 0;
for (size_t e = Cur.size(); VariantsStart != e; ++VariantsStart)
if (Cur[VariantsStart] == '{' &&
(VariantsStart == 0 || (Cur[VariantsStart-1] != '$' &&
Cur[VariantsStart-1] != '\\')))
break;
// Add the prefix to the result.
Res += Cur.slice(0, VariantsStart);
if (VariantsStart == Cur.size())
break;
++VariantsStart; // Skip the '{'.
// Scan to the end of the variants string.
size_t VariantsEnd = VariantsStart;
unsigned NestedBraces = 1;
for (size_t e = Cur.size(); VariantsEnd != e; ++VariantsEnd) {
if (Cur[VariantsEnd] == '}' && Cur[VariantsEnd-1] != '\\') {
if (--NestedBraces == 0)
break;
} else if (Cur[VariantsEnd] == '{')
++NestedBraces;
}
// Select the Nth variant (or empty).
StringRef Selection = Cur.slice(VariantsStart, VariantsEnd);
for (unsigned i = 0; i != Variant; ++i)
Selection = Selection.split('|').second;
Res += Selection.split('|').first;
assert(VariantsEnd != Cur.size() &&
"Unterminated variants in assembly string!");
Cur = Cur.substr(VariantsEnd + 1);
}
return Res;
}
bool CodeGenInstruction::isOperandAPointer(unsigned i) const {
if (DagInit *ConstraintList = TheDef->getValueAsDag("InOperandList")) {
if (i < ConstraintList->getNumArgs()) {
if (DefInit *Constraint = dyn_cast<DefInit>(ConstraintList->getArg(i))) {
return Constraint->getDef()->isSubClassOf("TypedOperand") &&
Constraint->getDef()->getValueAsBit("IsPointer");
}
}
}
return false;
}
//===----------------------------------------------------------------------===//
/// CodeGenInstAlias Implementation
//===----------------------------------------------------------------------===//
/// tryAliasOpMatch - This is a helper function for the CodeGenInstAlias
/// constructor. It checks if an argument in an InstAlias pattern matches
/// the corresponding operand of the instruction. It returns true on a
/// successful match, with ResOp set to the result operand to be used.
bool CodeGenInstAlias::tryAliasOpMatch(DagInit *Result, unsigned AliasOpNo,
Record *InstOpRec, bool hasSubOps,
ArrayRef<SMLoc> Loc, CodeGenTarget &T,
ResultOperand &ResOp) {
Init *Arg = Result->getArg(AliasOpNo);
DefInit *ADI = dyn_cast<DefInit>(Arg);
Record *ResultRecord = ADI ? ADI->getDef() : nullptr;
if (ADI && ADI->getDef() == InstOpRec) {
// If the operand is a record, it must have a name, and the record type
// must match up with the instruction's argument type.
if (!Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must have a name!");
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ResultRecord);
return true;
}
// For register operands, the source register class can be a subclass
// of the instruction register class, not just an exact match.
if (InstOpRec->isSubClassOf("RegisterOperand"))
InstOpRec = InstOpRec->getValueAsDef("RegClass");
if (ADI && ADI->getDef()->isSubClassOf("RegisterOperand"))
ADI = ADI->getDef()->getValueAsDef("RegClass")->getDefInit();
if (ADI && ADI->getDef()->isSubClassOf("RegisterClass")) {
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.hasSubClass(&T.getRegisterClass(ADI->getDef())))
return false;
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ResultRecord);
return true;
}
// Handle explicit registers.
if (ADI && ADI->getDef()->isSubClassOf("Register")) {
if (InstOpRec->isSubClassOf("OptionalDefOperand")) {
DagInit *DI = InstOpRec->getValueAsDag("MIOperandInfo");
// The operand info should only have a single (register) entry. We
// want the register class of it.
InstOpRec = cast<DefInit>(DI->getArg(0))->getDef();
}
if (!InstOpRec->isSubClassOf("RegisterClass"))
return false;
if (!T.getRegisterClass(InstOpRec)
.contains(T.getRegBank().getReg(ADI->getDef())))
PrintFatalError(Loc, "fixed register " + ADI->getDef()->getName() +
" is not a member of the " + InstOpRec->getName() +
" register class!");
if (Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result fixed register argument must "
"not have a name!");
ResOp = ResultOperand(ResultRecord);
return true;
}
// Handle "zero_reg" for optional def operands.
if (ADI && ADI->getDef()->getName() == "zero_reg") {
// Check if this is an optional def.
// Tied operands where the source is a sub-operand of a complex operand
// need to represent both operands in the alias destination instruction.
// Allow zero_reg for the tied portion. This can and should go away once
// the MC representation of things doesn't use tied operands at all.
//if (!InstOpRec->isSubClassOf("OptionalDefOperand"))
// throw TGError(Loc, "reg0 used for result that is not an "
// "OptionalDefOperand!");
ResOp = ResultOperand(static_cast<Record*>(nullptr));
return true;
}
// Literal integers.
if (IntInit *II = dyn_cast<IntInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
// Integer arguments can't have names.
if (Result->getArgName(AliasOpNo))
PrintFatalError(Loc, "result argument #" + Twine(AliasOpNo) +
" must not have a name!");
ResOp = ResultOperand(II->getValue());
return true;
}
// Bits<n> (also used for 0bxx literals)
if (BitsInit *BI = dyn_cast<BitsInit>(Arg)) {
if (hasSubOps || !InstOpRec->isSubClassOf("Operand"))
return false;
if (!BI->isComplete())
return false;
// Convert the bits init to an integer and use that for the result.
IntInit *II =
dyn_cast_or_null<IntInit>(BI->convertInitializerTo(IntRecTy::get()));
if (!II)
return false;
ResOp = ResultOperand(II->getValue());
return true;
}
// If both are Operands with the same MVT, allow the conversion. It's
// up to the user to make sure the values are appropriate, just like
// for isel Pat's.
if (InstOpRec->isSubClassOf("Operand") && ADI &&
ADI->getDef()->isSubClassOf("Operand")) {
// FIXME: What other attributes should we check here? Identical
// MIOperandInfo perhaps?
if (InstOpRec->getValueInit("Type") != ADI->getDef()->getValueInit("Type"))
return false;
ResOp = ResultOperand(Result->getArgNameStr(AliasOpNo), ADI->getDef());
return true;
}
return false;
}
unsigned CodeGenInstAlias::ResultOperand::getMINumOperands() const {
if (!isRecord())
return 1;
Record *Rec = getRecord();
if (!Rec->isSubClassOf("Operand"))
return 1;
DagInit *MIOpInfo = Rec->getValueAsDag("MIOperandInfo");
if (MIOpInfo->getNumArgs() == 0) {
// Unspecified, so it defaults to 1
return 1;
}
return MIOpInfo->getNumArgs();
}
CodeGenInstAlias::CodeGenInstAlias(Record *R, CodeGenTarget &T)
: TheDef(R) {
Result = R->getValueAsDag("ResultInst");
AsmString = R->getValueAsString("AsmString");
// Verify that the root of the result is an instruction.
DefInit *DI = dyn_cast<DefInit>(Result->getOperator());
if (!DI || !DI->getDef()->isSubClassOf("Instruction"))
PrintFatalError(R->getLoc(),
"result of inst alias should be an instruction");
ResultInst = &T.getInstruction(DI->getDef());
// NameClass - If argument names are repeated, we need to verify they have
// the same class.
StringMap<Record*> NameClass;
for (unsigned i = 0, e = Result->getNumArgs(); i != e; ++i) {
DefInit *ADI = dyn_cast<DefInit>(Result->getArg(i));
if (!ADI || !Result->getArgName(i))
continue;
// Verify we don't have something like: (someinst GR16:$foo, GR32:$foo)
// $foo can exist multiple times in the result list, but it must have the
// same type.
Record *&Entry = NameClass[Result->getArgNameStr(i)];
if (Entry && Entry != ADI->getDef())
PrintFatalError(R->getLoc(), "result value $" + Result->getArgNameStr(i) +
" is both " + Entry->getName() + " and " +
ADI->getDef()->getName() + "!");
Entry = ADI->getDef();
}
// Decode and validate the arguments of the result.
unsigned AliasOpNo = 0;
for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
// Tied registers don't have an entry in the result dag unless they're part
// of a complex operand, in which case we include them anyways, as we
// don't have any other way to specify the whole operand.
if (ResultInst->Operands[i].MINumOperands == 1 &&
ResultInst->Operands[i].getTiedRegister() != -1) {
// Tied operands of different RegisterClass should be explicit within an
// instruction's syntax and so cannot be skipped.
int TiedOpNum = ResultInst->Operands[i].getTiedRegister();
if (ResultInst->Operands[i].Rec->getName() ==
ResultInst->Operands[TiedOpNum].Rec->getName())
continue;
}
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *InstOpRec = ResultInst->Operands[i].Rec;
unsigned NumSubOps = ResultInst->Operands[i].MINumOperands;
ResultOperand ResOp(static_cast<int64_t>(0));
if (tryAliasOpMatch(Result, AliasOpNo, InstOpRec, (NumSubOps > 1),
R->getLoc(), T, ResOp)) {
// If this is a simple operand, or a complex operand with a custom match
// class, then we can match is verbatim.
if (NumSubOps == 1 ||
(InstOpRec->getValue("ParserMatchClass") &&
InstOpRec->getValueAsDef("ParserMatchClass")
->getValueAsString("Name") != "Imm")) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, -1));
++AliasOpNo;
// Otherwise, we need to match each of the suboperands individually.
} else {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
// Take care to instantiate each of the suboperands with the correct
// nomenclature: $foo.bar
ResultOperands.emplace_back(
Result->getArgName(AliasOpNo)->getAsUnquotedString() + "." +
MIOI->getArgName(SubOp)->getAsUnquotedString(), SubRec);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
}
++AliasOpNo;
}
continue;
}
// If the argument did not match the instruction operand, and the operand
// is composed of multiple suboperands, try matching the suboperands.
if (NumSubOps > 1) {
DagInit *MIOI = ResultInst->Operands[i].MIOperandInfo;
for (unsigned SubOp = 0; SubOp != NumSubOps; ++SubOp) {
if (AliasOpNo >= Result->getNumArgs())
PrintFatalError(R->getLoc(), "not enough arguments for instruction!");
Record *SubRec = cast<DefInit>(MIOI->getArg(SubOp))->getDef();
if (tryAliasOpMatch(Result, AliasOpNo, SubRec, false,
R->getLoc(), T, ResOp)) {
ResultOperands.push_back(ResOp);
ResultInstOperandIndex.push_back(std::make_pair(i, SubOp));
++AliasOpNo;
} else {
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
(SubOp == 0 ? InstOpRec->getName() :SubRec->getName()));
}
}
continue;
}
PrintFatalError(R->getLoc(), "result argument #" + Twine(AliasOpNo) +
" does not match instruction operand class " +
InstOpRec->getName());
}
if (AliasOpNo != Result->getNumArgs())
PrintFatalError(R->getLoc(), "too many operands for instruction!");
}