blob: 3621d182b3e63d764bc433fab3ac35f6f1f6a15d [file] [log] [blame]
//===--------------------- RegisterFile.cpp ---------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file defines a register mapping file class. This class is responsible
/// for managing hardware register files and the tracking of data dependencies
/// between registers.
///
//===----------------------------------------------------------------------===//
#include "llvm/MCA/HardwareUnits/RegisterFile.h"
#include "llvm/MCA/Instruction.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "llvm-mca"
namespace llvm {
namespace mca {
RegisterFile::RegisterFile(const MCSchedModel &SM, const MCRegisterInfo &mri,
unsigned NumRegs)
: MRI(mri),
RegisterMappings(mri.getNumRegs(), {WriteRef(), RegisterRenamingInfo()}),
ZeroRegisters(mri.getNumRegs(), false) {
initialize(SM, NumRegs);
}
void RegisterFile::initialize(const MCSchedModel &SM, unsigned NumRegs) {
// Create a default register file that "sees" all the machine registers
// declared by the target. The number of physical registers in the default
// register file is set equal to `NumRegs`. A value of zero for `NumRegs`
// means: this register file has an unbounded number of physical registers.
RegisterFiles.emplace_back(NumRegs);
if (!SM.hasExtraProcessorInfo())
return;
// For each user defined register file, allocate a RegisterMappingTracker
// object. The size of every register file, as well as the mapping between
// register files and register classes is specified via tablegen.
const MCExtraProcessorInfo &Info = SM.getExtraProcessorInfo();
// Skip invalid register file at index 0.
for (unsigned I = 1, E = Info.NumRegisterFiles; I < E; ++I) {
const MCRegisterFileDesc &RF = Info.RegisterFiles[I];
assert(RF.NumPhysRegs && "Invalid PRF with zero physical registers!");
// The cost of a register definition is equivalent to the number of
// physical registers that are allocated at register renaming stage.
unsigned Length = RF.NumRegisterCostEntries;
const MCRegisterCostEntry *FirstElt =
&Info.RegisterCostTable[RF.RegisterCostEntryIdx];
addRegisterFile(RF, ArrayRef<MCRegisterCostEntry>(FirstElt, Length));
}
}
void RegisterFile::cycleStart() {
for (RegisterMappingTracker &RMT : RegisterFiles)
RMT.NumMoveEliminated = 0;
}
void RegisterFile::addRegisterFile(const MCRegisterFileDesc &RF,
ArrayRef<MCRegisterCostEntry> Entries) {
// A default register file is always allocated at index #0. That register file
// is mainly used to count the total number of mappings created by all
// register files at runtime. Users can limit the number of available physical
// registers in register file #0 through the command line flag
// `-register-file-size`.
unsigned RegisterFileIndex = RegisterFiles.size();
RegisterFiles.emplace_back(RF.NumPhysRegs, RF.MaxMovesEliminatedPerCycle,
RF.AllowZeroMoveEliminationOnly);
// Special case where there is no register class identifier in the set.
// An empty set of register classes means: this register file contains all
// the physical registers specified by the target.
// We optimistically assume that a register can be renamed at the cost of a
// single physical register. The constructor of RegisterFile ensures that
// a RegisterMapping exists for each logical register defined by the Target.
if (Entries.empty())
return;
// Now update the cost of individual registers.
for (const MCRegisterCostEntry &RCE : Entries) {
const MCRegisterClass &RC = MRI.getRegClass(RCE.RegisterClassID);
for (const MCPhysReg Reg : RC) {
RegisterRenamingInfo &Entry = RegisterMappings[Reg].second;
IndexPlusCostPairTy &IPC = Entry.IndexPlusCost;
if (IPC.first && IPC.first != RegisterFileIndex) {
// The only register file that is allowed to overlap is the default
// register file at index #0. The analysis is inaccurate if register
// files overlap.
errs() << "warning: register " << MRI.getName(Reg)
<< " defined in multiple register files.";
}
IPC = std::make_pair(RegisterFileIndex, RCE.Cost);
Entry.RenameAs = Reg;
Entry.AllowMoveElimination = RCE.AllowMoveElimination;
// Assume the same cost for each sub-register.
for (MCSubRegIterator I(Reg, &MRI); I.isValid(); ++I) {
RegisterRenamingInfo &OtherEntry = RegisterMappings[*I].second;
if (!OtherEntry.IndexPlusCost.first &&
(!OtherEntry.RenameAs ||
MRI.isSuperRegister(*I, OtherEntry.RenameAs))) {
OtherEntry.IndexPlusCost = IPC;
OtherEntry.RenameAs = Reg;
}
}
}
}
}
void RegisterFile::allocatePhysRegs(const RegisterRenamingInfo &Entry,
MutableArrayRef<unsigned> UsedPhysRegs) {
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
unsigned Cost = Entry.IndexPlusCost.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedPhysRegs += Cost;
UsedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedPhysRegs += Cost;
UsedPhysRegs[0] += Cost;
}
void RegisterFile::freePhysRegs(const RegisterRenamingInfo &Entry,
MutableArrayRef<unsigned> FreedPhysRegs) {
unsigned RegisterFileIndex = Entry.IndexPlusCost.first;
unsigned Cost = Entry.IndexPlusCost.second;
if (RegisterFileIndex) {
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
RMT.NumUsedPhysRegs -= Cost;
FreedPhysRegs[RegisterFileIndex] += Cost;
}
// Now update the default register mapping tracker.
RegisterFiles[0].NumUsedPhysRegs -= Cost;
FreedPhysRegs[0] += Cost;
}
void RegisterFile::addRegisterWrite(WriteRef Write,
MutableArrayRef<unsigned> UsedPhysRegs) {
WriteState &WS = *Write.getWriteState();
unsigned RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
LLVM_DEBUG({
dbgs() << "RegisterFile: addRegisterWrite [ " << Write.getSourceIndex()
<< ", " << MRI.getName(RegID) << "]\n";
});
// If RenameAs is equal to RegID, then RegID is subject to register renaming
// and false dependencies on RegID are all eliminated.
// If RenameAs references the invalid register, then we optimistically assume
// that it can be renamed. In the absence of tablegen descriptors for register
// files, RenameAs is always set to the invalid register ID. In all other
// cases, RenameAs must be either equal to RegID, or it must reference a
// super-register of RegID.
// If RenameAs is a super-register of RegID, then a write to RegID has always
// a false dependency on RenameAs. The only exception is for when the write
// implicitly clears the upper portion of the underlying register.
// If a write clears its super-registers, then it is renamed as `RenameAs`.
bool IsWriteZero = WS.isWriteZero();
bool IsEliminated = WS.isEliminated();
bool ShouldAllocatePhysRegs = !IsWriteZero && !IsEliminated;
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
WS.setPRF(RRI.IndexPlusCost.first);
if (RRI.RenameAs && RRI.RenameAs != RegID) {
RegID = RRI.RenameAs;
WriteRef &OtherWrite = RegisterMappings[RegID].first;
if (!WS.clearsSuperRegisters()) {
// The processor keeps the definition of `RegID` together with register
// `RenameAs`. Since this partial write is not renamed, no physical
// register is allocated.
ShouldAllocatePhysRegs = false;
WriteState *OtherWS = OtherWrite.getWriteState();
if (OtherWS && (OtherWrite.getSourceIndex() != Write.getSourceIndex())) {
// This partial write has a false dependency on RenameAs.
assert(!IsEliminated && "Unexpected partial update!");
OtherWS->addUser(&WS);
}
}
}
// Update zero registers.
unsigned ZeroRegisterID =
WS.clearsSuperRegisters() ? RegID : WS.getRegisterID();
if (IsWriteZero) {
ZeroRegisters.setBit(ZeroRegisterID);
for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I)
ZeroRegisters.setBit(*I);
} else {
ZeroRegisters.clearBit(ZeroRegisterID);
for (MCSubRegIterator I(ZeroRegisterID, &MRI); I.isValid(); ++I)
ZeroRegisters.clearBit(*I);
}
// If this is move has been eliminated, then the call to tryEliminateMove
// should have already updated all the register mappings.
if (!IsEliminated) {
// Update the mapping for register RegID including its sub-registers.
RegisterMappings[RegID].first = Write;
RegisterMappings[RegID].second.AliasRegID = 0U;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
RegisterMappings[*I].first = Write;
RegisterMappings[*I].second.AliasRegID = 0U;
}
// No physical registers are allocated for instructions that are optimized
// in hardware. For example, zero-latency data-dependency breaking
// instructions don't consume physical registers.
if (ShouldAllocatePhysRegs)
allocatePhysRegs(RegisterMappings[RegID].second, UsedPhysRegs);
}
if (!WS.clearsSuperRegisters())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
if (!IsEliminated) {
RegisterMappings[*I].first = Write;
RegisterMappings[*I].second.AliasRegID = 0U;
}
if (IsWriteZero)
ZeroRegisters.setBit(*I);
else
ZeroRegisters.clearBit(*I);
}
}
void RegisterFile::removeRegisterWrite(
const WriteState &WS, MutableArrayRef<unsigned> FreedPhysRegs) {
// Early exit if this write was eliminated. A write eliminated at register
// renaming stage generates an alias, and it is not added to the PRF.
if (WS.isEliminated())
return;
unsigned RegID = WS.getRegisterID();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != UNKNOWN_CYCLES &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
bool ShouldFreePhysRegs = !WS.isWriteZero();
unsigned RenameAs = RegisterMappings[RegID].second.RenameAs;
if (RenameAs && RenameAs != RegID) {
RegID = RenameAs;
if (!WS.clearsSuperRegisters()) {
// Keep the definition of `RegID` together with register `RenameAs`.
ShouldFreePhysRegs = false;
}
}
if (ShouldFreePhysRegs)
freePhysRegs(RegisterMappings[RegID].second, FreedPhysRegs);
WriteRef &WR = RegisterMappings[RegID].first;
if (WR.getWriteState() == &WS)
WR.invalidate();
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WriteRef &OtherWR = RegisterMappings[*I].first;
if (OtherWR.getWriteState() == &WS)
OtherWR.invalidate();
}
if (!WS.clearsSuperRegisters())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WriteRef &OtherWR = RegisterMappings[*I].first;
if (OtherWR.getWriteState() == &WS)
OtherWR.invalidate();
}
}
bool RegisterFile::tryEliminateMove(WriteState &WS, ReadState &RS) {
const RegisterMapping &RMFrom = RegisterMappings[RS.getRegisterID()];
const RegisterMapping &RMTo = RegisterMappings[WS.getRegisterID()];
// From and To must be owned by the same PRF.
const RegisterRenamingInfo &RRIFrom = RMFrom.second;
const RegisterRenamingInfo &RRITo = RMTo.second;
unsigned RegisterFileIndex = RRIFrom.IndexPlusCost.first;
if (RegisterFileIndex != RRITo.IndexPlusCost.first)
return false;
// We only allow move elimination for writes that update a full physical
// register. On X86, move elimination is possible with 32-bit general purpose
// registers because writes to those registers are not partial writes. If a
// register move is a partial write, then we conservatively assume that move
// elimination fails, since it would either trigger a partial update, or the
// issue of a merge opcode.
//
// Note that this constraint may be lifted in future. For example, we could
// make this model more flexible, and let users customize the set of registers
// (i.e. register classes) that allow move elimination.
//
// For now, we assume that there is a strong correlation between registers
// that allow move elimination, and how those same registers are renamed in
// hardware.
if (RRITo.RenameAs && RRITo.RenameAs != WS.getRegisterID()) {
// Early exit if the PRF doesn't support move elimination for this register.
if (!RegisterMappings[RRITo.RenameAs].second.AllowMoveElimination)
return false;
if (!WS.clearsSuperRegisters())
return false;
}
RegisterMappingTracker &RMT = RegisterFiles[RegisterFileIndex];
if (RMT.MaxMoveEliminatedPerCycle &&
RMT.NumMoveEliminated == RMT.MaxMoveEliminatedPerCycle)
return false;
bool IsZeroMove = ZeroRegisters[RS.getRegisterID()];
if (RMT.AllowZeroMoveEliminationOnly && !IsZeroMove)
return false;
MCPhysReg FromReg = RS.getRegisterID();
MCPhysReg ToReg = WS.getRegisterID();
// Construct an alias.
MCPhysReg AliasReg = FromReg;
if (RRIFrom.RenameAs)
AliasReg = RRIFrom.RenameAs;
const RegisterRenamingInfo &RMAlias = RegisterMappings[AliasReg].second;
if (RMAlias.AliasRegID)
AliasReg = RMAlias.AliasRegID;
if (AliasReg != ToReg) {
RegisterMappings[ToReg].second.AliasRegID = AliasReg;
for (MCSubRegIterator I(ToReg, &MRI); I.isValid(); ++I)
RegisterMappings[*I].second.AliasRegID = AliasReg;
}
RMT.NumMoveEliminated++;
if (IsZeroMove) {
WS.setWriteZero();
RS.setReadZero();
}
WS.setEliminated();
return true;
}
void RegisterFile::collectWrites(const ReadState &RS,
SmallVectorImpl<WriteRef> &Writes) const {
unsigned RegID = RS.getRegisterID();
assert(RegID && RegID < RegisterMappings.size());
LLVM_DEBUG(dbgs() << "RegisterFile: collecting writes for register "
<< MRI.getName(RegID) << '\n');
// Check if this is an alias.
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
if (RRI.AliasRegID)
RegID = RRI.AliasRegID;
const WriteRef &WR = RegisterMappings[RegID].first;
if (WR.isValid())
Writes.push_back(WR);
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
const WriteRef &WR = RegisterMappings[*I].first;
if (WR.isValid())
Writes.push_back(WR);
}
// Remove duplicate entries and resize the input vector.
if (Writes.size() > 1) {
sort(Writes, [](const WriteRef &Lhs, const WriteRef &Rhs) {
return Lhs.getWriteState() < Rhs.getWriteState();
});
auto It = std::unique(Writes.begin(), Writes.end());
Writes.resize(std::distance(Writes.begin(), It));
}
LLVM_DEBUG({
for (const WriteRef &WR : Writes) {
const WriteState &WS = *WR.getWriteState();
dbgs() << "[PRF] Found a dependent use of Register "
<< MRI.getName(WS.getRegisterID()) << " (defined by instruction #"
<< WR.getSourceIndex() << ")\n";
}
});
}
void RegisterFile::addRegisterRead(ReadState &RS,
const MCSubtargetInfo &STI) const {
unsigned RegID = RS.getRegisterID();
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
RS.setPRF(RRI.IndexPlusCost.first);
if (RS.isIndependentFromDef())
return;
if (ZeroRegisters[RS.getRegisterID()])
RS.setReadZero();
SmallVector<WriteRef, 4> DependentWrites;
collectWrites(RS, DependentWrites);
RS.setDependentWrites(DependentWrites.size());
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteRef &WR : DependentWrites) {
WriteState &WS = *WR.getWriteState();
unsigned WriteResID = WS.getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.UseIndex, WriteResID);
WS.addUser(&RS, ReadAdvance);
}
}
unsigned RegisterFile::isAvailable(ArrayRef<unsigned> Regs) const {
SmallVector<unsigned, 4> NumPhysRegs(getNumRegisterFiles());
// Find how many new mappings must be created for each register file.
for (const unsigned RegID : Regs) {
const RegisterRenamingInfo &RRI = RegisterMappings[RegID].second;
const IndexPlusCostPairTy &Entry = RRI.IndexPlusCost;
if (Entry.first)
NumPhysRegs[Entry.first] += Entry.second;
NumPhysRegs[0] += Entry.second;
}
unsigned Response = 0;
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
unsigned NumRegs = NumPhysRegs[I];
if (!NumRegs)
continue;
const RegisterMappingTracker &RMT = RegisterFiles[I];
if (!RMT.NumPhysRegs) {
// The register file has an unbounded number of microarchitectural
// registers.
continue;
}
if (RMT.NumPhysRegs < NumRegs) {
// The current register file is too small. This may occur if the number of
// microarchitectural registers in register file #0 was changed by the
// users via flag -reg-file-size. Alternatively, the scheduling model
// specified a too small number of registers for this register file.
LLVM_DEBUG(dbgs() << "Not enough registers in the register file.\n");
// FIXME: Normalize the instruction register count to match the
// NumPhysRegs value. This is a highly unusual case, and is not expected
// to occur. This normalization is hiding an inconsistency in either the
// scheduling model or in the value that the user might have specified
// for NumPhysRegs.
NumRegs = RMT.NumPhysRegs;
}
if (RMT.NumPhysRegs < (RMT.NumUsedPhysRegs + NumRegs))
Response |= (1U << I);
}
return Response;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I) {
const RegisterMapping &RM = RegisterMappings[I];
const RegisterRenamingInfo &RRI = RM.second;
if (ZeroRegisters[I]) {
dbgs() << MRI.getName(I) << ", " << I
<< ", PRF=" << RRI.IndexPlusCost.first
<< ", Cost=" << RRI.IndexPlusCost.second
<< ", RenameAs=" << RRI.RenameAs << ", IsZero=" << ZeroRegisters[I]
<< ",";
RM.first.dump();
dbgs() << '\n';
}
}
for (unsigned I = 0, E = getNumRegisterFiles(); I < E; ++I) {
dbgs() << "Register File #" << I;
const RegisterMappingTracker &RMT = RegisterFiles[I];
dbgs() << "\n TotalMappings: " << RMT.NumPhysRegs
<< "\n NumUsedMappings: " << RMT.NumUsedPhysRegs << '\n';
}
}
#endif
} // namespace mca
} // namespace llvm