blob: 090ee60ede76a3dab6054f68f655d39534351a6b [file] [log] [blame]
//===- Intrinsics.td - Defines all LLVM intrinsics ---------*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines properties of all LLVM intrinsics.
//
//===----------------------------------------------------------------------===//
include "llvm/CodeGen/ValueTypes.td"
include "llvm/CodeGen/SDNodeProperties.td"
//===----------------------------------------------------------------------===//
// Properties we keep track of for intrinsics.
//===----------------------------------------------------------------------===//
class IntrinsicProperty;
// Intr*Mem - Memory properties. If no property is set, the worst case
// is assumed (it may read and write any memory it can get access to and it may
// have other side effects).
// IntrNoMem - The intrinsic does not access memory or have any other side
// effects. It may be CSE'd deleted if dead, etc.
def IntrNoMem : IntrinsicProperty;
// IntrReadMem - This intrinsic only reads from memory. It does not write to
// memory and has no other side effects. Therefore, it cannot be moved across
// potentially aliasing stores. However, it can be reordered otherwise and can
// be deleted if dead.
def IntrReadMem : IntrinsicProperty;
// IntrWriteMem - This intrinsic only writes to memory, but does not read from
// memory, and has no other side effects. This means dead stores before calls
// to this intrinsics may be removed.
def IntrWriteMem : IntrinsicProperty;
// IntrArgMemOnly - This intrinsic only accesses memory that its pointer-typed
// argument(s) points to, but may access an unspecified amount. Other than
// reads from and (possibly volatile) writes to memory, it has no side effects.
def IntrArgMemOnly : IntrinsicProperty;
// IntrInaccessibleMemOnly -- This intrinsic only accesses memory that is not
// accessible by the module being compiled. This is a weaker form of IntrNoMem.
def IntrInaccessibleMemOnly : IntrinsicProperty;
// IntrInaccessibleMemOrArgMemOnly -- This intrinsic only accesses memory that
// its pointer-typed arguments point to or memory that is not accessible
// by the module being compiled. This is a weaker form of IntrArgMemOnly.
def IntrInaccessibleMemOrArgMemOnly : IntrinsicProperty;
// Commutative - This intrinsic is commutative: X op Y == Y op X.
def Commutative : IntrinsicProperty;
// Throws - This intrinsic can throw.
def Throws : IntrinsicProperty;
// NoCapture - The specified argument pointer is not captured by the intrinsic.
class NoCapture<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// Returned - The specified argument is always the return value of the
// intrinsic.
class Returned<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// ReadOnly - The specified argument pointer is not written to through the
// pointer by the intrinsic.
class ReadOnly<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// WriteOnly - The intrinsic does not read memory through the specified
// argument pointer.
class WriteOnly<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
// ReadNone - The specified argument pointer is not dereferenced by the
// intrinsic.
class ReadNone<int argNo> : IntrinsicProperty {
int ArgNo = argNo;
}
def IntrNoReturn : IntrinsicProperty;
// IntrCold - Calls to this intrinsic are cold.
// Parallels the cold attribute on LLVM IR functions.
def IntrCold : IntrinsicProperty;
// IntrNoduplicate - Calls to this intrinsic cannot be duplicated.
// Parallels the noduplicate attribute on LLVM IR functions.
def IntrNoDuplicate : IntrinsicProperty;
// IntrConvergent - Calls to this intrinsic are convergent and may not be made
// control-dependent on any additional values.
// Parallels the convergent attribute on LLVM IR functions.
def IntrConvergent : IntrinsicProperty;
// This property indicates that the intrinsic is safe to speculate.
def IntrSpeculatable : IntrinsicProperty;
// This property can be used to override the 'has no other side effects'
// language of the IntrNoMem, IntrReadMem, IntrWriteMem, and IntrArgMemOnly
// intrinsic properties. By default, intrinsics are assumed to have side
// effects, so this property is only necessary if you have defined one of
// the memory properties listed above.
// For this property, 'side effects' has the same meaning as 'side effects'
// defined by the hasSideEffects property of the TableGen Instruction class.
def IntrHasSideEffects : IntrinsicProperty;
//===----------------------------------------------------------------------===//
// Types used by intrinsics.
//===----------------------------------------------------------------------===//
class LLVMType<ValueType vt> {
ValueType VT = vt;
int isAny = 0;
}
class LLVMQualPointerType<LLVMType elty, int addrspace>
: LLVMType<iPTR>{
LLVMType ElTy = elty;
int AddrSpace = addrspace;
}
class LLVMPointerType<LLVMType elty>
: LLVMQualPointerType<elty, 0>;
class LLVMAnyPointerType<LLVMType elty>
: LLVMType<iPTRAny>{
LLVMType ElTy = elty;
let isAny = 1;
}
// Match the type of another intrinsic parameter. Number is an index into the
// list of overloaded types for the intrinsic, excluding all the fixed types.
// The Number value must refer to a previously listed type. For example:
// Intrinsic<[llvm_i32_ty], [llvm_i32_ty, llvm_anyfloat_ty, LLVMMatchType<0>]>
// has two overloaded types, the 2nd and 3rd arguments. LLVMMatchType<0>
// refers to the first overloaded type, which is the 2nd argument.
class LLVMMatchType<int num>
: LLVMType<OtherVT>{
int Number = num;
}
// Match the type of another intrinsic parameter that is expected to be based on
// an integral type (i.e. either iN or <N x iM>), but change the scalar size to
// be twice as wide or half as wide as the other type. This is only useful when
// the intrinsic is overloaded, so the matched type should be declared as iAny.
class LLVMExtendedType<int num> : LLVMMatchType<num>;
class LLVMTruncatedType<int num> : LLVMMatchType<num>;
// Match the scalar/vector of another intrinsic parameter but with a different
// element type. Either both are scalars or both are vectors with the same
// number of elements.
class LLVMScalarOrSameVectorWidth<int idx, LLVMType elty>
: LLVMMatchType<idx> {
ValueType ElTy = elty.VT;
}
class LLVMPointerTo<int num> : LLVMMatchType<num>;
class LLVMPointerToElt<int num> : LLVMMatchType<num>;
class LLVMVectorOfAnyPointersToElt<int num> : LLVMMatchType<num>;
// Match the type of another intrinsic parameter that is expected to be a
// vector type, but change the element count to be half as many
class LLVMHalfElementsVectorType<int num> : LLVMMatchType<num>;
def llvm_void_ty : LLVMType<isVoid>;
let isAny = 1 in {
def llvm_any_ty : LLVMType<Any>;
def llvm_anyint_ty : LLVMType<iAny>;
def llvm_anyfloat_ty : LLVMType<fAny>;
def llvm_anyvector_ty : LLVMType<vAny>;
}
def llvm_i1_ty : LLVMType<i1>;
def llvm_i8_ty : LLVMType<i8>;
def llvm_i16_ty : LLVMType<i16>;
def llvm_i32_ty : LLVMType<i32>;
def llvm_i64_ty : LLVMType<i64>;
def llvm_half_ty : LLVMType<f16>;
def llvm_float_ty : LLVMType<f32>;
def llvm_double_ty : LLVMType<f64>;
def llvm_f80_ty : LLVMType<f80>;
def llvm_f128_ty : LLVMType<f128>;
def llvm_ppcf128_ty : LLVMType<ppcf128>;
def llvm_ptr_ty : LLVMPointerType<llvm_i8_ty>; // i8*
def llvm_ptrptr_ty : LLVMPointerType<llvm_ptr_ty>; // i8**
def llvm_anyptr_ty : LLVMAnyPointerType<llvm_i8_ty>; // (space)i8*
def llvm_empty_ty : LLVMType<OtherVT>; // { }
def llvm_descriptor_ty : LLVMPointerType<llvm_empty_ty>; // { }*
def llvm_metadata_ty : LLVMType<MetadataVT>; // !{...}
def llvm_token_ty : LLVMType<token>; // token
def llvm_x86mmx_ty : LLVMType<x86mmx>;
def llvm_ptrx86mmx_ty : LLVMPointerType<llvm_x86mmx_ty>; // <1 x i64>*
def llvm_v2i1_ty : LLVMType<v2i1>; // 2 x i1
def llvm_v4i1_ty : LLVMType<v4i1>; // 4 x i1
def llvm_v8i1_ty : LLVMType<v8i1>; // 8 x i1
def llvm_v16i1_ty : LLVMType<v16i1>; // 16 x i1
def llvm_v32i1_ty : LLVMType<v32i1>; // 32 x i1
def llvm_v64i1_ty : LLVMType<v64i1>; // 64 x i1
def llvm_v512i1_ty : LLVMType<v512i1>; // 512 x i1
def llvm_v1024i1_ty : LLVMType<v1024i1>; //1024 x i1
def llvm_v1i8_ty : LLVMType<v1i8>; // 1 x i8
def llvm_v2i8_ty : LLVMType<v2i8>; // 2 x i8
def llvm_v4i8_ty : LLVMType<v4i8>; // 4 x i8
def llvm_v8i8_ty : LLVMType<v8i8>; // 8 x i8
def llvm_v16i8_ty : LLVMType<v16i8>; // 16 x i8
def llvm_v32i8_ty : LLVMType<v32i8>; // 32 x i8
def llvm_v64i8_ty : LLVMType<v64i8>; // 64 x i8
def llvm_v128i8_ty : LLVMType<v128i8>; //128 x i8
def llvm_v256i8_ty : LLVMType<v256i8>; //256 x i8
def llvm_v1i16_ty : LLVMType<v1i16>; // 1 x i16
def llvm_v2i16_ty : LLVMType<v2i16>; // 2 x i16
def llvm_v4i16_ty : LLVMType<v4i16>; // 4 x i16
def llvm_v8i16_ty : LLVMType<v8i16>; // 8 x i16
def llvm_v16i16_ty : LLVMType<v16i16>; // 16 x i16
def llvm_v32i16_ty : LLVMType<v32i16>; // 32 x i16
def llvm_v64i16_ty : LLVMType<v64i16>; // 64 x i16
def llvm_v128i16_ty : LLVMType<v128i16>; //128 x i16
def llvm_v1i32_ty : LLVMType<v1i32>; // 1 x i32
def llvm_v2i32_ty : LLVMType<v2i32>; // 2 x i32
def llvm_v4i32_ty : LLVMType<v4i32>; // 4 x i32
def llvm_v8i32_ty : LLVMType<v8i32>; // 8 x i32
def llvm_v16i32_ty : LLVMType<v16i32>; // 16 x i32
def llvm_v32i32_ty : LLVMType<v32i32>; // 32 x i32
def llvm_v64i32_ty : LLVMType<v64i32>; // 64 x i32
def llvm_v1i64_ty : LLVMType<v1i64>; // 1 x i64
def llvm_v2i64_ty : LLVMType<v2i64>; // 2 x i64
def llvm_v4i64_ty : LLVMType<v4i64>; // 4 x i64
def llvm_v8i64_ty : LLVMType<v8i64>; // 8 x i64
def llvm_v16i64_ty : LLVMType<v16i64>; // 16 x i64
def llvm_v32i64_ty : LLVMType<v32i64>; // 32 x i64
def llvm_v1i128_ty : LLVMType<v1i128>; // 1 x i128
def llvm_v2f16_ty : LLVMType<v2f16>; // 2 x half (__fp16)
def llvm_v4f16_ty : LLVMType<v4f16>; // 4 x half (__fp16)
def llvm_v8f16_ty : LLVMType<v8f16>; // 8 x half (__fp16)
def llvm_v1f32_ty : LLVMType<v1f32>; // 1 x float
def llvm_v2f32_ty : LLVMType<v2f32>; // 2 x float
def llvm_v4f32_ty : LLVMType<v4f32>; // 4 x float
def llvm_v8f32_ty : LLVMType<v8f32>; // 8 x float
def llvm_v16f32_ty : LLVMType<v16f32>; // 16 x float
def llvm_v1f64_ty : LLVMType<v1f64>; // 1 x double
def llvm_v2f64_ty : LLVMType<v2f64>; // 2 x double
def llvm_v4f64_ty : LLVMType<v4f64>; // 4 x double
def llvm_v8f64_ty : LLVMType<v8f64>; // 8 x double
def llvm_vararg_ty : LLVMType<isVoid>; // this means vararg here
//===----------------------------------------------------------------------===//
// Intrinsic Definitions.
//===----------------------------------------------------------------------===//
// Intrinsic class - This is used to define one LLVM intrinsic. The name of the
// intrinsic definition should start with "int_", then match the LLVM intrinsic
// name with the "llvm." prefix removed, and all "."s turned into "_"s. For
// example, llvm.bswap.i16 -> int_bswap_i16.
//
// * RetTypes is a list containing the return types expected for the
// intrinsic.
// * ParamTypes is a list containing the parameter types expected for the
// intrinsic.
// * Properties can be set to describe the behavior of the intrinsic.
//
class Intrinsic<list<LLVMType> ret_types,
list<LLVMType> param_types = [],
list<IntrinsicProperty> intr_properties = [],
string name = "",
list<SDNodeProperty> sd_properties = []> : SDPatternOperator {
string LLVMName = name;
string TargetPrefix = ""; // Set to a prefix for target-specific intrinsics.
list<LLVMType> RetTypes = ret_types;
list<LLVMType> ParamTypes = param_types;
list<IntrinsicProperty> IntrProperties = intr_properties;
let Properties = sd_properties;
bit isTarget = 0;
}
/// GCCBuiltin - If this intrinsic exactly corresponds to a GCC builtin, this
/// specifies the name of the builtin. This provides automatic CBE and CFE
/// support.
class GCCBuiltin<string name> {
string GCCBuiltinName = name;
}
class MSBuiltin<string name> {
string MSBuiltinName = name;
}
//===--------------- Variable Argument Handling Intrinsics ----------------===//
//
def int_vastart : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_start">;
def int_vacopy : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty], [],
"llvm.va_copy">;
def int_vaend : Intrinsic<[], [llvm_ptr_ty], [], "llvm.va_end">;
//===------------------- Garbage Collection Intrinsics --------------------===//
//
def int_gcroot : Intrinsic<[],
[llvm_ptrptr_ty, llvm_ptr_ty]>;
def int_gcread : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_ptrptr_ty],
[IntrReadMem, IntrArgMemOnly]>;
def int_gcwrite : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty, llvm_ptrptr_ty],
[IntrArgMemOnly, NoCapture<1>, NoCapture<2>]>;
//===------------------- ObjC ARC runtime Intrinsics --------------------===//
//
// Note these are to support the Objective-C ARC optimizer which wants to
// eliminate retain and releases where possible.
def int_objc_autorelease : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_autoreleasePoolPop : Intrinsic<[], [llvm_ptr_ty]>;
def int_objc_autoreleasePoolPush : Intrinsic<[llvm_ptr_ty], []>;
def int_objc_autoreleaseReturnValue : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_copyWeak : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
def int_objc_destroyWeak : Intrinsic<[], [llvm_ptrptr_ty]>;
def int_objc_initWeak : Intrinsic<[llvm_ptr_ty],
[llvm_ptrptr_ty,
llvm_ptr_ty]>;
def int_objc_loadWeak : Intrinsic<[llvm_ptr_ty],
[llvm_ptrptr_ty]>;
def int_objc_loadWeakRetained : Intrinsic<[llvm_ptr_ty],
[llvm_ptrptr_ty]>;
def int_objc_moveWeak : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
def int_objc_release : Intrinsic<[], [llvm_ptr_ty]>;
def int_objc_retain : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retainAutorelease : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retainAutoreleaseReturnValue : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retainAutoreleasedReturnValue : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retainBlock : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_storeStrong : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptr_ty]>;
def int_objc_storeWeak : Intrinsic<[llvm_ptr_ty],
[llvm_ptrptr_ty,
llvm_ptr_ty]>;
def int_objc_clang_arc_use : Intrinsic<[],
[llvm_vararg_ty]>;
def int_objc_unsafeClaimAutoreleasedReturnValue : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retainedObject : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_unretainedObject : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_unretainedPointer : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_retain_autorelease : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty]>;
def int_objc_sync_enter : Intrinsic<[llvm_i32_ty],
[llvm_ptr_ty]>;
def int_objc_sync_exit : Intrinsic<[llvm_i32_ty],
[llvm_ptr_ty]>;
def int_objc_arc_annotation_topdown_bbstart : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
def int_objc_arc_annotation_topdown_bbend : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
def int_objc_arc_annotation_bottomup_bbstart : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
def int_objc_arc_annotation_bottomup_bbend : Intrinsic<[],
[llvm_ptrptr_ty,
llvm_ptrptr_ty]>;
//===--------------------- Code Generator Intrinsics ----------------------===//
//
def int_returnaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_addressofreturnaddress : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
def int_frameaddress : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty], [IntrNoMem]>;
def int_sponentry : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
def int_read_register : Intrinsic<[llvm_anyint_ty], [llvm_metadata_ty],
[IntrReadMem], "llvm.read_register">;
def int_write_register : Intrinsic<[], [llvm_metadata_ty, llvm_anyint_ty],
[], "llvm.write_register">;
// Gets the address of the local variable area. This is typically a copy of the
// stack, frame, or base pointer depending on the type of prologue.
def int_localaddress : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
// Escapes local variables to allow access from other functions.
def int_localescape : Intrinsic<[], [llvm_vararg_ty]>;
// Given a function and the localaddress of a parent frame, returns a pointer
// to an escaped allocation indicated by the index.
def int_localrecover : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty],
[IntrNoMem]>;
// Given the frame pointer passed into an SEH filter function, returns a
// pointer to the local variable area suitable for use with llvm.localrecover.
def int_eh_recoverfp : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_ptr_ty],
[IntrNoMem]>;
// Note: we treat stacksave/stackrestore as writemem because we don't otherwise
// model their dependencies on allocas.
def int_stacksave : Intrinsic<[llvm_ptr_ty]>,
GCCBuiltin<"__builtin_stack_save">;
def int_stackrestore : Intrinsic<[], [llvm_ptr_ty]>,
GCCBuiltin<"__builtin_stack_restore">;
def int_get_dynamic_area_offset : Intrinsic<[llvm_anyint_ty]>;
def int_thread_pointer : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>,
GCCBuiltin<"__builtin_thread_pointer">;
// IntrInaccessibleMemOrArgMemOnly is a little more pessimistic than strictly
// necessary for prefetch, however it does conveniently prevent the prefetch
// from being reordered overly much with respect to nearby access to the same
// memory while not impeding optimization.
def int_prefetch
: Intrinsic<[], [ llvm_ptr_ty, llvm_i32_ty, llvm_i32_ty, llvm_i32_ty ],
[ IntrInaccessibleMemOrArgMemOnly, ReadOnly<0>, NoCapture<0> ]>;
def int_pcmarker : Intrinsic<[], [llvm_i32_ty]>;
def int_readcyclecounter : Intrinsic<[llvm_i64_ty]>;
// The assume intrinsic is marked as arbitrarily writing so that proper
// control dependencies will be maintained.
def int_assume : Intrinsic<[], [llvm_i1_ty], []>;
// Stack Protector Intrinsic - The stackprotector intrinsic writes the stack
// guard to the correct place on the stack frame.
def int_stackprotector : Intrinsic<[], [llvm_ptr_ty, llvm_ptrptr_ty], []>;
def int_stackguard : Intrinsic<[llvm_ptr_ty], [], []>;
// A counter increment for instrumentation based profiling.
def int_instrprof_increment : Intrinsic<[],
[llvm_ptr_ty, llvm_i64_ty,
llvm_i32_ty, llvm_i32_ty],
[]>;
// A counter increment with step for instrumentation based profiling.
def int_instrprof_increment_step : Intrinsic<[],
[llvm_ptr_ty, llvm_i64_ty,
llvm_i32_ty, llvm_i32_ty, llvm_i64_ty],
[]>;
// A call to profile runtime for value profiling of target expressions
// through instrumentation based profiling.
def int_instrprof_value_profile : Intrinsic<[],
[llvm_ptr_ty, llvm_i64_ty,
llvm_i64_ty, llvm_i32_ty,
llvm_i32_ty],
[]>;
//===------------------- Standard C Library Intrinsics --------------------===//
//
def int_memcpy : Intrinsic<[],
[llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty,
llvm_i1_ty],
[IntrArgMemOnly, NoCapture<0>, NoCapture<1>,
WriteOnly<0>, ReadOnly<1>]>;
def int_memmove : Intrinsic<[],
[llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty,
llvm_i1_ty],
[IntrArgMemOnly, NoCapture<0>, NoCapture<1>,
ReadOnly<1>]>;
def int_memset : Intrinsic<[],
[llvm_anyptr_ty, llvm_i8_ty, llvm_anyint_ty,
llvm_i1_ty],
[IntrArgMemOnly, NoCapture<0>, WriteOnly<0>]>;
// FIXME: Add version of these floating point intrinsics which allow non-default
// rounding modes and FP exception handling.
let IntrProperties = [IntrNoMem, IntrSpeculatable] in {
def int_fma : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>,
LLVMMatchType<0>]>;
def int_fmuladd : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>,
LLVMMatchType<0>]>;
// These functions do not read memory, but are sensitive to the
// rounding mode. LLVM purposely does not model changes to the FP
// environment so they can be treated as readnone.
def int_sqrt : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_powi : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>, llvm_i32_ty]>;
def int_sin : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_cos : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_pow : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_log : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_log10: Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_log2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_exp : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_exp2 : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_fabs : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_copysign : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_floor : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_ceil : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_trunc : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_rint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_nearbyint : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_round : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>]>;
def int_canonicalize : Intrinsic<[llvm_anyfloat_ty], [LLVMMatchType<0>],
[IntrNoMem]>;
}
def int_minnum : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]
>;
def int_maxnum : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]
>;
def int_minimum : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]
>;
def int_maximum : Intrinsic<[llvm_anyfloat_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]
>;
// NOTE: these are internal interfaces.
def int_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>;
def int_longjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>;
def int_sigsetjmp : Intrinsic<[llvm_i32_ty] , [llvm_ptr_ty, llvm_i32_ty]>;
def int_siglongjmp : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty], [IntrNoReturn]>;
// Internal interface for object size checking
def int_objectsize : Intrinsic<[llvm_anyint_ty],
[llvm_anyptr_ty, llvm_i1_ty,
llvm_i1_ty, llvm_i1_ty],
[IntrNoMem, IntrSpeculatable]>,
GCCBuiltin<"__builtin_object_size">;
//===--------------- Constrained Floating Point Intrinsics ----------------===//
//
let IntrProperties = [IntrInaccessibleMemOnly] in {
def int_experimental_constrained_fadd : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_fsub : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_fmul : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_fdiv : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_frem : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_fma : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
// These intrinsics are sensitive to the rounding mode so we need constrained
// versions of each of them. When strict rounding and exception control are
// not required the non-constrained versions of these intrinsics should be
// used.
def int_experimental_constrained_sqrt : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_powi : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_i32_ty,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_sin : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_cos : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_pow : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_log : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_log10: Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_log2 : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_exp : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_exp2 : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_rint : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_nearbyint : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_maxnum : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_minnum : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_ceil : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_floor : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_round : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
def int_experimental_constrained_trunc : Intrinsic<[ llvm_anyfloat_ty ],
[ LLVMMatchType<0>,
llvm_metadata_ty,
llvm_metadata_ty ]>;
}
// FIXME: Add intrinsics for fcmp, fptrunc, fpext, fptoui and fptosi.
// FIXME: Add intrinsics for fabs and copysign?
//===------------------------- Expect Intrinsics --------------------------===//
//
def int_expect : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>,
LLVMMatchType<0>], [IntrNoMem]>;
//===-------------------- Bit Manipulation Intrinsics ---------------------===//
//
// None of these intrinsics accesses memory at all.
let IntrProperties = [IntrNoMem, IntrSpeculatable] in {
def int_bswap: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>;
def int_ctpop: Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>;
def int_ctlz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>;
def int_cttz : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>, llvm_i1_ty]>;
def int_bitreverse : Intrinsic<[llvm_anyint_ty], [LLVMMatchType<0>]>;
def int_fshl : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>;
def int_fshr : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>, LLVMMatchType<0>]>;
}
//===------------------------ Debugger Intrinsics -------------------------===//
//
// None of these intrinsics accesses memory at all...but that doesn't
// mean the optimizers can change them aggressively. Special handling
// needed in a few places. These synthetic intrinsics have no
// side-effects and just mark information about their operands.
let IntrProperties = [IntrNoMem, IntrSpeculatable] in {
def int_dbg_declare : Intrinsic<[],
[llvm_metadata_ty,
llvm_metadata_ty,
llvm_metadata_ty]>;
def int_dbg_value : Intrinsic<[],
[llvm_metadata_ty,
llvm_metadata_ty,
llvm_metadata_ty]>;
def int_dbg_addr : Intrinsic<[],
[llvm_metadata_ty,
llvm_metadata_ty,
llvm_metadata_ty]>;
def int_dbg_label : Intrinsic<[],
[llvm_metadata_ty]>;
}
//===------------------ Exception Handling Intrinsics----------------------===//
//
// The result of eh.typeid.for depends on the enclosing function, but inside a
// given function it is 'const' and may be CSE'd etc.
def int_eh_typeid_for : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty], [IntrNoMem]>;
def int_eh_return_i32 : Intrinsic<[], [llvm_i32_ty, llvm_ptr_ty]>;
def int_eh_return_i64 : Intrinsic<[], [llvm_i64_ty, llvm_ptr_ty]>;
// eh.exceptionpointer returns the pointer to the exception caught by
// the given `catchpad`.
def int_eh_exceptionpointer : Intrinsic<[llvm_anyptr_ty], [llvm_token_ty],
[IntrNoMem]>;
// Gets the exception code from a catchpad token. Only used on some platforms.
def int_eh_exceptioncode : Intrinsic<[llvm_i32_ty], [llvm_token_ty], [IntrNoMem]>;
// __builtin_unwind_init is an undocumented GCC intrinsic that causes all
// callee-saved registers to be saved and restored (regardless of whether they
// are used) in the calling function. It is used by libgcc_eh.
def int_eh_unwind_init: Intrinsic<[]>,
GCCBuiltin<"__builtin_unwind_init">;
def int_eh_dwarf_cfa : Intrinsic<[llvm_ptr_ty], [llvm_i32_ty]>;
let IntrProperties = [IntrNoMem] in {
def int_eh_sjlj_lsda : Intrinsic<[llvm_ptr_ty]>;
def int_eh_sjlj_callsite : Intrinsic<[], [llvm_i32_ty]>;
}
def int_eh_sjlj_functioncontext : Intrinsic<[], [llvm_ptr_ty]>;
def int_eh_sjlj_setjmp : Intrinsic<[llvm_i32_ty], [llvm_ptr_ty]>;
def int_eh_sjlj_longjmp : Intrinsic<[], [llvm_ptr_ty], [IntrNoReturn]>;
def int_eh_sjlj_setup_dispatch : Intrinsic<[], []>;
//===---------------- Generic Variable Attribute Intrinsics----------------===//
//
def int_var_annotation : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty,
llvm_ptr_ty, llvm_i32_ty],
[], "llvm.var.annotation">;
def int_ptr_annotation : Intrinsic<[LLVMAnyPointerType<llvm_anyint_ty>],
[LLVMMatchType<0>, llvm_ptr_ty, llvm_ptr_ty,
llvm_i32_ty],
[], "llvm.ptr.annotation">;
def int_annotation : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, llvm_ptr_ty,
llvm_ptr_ty, llvm_i32_ty],
[], "llvm.annotation">;
// Annotates the current program point with metadata strings which are emitted
// as CodeView debug info records. This is expensive, as it disables inlining
// and is modelled as having side effects.
def int_codeview_annotation : Intrinsic<[], [llvm_metadata_ty],
[IntrInaccessibleMemOnly, IntrNoDuplicate],
"llvm.codeview.annotation">;
//===------------------------ Trampoline Intrinsics -----------------------===//
//
def int_init_trampoline : Intrinsic<[],
[llvm_ptr_ty, llvm_ptr_ty, llvm_ptr_ty],
[IntrArgMemOnly, NoCapture<0>]>,
GCCBuiltin<"__builtin_init_trampoline">;
def int_adjust_trampoline : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty],
[IntrReadMem, IntrArgMemOnly]>,
GCCBuiltin<"__builtin_adjust_trampoline">;
//===------------------------ Overflow Intrinsics -------------------------===//
//
// Expose the carry flag from add operations on two integrals.
def int_sadd_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_uadd_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_ssub_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_usub_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_smul_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_umul_with_overflow : Intrinsic<[llvm_anyint_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
//===------------------------- Saturation Arithmetic Intrinsics ---------------------===//
//
def int_sadd_sat : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]>;
def int_uadd_sat : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable, Commutative]>;
def int_ssub_sat : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
def int_usub_sat : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>],
[IntrNoMem, IntrSpeculatable]>;
//===------------------------- Fixed Point Arithmetic Intrinsics ---------------------===//
//
def int_smul_fix : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>, llvm_i32_ty],
[IntrNoMem, IntrSpeculatable, Commutative]>;
def int_umul_fix : Intrinsic<[llvm_anyint_ty],
[LLVMMatchType<0>, LLVMMatchType<0>, llvm_i32_ty],
[IntrNoMem, IntrSpeculatable, Commutative]>;
//===------------------------- Memory Use Markers -------------------------===//
//
def int_lifetime_start : Intrinsic<[],
[llvm_i64_ty, llvm_anyptr_ty],
[IntrArgMemOnly, NoCapture<1>]>;
def int_lifetime_end : Intrinsic<[],
[llvm_i64_ty, llvm_anyptr_ty],
[IntrArgMemOnly, NoCapture<1>]>;
def int_invariant_start : Intrinsic<[llvm_descriptor_ty],
[llvm_i64_ty, llvm_anyptr_ty],
[IntrArgMemOnly, NoCapture<1>]>;
def int_invariant_end : Intrinsic<[],
[llvm_descriptor_ty, llvm_i64_ty,
llvm_anyptr_ty],
[IntrArgMemOnly, NoCapture<2>]>;
// launder.invariant.group can't be marked with 'readnone' (IntrNoMem),
// because it would cause CSE of two barriers with the same argument.
// Inaccessiblememonly says that the barrier doesn't read the argument,
// but it changes state not accessible to this module. This way
// we can DSE through the barrier because it doesn't read the value
// after store. Although the barrier doesn't modify any memory it
// can't be marked as readonly, because it would be possible to
// CSE 2 barriers with store in between.
// The argument also can't be marked with 'returned' attribute, because
// it would remove barrier.
// Note that it is still experimental, which means that its semantics
// might change in the future.
def int_launder_invariant_group : Intrinsic<[llvm_anyptr_ty],
[LLVMMatchType<0>],
[IntrInaccessibleMemOnly, IntrSpeculatable]>;
def int_strip_invariant_group : Intrinsic<[llvm_anyptr_ty],
[LLVMMatchType<0>],
[IntrSpeculatable, IntrNoMem]>;
//===------------------------ Stackmap Intrinsics -------------------------===//
//
def int_experimental_stackmap : Intrinsic<[],
[llvm_i64_ty, llvm_i32_ty, llvm_vararg_ty],
[Throws]>;
def int_experimental_patchpoint_void : Intrinsic<[],
[llvm_i64_ty, llvm_i32_ty,
llvm_ptr_ty, llvm_i32_ty,
llvm_vararg_ty],
[Throws]>;
def int_experimental_patchpoint_i64 : Intrinsic<[llvm_i64_ty],
[llvm_i64_ty, llvm_i32_ty,
llvm_ptr_ty, llvm_i32_ty,
llvm_vararg_ty],
[Throws]>;
//===------------------------ Garbage Collection Intrinsics ---------------===//
// These are documented in docs/Statepoint.rst
def int_experimental_gc_statepoint : Intrinsic<[llvm_token_ty],
[llvm_i64_ty, llvm_i32_ty,
llvm_anyptr_ty, llvm_i32_ty,
llvm_i32_ty, llvm_vararg_ty],
[Throws]>;
def int_experimental_gc_result : Intrinsic<[llvm_any_ty], [llvm_token_ty],
[IntrReadMem]>;
def int_experimental_gc_relocate : Intrinsic<[llvm_any_ty],
[llvm_token_ty, llvm_i32_ty, llvm_i32_ty],
[IntrReadMem]>;
//===------------------------ Coroutine Intrinsics ---------------===//
// These are documented in docs/Coroutines.rst
// Coroutine Structure Intrinsics.
def int_coro_id : Intrinsic<[llvm_token_ty], [llvm_i32_ty, llvm_ptr_ty,
llvm_ptr_ty, llvm_ptr_ty],
[IntrArgMemOnly, IntrReadMem,
ReadNone<1>, ReadOnly<2>, NoCapture<2>]>;
def int_coro_alloc : Intrinsic<[llvm_i1_ty], [llvm_token_ty], []>;
def int_coro_begin : Intrinsic<[llvm_ptr_ty], [llvm_token_ty, llvm_ptr_ty],
[WriteOnly<1>]>;
def int_coro_free : Intrinsic<[llvm_ptr_ty], [llvm_token_ty, llvm_ptr_ty],
[IntrReadMem, IntrArgMemOnly, ReadOnly<1>,
NoCapture<1>]>;
def int_coro_end : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_i1_ty], []>;
def int_coro_frame : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
def int_coro_noop : Intrinsic<[llvm_ptr_ty], [], [IntrNoMem]>;
def int_coro_size : Intrinsic<[llvm_anyint_ty], [], [IntrNoMem]>;
def int_coro_save : Intrinsic<[llvm_token_ty], [llvm_ptr_ty], []>;
def int_coro_suspend : Intrinsic<[llvm_i8_ty], [llvm_token_ty, llvm_i1_ty], []>;
def int_coro_param : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_ptr_ty],
[IntrNoMem, ReadNone<0>, ReadNone<1>]>;
// Coroutine Manipulation Intrinsics.
def int_coro_resume : Intrinsic<[], [llvm_ptr_ty], [Throws]>;
def int_coro_destroy : Intrinsic<[], [llvm_ptr_ty], [Throws]>;
def int_coro_done : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty],
[IntrArgMemOnly, ReadOnly<0>, NoCapture<0>]>;
def int_coro_promise : Intrinsic<[llvm_ptr_ty],
[llvm_ptr_ty, llvm_i32_ty, llvm_i1_ty],
[IntrNoMem, NoCapture<0>]>;
// Coroutine Lowering Intrinsics. Used internally by coroutine passes.
def int_coro_subfn_addr : Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_i8_ty],
[IntrReadMem, IntrArgMemOnly, ReadOnly<0>,
NoCapture<0>]>;
///===-------------------------- Other Intrinsics --------------------------===//
//
def int_flt_rounds : Intrinsic<[llvm_i32_ty]>,
GCCBuiltin<"__builtin_flt_rounds">;
def int_trap : Intrinsic<[], [], [IntrNoReturn, IntrCold]>,
GCCBuiltin<"__builtin_trap">;
def int_debugtrap : Intrinsic<[]>,
GCCBuiltin<"__builtin_debugtrap">;
// Support for dynamic deoptimization (or de-specialization)
def int_experimental_deoptimize : Intrinsic<[llvm_any_ty], [llvm_vararg_ty],
[Throws]>;
// Support for speculative runtime guards
def int_experimental_guard : Intrinsic<[], [llvm_i1_ty, llvm_vararg_ty],
[Throws]>;
// Supports widenable conditions for guards represented as explicit branches.
def int_experimental_widenable_condition : Intrinsic<[llvm_i1_ty], [],
[IntrInaccessibleMemOnly]>;
// NOP: calls/invokes to this intrinsic are removed by codegen
def int_donothing : Intrinsic<[], [], [IntrNoMem]>;
// This instruction has no actual effect, though it is treated by the optimizer
// has having opaque side effects. This may be inserted into loops to ensure
// that they are not removed even if they turn out to be empty, for languages
// which specify that infinite loops must be preserved.
def int_sideeffect : Intrinsic<[], [], [IntrInaccessibleMemOnly]>;
// Intrisics to support half precision floating point format
let IntrProperties = [IntrNoMem] in {
def int_convert_to_fp16 : Intrinsic<[llvm_i16_ty], [llvm_anyfloat_ty]>;
def int_convert_from_fp16 : Intrinsic<[llvm_anyfloat_ty], [llvm_i16_ty]>;
}
// Clear cache intrinsic, default to ignore (ie. emit nothing)
// maps to void __clear_cache() on supporting platforms
def int_clear_cache : Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty],
[], "llvm.clear_cache">;
// Intrinsic to detect whether its argument is a constant.
def int_is_constant : Intrinsic<[llvm_i1_ty], [llvm_any_ty], [IntrNoMem], "llvm.is.constant">;
//===-------------------------- Masked Intrinsics -------------------------===//
//
def int_masked_store : Intrinsic<[], [llvm_anyvector_ty,
LLVMAnyPointerType<LLVMMatchType<0>>,
llvm_i32_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[IntrArgMemOnly]>;
def int_masked_load : Intrinsic<[llvm_anyvector_ty],
[LLVMAnyPointerType<LLVMMatchType<0>>, llvm_i32_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>, LLVMMatchType<0>],
[IntrReadMem, IntrArgMemOnly]>;
def int_masked_gather: Intrinsic<[llvm_anyvector_ty],
[LLVMVectorOfAnyPointersToElt<0>, llvm_i32_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>,
LLVMMatchType<0>],
[IntrReadMem]>;
def int_masked_scatter: Intrinsic<[],
[llvm_anyvector_ty,
LLVMVectorOfAnyPointersToElt<0>, llvm_i32_ty,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>]>;
def int_masked_expandload: Intrinsic<[llvm_anyvector_ty],
[LLVMPointerToElt<0>,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>,
LLVMMatchType<0>],
[IntrReadMem]>;
def int_masked_compressstore: Intrinsic<[],
[llvm_anyvector_ty,
LLVMPointerToElt<0>,
LLVMScalarOrSameVectorWidth<0, llvm_i1_ty>],
[IntrArgMemOnly]>;
// Test whether a pointer is associated with a type metadata identifier.
def int_type_test : Intrinsic<[llvm_i1_ty], [llvm_ptr_ty, llvm_metadata_ty],
[IntrNoMem]>;
// Safely loads a function pointer from a virtual table pointer using type metadata.
def int_type_checked_load : Intrinsic<[llvm_ptr_ty, llvm_i1_ty],
[llvm_ptr_ty, llvm_i32_ty, llvm_metadata_ty],
[IntrNoMem]>;
// Create a branch funnel that implements an indirect call to a limited set of
// callees. This needs to be a musttail call.
def int_icall_branch_funnel : Intrinsic<[], [llvm_vararg_ty], []>;
def int_load_relative: Intrinsic<[llvm_ptr_ty], [llvm_ptr_ty, llvm_anyint_ty],
[IntrReadMem, IntrArgMemOnly]>;
def int_hwasan_check_memaccess :
Intrinsic<[], [llvm_ptr_ty, llvm_ptr_ty, llvm_i32_ty], [IntrInaccessibleMemOnly]>;
// Xray intrinsics
//===----------------------------------------------------------------------===//
// Custom event logging for x-ray.
// Takes a pointer to a string and the length of the string.
def int_xray_customevent : Intrinsic<[], [llvm_ptr_ty, llvm_i32_ty],
[NoCapture<0>, ReadOnly<0>, IntrWriteMem]>;
// Typed event logging for x-ray.
// Takes a numeric type tag, a pointer to a string and the length of the string.
def int_xray_typedevent : Intrinsic<[], [llvm_i16_ty, llvm_ptr_ty, llvm_i32_ty],
[NoCapture<1>, ReadOnly<1>, IntrWriteMem]>;
//===----------------------------------------------------------------------===//
//===------ Memory intrinsics with element-wise atomicity guarantees ------===//
//
// @llvm.memcpy.element.unordered.atomic.*(dest, src, length, elementsize)
def int_memcpy_element_unordered_atomic
: Intrinsic<[],
[
llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i32_ty
],
[
IntrArgMemOnly, NoCapture<0>, NoCapture<1>, WriteOnly<0>,
ReadOnly<1>
]>;
// @llvm.memmove.element.unordered.atomic.*(dest, src, length, elementsize)
def int_memmove_element_unordered_atomic
: Intrinsic<[],
[
llvm_anyptr_ty, llvm_anyptr_ty, llvm_anyint_ty, llvm_i32_ty
],
[
IntrArgMemOnly, NoCapture<0>, NoCapture<1>, WriteOnly<0>,
ReadOnly<1>
]>;
// @llvm.memset.element.unordered.atomic.*(dest, value, length, elementsize)
def int_memset_element_unordered_atomic
: Intrinsic<[], [ llvm_anyptr_ty, llvm_i8_ty, llvm_anyint_ty, llvm_i32_ty ],
[ IntrArgMemOnly, NoCapture<0>, WriteOnly<0> ]>;
//===------------------------ Reduction Intrinsics ------------------------===//
//
def int_experimental_vector_reduce_fadd : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyfloat_ty,
llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_fmul : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyfloat_ty,
llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_add : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_mul : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_and : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_or : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_xor : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_smax : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_smin : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_umax : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_umin : Intrinsic<[llvm_anyint_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_fmax : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
def int_experimental_vector_reduce_fmin : Intrinsic<[llvm_anyfloat_ty],
[llvm_anyvector_ty],
[IntrNoMem]>;
//===----- Intrinsics that are used to provide predicate information -----===//
def int_ssa_copy : Intrinsic<[llvm_any_ty], [LLVMMatchType<0>],
[IntrNoMem, Returned<0>]>;
//===----------------------------------------------------------------------===//
// Target-specific intrinsics
//===----------------------------------------------------------------------===//
include "llvm/IR/IntrinsicsPowerPC.td"
include "llvm/IR/IntrinsicsX86.td"
include "llvm/IR/IntrinsicsARM.td"
include "llvm/IR/IntrinsicsAArch64.td"
include "llvm/IR/IntrinsicsXCore.td"
include "llvm/IR/IntrinsicsHexagon.td"
include "llvm/IR/IntrinsicsNVVM.td"
include "llvm/IR/IntrinsicsMips.td"
include "llvm/IR/IntrinsicsAMDGPU.td"
include "llvm/IR/IntrinsicsBPF.td"
include "llvm/IR/IntrinsicsSystemZ.td"
include "llvm/IR/IntrinsicsWebAssembly.td"
include "llvm/IR/IntrinsicsRISCV.td"