| //===- MachinePipeliner.h - Machine Software Pipeliner Pass -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. |
| // |
| // Software pipelining (SWP) is an instruction scheduling technique for loops |
| // that overlap loop iterations and exploits ILP via a compiler transformation. |
| // |
| // Swing Modulo Scheduling is an implementation of software pipelining |
| // that generates schedules that are near optimal in terms of initiation |
| // interval, register requirements, and stage count. See the papers: |
| // |
| // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, |
| // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Proceedings of the 1996 |
| // Conference on Parallel Architectures and Compilation Techiniques. |
| // |
| // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. |
| // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE |
| // Transactions on Computers, Vol. 50, No. 3, 2001. |
| // |
| // "An Implementation of Swing Modulo Scheduling With Extensions for |
| // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at |
| // Urbana-Champaign, 2005. |
| // |
| // |
| // The SMS algorithm consists of three main steps after computing the minimal |
| // initiation interval (MII). |
| // 1) Analyze the dependence graph and compute information about each |
| // instruction in the graph. |
| // 2) Order the nodes (instructions) by priority based upon the heuristics |
| // described in the algorithm. |
| // 3) Attempt to schedule the nodes in the specified order using the MII. |
| // |
| //===----------------------------------------------------------------------===// |
| #ifndef LLVM_LIB_CODEGEN_MACHINEPIPELINER_H |
| #define LLVM_LIB_CODEGEN_MACHINEPIPELINER_H |
| |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/RegisterClassInfo.h" |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| |
| namespace llvm { |
| |
| class NodeSet; |
| class SMSchedule; |
| |
| extern cl::opt<bool> SwpEnableCopyToPhi; |
| |
| /// The main class in the implementation of the target independent |
| /// software pipeliner pass. |
| class MachinePipeliner : public MachineFunctionPass { |
| public: |
| MachineFunction *MF = nullptr; |
| const MachineLoopInfo *MLI = nullptr; |
| const MachineDominatorTree *MDT = nullptr; |
| const InstrItineraryData *InstrItins; |
| const TargetInstrInfo *TII = nullptr; |
| RegisterClassInfo RegClassInfo; |
| bool disabledByPragma = false; |
| unsigned II_setByPragma = 0; |
| |
| #ifndef NDEBUG |
| static int NumTries; |
| #endif |
| |
| /// Cache the target analysis information about the loop. |
| struct LoopInfo { |
| MachineBasicBlock *TBB = nullptr; |
| MachineBasicBlock *FBB = nullptr; |
| SmallVector<MachineOperand, 4> BrCond; |
| MachineInstr *LoopInductionVar = nullptr; |
| MachineInstr *LoopCompare = nullptr; |
| }; |
| LoopInfo LI; |
| |
| static char ID; |
| |
| MachinePipeliner() : MachineFunctionPass(ID) { |
| initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnMachineFunction(MachineFunction &MF) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addRequired<MachineLoopInfo>(); |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<LiveIntervals>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| void preprocessPhiNodes(MachineBasicBlock &B); |
| bool canPipelineLoop(MachineLoop &L); |
| bool scheduleLoop(MachineLoop &L); |
| bool swingModuloScheduler(MachineLoop &L); |
| void setPragmaPipelineOptions(MachineLoop &L); |
| }; |
| |
| /// This class builds the dependence graph for the instructions in a loop, |
| /// and attempts to schedule the instructions using the SMS algorithm. |
| class SwingSchedulerDAG : public ScheduleDAGInstrs { |
| MachinePipeliner &Pass; |
| /// The minimum initiation interval between iterations for this schedule. |
| unsigned MII = 0; |
| /// The maximum initiation interval between iterations for this schedule. |
| unsigned MAX_II = 0; |
| /// Set to true if a valid pipelined schedule is found for the loop. |
| bool Scheduled = false; |
| MachineLoop &Loop; |
| LiveIntervals &LIS; |
| const RegisterClassInfo &RegClassInfo; |
| unsigned II_setByPragma = 0; |
| |
| /// A toplogical ordering of the SUnits, which is needed for changing |
| /// dependences and iterating over the SUnits. |
| ScheduleDAGTopologicalSort Topo; |
| |
| struct NodeInfo { |
| int ASAP = 0; |
| int ALAP = 0; |
| int ZeroLatencyDepth = 0; |
| int ZeroLatencyHeight = 0; |
| |
| NodeInfo() = default; |
| }; |
| /// Computed properties for each node in the graph. |
| std::vector<NodeInfo> ScheduleInfo; |
| |
| enum OrderKind { BottomUp = 0, TopDown = 1 }; |
| /// Computed node ordering for scheduling. |
| SetVector<SUnit *> NodeOrder; |
| |
| using NodeSetType = SmallVector<NodeSet, 8>; |
| using ValueMapTy = DenseMap<unsigned, unsigned>; |
| using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>; |
| using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>; |
| |
| /// Instructions to change when emitting the final schedule. |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; |
| |
| /// We may create a new instruction, so remember it because it |
| /// must be deleted when the pass is finished. |
| SmallPtrSet<MachineInstr *, 4> NewMIs; |
| |
| /// Ordered list of DAG postprocessing steps. |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations; |
| |
| /// Helper class to implement Johnson's circuit finding algorithm. |
| class Circuits { |
| std::vector<SUnit> &SUnits; |
| SetVector<SUnit *> Stack; |
| BitVector Blocked; |
| SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; |
| SmallVector<SmallVector<int, 4>, 16> AdjK; |
| // Node to Index from ScheduleDAGTopologicalSort |
| std::vector<int> *Node2Idx; |
| unsigned NumPaths; |
| static unsigned MaxPaths; |
| |
| public: |
| Circuits(std::vector<SUnit> &SUs, ScheduleDAGTopologicalSort &Topo) |
| : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) { |
| Node2Idx = new std::vector<int>(SUs.size()); |
| unsigned Idx = 0; |
| for (const auto &NodeNum : Topo) |
| Node2Idx->at(NodeNum) = Idx++; |
| } |
| |
| ~Circuits() { delete Node2Idx; } |
| |
| /// Reset the data structures used in the circuit algorithm. |
| void reset() { |
| Stack.clear(); |
| Blocked.reset(); |
| B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); |
| NumPaths = 0; |
| } |
| |
| void createAdjacencyStructure(SwingSchedulerDAG *DAG); |
| bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); |
| void unblock(int U); |
| }; |
| |
| struct CopyToPhiMutation : public ScheduleDAGMutation { |
| void apply(ScheduleDAGInstrs *DAG) override; |
| }; |
| |
| public: |
| SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, |
| const RegisterClassInfo &rci, unsigned II) |
| : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis), |
| RegClassInfo(rci), II_setByPragma(II), Topo(SUnits, &ExitSU) { |
| P.MF->getSubtarget().getSMSMutations(Mutations); |
| if (SwpEnableCopyToPhi) |
| Mutations.push_back(llvm::make_unique<CopyToPhiMutation>()); |
| } |
| |
| void schedule() override; |
| void finishBlock() override; |
| |
| /// Return true if the loop kernel has been scheduled. |
| bool hasNewSchedule() { return Scheduled; } |
| |
| /// Return the earliest time an instruction may be scheduled. |
| int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } |
| |
| /// Return the latest time an instruction my be scheduled. |
| int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } |
| |
| /// The mobility function, which the number of slots in which |
| /// an instruction may be scheduled. |
| int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } |
| |
| /// The depth, in the dependence graph, for a node. |
| unsigned getDepth(SUnit *Node) { return Node->getDepth(); } |
| |
| /// The maximum unweighted length of a path from an arbitrary node to the |
| /// given node in which each edge has latency 0 |
| int getZeroLatencyDepth(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyDepth; |
| } |
| |
| /// The height, in the dependence graph, for a node. |
| unsigned getHeight(SUnit *Node) { return Node->getHeight(); } |
| |
| /// The maximum unweighted length of a path from the given node to an |
| /// arbitrary node in which each edge has latency 0 |
| int getZeroLatencyHeight(SUnit *Node) { |
| return ScheduleInfo[Node->NodeNum].ZeroLatencyHeight; |
| } |
| |
| /// Return true if the dependence is a back-edge in the data dependence graph. |
| /// Since the DAG doesn't contain cycles, we represent a cycle in the graph |
| /// using an anti dependence from a Phi to an instruction. |
| bool isBackedge(SUnit *Source, const SDep &Dep) { |
| if (Dep.getKind() != SDep::Anti) |
| return false; |
| return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); |
| } |
| |
| bool isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc = true); |
| |
| /// The distance function, which indicates that operation V of iteration I |
| /// depends on operations U of iteration I-distance. |
| unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { |
| // Instructions that feed a Phi have a distance of 1. Computing larger |
| // values for arrays requires data dependence information. |
| if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) |
| return 1; |
| return 0; |
| } |
| |
| void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule); |
| |
| void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs); |
| |
| /// Return the new base register that was stored away for the changed |
| /// instruction. |
| unsigned getInstrBaseReg(SUnit *SU) { |
| DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = |
| InstrChanges.find(SU); |
| if (It != InstrChanges.end()) |
| return It->second.first; |
| return 0; |
| } |
| |
| void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) { |
| Mutations.push_back(std::move(Mutation)); |
| } |
| |
| static bool classof(const ScheduleDAGInstrs *DAG) { return true; } |
| |
| private: |
| void addLoopCarriedDependences(AliasAnalysis *AA); |
| void updatePhiDependences(); |
| void changeDependences(); |
| unsigned calculateResMII(); |
| unsigned calculateRecMII(NodeSetType &RecNodeSets); |
| void findCircuits(NodeSetType &NodeSets); |
| void fuseRecs(NodeSetType &NodeSets); |
| void removeDuplicateNodes(NodeSetType &NodeSets); |
| void computeNodeFunctions(NodeSetType &NodeSets); |
| void registerPressureFilter(NodeSetType &NodeSets); |
| void colocateNodeSets(NodeSetType &NodeSets); |
| void checkNodeSets(NodeSetType &NodeSets); |
| void groupRemainingNodes(NodeSetType &NodeSets); |
| void addConnectedNodes(SUnit *SU, NodeSet &NewSet, |
| SetVector<SUnit *> &NodesAdded); |
| void computeNodeOrder(NodeSetType &NodeSets); |
| void checkValidNodeOrder(const NodeSetType &Circuits) const; |
| bool schedulePipeline(SMSchedule &Schedule); |
| void generatePipelinedLoop(SMSchedule &Schedule); |
| void generateProlog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &PrologBBs); |
| void generateEpilog(SMSchedule &Schedule, unsigned LastStage, |
| MachineBasicBlock *KernelBB, ValueMapTy *VRMap, |
| MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); |
| void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, |
| MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap, unsigned LastStageNum, |
| unsigned CurStageNum, bool IsLast); |
| void removeDeadInstructions(MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs); |
| void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, |
| SMSchedule &Schedule); |
| void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, |
| MBBVectorTy &EpilogBBs, SMSchedule &Schedule, |
| ValueMapTy *VRMap); |
| bool computeDelta(MachineInstr &MI, unsigned &Delta); |
| void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, |
| unsigned Num); |
| MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum); |
| MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, |
| unsigned InstStageNum, |
| SMSchedule &Schedule); |
| void updateInstruction(MachineInstr *NewMI, bool LastDef, |
| unsigned CurStageNum, unsigned InstrStageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap); |
| MachineInstr *findDefInLoop(unsigned Reg); |
| unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, |
| unsigned LoopStage, ValueMapTy *VRMap, |
| MachineBasicBlock *BB); |
| void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, |
| SMSchedule &Schedule, ValueMapTy *VRMap, |
| InstrMapTy &InstrMap); |
| void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, |
| InstrMapTy &InstrMap, unsigned CurStageNum, |
| unsigned PhiNum, MachineInstr *Phi, |
| unsigned OldReg, unsigned NewReg, |
| unsigned PrevReg = 0); |
| bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, |
| unsigned &OffsetPos, unsigned &NewBase, |
| int64_t &NewOffset); |
| void postprocessDAG(); |
| /// Set the Minimum Initiation Interval for this schedule attempt. |
| void setMII(unsigned ResMII, unsigned RecMII); |
| /// Set the Maximum Initiation Interval for this schedule attempt. |
| void setMAX_II(); |
| }; |
| |
| /// A NodeSet contains a set of SUnit DAG nodes with additional information |
| /// that assigns a priority to the set. |
| class NodeSet { |
| SetVector<SUnit *> Nodes; |
| bool HasRecurrence = false; |
| unsigned RecMII = 0; |
| int MaxMOV = 0; |
| unsigned MaxDepth = 0; |
| unsigned Colocate = 0; |
| SUnit *ExceedPressure = nullptr; |
| unsigned Latency = 0; |
| |
| public: |
| using iterator = SetVector<SUnit *>::const_iterator; |
| |
| NodeSet() = default; |
| NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) { |
| Latency = 0; |
| for (unsigned i = 0, e = Nodes.size(); i < e; ++i) |
| for (const SDep &Succ : Nodes[i]->Succs) |
| if (Nodes.count(Succ.getSUnit())) |
| Latency += Succ.getLatency(); |
| } |
| |
| bool insert(SUnit *SU) { return Nodes.insert(SU); } |
| |
| void insert(iterator S, iterator E) { Nodes.insert(S, E); } |
| |
| template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { |
| return Nodes.remove_if(P); |
| } |
| |
| unsigned count(SUnit *SU) const { return Nodes.count(SU); } |
| |
| bool hasRecurrence() { return HasRecurrence; }; |
| |
| unsigned size() const { return Nodes.size(); } |
| |
| bool empty() const { return Nodes.empty(); } |
| |
| SUnit *getNode(unsigned i) const { return Nodes[i]; }; |
| |
| void setRecMII(unsigned mii) { RecMII = mii; }; |
| |
| void setColocate(unsigned c) { Colocate = c; }; |
| |
| void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } |
| |
| bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } |
| |
| int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } |
| |
| int getRecMII() { return RecMII; } |
| |
| /// Summarize node functions for the entire node set. |
| void computeNodeSetInfo(SwingSchedulerDAG *SSD) { |
| for (SUnit *SU : *this) { |
| MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); |
| MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); |
| } |
| } |
| |
| unsigned getLatency() { return Latency; } |
| |
| unsigned getMaxDepth() { return MaxDepth; } |
| |
| void clear() { |
| Nodes.clear(); |
| RecMII = 0; |
| HasRecurrence = false; |
| MaxMOV = 0; |
| MaxDepth = 0; |
| Colocate = 0; |
| ExceedPressure = nullptr; |
| } |
| |
| operator SetVector<SUnit *> &() { return Nodes; } |
| |
| /// Sort the node sets by importance. First, rank them by recurrence MII, |
| /// then by mobility (least mobile done first), and finally by depth. |
| /// Each node set may contain a colocate value which is used as the first |
| /// tie breaker, if it's set. |
| bool operator>(const NodeSet &RHS) const { |
| if (RecMII == RHS.RecMII) { |
| if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) |
| return Colocate < RHS.Colocate; |
| if (MaxMOV == RHS.MaxMOV) |
| return MaxDepth > RHS.MaxDepth; |
| return MaxMOV < RHS.MaxMOV; |
| } |
| return RecMII > RHS.RecMII; |
| } |
| |
| bool operator==(const NodeSet &RHS) const { |
| return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && |
| MaxDepth == RHS.MaxDepth; |
| } |
| |
| bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } |
| |
| iterator begin() { return Nodes.begin(); } |
| iterator end() { return Nodes.end(); } |
| void print(raw_ostream &os) const; |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD void dump() const; |
| #endif |
| }; |
| |
| /// This class represents the scheduled code. The main data structure is a |
| /// map from scheduled cycle to instructions. During scheduling, the |
| /// data structure explicitly represents all stages/iterations. When |
| /// the algorithm finshes, the schedule is collapsed into a single stage, |
| /// which represents instructions from different loop iterations. |
| /// |
| /// The SMS algorithm allows negative values for cycles, so the first cycle |
| /// in the schedule is the smallest cycle value. |
| class SMSchedule { |
| private: |
| /// Map from execution cycle to instructions. |
| DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; |
| |
| /// Map from instruction to execution cycle. |
| std::map<SUnit *, int> InstrToCycle; |
| |
| /// Map for each register and the max difference between its uses and def. |
| /// The first element in the pair is the max difference in stages. The |
| /// second is true if the register defines a Phi value and loop value is |
| /// scheduled before the Phi. |
| std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; |
| |
| /// Keep track of the first cycle value in the schedule. It starts |
| /// as zero, but the algorithm allows negative values. |
| int FirstCycle = 0; |
| |
| /// Keep track of the last cycle value in the schedule. |
| int LastCycle = 0; |
| |
| /// The initiation interval (II) for the schedule. |
| int InitiationInterval = 0; |
| |
| /// Target machine information. |
| const TargetSubtargetInfo &ST; |
| |
| /// Virtual register information. |
| MachineRegisterInfo &MRI; |
| |
| std::unique_ptr<DFAPacketizer> Resources; |
| |
| public: |
| SMSchedule(MachineFunction *mf) |
| : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), |
| Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {} |
| |
| void reset() { |
| ScheduledInstrs.clear(); |
| InstrToCycle.clear(); |
| RegToStageDiff.clear(); |
| FirstCycle = 0; |
| LastCycle = 0; |
| InitiationInterval = 0; |
| } |
| |
| /// Set the initiation interval for this schedule. |
| void setInitiationInterval(int ii) { InitiationInterval = ii; } |
| |
| /// Return the first cycle in the completed schedule. This |
| /// can be a negative value. |
| int getFirstCycle() const { return FirstCycle; } |
| |
| /// Return the last cycle in the finalized schedule. |
| int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } |
| |
| /// Return the cycle of the earliest scheduled instruction in the dependence |
| /// chain. |
| int earliestCycleInChain(const SDep &Dep); |
| |
| /// Return the cycle of the latest scheduled instruction in the dependence |
| /// chain. |
| int latestCycleInChain(const SDep &Dep); |
| |
| void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, |
| int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); |
| bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); |
| |
| /// Iterators for the cycle to instruction map. |
| using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator; |
| using const_sched_iterator = |
| DenseMap<int, std::deque<SUnit *>>::const_iterator; |
| |
| /// Return true if the instruction is scheduled at the specified stage. |
| bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { |
| return (stageScheduled(SU) == (int)StageNum); |
| } |
| |
| /// Return the stage for a scheduled instruction. Return -1 if |
| /// the instruction has not been scheduled. |
| int stageScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| if (it == InstrToCycle.end()) |
| return -1; |
| return (it->second - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the cycle for a scheduled instruction. This function normalizes |
| /// the first cycle to be 0. |
| unsigned cycleScheduled(SUnit *SU) const { |
| std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); |
| assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); |
| return (it->second - FirstCycle) % InitiationInterval; |
| } |
| |
| /// Return the maximum stage count needed for this schedule. |
| unsigned getMaxStageCount() { |
| return (LastCycle - FirstCycle) / InitiationInterval; |
| } |
| |
| /// Return the max. number of stages/iterations that can occur between a |
| /// register definition and its uses. |
| unsigned getStagesForReg(int Reg, unsigned CurStage) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) |
| return 1; |
| return Stages.first; |
| } |
| |
| /// The number of stages for a Phi is a little different than other |
| /// instructions. The minimum value computed in RegToStageDiff is 1 |
| /// because we assume the Phi is needed for at least 1 iteration. |
| /// This is not the case if the loop value is scheduled prior to the |
| /// Phi in the same stage. This function returns the number of stages |
| /// or iterations needed between the Phi definition and any uses. |
| unsigned getStagesForPhi(int Reg) { |
| std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; |
| if (Stages.second) |
| return Stages.first; |
| return Stages.first - 1; |
| } |
| |
| /// Return the instructions that are scheduled at the specified cycle. |
| std::deque<SUnit *> &getInstructions(int cycle) { |
| return ScheduledInstrs[cycle]; |
| } |
| |
| bool isValidSchedule(SwingSchedulerDAG *SSD); |
| void finalizeSchedule(SwingSchedulerDAG *SSD); |
| void orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, |
| std::deque<SUnit *> &Insts); |
| bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); |
| bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Def, |
| MachineOperand &MO); |
| void print(raw_ostream &os) const; |
| void dump() const; |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_LIB_CODEGEN_MACHINEPIPELINER_H |