blob: 1bb07a9fa1e6b383d4bfa6e48c903b18b010300a [file] [log] [blame]
//===- PatternMatchTest.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/ConstantFoldingMIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MIRParser/MIRParser.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
void initLLVM() {
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
PassRegistry *Registry = PassRegistry::getPassRegistry();
initializeCore(*Registry);
initializeCodeGen(*Registry);
}
/// Create a TargetMachine. As we lack a dedicated always available target for
/// unittests, we go for "AArch64".
std::unique_ptr<LLVMTargetMachine> createTargetMachine() {
Triple TargetTriple("aarch64--");
std::string Error;
const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error);
if (!T)
return nullptr;
TargetOptions Options;
return std::unique_ptr<LLVMTargetMachine>(static_cast<LLVMTargetMachine*>(
T->createTargetMachine("AArch64", "", "", Options, None, None,
CodeGenOpt::Aggressive)));
}
std::unique_ptr<Module> parseMIR(LLVMContext &Context,
std::unique_ptr<MIRParser> &MIR,
const TargetMachine &TM, StringRef MIRCode,
const char *FuncName, MachineModuleInfo &MMI) {
SMDiagnostic Diagnostic;
std::unique_ptr<MemoryBuffer> MBuffer = MemoryBuffer::getMemBuffer(MIRCode);
MIR = createMIRParser(std::move(MBuffer), Context);
if (!MIR)
return nullptr;
std::unique_ptr<Module> M = MIR->parseIRModule();
if (!M)
return nullptr;
M->setDataLayout(TM.createDataLayout());
if (MIR->parseMachineFunctions(*M, MMI))
return nullptr;
return M;
}
std::pair<std::unique_ptr<Module>, std::unique_ptr<MachineModuleInfo>>
createDummyModule(LLVMContext &Context, const LLVMTargetMachine &TM,
StringRef MIRFunc) {
SmallString<512> S;
StringRef MIRString = (Twine(R"MIR(
---
...
name: func
registers:
- { id: 0, class: _ }
- { id: 1, class: _ }
- { id: 2, class: _ }
- { id: 3, class: _ }
body: |
bb.1:
%0(s64) = COPY $x0
%1(s64) = COPY $x1
%2(s64) = COPY $x2
)MIR") + Twine(MIRFunc) + Twine("...\n"))
.toNullTerminatedStringRef(S);
std::unique_ptr<MIRParser> MIR;
auto MMI = make_unique<MachineModuleInfo>(&TM);
std::unique_ptr<Module> M =
parseMIR(Context, MIR, TM, MIRString, "func", *MMI);
return make_pair(std::move(M), std::move(MMI));
}
static MachineFunction *getMFFromMMI(const Module *M,
const MachineModuleInfo *MMI) {
Function *F = M->getFunction("func");
auto *MF = MMI->getMachineFunction(*F);
return MF;
}
static void collectCopies(SmallVectorImpl<unsigned> &Copies,
MachineFunction *MF) {
for (auto &MBB : *MF)
for (MachineInstr &MI : MBB) {
if (MI.getOpcode() == TargetOpcode::COPY)
Copies.push_back(MI.getOperand(0).getReg());
}
}
TEST(PatternMatchInstr, MatchIntConstant) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
auto MIBCst = B.buildConstant(LLT::scalar(64), 42);
int64_t Cst;
bool match = mi_match(MIBCst->getOperand(0).getReg(), MRI, m_ICst(Cst));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
}
TEST(PatternMatchInstr, MatchBinaryOp) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
LLT s64 = LLT::scalar(64);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
// Test case for no bind.
bool match =
mi_match(MIBAdd->getOperand(0).getReg(), MRI, m_GAdd(m_Reg(), m_Reg()));
EXPECT_TRUE(match);
unsigned Src0, Src1, Src2;
match = mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_GAdd(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Build MUL(ADD %0, %1), %2
auto MIBMul = B.buildMul(s64, MIBAdd, Copies[2]);
// Try to match MUL.
match = mi_match(MIBMul->getOperand(0).getReg(), MRI,
m_GMul(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBAdd->getOperand(0).getReg());
EXPECT_EQ(Src1, Copies[2]);
// Try to match MUL(ADD)
match = mi_match(MIBMul->getOperand(0).getReg(), MRI,
m_GMul(m_GAdd(m_Reg(Src0), m_Reg(Src1)), m_Reg(Src2)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
EXPECT_EQ(Src2, Copies[2]);
// Test Commutativity.
auto MIBMul2 = B.buildMul(s64, Copies[0], B.buildConstant(s64, 42));
// Try to match MUL(Cst, Reg) on src of MUL(Reg, Cst) to validate
// commutativity.
int64_t Cst;
match = mi_match(MIBMul2->getOperand(0).getReg(), MRI,
m_GMul(m_ICst(Cst), m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
EXPECT_EQ(Src0, Copies[0]);
// Make sure commutative doesn't work with something like SUB.
auto MIBSub = B.buildSub(s64, Copies[0], B.buildConstant(s64, 42));
match = mi_match(MIBSub->getOperand(0).getReg(), MRI,
m_GSub(m_ICst(Cst), m_Reg(Src0)));
EXPECT_FALSE(match);
auto MIBFMul = B.buildInstr(TargetOpcode::G_FMUL, {s64},
{Copies[0], B.buildConstant(s64, 42)});
// Match and test commutativity for FMUL.
match = mi_match(MIBFMul->getOperand(0).getReg(), MRI,
m_GFMul(m_ICst(Cst), m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 42);
EXPECT_EQ(Src0, Copies[0]);
// FSUB
auto MIBFSub = B.buildInstr(TargetOpcode::G_FSUB, {s64},
{Copies[0], B.buildConstant(s64, 42)});
match = mi_match(MIBFSub->getOperand(0).getReg(), MRI,
m_GFSub(m_Reg(Src0), m_Reg()));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
// Build AND %0, %1
auto MIBAnd = B.buildAnd(s64, Copies[0], Copies[1]);
// Try to match AND.
match = mi_match(MIBAnd->getOperand(0).getReg(), MRI,
m_GAnd(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Build OR %0, %1
auto MIBOr = B.buildOr(s64, Copies[0], Copies[1]);
// Try to match OR.
match = mi_match(MIBOr->getOperand(0).getReg(), MRI,
m_GOr(m_Reg(Src0), m_Reg(Src1)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Try to use the FoldableInstructionsBuilder to build binary ops.
ConstantFoldingMIRBuilder CFB(B.getState());
LLT s32 = LLT::scalar(32);
auto MIBCAdd =
CFB.buildAdd(s32, CFB.buildConstant(s32, 0), CFB.buildConstant(s32, 1));
// This should be a constant now.
match = mi_match(MIBCAdd->getOperand(0).getReg(), MRI, m_ICst(Cst));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 1);
auto MIBCAdd1 =
CFB.buildInstr(TargetOpcode::G_ADD, {s32},
{CFB.buildConstant(s32, 0), CFB.buildConstant(s32, 1)});
// This should be a constant now.
match = mi_match(MIBCAdd1->getOperand(0).getReg(), MRI, m_ICst(Cst));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 1);
// Try one of the other constructors of MachineIRBuilder to make sure it's
// compatible.
ConstantFoldingMIRBuilder CFB1(*MF);
CFB1.setInsertPt(*EntryMBB, EntryMBB->end());
auto MIBCSub =
CFB1.buildInstr(TargetOpcode::G_SUB, {s32},
{CFB1.buildConstant(s32, 1), CFB1.buildConstant(s32, 1)});
// This should be a constant now.
match = mi_match(MIBCSub->getOperand(0).getReg(), MRI, m_ICst(Cst));
EXPECT_TRUE(match);
EXPECT_EQ(Cst, 0);
}
TEST(PatternMatchInstr, MatchFPUnaryOp) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
// Truncate s64 to s32.
LLT s32 = LLT::scalar(32);
auto Copy0s32 = B.buildFPTrunc(s32, Copies[0]);
// Match G_FABS.
auto MIBFabs = B.buildInstr(TargetOpcode::G_FABS, {s32}, {Copy0s32});
bool match = mi_match(MIBFabs->getOperand(0).getReg(), MRI, m_GFabs(m_Reg()));
EXPECT_TRUE(match);
unsigned Src;
auto MIBFNeg = B.buildInstr(TargetOpcode::G_FNEG, {s32}, {Copy0s32});
match = mi_match(MIBFNeg->getOperand(0).getReg(), MRI, m_GFNeg(m_Reg(Src)));
EXPECT_TRUE(match);
EXPECT_EQ(Src, Copy0s32->getOperand(0).getReg());
match = mi_match(MIBFabs->getOperand(0).getReg(), MRI, m_GFabs(m_Reg(Src)));
EXPECT_TRUE(match);
EXPECT_EQ(Src, Copy0s32->getOperand(0).getReg());
// Build and match FConstant.
auto MIBFCst = B.buildFConstant(s32, .5);
const ConstantFP *TmpFP{};
match = mi_match(MIBFCst->getOperand(0).getReg(), MRI, m_GFCst(TmpFP));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP);
APFloat APF((float).5);
auto *CFP = ConstantFP::get(Context, APF);
EXPECT_EQ(CFP, TmpFP);
// Build double float.
LLT s64 = LLT::scalar(64);
auto MIBFCst64 = B.buildFConstant(s64, .5);
const ConstantFP *TmpFP64{};
match = mi_match(MIBFCst64->getOperand(0).getReg(), MRI, m_GFCst(TmpFP64));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP64);
APFloat APF64(.5);
auto CFP64 = ConstantFP::get(Context, APF64);
EXPECT_EQ(CFP64, TmpFP64);
EXPECT_NE(TmpFP64, TmpFP);
// Build half float.
LLT s16 = LLT::scalar(16);
auto MIBFCst16 = B.buildFConstant(s16, .5);
const ConstantFP *TmpFP16{};
match = mi_match(MIBFCst16->getOperand(0).getReg(), MRI, m_GFCst(TmpFP16));
EXPECT_TRUE(match);
EXPECT_TRUE(TmpFP16);
bool Ignored;
APFloat APF16(.5);
APF16.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &Ignored);
auto CFP16 = ConstantFP::get(Context, APF16);
EXPECT_EQ(TmpFP16, CFP16);
EXPECT_NE(TmpFP16, TmpFP);
}
TEST(PatternMatchInstr, MatchExtendsTrunc) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBTrunc = B.buildTrunc(s32, Copies[0]);
auto MIBAExt = B.buildAnyExt(s64, MIBTrunc);
auto MIBZExt = B.buildZExt(s64, MIBTrunc);
auto MIBSExt = B.buildSExt(s64, MIBTrunc);
unsigned Src0;
bool match =
mi_match(MIBTrunc->getOperand(0).getReg(), MRI, m_GTrunc(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match =
mi_match(MIBAExt->getOperand(0).getReg(), MRI, m_GAnyExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg());
match = mi_match(MIBSExt->getOperand(0).getReg(), MRI, m_GSExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg());
match = mi_match(MIBZExt->getOperand(0).getReg(), MRI, m_GZExt(m_Reg(Src0)));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, MIBTrunc->getOperand(0).getReg());
// Match ext(trunc src)
match = mi_match(MIBAExt->getOperand(0).getReg(), MRI,
m_GAnyExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match = mi_match(MIBSExt->getOperand(0).getReg(), MRI,
m_GSExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
match = mi_match(MIBZExt->getOperand(0).getReg(), MRI,
m_GZExt(m_GTrunc(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
}
TEST(PatternMatchInstr, MatchSpecificType) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
// Try to match a 64bit add.
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
EXPECT_FALSE(mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_GAdd(m_SpecificType(s32), m_Reg())));
EXPECT_TRUE(mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_GAdd(m_SpecificType(s64), m_Reg())));
// Try to match the destination type of a bitcast.
LLT v2s32 = LLT::vector(2, 32);
auto MIBCast = B.buildCast(v2s32, Copies[0]);
EXPECT_TRUE(
mi_match(MIBCast->getOperand(0).getReg(), MRI, m_GBitcast(m_Reg())));
EXPECT_TRUE(
mi_match(MIBCast->getOperand(0).getReg(), MRI, m_SpecificType(v2s32)));
EXPECT_TRUE(
mi_match(MIBCast->getOperand(1).getReg(), MRI, m_SpecificType(s64)));
// Build a PTRToInt and INTTOPTR and match and test them.
LLT PtrTy = LLT::pointer(0, 64);
auto MIBIntToPtr = B.buildCast(PtrTy, Copies[0]);
auto MIBPtrToInt = B.buildCast(s64, MIBIntToPtr);
unsigned Src0;
// match the ptrtoint(inttoptr reg)
bool match = mi_match(MIBPtrToInt->getOperand(0).getReg(), MRI,
m_GPtrToInt(m_GIntToPtr(m_Reg(Src0))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
}
TEST(PatternMatchInstr, MatchCombinators) {
LLVMContext Context;
std::unique_ptr<LLVMTargetMachine> TM = createTargetMachine();
if (!TM)
return;
auto ModuleMMIPair = createDummyModule(Context, *TM, "");
MachineFunction *MF =
getMFFromMMI(ModuleMMIPair.first.get(), ModuleMMIPair.second.get());
SmallVector<unsigned, 4> Copies;
collectCopies(Copies, MF);
MachineBasicBlock *EntryMBB = &*MF->begin();
MachineIRBuilder B(*MF);
MachineRegisterInfo &MRI = MF->getRegInfo();
B.setInsertPt(*EntryMBB, EntryMBB->end());
LLT s64 = LLT::scalar(64);
LLT s32 = LLT::scalar(32);
auto MIBAdd = B.buildAdd(s64, Copies[0], Copies[1]);
unsigned Src0, Src1;
bool match =
mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_all_of(m_SpecificType(s64), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Check for s32 (which should fail).
match =
mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_all_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_FALSE(match);
match =
mi_match(MIBAdd->getOperand(0).getReg(), MRI,
m_any_of(m_SpecificType(s32), m_GAdd(m_Reg(Src0), m_Reg(Src1))));
EXPECT_TRUE(match);
EXPECT_EQ(Src0, Copies[0]);
EXPECT_EQ(Src1, Copies[1]);
// Match a case where none of the predicates hold true.
match = mi_match(
MIBAdd->getOperand(0).getReg(), MRI,
m_any_of(m_SpecificType(LLT::scalar(16)), m_GSub(m_Reg(), m_Reg())));
EXPECT_FALSE(match);
}
} // namespace
int main(int argc, char **argv) {
::testing::InitGoogleTest(&argc, argv);
initLLVM();
return RUN_ALL_TESTS();
}