blob: 6519937ec071882c03e184ef6f1b5c4caccd1af5 [file] [log] [blame]
//===- LiveRangeEdit.h - Basic tools for split and spill --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//
// The parent register is never changed. Instead, a number of new virtual
// registers are created and added to the newRegs vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
#define LLVM_CODEGEN_LIVERANGEEDIT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include <cassert>
namespace llvm {
class LiveIntervals;
class MachineBlockFrequencyInfo;
class MachineInstr;
class MachineLoopInfo;
class MachineOperand;
class TargetInstrInfo;
class TargetRegisterInfo;
class VirtRegMap;
class LiveRangeEdit : private MachineRegisterInfo::Delegate {
public:
/// Callback methods for LiveRangeEdit owners.
class Delegate {
virtual void anchor();
public:
virtual ~Delegate() = default;
/// Called immediately before erasing a dead machine instruction.
virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
/// Called when a virtual register is no longer used. Return false to defer
/// its deletion from LiveIntervals.
virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
/// Called before shrinking the live range of a virtual register.
virtual void LRE_WillShrinkVirtReg(unsigned) {}
/// Called after cloning a virtual register.
/// This is used for new registers representing connected components of Old.
virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {}
};
private:
LiveInterval *Parent;
SmallVectorImpl<unsigned> &NewRegs;
MachineRegisterInfo &MRI;
LiveIntervals &LIS;
VirtRegMap *VRM;
const TargetInstrInfo &TII;
Delegate *const TheDelegate;
/// FirstNew - Index of the first register added to NewRegs.
const unsigned FirstNew;
/// ScannedRemattable - true when remattable values have been identified.
bool ScannedRemattable = false;
/// DeadRemats - The saved instructions which have already been dead after
/// rematerialization but not deleted yet -- to be done in postOptimization.
SmallPtrSet<MachineInstr *, 32> *DeadRemats;
/// Remattable - Values defined by remattable instructions as identified by
/// tii.isTriviallyReMaterializable().
SmallPtrSet<const VNInfo *, 4> Remattable;
/// Rematted - Values that were actually rematted, and so need to have their
/// live range trimmed or entirely removed.
SmallPtrSet<const VNInfo *, 4> Rematted;
/// scanRemattable - Identify the Parent values that may rematerialize.
void scanRemattable(AliasAnalysis *aa);
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
SlotIndex UseIdx) const;
/// foldAsLoad - If LI has a single use and a single def that can be folded as
/// a load, eliminate the register by folding the def into the use.
bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr *> &Dead);
using ToShrinkSet = SetVector<LiveInterval *, SmallVector<LiveInterval *, 8>,
SmallPtrSet<LiveInterval *, 8>>;
/// Helper for eliminateDeadDefs.
void eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
AliasAnalysis *AA);
/// MachineRegisterInfo callback to notify when new virtual
/// registers are created.
void MRI_NoteNewVirtualRegister(unsigned VReg) override;
/// Check if MachineOperand \p MO is a last use/kill either in the
/// main live range of \p LI or in one of the matching subregister ranges.
bool useIsKill(const LiveInterval &LI, const MachineOperand &MO) const;
/// Create a new empty interval based on OldReg.
LiveInterval &createEmptyIntervalFrom(unsigned OldReg, bool createSubRanges);
public:
/// Create a LiveRangeEdit for breaking down parent into smaller pieces.
/// @param parent The register being spilled or split.
/// @param newRegs List to receive any new registers created. This needn't be
/// empty initially, any existing registers are ignored.
/// @param MF The MachineFunction the live range edit is taking place in.
/// @param lis The collection of all live intervals in this function.
/// @param vrm Map of virtual registers to physical registers for this
/// function. If NULL, no virtual register map updates will
/// be done. This could be the case if called before Regalloc.
/// @param deadRemats The collection of all the instructions defining an
/// original reg and are dead after remat.
LiveRangeEdit(LiveInterval *parent, SmallVectorImpl<unsigned> &newRegs,
MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm,
Delegate *delegate = nullptr,
SmallPtrSet<MachineInstr *, 32> *deadRemats = nullptr)
: Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis),
VRM(vrm), TII(*MF.getSubtarget().getInstrInfo()), TheDelegate(delegate),
FirstNew(newRegs.size()), DeadRemats(deadRemats) {
MRI.setDelegate(this);
}
~LiveRangeEdit() override { MRI.resetDelegate(this); }
LiveInterval &getParent() const {
assert(Parent && "No parent LiveInterval");
return *Parent;
}
unsigned getReg() const { return getParent().reg; }
/// Iterator for accessing the new registers added by this edit.
using iterator = SmallVectorImpl<unsigned>::const_iterator;
iterator begin() const { return NewRegs.begin() + FirstNew; }
iterator end() const { return NewRegs.end(); }
unsigned size() const { return NewRegs.size() - FirstNew; }
bool empty() const { return size() == 0; }
unsigned get(unsigned idx) const { return NewRegs[idx + FirstNew]; }
/// pop_back - It allows LiveRangeEdit users to drop new registers.
/// The context is when an original def instruction of a register is
/// dead after rematerialization, we still want to keep it for following
/// rematerializations. We save the def instruction in DeadRemats,
/// and replace the original dst register with a new dummy register so
/// the live range of original dst register can be shrinked normally.
/// We don't want to allocate phys register for the dummy register, so
/// we want to drop it from the NewRegs set.
void pop_back() { NewRegs.pop_back(); }
ArrayRef<unsigned> regs() const {
return makeArrayRef(NewRegs).slice(FirstNew);
}
/// createFrom - Create a new virtual register based on OldReg.
unsigned createFrom(unsigned OldReg);
/// create - Create a new register with the same class and original slot as
/// parent.
LiveInterval &createEmptyInterval() {
return createEmptyIntervalFrom(getReg(), true);
}
unsigned create() { return createFrom(getReg()); }
/// anyRematerializable - Return true if any parent values may be
/// rematerializable.
/// This function must be called before any rematerialization is attempted.
bool anyRematerializable(AliasAnalysis *);
/// checkRematerializable - Manually add VNI to the list of rematerializable
/// values if DefMI may be rematerializable.
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI,
AliasAnalysis *);
/// Remat - Information needed to rematerialize at a specific location.
struct Remat {
VNInfo *ParentVNI; // parent_'s value at the remat location.
MachineInstr *OrigMI = nullptr; // Instruction defining OrigVNI. It contains
// the real expr for remat.
explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI) {}
};
/// canRematerializeAt - Determine if ParentVNI can be rematerialized at
/// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
/// When cheapAsAMove is set, only cheap remats are allowed.
bool canRematerializeAt(Remat &RM, VNInfo *OrigVNI, SlotIndex UseIdx,
bool cheapAsAMove);
/// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
/// instruction into MBB before MI. The new instruction is mapped, but
/// liveness is not updated.
/// Return the SlotIndex of the new instruction.
SlotIndex rematerializeAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, unsigned DestReg,
const Remat &RM, const TargetRegisterInfo &,
bool Late = false);
/// markRematerialized - explicitly mark a value as rematerialized after doing
/// it manually.
void markRematerialized(const VNInfo *ParentVNI) {
Rematted.insert(ParentVNI);
}
/// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool didRematerialize(const VNInfo *ParentVNI) const {
return Rematted.count(ParentVNI);
}
/// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
/// to erase it from LIS.
void eraseVirtReg(unsigned Reg);
/// eliminateDeadDefs - Try to delete machine instructions that are now dead
/// (allDefsAreDead returns true). This may cause live intervals to be trimmed
/// and further dead efs to be eliminated.
/// RegsBeingSpilled lists registers currently being spilled by the register
/// allocator. These registers should not be split into new intervals
/// as currently those new intervals are not guaranteed to spill.
void eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
ArrayRef<unsigned> RegsBeingSpilled = None,
AliasAnalysis *AA = nullptr);
/// calculateRegClassAndHint - Recompute register class and hint for each new
/// register.
void calculateRegClassAndHint(MachineFunction &, const MachineLoopInfo &,
const MachineBlockFrequencyInfo &);
};
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVERANGEEDIT_H