| //===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LiveRange and LiveInterval classes. Given some |
| // numbering of each the machine instructions an interval [i, j) is said to be a |
| // live range for register v if there is no instruction with number j' >= j |
| // such that v is live at j' and there is no instruction with number i' < i such |
| // that v is live at i'. In this implementation ranges can have holes, |
| // i.e. a range might look like [1,20), [50,65), [1000,1001). Each |
| // individual segment is represented as an instance of LiveRange::Segment, |
| // and the whole range is represented as an instance of LiveRange. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_LIVEINTERVAL_H |
| #define LLVM_CODEGEN_LIVEINTERVAL_H |
| |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/IntEqClasses.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <functional> |
| #include <memory> |
| #include <set> |
| #include <tuple> |
| #include <utility> |
| |
| namespace llvm { |
| |
| class CoalescerPair; |
| class LiveIntervals; |
| class MachineRegisterInfo; |
| class raw_ostream; |
| |
| /// VNInfo - Value Number Information. |
| /// This class holds information about a machine level values, including |
| /// definition and use points. |
| /// |
| class VNInfo { |
| public: |
| using Allocator = BumpPtrAllocator; |
| |
| /// The ID number of this value. |
| unsigned id; |
| |
| /// The index of the defining instruction. |
| SlotIndex def; |
| |
| /// VNInfo constructor. |
| VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {} |
| |
| /// VNInfo constructor, copies values from orig, except for the value number. |
| VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {} |
| |
| /// Copy from the parameter into this VNInfo. |
| void copyFrom(VNInfo &src) { |
| def = src.def; |
| } |
| |
| /// Returns true if this value is defined by a PHI instruction (or was, |
| /// PHI instructions may have been eliminated). |
| /// PHI-defs begin at a block boundary, all other defs begin at register or |
| /// EC slots. |
| bool isPHIDef() const { return def.isBlock(); } |
| |
| /// Returns true if this value is unused. |
| bool isUnused() const { return !def.isValid(); } |
| |
| /// Mark this value as unused. |
| void markUnused() { def = SlotIndex(); } |
| }; |
| |
| /// Result of a LiveRange query. This class hides the implementation details |
| /// of live ranges, and it should be used as the primary interface for |
| /// examining live ranges around instructions. |
| class LiveQueryResult { |
| VNInfo *const EarlyVal; |
| VNInfo *const LateVal; |
| const SlotIndex EndPoint; |
| const bool Kill; |
| |
| public: |
| LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint, |
| bool Kill) |
| : EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill) |
| {} |
| |
| /// Return the value that is live-in to the instruction. This is the value |
| /// that will be read by the instruction's use operands. Return NULL if no |
| /// value is live-in. |
| VNInfo *valueIn() const { |
| return EarlyVal; |
| } |
| |
| /// Return true if the live-in value is killed by this instruction. This |
| /// means that either the live range ends at the instruction, or it changes |
| /// value. |
| bool isKill() const { |
| return Kill; |
| } |
| |
| /// Return true if this instruction has a dead def. |
| bool isDeadDef() const { |
| return EndPoint.isDead(); |
| } |
| |
| /// Return the value leaving the instruction, if any. This can be a |
| /// live-through value, or a live def. A dead def returns NULL. |
| VNInfo *valueOut() const { |
| return isDeadDef() ? nullptr : LateVal; |
| } |
| |
| /// Returns the value alive at the end of the instruction, if any. This can |
| /// be a live-through value, a live def or a dead def. |
| VNInfo *valueOutOrDead() const { |
| return LateVal; |
| } |
| |
| /// Return the value defined by this instruction, if any. This includes |
| /// dead defs, it is the value created by the instruction's def operands. |
| VNInfo *valueDefined() const { |
| return EarlyVal == LateVal ? nullptr : LateVal; |
| } |
| |
| /// Return the end point of the last live range segment to interact with |
| /// the instruction, if any. |
| /// |
| /// The end point is an invalid SlotIndex only if the live range doesn't |
| /// intersect the instruction at all. |
| /// |
| /// The end point may be at or past the end of the instruction's basic |
| /// block. That means the value was live out of the block. |
| SlotIndex endPoint() const { |
| return EndPoint; |
| } |
| }; |
| |
| /// This class represents the liveness of a register, stack slot, etc. |
| /// It manages an ordered list of Segment objects. |
| /// The Segments are organized in a static single assignment form: At places |
| /// where a new value is defined or different values reach a CFG join a new |
| /// segment with a new value number is used. |
| class LiveRange { |
| public: |
| /// This represents a simple continuous liveness interval for a value. |
| /// The start point is inclusive, the end point exclusive. These intervals |
| /// are rendered as [start,end). |
| struct Segment { |
| SlotIndex start; // Start point of the interval (inclusive) |
| SlotIndex end; // End point of the interval (exclusive) |
| VNInfo *valno = nullptr; // identifier for the value contained in this |
| // segment. |
| |
| Segment() = default; |
| |
| Segment(SlotIndex S, SlotIndex E, VNInfo *V) |
| : start(S), end(E), valno(V) { |
| assert(S < E && "Cannot create empty or backwards segment"); |
| } |
| |
| /// Return true if the index is covered by this segment. |
| bool contains(SlotIndex I) const { |
| return start <= I && I < end; |
| } |
| |
| /// Return true if the given interval, [S, E), is covered by this segment. |
| bool containsInterval(SlotIndex S, SlotIndex E) const { |
| assert((S < E) && "Backwards interval?"); |
| return (start <= S && S < end) && (start < E && E <= end); |
| } |
| |
| bool operator<(const Segment &Other) const { |
| return std::tie(start, end) < std::tie(Other.start, Other.end); |
| } |
| bool operator==(const Segment &Other) const { |
| return start == Other.start && end == Other.end; |
| } |
| |
| void dump() const; |
| }; |
| |
| using Segments = SmallVector<Segment, 2>; |
| using VNInfoList = SmallVector<VNInfo *, 2>; |
| |
| Segments segments; // the liveness segments |
| VNInfoList valnos; // value#'s |
| |
| // The segment set is used temporarily to accelerate initial computation |
| // of live ranges of physical registers in computeRegUnitRange. |
| // After that the set is flushed to the segment vector and deleted. |
| using SegmentSet = std::set<Segment>; |
| std::unique_ptr<SegmentSet> segmentSet; |
| |
| using iterator = Segments::iterator; |
| using const_iterator = Segments::const_iterator; |
| |
| iterator begin() { return segments.begin(); } |
| iterator end() { return segments.end(); } |
| |
| const_iterator begin() const { return segments.begin(); } |
| const_iterator end() const { return segments.end(); } |
| |
| using vni_iterator = VNInfoList::iterator; |
| using const_vni_iterator = VNInfoList::const_iterator; |
| |
| vni_iterator vni_begin() { return valnos.begin(); } |
| vni_iterator vni_end() { return valnos.end(); } |
| |
| const_vni_iterator vni_begin() const { return valnos.begin(); } |
| const_vni_iterator vni_end() const { return valnos.end(); } |
| |
| /// Constructs a new LiveRange object. |
| LiveRange(bool UseSegmentSet = false) |
| : segmentSet(UseSegmentSet ? llvm::make_unique<SegmentSet>() |
| : nullptr) {} |
| |
| /// Constructs a new LiveRange object by copying segments and valnos from |
| /// another LiveRange. |
| LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) { |
| assert(Other.segmentSet == nullptr && |
| "Copying of LiveRanges with active SegmentSets is not supported"); |
| assign(Other, Allocator); |
| } |
| |
| /// Copies values numbers and live segments from \p Other into this range. |
| void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) { |
| if (this == &Other) |
| return; |
| |
| assert(Other.segmentSet == nullptr && |
| "Copying of LiveRanges with active SegmentSets is not supported"); |
| // Duplicate valnos. |
| for (const VNInfo *VNI : Other.valnos) |
| createValueCopy(VNI, Allocator); |
| // Now we can copy segments and remap their valnos. |
| for (const Segment &S : Other.segments) |
| segments.push_back(Segment(S.start, S.end, valnos[S.valno->id])); |
| } |
| |
| /// advanceTo - Advance the specified iterator to point to the Segment |
| /// containing the specified position, or end() if the position is past the |
| /// end of the range. If no Segment contains this position, but the |
| /// position is in a hole, this method returns an iterator pointing to the |
| /// Segment immediately after the hole. |
| iterator advanceTo(iterator I, SlotIndex Pos) { |
| assert(I != end()); |
| if (Pos >= endIndex()) |
| return end(); |
| while (I->end <= Pos) ++I; |
| return I; |
| } |
| |
| const_iterator advanceTo(const_iterator I, SlotIndex Pos) const { |
| assert(I != end()); |
| if (Pos >= endIndex()) |
| return end(); |
| while (I->end <= Pos) ++I; |
| return I; |
| } |
| |
| /// find - Return an iterator pointing to the first segment that ends after |
| /// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster |
| /// when searching large ranges. |
| /// |
| /// If Pos is contained in a Segment, that segment is returned. |
| /// If Pos is in a hole, the following Segment is returned. |
| /// If Pos is beyond endIndex, end() is returned. |
| iterator find(SlotIndex Pos); |
| |
| const_iterator find(SlotIndex Pos) const { |
| return const_cast<LiveRange*>(this)->find(Pos); |
| } |
| |
| void clear() { |
| valnos.clear(); |
| segments.clear(); |
| } |
| |
| size_t size() const { |
| return segments.size(); |
| } |
| |
| bool hasAtLeastOneValue() const { return !valnos.empty(); } |
| |
| bool containsOneValue() const { return valnos.size() == 1; } |
| |
| unsigned getNumValNums() const { return (unsigned)valnos.size(); } |
| |
| /// getValNumInfo - Returns pointer to the specified val#. |
| /// |
| inline VNInfo *getValNumInfo(unsigned ValNo) { |
| return valnos[ValNo]; |
| } |
| inline const VNInfo *getValNumInfo(unsigned ValNo) const { |
| return valnos[ValNo]; |
| } |
| |
| /// containsValue - Returns true if VNI belongs to this range. |
| bool containsValue(const VNInfo *VNI) const { |
| return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id); |
| } |
| |
| /// getNextValue - Create a new value number and return it. MIIdx specifies |
| /// the instruction that defines the value number. |
| VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) { |
| VNInfo *VNI = |
| new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def); |
| valnos.push_back(VNI); |
| return VNI; |
| } |
| |
| /// createDeadDef - Make sure the range has a value defined at Def. |
| /// If one already exists, return it. Otherwise allocate a new value and |
| /// add liveness for a dead def. |
| VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc); |
| |
| /// Create a def of value @p VNI. Return @p VNI. If there already exists |
| /// a definition at VNI->def, the value defined there must be @p VNI. |
| VNInfo *createDeadDef(VNInfo *VNI); |
| |
| /// Create a copy of the given value. The new value will be identical except |
| /// for the Value number. |
| VNInfo *createValueCopy(const VNInfo *orig, |
| VNInfo::Allocator &VNInfoAllocator) { |
| VNInfo *VNI = |
| new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig); |
| valnos.push_back(VNI); |
| return VNI; |
| } |
| |
| /// RenumberValues - Renumber all values in order of appearance and remove |
| /// unused values. |
| void RenumberValues(); |
| |
| /// MergeValueNumberInto - This method is called when two value numbers |
| /// are found to be equivalent. This eliminates V1, replacing all |
| /// segments with the V1 value number with the V2 value number. This can |
| /// cause merging of V1/V2 values numbers and compaction of the value space. |
| VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2); |
| |
| /// Merge all of the live segments of a specific val# in RHS into this live |
| /// range as the specified value number. The segments in RHS are allowed |
| /// to overlap with segments in the current range, it will replace the |
| /// value numbers of the overlaped live segments with the specified value |
| /// number. |
| void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo); |
| |
| /// MergeValueInAsValue - Merge all of the segments of a specific val# |
| /// in RHS into this live range as the specified value number. |
| /// The segments in RHS are allowed to overlap with segments in the |
| /// current range, but only if the overlapping segments have the |
| /// specified value number. |
| void MergeValueInAsValue(const LiveRange &RHS, |
| const VNInfo *RHSValNo, VNInfo *LHSValNo); |
| |
| bool empty() const { return segments.empty(); } |
| |
| /// beginIndex - Return the lowest numbered slot covered. |
| SlotIndex beginIndex() const { |
| assert(!empty() && "Call to beginIndex() on empty range."); |
| return segments.front().start; |
| } |
| |
| /// endNumber - return the maximum point of the range of the whole, |
| /// exclusive. |
| SlotIndex endIndex() const { |
| assert(!empty() && "Call to endIndex() on empty range."); |
| return segments.back().end; |
| } |
| |
| bool expiredAt(SlotIndex index) const { |
| return index >= endIndex(); |
| } |
| |
| bool liveAt(SlotIndex index) const { |
| const_iterator r = find(index); |
| return r != end() && r->start <= index; |
| } |
| |
| /// Return the segment that contains the specified index, or null if there |
| /// is none. |
| const Segment *getSegmentContaining(SlotIndex Idx) const { |
| const_iterator I = FindSegmentContaining(Idx); |
| return I == end() ? nullptr : &*I; |
| } |
| |
| /// Return the live segment that contains the specified index, or null if |
| /// there is none. |
| Segment *getSegmentContaining(SlotIndex Idx) { |
| iterator I = FindSegmentContaining(Idx); |
| return I == end() ? nullptr : &*I; |
| } |
| |
| /// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL. |
| VNInfo *getVNInfoAt(SlotIndex Idx) const { |
| const_iterator I = FindSegmentContaining(Idx); |
| return I == end() ? nullptr : I->valno; |
| } |
| |
| /// getVNInfoBefore - Return the VNInfo that is live up to but not |
| /// necessarilly including Idx, or NULL. Use this to find the reaching def |
| /// used by an instruction at this SlotIndex position. |
| VNInfo *getVNInfoBefore(SlotIndex Idx) const { |
| const_iterator I = FindSegmentContaining(Idx.getPrevSlot()); |
| return I == end() ? nullptr : I->valno; |
| } |
| |
| /// Return an iterator to the segment that contains the specified index, or |
| /// end() if there is none. |
| iterator FindSegmentContaining(SlotIndex Idx) { |
| iterator I = find(Idx); |
| return I != end() && I->start <= Idx ? I : end(); |
| } |
| |
| const_iterator FindSegmentContaining(SlotIndex Idx) const { |
| const_iterator I = find(Idx); |
| return I != end() && I->start <= Idx ? I : end(); |
| } |
| |
| /// overlaps - Return true if the intersection of the two live ranges is |
| /// not empty. |
| bool overlaps(const LiveRange &other) const { |
| if (other.empty()) |
| return false; |
| return overlapsFrom(other, other.begin()); |
| } |
| |
| /// overlaps - Return true if the two ranges have overlapping segments |
| /// that are not coalescable according to CP. |
| /// |
| /// Overlapping segments where one range is defined by a coalescable |
| /// copy are allowed. |
| bool overlaps(const LiveRange &Other, const CoalescerPair &CP, |
| const SlotIndexes&) const; |
| |
| /// overlaps - Return true if the live range overlaps an interval specified |
| /// by [Start, End). |
| bool overlaps(SlotIndex Start, SlotIndex End) const; |
| |
| /// overlapsFrom - Return true if the intersection of the two live ranges |
| /// is not empty. The specified iterator is a hint that we can begin |
| /// scanning the Other range starting at I. |
| bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const; |
| |
| /// Returns true if all segments of the @p Other live range are completely |
| /// covered by this live range. |
| /// Adjacent live ranges do not affect the covering:the liverange |
| /// [1,5](5,10] covers (3,7]. |
| bool covers(const LiveRange &Other) const; |
| |
| /// Add the specified Segment to this range, merging segments as |
| /// appropriate. This returns an iterator to the inserted segment (which |
| /// may have grown since it was inserted). |
| iterator addSegment(Segment S); |
| |
| /// Attempt to extend a value defined after @p StartIdx to include @p Use. |
| /// Both @p StartIdx and @p Use should be in the same basic block. In case |
| /// of subranges, an extension could be prevented by an explicit "undef" |
| /// caused by a <def,read-undef> on a non-overlapping lane. The list of |
| /// location of such "undefs" should be provided in @p Undefs. |
| /// The return value is a pair: the first element is VNInfo of the value |
| /// that was extended (possibly nullptr), the second is a boolean value |
| /// indicating whether an "undef" was encountered. |
| /// If this range is live before @p Use in the basic block that starts at |
| /// @p StartIdx, and there is no intervening "undef", extend it to be live |
| /// up to @p Use, and return the pair {value, false}. If there is no |
| /// segment before @p Use and there is no "undef" between @p StartIdx and |
| /// @p Use, return {nullptr, false}. If there is an "undef" before @p Use, |
| /// return {nullptr, true}. |
| std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs, |
| SlotIndex StartIdx, SlotIndex Kill); |
| |
| /// Simplified version of the above "extendInBlock", which assumes that |
| /// no register lanes are undefined by <def,read-undef> operands. |
| /// If this range is live before @p Use in the basic block that starts |
| /// at @p StartIdx, extend it to be live up to @p Use, and return the |
| /// value. If there is no segment before @p Use, return nullptr. |
| VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill); |
| |
| /// join - Join two live ranges (this, and other) together. This applies |
| /// mappings to the value numbers in the LHS/RHS ranges as specified. If |
| /// the ranges are not joinable, this aborts. |
| void join(LiveRange &Other, |
| const int *ValNoAssignments, |
| const int *RHSValNoAssignments, |
| SmallVectorImpl<VNInfo *> &NewVNInfo); |
| |
| /// True iff this segment is a single segment that lies between the |
| /// specified boundaries, exclusively. Vregs live across a backedge are not |
| /// considered local. The boundaries are expected to lie within an extended |
| /// basic block, so vregs that are not live out should contain no holes. |
| bool isLocal(SlotIndex Start, SlotIndex End) const { |
| return beginIndex() > Start.getBaseIndex() && |
| endIndex() < End.getBoundaryIndex(); |
| } |
| |
| /// Remove the specified segment from this range. Note that the segment |
| /// must be a single Segment in its entirety. |
| void removeSegment(SlotIndex Start, SlotIndex End, |
| bool RemoveDeadValNo = false); |
| |
| void removeSegment(Segment S, bool RemoveDeadValNo = false) { |
| removeSegment(S.start, S.end, RemoveDeadValNo); |
| } |
| |
| /// Remove segment pointed to by iterator @p I from this range. This does |
| /// not remove dead value numbers. |
| iterator removeSegment(iterator I) { |
| return segments.erase(I); |
| } |
| |
| /// Query Liveness at Idx. |
| /// The sub-instruction slot of Idx doesn't matter, only the instruction |
| /// it refers to is considered. |
| LiveQueryResult Query(SlotIndex Idx) const { |
| // Find the segment that enters the instruction. |
| const_iterator I = find(Idx.getBaseIndex()); |
| const_iterator E = end(); |
| if (I == E) |
| return LiveQueryResult(nullptr, nullptr, SlotIndex(), false); |
| |
| // Is this an instruction live-in segment? |
| // If Idx is the start index of a basic block, include live-in segments |
| // that start at Idx.getBaseIndex(). |
| VNInfo *EarlyVal = nullptr; |
| VNInfo *LateVal = nullptr; |
| SlotIndex EndPoint; |
| bool Kill = false; |
| if (I->start <= Idx.getBaseIndex()) { |
| EarlyVal = I->valno; |
| EndPoint = I->end; |
| // Move to the potentially live-out segment. |
| if (SlotIndex::isSameInstr(Idx, I->end)) { |
| Kill = true; |
| if (++I == E) |
| return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); |
| } |
| // Special case: A PHIDef value can have its def in the middle of a |
| // segment if the value happens to be live out of the layout |
| // predecessor. |
| // Such a value is not live-in. |
| if (EarlyVal->def == Idx.getBaseIndex()) |
| EarlyVal = nullptr; |
| } |
| // I now points to the segment that may be live-through, or defined by |
| // this instr. Ignore segments starting after the current instr. |
| if (!SlotIndex::isEarlierInstr(Idx, I->start)) { |
| LateVal = I->valno; |
| EndPoint = I->end; |
| } |
| return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill); |
| } |
| |
| /// removeValNo - Remove all the segments defined by the specified value#. |
| /// Also remove the value# from value# list. |
| void removeValNo(VNInfo *ValNo); |
| |
| /// Returns true if the live range is zero length, i.e. no live segments |
| /// span instructions. It doesn't pay to spill such a range. |
| bool isZeroLength(SlotIndexes *Indexes) const { |
| for (const Segment &S : segments) |
| if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() < |
| S.end.getBaseIndex()) |
| return false; |
| return true; |
| } |
| |
| // Returns true if any segment in the live range contains any of the |
| // provided slot indexes. Slots which occur in holes between |
| // segments will not cause the function to return true. |
| bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const; |
| |
| bool operator<(const LiveRange& other) const { |
| const SlotIndex &thisIndex = beginIndex(); |
| const SlotIndex &otherIndex = other.beginIndex(); |
| return thisIndex < otherIndex; |
| } |
| |
| /// Returns true if there is an explicit "undef" between @p Begin |
| /// @p End. |
| bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin, |
| SlotIndex End) const { |
| return std::any_of(Undefs.begin(), Undefs.end(), |
| [Begin,End] (SlotIndex Idx) -> bool { |
| return Begin <= Idx && Idx < End; |
| }); |
| } |
| |
| /// Flush segment set into the regular segment vector. |
| /// The method is to be called after the live range |
| /// has been created, if use of the segment set was |
| /// activated in the constructor of the live range. |
| void flushSegmentSet(); |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| /// Walk the range and assert if any invariants fail to hold. |
| /// |
| /// Note that this is a no-op when asserts are disabled. |
| #ifdef NDEBUG |
| void verify() const {} |
| #else |
| void verify() const; |
| #endif |
| |
| protected: |
| /// Append a segment to the list of segments. |
| void append(const LiveRange::Segment S); |
| |
| private: |
| friend class LiveRangeUpdater; |
| void addSegmentToSet(Segment S); |
| void markValNoForDeletion(VNInfo *V); |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) { |
| LR.print(OS); |
| return OS; |
| } |
| |
| /// LiveInterval - This class represents the liveness of a register, |
| /// or stack slot. |
| class LiveInterval : public LiveRange { |
| public: |
| using super = LiveRange; |
| |
| /// A live range for subregisters. The LaneMask specifies which parts of the |
| /// super register are covered by the interval. |
| /// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()). |
| class SubRange : public LiveRange { |
| public: |
| SubRange *Next = nullptr; |
| LaneBitmask LaneMask; |
| |
| /// Constructs a new SubRange object. |
| SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {} |
| |
| /// Constructs a new SubRange object by copying liveness from @p Other. |
| SubRange(LaneBitmask LaneMask, const LiveRange &Other, |
| BumpPtrAllocator &Allocator) |
| : LiveRange(Other, Allocator), LaneMask(LaneMask) {} |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| }; |
| |
| private: |
| SubRange *SubRanges = nullptr; ///< Single linked list of subregister live |
| /// ranges. |
| |
| public: |
| const unsigned reg; // the register or stack slot of this interval. |
| float weight; // weight of this interval |
| |
| LiveInterval(unsigned Reg, float Weight) : reg(Reg), weight(Weight) {} |
| |
| ~LiveInterval() { |
| clearSubRanges(); |
| } |
| |
| template<typename T> |
| class SingleLinkedListIterator { |
| T *P; |
| |
| public: |
| SingleLinkedListIterator<T>(T *P) : P(P) {} |
| |
| SingleLinkedListIterator<T> &operator++() { |
| P = P->Next; |
| return *this; |
| } |
| SingleLinkedListIterator<T> operator++(int) { |
| SingleLinkedListIterator res = *this; |
| ++*this; |
| return res; |
| } |
| bool operator!=(const SingleLinkedListIterator<T> &Other) { |
| return P != Other.operator->(); |
| } |
| bool operator==(const SingleLinkedListIterator<T> &Other) { |
| return P == Other.operator->(); |
| } |
| T &operator*() const { |
| return *P; |
| } |
| T *operator->() const { |
| return P; |
| } |
| }; |
| |
| using subrange_iterator = SingleLinkedListIterator<SubRange>; |
| using const_subrange_iterator = SingleLinkedListIterator<const SubRange>; |
| |
| subrange_iterator subrange_begin() { |
| return subrange_iterator(SubRanges); |
| } |
| subrange_iterator subrange_end() { |
| return subrange_iterator(nullptr); |
| } |
| |
| const_subrange_iterator subrange_begin() const { |
| return const_subrange_iterator(SubRanges); |
| } |
| const_subrange_iterator subrange_end() const { |
| return const_subrange_iterator(nullptr); |
| } |
| |
| iterator_range<subrange_iterator> subranges() { |
| return make_range(subrange_begin(), subrange_end()); |
| } |
| |
| iterator_range<const_subrange_iterator> subranges() const { |
| return make_range(subrange_begin(), subrange_end()); |
| } |
| |
| /// Creates a new empty subregister live range. The range is added at the |
| /// beginning of the subrange list; subrange iterators stay valid. |
| SubRange *createSubRange(BumpPtrAllocator &Allocator, |
| LaneBitmask LaneMask) { |
| SubRange *Range = new (Allocator) SubRange(LaneMask); |
| appendSubRange(Range); |
| return Range; |
| } |
| |
| /// Like createSubRange() but the new range is filled with a copy of the |
| /// liveness information in @p CopyFrom. |
| SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator, |
| LaneBitmask LaneMask, |
| const LiveRange &CopyFrom) { |
| SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator); |
| appendSubRange(Range); |
| return Range; |
| } |
| |
| /// Returns true if subregister liveness information is available. |
| bool hasSubRanges() const { |
| return SubRanges != nullptr; |
| } |
| |
| /// Removes all subregister liveness information. |
| void clearSubRanges(); |
| |
| /// Removes all subranges without any segments (subranges without segments |
| /// are not considered valid and should only exist temporarily). |
| void removeEmptySubRanges(); |
| |
| /// getSize - Returns the sum of sizes of all the LiveRange's. |
| /// |
| unsigned getSize() const; |
| |
| /// isSpillable - Can this interval be spilled? |
| bool isSpillable() const { |
| return weight != huge_valf; |
| } |
| |
| /// markNotSpillable - Mark interval as not spillable |
| void markNotSpillable() { |
| weight = huge_valf; |
| } |
| |
| /// For a given lane mask @p LaneMask, compute indexes at which the |
| /// lane is marked undefined by subregister <def,read-undef> definitions. |
| void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs, |
| LaneBitmask LaneMask, |
| const MachineRegisterInfo &MRI, |
| const SlotIndexes &Indexes) const; |
| |
| /// Refines the subranges to support \p LaneMask. This may only be called |
| /// for LI.hasSubrange()==true. Subregister ranges are split or created |
| /// until \p LaneMask can be matched exactly. \p Mod is executed on the |
| /// matching subranges. |
| /// |
| /// Example: |
| /// Given an interval with subranges with lanemasks L0F00, L00F0 and |
| /// L000F, refining for mask L0018. Will split the L00F0 lane into |
| /// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod |
| /// function will be applied to the L0010 and L0008 subranges. |
| void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask, |
| std::function<void(LiveInterval::SubRange&)> Apply); |
| |
| bool operator<(const LiveInterval& other) const { |
| const SlotIndex &thisIndex = beginIndex(); |
| const SlotIndex &otherIndex = other.beginIndex(); |
| return std::tie(thisIndex, reg) < std::tie(otherIndex, other.reg); |
| } |
| |
| void print(raw_ostream &OS) const; |
| void dump() const; |
| |
| /// Walks the interval and assert if any invariants fail to hold. |
| /// |
| /// Note that this is a no-op when asserts are disabled. |
| #ifdef NDEBUG |
| void verify(const MachineRegisterInfo *MRI = nullptr) const {} |
| #else |
| void verify(const MachineRegisterInfo *MRI = nullptr) const; |
| #endif |
| |
| private: |
| /// Appends @p Range to SubRanges list. |
| void appendSubRange(SubRange *Range) { |
| Range->Next = SubRanges; |
| SubRanges = Range; |
| } |
| |
| /// Free memory held by SubRange. |
| void freeSubRange(SubRange *S); |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, |
| const LiveInterval::SubRange &SR) { |
| SR.print(OS); |
| return OS; |
| } |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) { |
| LI.print(OS); |
| return OS; |
| } |
| |
| raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S); |
| |
| inline bool operator<(SlotIndex V, const LiveRange::Segment &S) { |
| return V < S.start; |
| } |
| |
| inline bool operator<(const LiveRange::Segment &S, SlotIndex V) { |
| return S.start < V; |
| } |
| |
| /// Helper class for performant LiveRange bulk updates. |
| /// |
| /// Calling LiveRange::addSegment() repeatedly can be expensive on large |
| /// live ranges because segments after the insertion point may need to be |
| /// shifted. The LiveRangeUpdater class can defer the shifting when adding |
| /// many segments in order. |
| /// |
| /// The LiveRange will be in an invalid state until flush() is called. |
| class LiveRangeUpdater { |
| LiveRange *LR; |
| SlotIndex LastStart; |
| LiveRange::iterator WriteI; |
| LiveRange::iterator ReadI; |
| SmallVector<LiveRange::Segment, 16> Spills; |
| void mergeSpills(); |
| |
| public: |
| /// Create a LiveRangeUpdater for adding segments to LR. |
| /// LR will temporarily be in an invalid state until flush() is called. |
| LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {} |
| |
| ~LiveRangeUpdater() { flush(); } |
| |
| /// Add a segment to LR and coalesce when possible, just like |
| /// LR.addSegment(). Segments should be added in increasing start order for |
| /// best performance. |
| void add(LiveRange::Segment); |
| |
| void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) { |
| add(LiveRange::Segment(Start, End, VNI)); |
| } |
| |
| /// Return true if the LR is currently in an invalid state, and flush() |
| /// needs to be called. |
| bool isDirty() const { return LastStart.isValid(); } |
| |
| /// Flush the updater state to LR so it is valid and contains all added |
| /// segments. |
| void flush(); |
| |
| /// Select a different destination live range. |
| void setDest(LiveRange *lr) { |
| if (LR != lr && isDirty()) |
| flush(); |
| LR = lr; |
| } |
| |
| /// Get the current destination live range. |
| LiveRange *getDest() const { return LR; } |
| |
| void dump() const; |
| void print(raw_ostream&) const; |
| }; |
| |
| inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) { |
| X.print(OS); |
| return OS; |
| } |
| |
| /// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a |
| /// LiveInterval into equivalence clases of connected components. A |
| /// LiveInterval that has multiple connected components can be broken into |
| /// multiple LiveIntervals. |
| /// |
| /// Given a LiveInterval that may have multiple connected components, run: |
| /// |
| /// unsigned numComps = ConEQ.Classify(LI); |
| /// if (numComps > 1) { |
| /// // allocate numComps-1 new LiveIntervals into LIS[1..] |
| /// ConEQ.Distribute(LIS); |
| /// } |
| |
| class ConnectedVNInfoEqClasses { |
| LiveIntervals &LIS; |
| IntEqClasses EqClass; |
| |
| public: |
| explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {} |
| |
| /// Classify the values in \p LR into connected components. |
| /// Returns the number of connected components. |
| unsigned Classify(const LiveRange &LR); |
| |
| /// getEqClass - Classify creates equivalence classes numbered 0..N. Return |
| /// the equivalence class assigned the VNI. |
| unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; } |
| |
| /// Distribute values in \p LI into a separate LiveIntervals |
| /// for each connected component. LIV must have an empty LiveInterval for |
| /// each additional connected component. The first connected component is |
| /// left in \p LI. |
| void Distribute(LiveInterval &LI, LiveInterval *LIV[], |
| MachineRegisterInfo &MRI); |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_LIVEINTERVAL_H |