//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// | |

// | |

// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |

// See https://llvm.org/LICENSE.txt for license information. | |

// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |

// | |

//===----------------------------------------------------------------------===// | |

/// | |

/// \file | |

/// This file implements a class to represent arbitrary precision | |

/// integral constant values and operations on them. | |

/// | |

//===----------------------------------------------------------------------===// | |

#ifndef LLVM_ADT_APINT_H | |

#define LLVM_ADT_APINT_H | |

#include "llvm/Support/Compiler.h" | |

#include "llvm/Support/MathExtras.h" | |

#include <cassert> | |

#include <climits> | |

#include <cstring> | |

#include <string> | |

namespace llvm { | |

class FoldingSetNodeID; | |

class StringRef; | |

class hash_code; | |

class raw_ostream; | |

template <typename T> class SmallVectorImpl; | |

template <typename T> class ArrayRef; | |

template <typename T> class Optional; | |

class APInt; | |

inline APInt operator-(APInt); | |

//===----------------------------------------------------------------------===// | |

// APInt Class | |

//===----------------------------------------------------------------------===// | |

/// Class for arbitrary precision integers. | |

/// | |

/// APInt is a functional replacement for common case unsigned integer type like | |

/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width | |

/// integer sizes and large integer value types such as 3-bits, 15-bits, or more | |

/// than 64-bits of precision. APInt provides a variety of arithmetic operators | |

/// and methods to manipulate integer values of any bit-width. It supports both | |

/// the typical integer arithmetic and comparison operations as well as bitwise | |

/// manipulation. | |

/// | |

/// The class has several invariants worth noting: | |

/// * All bit, byte, and word positions are zero-based. | |

/// * Once the bit width is set, it doesn't change except by the Truncate, | |

/// SignExtend, or ZeroExtend operations. | |

/// * All binary operators must be on APInt instances of the same bit width. | |

/// Attempting to use these operators on instances with different bit | |

/// widths will yield an assertion. | |

/// * The value is stored canonically as an unsigned value. For operations | |

/// where it makes a difference, there are both signed and unsigned variants | |

/// of the operation. For example, sdiv and udiv. However, because the bit | |

/// widths must be the same, operations such as Mul and Add produce the same | |

/// results regardless of whether the values are interpreted as signed or | |

/// not. | |

/// * In general, the class tries to follow the style of computation that LLVM | |

/// uses in its IR. This simplifies its use for LLVM. | |

/// | |

class LLVM_NODISCARD APInt { | |

public: | |

typedef uint64_t WordType; | |

/// This enum is used to hold the constants we needed for APInt. | |

enum : unsigned { | |

/// Byte size of a word. | |

APINT_WORD_SIZE = sizeof(WordType), | |

/// Bits in a word. | |

APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT | |

}; | |

enum class Rounding { | |

DOWN, | |

TOWARD_ZERO, | |

UP, | |

}; | |

static const WordType WORDTYPE_MAX = ~WordType(0); | |

private: | |

/// This union is used to store the integer value. When the | |

/// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. | |

union { | |

uint64_t VAL; ///< Used to store the <= 64 bits integer value. | |

uint64_t *pVal; ///< Used to store the >64 bits integer value. | |

} U; | |

unsigned BitWidth; ///< The number of bits in this APInt. | |

friend struct DenseMapAPIntKeyInfo; | |

friend class APSInt; | |

/// Fast internal constructor | |

/// | |

/// This constructor is used only internally for speed of construction of | |

/// temporaries. It is unsafe for general use so it is not public. | |

APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { | |

U.pVal = val; | |

} | |

/// Determine if this APInt just has one word to store value. | |

/// | |

/// \returns true if the number of bits <= 64, false otherwise. | |

bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } | |

/// Determine which word a bit is in. | |

/// | |

/// \returns the word position for the specified bit position. | |

static unsigned whichWord(unsigned bitPosition) { | |

return bitPosition / APINT_BITS_PER_WORD; | |

} | |

/// Determine which bit in a word a bit is in. | |

/// | |

/// \returns the bit position in a word for the specified bit position | |

/// in the APInt. | |

static unsigned whichBit(unsigned bitPosition) { | |

return bitPosition % APINT_BITS_PER_WORD; | |

} | |

/// Get a single bit mask. | |

/// | |

/// \returns a uint64_t with only bit at "whichBit(bitPosition)" set | |

/// This method generates and returns a uint64_t (word) mask for a single | |

/// bit at a specific bit position. This is used to mask the bit in the | |

/// corresponding word. | |

static uint64_t maskBit(unsigned bitPosition) { | |

return 1ULL << whichBit(bitPosition); | |

} | |

/// Clear unused high order bits | |

/// | |

/// This method is used internally to clear the top "N" bits in the high order | |

/// word that are not used by the APInt. This is needed after the most | |

/// significant word is assigned a value to ensure that those bits are | |

/// zero'd out. | |

APInt &clearUnusedBits() { | |

// Compute how many bits are used in the final word | |

unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; | |

// Mask out the high bits. | |

uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); | |

if (isSingleWord()) | |

U.VAL &= mask; | |

else | |

U.pVal[getNumWords() - 1] &= mask; | |

return *this; | |

} | |

/// Get the word corresponding to a bit position | |

/// \returns the corresponding word for the specified bit position. | |

uint64_t getWord(unsigned bitPosition) const { | |

return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; | |

} | |

/// Utility method to change the bit width of this APInt to new bit width, | |

/// allocating and/or deallocating as necessary. There is no guarantee on the | |

/// value of any bits upon return. Caller should populate the bits after. | |

void reallocate(unsigned NewBitWidth); | |

/// Convert a char array into an APInt | |

/// | |

/// \param radix 2, 8, 10, 16, or 36 | |

/// Converts a string into a number. The string must be non-empty | |

/// and well-formed as a number of the given base. The bit-width | |

/// must be sufficient to hold the result. | |

/// | |

/// This is used by the constructors that take string arguments. | |

/// | |

/// StringRef::getAsInteger is superficially similar but (1) does | |

/// not assume that the string is well-formed and (2) grows the | |

/// result to hold the input. | |

void fromString(unsigned numBits, StringRef str, uint8_t radix); | |

/// An internal division function for dividing APInts. | |

/// | |

/// This is used by the toString method to divide by the radix. It simply | |

/// provides a more convenient form of divide for internal use since KnuthDiv | |

/// has specific constraints on its inputs. If those constraints are not met | |

/// then it provides a simpler form of divide. | |

static void divide(const WordType *LHS, unsigned lhsWords, | |

const WordType *RHS, unsigned rhsWords, WordType *Quotient, | |

WordType *Remainder); | |

/// out-of-line slow case for inline constructor | |

void initSlowCase(uint64_t val, bool isSigned); | |

/// shared code between two array constructors | |

void initFromArray(ArrayRef<uint64_t> array); | |

/// out-of-line slow case for inline copy constructor | |

void initSlowCase(const APInt &that); | |

/// out-of-line slow case for shl | |

void shlSlowCase(unsigned ShiftAmt); | |

/// out-of-line slow case for lshr. | |

void lshrSlowCase(unsigned ShiftAmt); | |

/// out-of-line slow case for ashr. | |

void ashrSlowCase(unsigned ShiftAmt); | |

/// out-of-line slow case for operator= | |

void AssignSlowCase(const APInt &RHS); | |

/// out-of-line slow case for operator== | |

bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; | |

/// out-of-line slow case for countLeadingZeros | |

unsigned countLeadingZerosSlowCase() const LLVM_READONLY; | |

/// out-of-line slow case for countLeadingOnes. | |

unsigned countLeadingOnesSlowCase() const LLVM_READONLY; | |

/// out-of-line slow case for countTrailingZeros. | |

unsigned countTrailingZerosSlowCase() const LLVM_READONLY; | |

/// out-of-line slow case for countTrailingOnes | |

unsigned countTrailingOnesSlowCase() const LLVM_READONLY; | |

/// out-of-line slow case for countPopulation | |

unsigned countPopulationSlowCase() const LLVM_READONLY; | |

/// out-of-line slow case for intersects. | |

bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; | |

/// out-of-line slow case for isSubsetOf. | |

bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; | |

/// out-of-line slow case for setBits. | |

void setBitsSlowCase(unsigned loBit, unsigned hiBit); | |

/// out-of-line slow case for flipAllBits. | |

void flipAllBitsSlowCase(); | |

/// out-of-line slow case for operator&=. | |

void AndAssignSlowCase(const APInt& RHS); | |

/// out-of-line slow case for operator|=. | |

void OrAssignSlowCase(const APInt& RHS); | |

/// out-of-line slow case for operator^=. | |

void XorAssignSlowCase(const APInt& RHS); | |

/// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal | |

/// to, or greater than RHS. | |

int compare(const APInt &RHS) const LLVM_READONLY; | |

/// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal | |

/// to, or greater than RHS. | |

int compareSigned(const APInt &RHS) const LLVM_READONLY; | |

public: | |

/// \name Constructors | |

/// @{ | |

/// Create a new APInt of numBits width, initialized as val. | |

/// | |

/// If isSigned is true then val is treated as if it were a signed value | |

/// (i.e. as an int64_t) and the appropriate sign extension to the bit width | |

/// will be done. Otherwise, no sign extension occurs (high order bits beyond | |

/// the range of val are zero filled). | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param val the initial value of the APInt | |

/// \param isSigned how to treat signedness of val | |

APInt(unsigned numBits, uint64_t val, bool isSigned = false) | |

: BitWidth(numBits) { | |

assert(BitWidth && "bitwidth too small"); | |

if (isSingleWord()) { | |

U.VAL = val; | |

clearUnusedBits(); | |

} else { | |

initSlowCase(val, isSigned); | |

} | |

} | |

/// Construct an APInt of numBits width, initialized as bigVal[]. | |

/// | |

/// Note that bigVal.size() can be smaller or larger than the corresponding | |

/// bit width but any extraneous bits will be dropped. | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param bigVal a sequence of words to form the initial value of the APInt | |

APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); | |

/// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but | |

/// deprecated because this constructor is prone to ambiguity with the | |

/// APInt(unsigned, uint64_t, bool) constructor. | |

/// | |

/// If this overload is ever deleted, care should be taken to prevent calls | |

/// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) | |

/// constructor. | |

APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); | |

/// Construct an APInt from a string representation. | |

/// | |

/// This constructor interprets the string \p str in the given radix. The | |

/// interpretation stops when the first character that is not suitable for the | |

/// radix is encountered, or the end of the string. Acceptable radix values | |

/// are 2, 8, 10, 16, and 36. It is an error for the value implied by the | |

/// string to require more bits than numBits. | |

/// | |

/// \param numBits the bit width of the constructed APInt | |

/// \param str the string to be interpreted | |

/// \param radix the radix to use for the conversion | |

APInt(unsigned numBits, StringRef str, uint8_t radix); | |

/// Simply makes *this a copy of that. | |

/// Copy Constructor. | |

APInt(const APInt &that) : BitWidth(that.BitWidth) { | |

if (isSingleWord()) | |

U.VAL = that.U.VAL; | |

else | |

initSlowCase(that); | |

} | |

/// Move Constructor. | |

APInt(APInt &&that) : BitWidth(that.BitWidth) { | |

memcpy(&U, &that.U, sizeof(U)); | |

that.BitWidth = 0; | |

} | |

/// Destructor. | |

~APInt() { | |

if (needsCleanup()) | |

delete[] U.pVal; | |

} | |

/// Default constructor that creates an uninteresting APInt | |

/// representing a 1-bit zero value. | |

/// | |

/// This is useful for object deserialization (pair this with the static | |

/// method Read). | |

explicit APInt() : BitWidth(1) { U.VAL = 0; } | |

/// Returns whether this instance allocated memory. | |

bool needsCleanup() const { return !isSingleWord(); } | |

/// Used to insert APInt objects, or objects that contain APInt objects, into | |

/// FoldingSets. | |

void Profile(FoldingSetNodeID &id) const; | |

/// @} | |

/// \name Value Tests | |

/// @{ | |

/// Determine sign of this APInt. | |

/// | |

/// This tests the high bit of this APInt to determine if it is set. | |

/// | |

/// \returns true if this APInt is negative, false otherwise | |

bool isNegative() const { return (*this)[BitWidth - 1]; } | |

/// Determine if this APInt Value is non-negative (>= 0) | |

/// | |

/// This tests the high bit of the APInt to determine if it is unset. | |

bool isNonNegative() const { return !isNegative(); } | |

/// Determine if sign bit of this APInt is set. | |

/// | |

/// This tests the high bit of this APInt to determine if it is set. | |

/// | |

/// \returns true if this APInt has its sign bit set, false otherwise. | |

bool isSignBitSet() const { return (*this)[BitWidth-1]; } | |

/// Determine if sign bit of this APInt is clear. | |

/// | |

/// This tests the high bit of this APInt to determine if it is clear. | |

/// | |

/// \returns true if this APInt has its sign bit clear, false otherwise. | |

bool isSignBitClear() const { return !isSignBitSet(); } | |

/// Determine if this APInt Value is positive. | |

/// | |

/// This tests if the value of this APInt is positive (> 0). Note | |

/// that 0 is not a positive value. | |

/// | |

/// \returns true if this APInt is positive. | |

bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } | |

/// Determine if all bits are set | |

/// | |

/// This checks to see if the value has all bits of the APInt are set or not. | |

bool isAllOnesValue() const { | |

if (isSingleWord()) | |

return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); | |

return countTrailingOnesSlowCase() == BitWidth; | |

} | |

/// Determine if all bits are clear | |

/// | |

/// This checks to see if the value has all bits of the APInt are clear or | |

/// not. | |

bool isNullValue() const { return !*this; } | |

/// Determine if this is a value of 1. | |

/// | |

/// This checks to see if the value of this APInt is one. | |

bool isOneValue() const { | |

if (isSingleWord()) | |

return U.VAL == 1; | |

return countLeadingZerosSlowCase() == BitWidth - 1; | |

} | |

/// Determine if this is the largest unsigned value. | |

/// | |

/// This checks to see if the value of this APInt is the maximum unsigned | |

/// value for the APInt's bit width. | |

bool isMaxValue() const { return isAllOnesValue(); } | |

/// Determine if this is the largest signed value. | |

/// | |

/// This checks to see if the value of this APInt is the maximum signed | |

/// value for the APInt's bit width. | |

bool isMaxSignedValue() const { | |

if (isSingleWord()) | |

return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); | |

return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; | |

} | |

/// Determine if this is the smallest unsigned value. | |

/// | |

/// This checks to see if the value of this APInt is the minimum unsigned | |

/// value for the APInt's bit width. | |

bool isMinValue() const { return isNullValue(); } | |

/// Determine if this is the smallest signed value. | |

/// | |

/// This checks to see if the value of this APInt is the minimum signed | |

/// value for the APInt's bit width. | |

bool isMinSignedValue() const { | |

if (isSingleWord()) | |

return U.VAL == (WordType(1) << (BitWidth - 1)); | |

return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; | |

} | |

/// Check if this APInt has an N-bits unsigned integer value. | |

bool isIntN(unsigned N) const { | |

assert(N && "N == 0 ???"); | |

return getActiveBits() <= N; | |

} | |

/// Check if this APInt has an N-bits signed integer value. | |

bool isSignedIntN(unsigned N) const { | |

assert(N && "N == 0 ???"); | |

return getMinSignedBits() <= N; | |

} | |

/// Check if this APInt's value is a power of two greater than zero. | |

/// | |

/// \returns true if the argument APInt value is a power of two > 0. | |

bool isPowerOf2() const { | |

if (isSingleWord()) | |

return isPowerOf2_64(U.VAL); | |

return countPopulationSlowCase() == 1; | |

} | |

/// Check if the APInt's value is returned by getSignMask. | |

/// | |

/// \returns true if this is the value returned by getSignMask. | |

bool isSignMask() const { return isMinSignedValue(); } | |

/// Convert APInt to a boolean value. | |

/// | |

/// This converts the APInt to a boolean value as a test against zero. | |

bool getBoolValue() const { return !!*this; } | |

/// If this value is smaller than the specified limit, return it, otherwise | |

/// return the limit value. This causes the value to saturate to the limit. | |

uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { | |

return ugt(Limit) ? Limit : getZExtValue(); | |

} | |

/// Check if the APInt consists of a repeated bit pattern. | |

/// | |

/// e.g. 0x01010101 satisfies isSplat(8). | |

/// \param SplatSizeInBits The size of the pattern in bits. Must divide bit | |

/// width without remainder. | |

bool isSplat(unsigned SplatSizeInBits) const; | |

/// \returns true if this APInt value is a sequence of \param numBits ones | |

/// starting at the least significant bit with the remainder zero. | |

bool isMask(unsigned numBits) const { | |

assert(numBits != 0 && "numBits must be non-zero"); | |

assert(numBits <= BitWidth && "numBits out of range"); | |

if (isSingleWord()) | |

return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); | |

unsigned Ones = countTrailingOnesSlowCase(); | |

return (numBits == Ones) && | |

((Ones + countLeadingZerosSlowCase()) == BitWidth); | |

} | |

/// \returns true if this APInt is a non-empty sequence of ones starting at | |

/// the least significant bit with the remainder zero. | |

/// Ex. isMask(0x0000FFFFU) == true. | |

bool isMask() const { | |

if (isSingleWord()) | |

return isMask_64(U.VAL); | |

unsigned Ones = countTrailingOnesSlowCase(); | |

return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); | |

} | |

/// Return true if this APInt value contains a sequence of ones with | |

/// the remainder zero. | |

bool isShiftedMask() const { | |

if (isSingleWord()) | |

return isShiftedMask_64(U.VAL); | |

unsigned Ones = countPopulationSlowCase(); | |

unsigned LeadZ = countLeadingZerosSlowCase(); | |

return (Ones + LeadZ + countTrailingZeros()) == BitWidth; | |

} | |

/// @} | |

/// \name Value Generators | |

/// @{ | |

/// Gets maximum unsigned value of APInt for specific bit width. | |

static APInt getMaxValue(unsigned numBits) { | |

return getAllOnesValue(numBits); | |

} | |

/// Gets maximum signed value of APInt for a specific bit width. | |

static APInt getSignedMaxValue(unsigned numBits) { | |

APInt API = getAllOnesValue(numBits); | |

API.clearBit(numBits - 1); | |

return API; | |

} | |

/// Gets minimum unsigned value of APInt for a specific bit width. | |

static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } | |

/// Gets minimum signed value of APInt for a specific bit width. | |

static APInt getSignedMinValue(unsigned numBits) { | |

APInt API(numBits, 0); | |

API.setBit(numBits - 1); | |

return API; | |

} | |

/// Get the SignMask for a specific bit width. | |

/// | |

/// This is just a wrapper function of getSignedMinValue(), and it helps code | |

/// readability when we want to get a SignMask. | |

static APInt getSignMask(unsigned BitWidth) { | |

return getSignedMinValue(BitWidth); | |

} | |

/// Get the all-ones value. | |

/// | |

/// \returns the all-ones value for an APInt of the specified bit-width. | |

static APInt getAllOnesValue(unsigned numBits) { | |

return APInt(numBits, WORDTYPE_MAX, true); | |

} | |

/// Get the '0' value. | |

/// | |

/// \returns the '0' value for an APInt of the specified bit-width. | |

static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } | |

/// Compute an APInt containing numBits highbits from this APInt. | |

/// | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the low bits and right shift to the least significant bit. | |

/// | |

/// \returns the high "numBits" bits of this APInt. | |

APInt getHiBits(unsigned numBits) const; | |

/// Compute an APInt containing numBits lowbits from this APInt. | |

/// | |

/// Get an APInt with the same BitWidth as this APInt, just zero mask | |

/// the high bits. | |

/// | |

/// \returns the low "numBits" bits of this APInt. | |

APInt getLoBits(unsigned numBits) const; | |

/// Return an APInt with exactly one bit set in the result. | |

static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { | |

APInt Res(numBits, 0); | |

Res.setBit(BitNo); | |

return Res; | |

} | |

/// Get a value with a block of bits set. | |

/// | |

/// Constructs an APInt value that has a contiguous range of bits set. The | |

/// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other | |

/// bits will be zero. For example, with parameters(32, 0, 16) you would get | |

/// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For | |

/// example, with parameters (32, 28, 4), you would get 0xF000000F. | |

/// | |

/// \param numBits the intended bit width of the result | |

/// \param loBit the index of the lowest bit set. | |

/// \param hiBit the index of the highest bit set. | |

/// | |

/// \returns An APInt value with the requested bits set. | |

static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { | |

APInt Res(numBits, 0); | |

Res.setBits(loBit, hiBit); | |

return Res; | |

} | |

/// Get a value with upper bits starting at loBit set. | |

/// | |

/// Constructs an APInt value that has a contiguous range of bits set. The | |

/// bits from loBit (inclusive) to numBits (exclusive) will be set. All other | |

/// bits will be zero. For example, with parameters(32, 12) you would get | |

/// 0xFFFFF000. | |

/// | |

/// \param numBits the intended bit width of the result | |

/// \param loBit the index of the lowest bit to set. | |

/// | |

/// \returns An APInt value with the requested bits set. | |

static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { | |

APInt Res(numBits, 0); | |

Res.setBitsFrom(loBit); | |

return Res; | |

} | |

/// Get a value with high bits set | |

/// | |

/// Constructs an APInt value that has the top hiBitsSet bits set. | |

/// | |

/// \param numBits the bitwidth of the result | |

/// \param hiBitsSet the number of high-order bits set in the result. | |

static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { | |

APInt Res(numBits, 0); | |

Res.setHighBits(hiBitsSet); | |

return Res; | |

} | |

/// Get a value with low bits set | |

/// | |

/// Constructs an APInt value that has the bottom loBitsSet bits set. | |

/// | |

/// \param numBits the bitwidth of the result | |

/// \param loBitsSet the number of low-order bits set in the result. | |

static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { | |

APInt Res(numBits, 0); | |

Res.setLowBits(loBitsSet); | |

return Res; | |

} | |

/// Return a value containing V broadcasted over NewLen bits. | |

static APInt getSplat(unsigned NewLen, const APInt &V); | |

/// Determine if two APInts have the same value, after zero-extending | |

/// one of them (if needed!) to ensure that the bit-widths match. | |

static bool isSameValue(const APInt &I1, const APInt &I2) { | |

if (I1.getBitWidth() == I2.getBitWidth()) | |

return I1 == I2; | |

if (I1.getBitWidth() > I2.getBitWidth()) | |

return I1 == I2.zext(I1.getBitWidth()); | |

return I1.zext(I2.getBitWidth()) == I2; | |

} | |

/// Overload to compute a hash_code for an APInt value. | |

friend hash_code hash_value(const APInt &Arg); | |

/// This function returns a pointer to the internal storage of the APInt. | |

/// This is useful for writing out the APInt in binary form without any | |

/// conversions. | |

const uint64_t *getRawData() const { | |

if (isSingleWord()) | |

return &U.VAL; | |

return &U.pVal[0]; | |

} | |

/// @} | |

/// \name Unary Operators | |

/// @{ | |

/// Postfix increment operator. | |

/// | |

/// Increments *this by 1. | |

/// | |

/// \returns a new APInt value representing the original value of *this. | |

const APInt operator++(int) { | |

APInt API(*this); | |

++(*this); | |

return API; | |

} | |

/// Prefix increment operator. | |

/// | |

/// \returns *this incremented by one | |

APInt &operator++(); | |

/// Postfix decrement operator. | |

/// | |

/// Decrements *this by 1. | |

/// | |

/// \returns a new APInt value representing the original value of *this. | |

const APInt operator--(int) { | |

APInt API(*this); | |

--(*this); | |

return API; | |

} | |

/// Prefix decrement operator. | |

/// | |

/// \returns *this decremented by one. | |

APInt &operator--(); | |

/// Logical negation operator. | |

/// | |

/// Performs logical negation operation on this APInt. | |

/// | |

/// \returns true if *this is zero, false otherwise. | |

bool operator!() const { | |

if (isSingleWord()) | |

return U.VAL == 0; | |

return countLeadingZerosSlowCase() == BitWidth; | |

} | |

/// @} | |

/// \name Assignment Operators | |

/// @{ | |

/// Copy assignment operator. | |

/// | |

/// \returns *this after assignment of RHS. | |

APInt &operator=(const APInt &RHS) { | |

// If the bitwidths are the same, we can avoid mucking with memory | |

if (isSingleWord() && RHS.isSingleWord()) { | |

U.VAL = RHS.U.VAL; | |

BitWidth = RHS.BitWidth; | |

return clearUnusedBits(); | |

} | |

AssignSlowCase(RHS); | |

return *this; | |

} | |

/// Move assignment operator. | |

APInt &operator=(APInt &&that) { | |

#ifdef _MSC_VER | |

// The MSVC std::shuffle implementation still does self-assignment. | |

if (this == &that) | |

return *this; | |

#endif | |

assert(this != &that && "Self-move not supported"); | |

if (!isSingleWord()) | |

delete[] U.pVal; | |

// Use memcpy so that type based alias analysis sees both VAL and pVal | |

// as modified. | |

memcpy(&U, &that.U, sizeof(U)); | |

BitWidth = that.BitWidth; | |

that.BitWidth = 0; | |

return *this; | |

} | |

/// Assignment operator. | |

/// | |

/// The RHS value is assigned to *this. If the significant bits in RHS exceed | |

/// the bit width, the excess bits are truncated. If the bit width is larger | |

/// than 64, the value is zero filled in the unspecified high order bits. | |

/// | |

/// \returns *this after assignment of RHS value. | |

APInt &operator=(uint64_t RHS) { | |

if (isSingleWord()) { | |

U.VAL = RHS; | |

clearUnusedBits(); | |

} else { | |

U.pVal[0] = RHS; | |

memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | |

} | |

return *this; | |

} | |

/// Bitwise AND assignment operator. | |

/// | |

/// Performs a bitwise AND operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// | |

/// \returns *this after ANDing with RHS. | |

APInt &operator&=(const APInt &RHS) { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

U.VAL &= RHS.U.VAL; | |

else | |

AndAssignSlowCase(RHS); | |

return *this; | |

} | |

/// Bitwise AND assignment operator. | |

/// | |

/// Performs a bitwise AND operation on this APInt and RHS. RHS is | |

/// logically zero-extended or truncated to match the bit-width of | |

/// the LHS. | |

APInt &operator&=(uint64_t RHS) { | |

if (isSingleWord()) { | |

U.VAL &= RHS; | |

return *this; | |

} | |

U.pVal[0] &= RHS; | |

memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | |

return *this; | |

} | |

/// Bitwise OR assignment operator. | |

/// | |

/// Performs a bitwise OR operation on this APInt and RHS. The result is | |

/// assigned *this; | |

/// | |

/// \returns *this after ORing with RHS. | |

APInt &operator|=(const APInt &RHS) { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

U.VAL |= RHS.U.VAL; | |

else | |

OrAssignSlowCase(RHS); | |

return *this; | |

} | |

/// Bitwise OR assignment operator. | |

/// | |

/// Performs a bitwise OR operation on this APInt and RHS. RHS is | |

/// logically zero-extended or truncated to match the bit-width of | |

/// the LHS. | |

APInt &operator|=(uint64_t RHS) { | |

if (isSingleWord()) { | |

U.VAL |= RHS; | |

clearUnusedBits(); | |

} else { | |

U.pVal[0] |= RHS; | |

} | |

return *this; | |

} | |

/// Bitwise XOR assignment operator. | |

/// | |

/// Performs a bitwise XOR operation on this APInt and RHS. The result is | |

/// assigned to *this. | |

/// | |

/// \returns *this after XORing with RHS. | |

APInt &operator^=(const APInt &RHS) { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

U.VAL ^= RHS.U.VAL; | |

else | |

XorAssignSlowCase(RHS); | |

return *this; | |

} | |

/// Bitwise XOR assignment operator. | |

/// | |

/// Performs a bitwise XOR operation on this APInt and RHS. RHS is | |

/// logically zero-extended or truncated to match the bit-width of | |

/// the LHS. | |

APInt &operator^=(uint64_t RHS) { | |

if (isSingleWord()) { | |

U.VAL ^= RHS; | |

clearUnusedBits(); | |

} else { | |

U.pVal[0] ^= RHS; | |

} | |

return *this; | |

} | |

/// Multiplication assignment operator. | |

/// | |

/// Multiplies this APInt by RHS and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator*=(const APInt &RHS); | |

APInt &operator*=(uint64_t RHS); | |

/// Addition assignment operator. | |

/// | |

/// Adds RHS to *this and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator+=(const APInt &RHS); | |

APInt &operator+=(uint64_t RHS); | |

/// Subtraction assignment operator. | |

/// | |

/// Subtracts RHS from *this and assigns the result to *this. | |

/// | |

/// \returns *this | |

APInt &operator-=(const APInt &RHS); | |

APInt &operator-=(uint64_t RHS); | |

/// Left-shift assignment function. | |

/// | |

/// Shifts *this left by shiftAmt and assigns the result to *this. | |

/// | |

/// \returns *this after shifting left by ShiftAmt | |

APInt &operator<<=(unsigned ShiftAmt) { | |

assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | |

if (isSingleWord()) { | |

if (ShiftAmt == BitWidth) | |

U.VAL = 0; | |

else | |

U.VAL <<= ShiftAmt; | |

return clearUnusedBits(); | |

} | |

shlSlowCase(ShiftAmt); | |

return *this; | |

} | |

/// Left-shift assignment function. | |

/// | |

/// Shifts *this left by shiftAmt and assigns the result to *this. | |

/// | |

/// \returns *this after shifting left by ShiftAmt | |

APInt &operator<<=(const APInt &ShiftAmt); | |

/// @} | |

/// \name Binary Operators | |

/// @{ | |

/// Multiplication operator. | |

/// | |

/// Multiplies this APInt by RHS and returns the result. | |

APInt operator*(const APInt &RHS) const; | |

/// Left logical shift operator. | |

/// | |

/// Shifts this APInt left by \p Bits and returns the result. | |

APInt operator<<(unsigned Bits) const { return shl(Bits); } | |

/// Left logical shift operator. | |

/// | |

/// Shifts this APInt left by \p Bits and returns the result. | |

APInt operator<<(const APInt &Bits) const { return shl(Bits); } | |

/// Arithmetic right-shift function. | |

/// | |

/// Arithmetic right-shift this APInt by shiftAmt. | |

APInt ashr(unsigned ShiftAmt) const { | |

APInt R(*this); | |

R.ashrInPlace(ShiftAmt); | |

return R; | |

} | |

/// Arithmetic right-shift this APInt by ShiftAmt in place. | |

void ashrInPlace(unsigned ShiftAmt) { | |

assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | |

if (isSingleWord()) { | |

int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); | |

if (ShiftAmt == BitWidth) | |

U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. | |

else | |

U.VAL = SExtVAL >> ShiftAmt; | |

clearUnusedBits(); | |

return; | |

} | |

ashrSlowCase(ShiftAmt); | |

} | |

/// Logical right-shift function. | |

/// | |

/// Logical right-shift this APInt by shiftAmt. | |

APInt lshr(unsigned shiftAmt) const { | |

APInt R(*this); | |

R.lshrInPlace(shiftAmt); | |

return R; | |

} | |

/// Logical right-shift this APInt by ShiftAmt in place. | |

void lshrInPlace(unsigned ShiftAmt) { | |

assert(ShiftAmt <= BitWidth && "Invalid shift amount"); | |

if (isSingleWord()) { | |

if (ShiftAmt == BitWidth) | |

U.VAL = 0; | |

else | |

U.VAL >>= ShiftAmt; | |

return; | |

} | |

lshrSlowCase(ShiftAmt); | |

} | |

/// Left-shift function. | |

/// | |

/// Left-shift this APInt by shiftAmt. | |

APInt shl(unsigned shiftAmt) const { | |

APInt R(*this); | |

R <<= shiftAmt; | |

return R; | |

} | |

/// Rotate left by rotateAmt. | |

APInt rotl(unsigned rotateAmt) const; | |

/// Rotate right by rotateAmt. | |

APInt rotr(unsigned rotateAmt) const; | |

/// Arithmetic right-shift function. | |

/// | |

/// Arithmetic right-shift this APInt by shiftAmt. | |

APInt ashr(const APInt &ShiftAmt) const { | |

APInt R(*this); | |

R.ashrInPlace(ShiftAmt); | |

return R; | |

} | |

/// Arithmetic right-shift this APInt by shiftAmt in place. | |

void ashrInPlace(const APInt &shiftAmt); | |

/// Logical right-shift function. | |

/// | |

/// Logical right-shift this APInt by shiftAmt. | |

APInt lshr(const APInt &ShiftAmt) const { | |

APInt R(*this); | |

R.lshrInPlace(ShiftAmt); | |

return R; | |

} | |

/// Logical right-shift this APInt by ShiftAmt in place. | |

void lshrInPlace(const APInt &ShiftAmt); | |

/// Left-shift function. | |

/// | |

/// Left-shift this APInt by shiftAmt. | |

APInt shl(const APInt &ShiftAmt) const { | |

APInt R(*this); | |

R <<= ShiftAmt; | |

return R; | |

} | |

/// Rotate left by rotateAmt. | |

APInt rotl(const APInt &rotateAmt) const; | |

/// Rotate right by rotateAmt. | |

APInt rotr(const APInt &rotateAmt) const; | |

/// Unsigned division operation. | |

/// | |

/// Perform an unsigned divide operation on this APInt by RHS. Both this and | |

/// RHS are treated as unsigned quantities for purposes of this division. | |

/// | |

/// \returns a new APInt value containing the division result, rounded towards | |

/// zero. | |

APInt udiv(const APInt &RHS) const; | |

APInt udiv(uint64_t RHS) const; | |

/// Signed division function for APInt. | |

/// | |

/// Signed divide this APInt by APInt RHS. | |

/// | |

/// The result is rounded towards zero. | |

APInt sdiv(const APInt &RHS) const; | |

APInt sdiv(int64_t RHS) const; | |

/// Unsigned remainder operation. | |

/// | |

/// Perform an unsigned remainder operation on this APInt with RHS being the | |

/// divisor. Both this and RHS are treated as unsigned quantities for purposes | |

/// of this operation. Note that this is a true remainder operation and not a | |

/// modulo operation because the sign follows the sign of the dividend which | |

/// is *this. | |

/// | |

/// \returns a new APInt value containing the remainder result | |

APInt urem(const APInt &RHS) const; | |

uint64_t urem(uint64_t RHS) const; | |

/// Function for signed remainder operation. | |

/// | |

/// Signed remainder operation on APInt. | |

APInt srem(const APInt &RHS) const; | |

int64_t srem(int64_t RHS) const; | |

/// Dual division/remainder interface. | |

/// | |

/// Sometimes it is convenient to divide two APInt values and obtain both the | |

/// quotient and remainder. This function does both operations in the same | |

/// computation making it a little more efficient. The pair of input arguments | |

/// may overlap with the pair of output arguments. It is safe to call | |

/// udivrem(X, Y, X, Y), for example. | |

static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |

APInt &Remainder); | |

static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | |

uint64_t &Remainder); | |

static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |

APInt &Remainder); | |

static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, | |

int64_t &Remainder); | |

// Operations that return overflow indicators. | |

APInt sadd_ov(const APInt &RHS, bool &Overflow) const; | |

APInt uadd_ov(const APInt &RHS, bool &Overflow) const; | |

APInt ssub_ov(const APInt &RHS, bool &Overflow) const; | |

APInt usub_ov(const APInt &RHS, bool &Overflow) const; | |

APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; | |

APInt smul_ov(const APInt &RHS, bool &Overflow) const; | |

APInt umul_ov(const APInt &RHS, bool &Overflow) const; | |

APInt sshl_ov(const APInt &Amt, bool &Overflow) const; | |

APInt ushl_ov(const APInt &Amt, bool &Overflow) const; | |

// Operations that saturate | |

APInt sadd_sat(const APInt &RHS) const; | |

APInt uadd_sat(const APInt &RHS) const; | |

APInt ssub_sat(const APInt &RHS) const; | |

APInt usub_sat(const APInt &RHS) const; | |

/// Array-indexing support. | |

/// | |

/// \returns the bit value at bitPosition | |

bool operator[](unsigned bitPosition) const { | |

assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); | |

return (maskBit(bitPosition) & getWord(bitPosition)) != 0; | |

} | |

/// @} | |

/// \name Comparison Operators | |

/// @{ | |

/// Equality operator. | |

/// | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

bool operator==(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); | |

if (isSingleWord()) | |

return U.VAL == RHS.U.VAL; | |

return EqualSlowCase(RHS); | |

} | |

/// Equality operator. | |

/// | |

/// Compares this APInt with a uint64_t for the validity of the equality | |

/// relationship. | |

/// | |

/// \returns true if *this == Val | |

bool operator==(uint64_t Val) const { | |

return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; | |

} | |

/// Equality comparison. | |

/// | |

/// Compares this APInt with RHS for the validity of the equality | |

/// relationship. | |

/// | |

/// \returns true if *this == Val | |

bool eq(const APInt &RHS) const { return (*this) == RHS; } | |

/// Inequality operator. | |

/// | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } | |

/// Inequality operator. | |

/// | |

/// Compares this APInt with a uint64_t for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool operator!=(uint64_t Val) const { return !((*this) == Val); } | |

/// Inequality comparison | |

/// | |

/// Compares this APInt with RHS for the validity of the inequality | |

/// relationship. | |

/// | |

/// \returns true if *this != Val | |

bool ne(const APInt &RHS) const { return !((*this) == RHS); } | |

/// Unsigned less than comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when both are considered unsigned. | |

bool ult(const APInt &RHS) const { return compare(RHS) < 0; } | |

/// Unsigned less than comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when considered unsigned. | |

bool ult(uint64_t RHS) const { | |

// Only need to check active bits if not a single word. | |

return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; | |

} | |

/// Signed less than comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when both are considered signed. | |

bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } | |

/// Signed less than comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the less-than relationship. | |

/// | |

/// \returns true if *this < RHS when considered signed. | |

bool slt(int64_t RHS) const { | |

return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() | |

: getSExtValue() < RHS; | |

} | |

/// Unsigned less or equal comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when both are considered unsigned. | |

bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } | |

/// Unsigned less or equal comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when considered unsigned. | |

bool ule(uint64_t RHS) const { return !ugt(RHS); } | |

/// Signed less or equal comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when both are considered signed. | |

bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } | |

/// Signed less or equal comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for the | |

/// validity of the less-or-equal relationship. | |

/// | |

/// \returns true if *this <= RHS when considered signed. | |

bool sle(uint64_t RHS) const { return !sgt(RHS); } | |

/// Unsigned greather than comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when both are considered unsigned. | |

bool ugt(const APInt &RHS) const { return !ule(RHS); } | |

/// Unsigned greater than comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when considered unsigned. | |

bool ugt(uint64_t RHS) const { | |

// Only need to check active bits if not a single word. | |

return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; | |

} | |

/// Signed greather than comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for the | |

/// validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when both are considered signed. | |

bool sgt(const APInt &RHS) const { return !sle(RHS); } | |

/// Signed greater than comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the greater-than relationship. | |

/// | |

/// \returns true if *this > RHS when considered signed. | |

bool sgt(int64_t RHS) const { | |

return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() | |

: getSExtValue() > RHS; | |

} | |

/// Unsigned greater or equal comparison | |

/// | |

/// Regards both *this and RHS as unsigned quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when both are considered unsigned. | |

bool uge(const APInt &RHS) const { return !ult(RHS); } | |

/// Unsigned greater or equal comparison | |

/// | |

/// Regards both *this as an unsigned quantity and compares it with RHS for | |

/// the validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when considered unsigned. | |

bool uge(uint64_t RHS) const { return !ult(RHS); } | |

/// Signed greater or equal comparison | |

/// | |

/// Regards both *this and RHS as signed quantities and compares them for | |

/// validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when both are considered signed. | |

bool sge(const APInt &RHS) const { return !slt(RHS); } | |

/// Signed greater or equal comparison | |

/// | |

/// Regards both *this as a signed quantity and compares it with RHS for | |

/// the validity of the greater-or-equal relationship. | |

/// | |

/// \returns true if *this >= RHS when considered signed. | |

bool sge(int64_t RHS) const { return !slt(RHS); } | |

/// This operation tests if there are any pairs of corresponding bits | |

/// between this APInt and RHS that are both set. | |

bool intersects(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

return (U.VAL & RHS.U.VAL) != 0; | |

return intersectsSlowCase(RHS); | |

} | |

/// This operation checks that all bits set in this APInt are also set in RHS. | |

bool isSubsetOf(const APInt &RHS) const { | |

assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); | |

if (isSingleWord()) | |

return (U.VAL & ~RHS.U.VAL) == 0; | |

return isSubsetOfSlowCase(RHS); | |

} | |

/// @} | |

/// \name Resizing Operators | |

/// @{ | |

/// Truncate to new width. | |

/// | |

/// Truncate the APInt to a specified width. It is an error to specify a width | |

/// that is greater than or equal to the current width. | |

APInt trunc(unsigned width) const; | |

/// Sign extend to a new width. | |

/// | |

/// This operation sign extends the APInt to a new width. If the high order | |

/// bit is set, the fill on the left will be done with 1 bits, otherwise zero. | |

/// It is an error to specify a width that is less than or equal to the | |

/// current width. | |

APInt sext(unsigned width) const; | |

/// Zero extend to a new width. | |

/// | |

/// This operation zero extends the APInt to a new width. The high order bits | |

/// are filled with 0 bits. It is an error to specify a width that is less | |

/// than or equal to the current width. | |

APInt zext(unsigned width) const; | |

/// Sign extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is sign | |

/// extended, truncated, or left alone to make it that width. | |

APInt sextOrTrunc(unsigned width) const; | |

/// Zero extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is zero | |

/// extended, truncated, or left alone to make it that width. | |

APInt zextOrTrunc(unsigned width) const; | |

/// Sign extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is sign | |

/// extended, or left alone to make it that width. | |

APInt sextOrSelf(unsigned width) const; | |

/// Zero extend or truncate to width | |

/// | |

/// Make this APInt have the bit width given by \p width. The value is zero | |

/// extended, or left alone to make it that width. | |

APInt zextOrSelf(unsigned width) const; | |

/// @} | |

/// \name Bit Manipulation Operators | |

/// @{ | |

/// Set every bit to 1. | |

void setAllBits() { | |

if (isSingleWord()) | |

U.VAL = WORDTYPE_MAX; | |

else | |

// Set all the bits in all the words. | |

memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); | |

// Clear the unused ones | |

clearUnusedBits(); | |

} | |

/// Set a given bit to 1. | |

/// | |

/// Set the given bit to 1 whose position is given as "bitPosition". | |

void setBit(unsigned BitPosition) { | |

assert(BitPosition < BitWidth && "BitPosition out of range"); | |

WordType Mask = maskBit(BitPosition); | |

if (isSingleWord()) | |

U.VAL |= Mask; | |

else | |

U.pVal[whichWord(BitPosition)] |= Mask; | |

} | |

/// Set the sign bit to 1. | |

void setSignBit() { | |

setBit(BitWidth - 1); | |

} | |

/// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. | |

void setBits(unsigned loBit, unsigned hiBit) { | |

assert(hiBit <= BitWidth && "hiBit out of range"); | |

assert(loBit <= BitWidth && "loBit out of range"); | |

assert(loBit <= hiBit && "loBit greater than hiBit"); | |

if (loBit == hiBit) | |

return; | |

if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { | |

uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); | |

mask <<= loBit; | |

if (isSingleWord()) | |

U.VAL |= mask; | |

else | |

U.pVal[0] |= mask; | |

} else { | |

setBitsSlowCase(loBit, hiBit); | |

} | |

} | |

/// Set the top bits starting from loBit. | |

void setBitsFrom(unsigned loBit) { | |

return setBits(loBit, BitWidth); | |

} | |

/// Set the bottom loBits bits. | |

void setLowBits(unsigned loBits) { | |

return setBits(0, loBits); | |

} | |

/// Set the top hiBits bits. | |

void setHighBits(unsigned hiBits) { | |

return setBits(BitWidth - hiBits, BitWidth); | |

} | |

/// Set every bit to 0. | |

void clearAllBits() { | |

if (isSingleWord()) | |

U.VAL = 0; | |

else | |

memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); | |

} | |

/// Set a given bit to 0. | |

/// | |

/// Set the given bit to 0 whose position is given as "bitPosition". | |

void clearBit(unsigned BitPosition) { | |

assert(BitPosition < BitWidth && "BitPosition out of range"); | |

WordType Mask = ~maskBit(BitPosition); | |

if (isSingleWord()) | |

U.VAL &= Mask; | |

else | |

U.pVal[whichWord(BitPosition)] &= Mask; | |

} | |

/// Set the sign bit to 0. | |

void clearSignBit() { | |

clearBit(BitWidth - 1); | |

} | |

/// Toggle every bit to its opposite value. | |

void flipAllBits() { | |

if (isSingleWord()) { | |

U.VAL ^= WORDTYPE_MAX; | |

clearUnusedBits(); | |

} else { | |

flipAllBitsSlowCase(); | |

} | |

} | |

/// Toggles a given bit to its opposite value. | |

/// | |

/// Toggle a given bit to its opposite value whose position is given | |

/// as "bitPosition". | |

void flipBit(unsigned bitPosition); | |

/// Negate this APInt in place. | |

void negate() { | |

flipAllBits(); | |

++(*this); | |

} | |

/// Insert the bits from a smaller APInt starting at bitPosition. | |

void insertBits(const APInt &SubBits, unsigned bitPosition); | |

/// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). | |

APInt extractBits(unsigned numBits, unsigned bitPosition) const; | |

/// @} | |

/// \name Value Characterization Functions | |

/// @{ | |

/// Return the number of bits in the APInt. | |

unsigned getBitWidth() const { return BitWidth; } | |

/// Get the number of words. | |

/// | |

/// Here one word's bitwidth equals to that of uint64_t. | |

/// | |

/// \returns the number of words to hold the integer value of this APInt. | |

unsigned getNumWords() const { return getNumWords(BitWidth); } | |

/// Get the number of words. | |

/// | |

/// *NOTE* Here one word's bitwidth equals to that of uint64_t. | |

/// | |

/// \returns the number of words to hold the integer value with a given bit | |

/// width. | |

static unsigned getNumWords(unsigned BitWidth) { | |

return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | |

} | |

/// Compute the number of active bits in the value | |

/// | |

/// This function returns the number of active bits which is defined as the | |

/// bit width minus the number of leading zeros. This is used in several | |

/// computations to see how "wide" the value is. | |

unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } | |

/// Compute the number of active words in the value of this APInt. | |

/// | |

/// This is used in conjunction with getActiveData to extract the raw value of | |

/// the APInt. | |

unsigned getActiveWords() const { | |

unsigned numActiveBits = getActiveBits(); | |

return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; | |

} | |

/// Get the minimum bit size for this signed APInt | |

/// | |

/// Computes the minimum bit width for this APInt while considering it to be a | |

/// signed (and probably negative) value. If the value is not negative, this | |

/// function returns the same value as getActiveBits()+1. Otherwise, it | |

/// returns the smallest bit width that will retain the negative value. For | |

/// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so | |

/// for -1, this function will always return 1. | |

unsigned getMinSignedBits() const { | |

if (isNegative()) | |

return BitWidth - countLeadingOnes() + 1; | |

return getActiveBits() + 1; | |

} | |

/// Get zero extended value | |

/// | |

/// This method attempts to return the value of this APInt as a zero extended | |

/// uint64_t. The bitwidth must be <= 64 or the value must fit within a | |

/// uint64_t. Otherwise an assertion will result. | |

uint64_t getZExtValue() const { | |

if (isSingleWord()) | |

return U.VAL; | |

assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); | |

return U.pVal[0]; | |

} | |

/// Get sign extended value | |

/// | |

/// This method attempts to return the value of this APInt as a sign extended | |

/// int64_t. The bit width must be <= 64 or the value must fit within an | |

/// int64_t. Otherwise an assertion will result. | |

int64_t getSExtValue() const { | |

if (isSingleWord()) | |

return SignExtend64(U.VAL, BitWidth); | |

assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); | |

return int64_t(U.pVal[0]); | |

} | |

/// Get bits required for string value. | |

/// | |

/// This method determines how many bits are required to hold the APInt | |

/// equivalent of the string given by \p str. | |

static unsigned getBitsNeeded(StringRef str, uint8_t radix); | |

/// The APInt version of the countLeadingZeros functions in | |

/// MathExtras.h. | |

/// | |

/// It counts the number of zeros from the most significant bit to the first | |

/// one bit. | |

/// | |

/// \returns BitWidth if the value is zero, otherwise returns the number of | |

/// zeros from the most significant bit to the first one bits. | |

unsigned countLeadingZeros() const { | |

if (isSingleWord()) { | |

unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; | |

return llvm::countLeadingZeros(U.VAL) - unusedBits; | |

} | |

return countLeadingZerosSlowCase(); | |

} | |

/// Count the number of leading one bits. | |

/// | |

/// This function is an APInt version of the countLeadingOnes | |

/// functions in MathExtras.h. It counts the number of ones from the most | |

/// significant bit to the first zero bit. | |

/// | |

/// \returns 0 if the high order bit is not set, otherwise returns the number | |

/// of 1 bits from the most significant to the least | |

unsigned countLeadingOnes() const { | |

if (isSingleWord()) | |

return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); | |

return countLeadingOnesSlowCase(); | |

} | |

/// Computes the number of leading bits of this APInt that are equal to its | |

/// sign bit. | |

unsigned getNumSignBits() const { | |

return isNegative() ? countLeadingOnes() : countLeadingZeros(); | |

} | |

/// Count the number of trailing zero bits. | |

/// | |

/// This function is an APInt version of the countTrailingZeros | |

/// functions in MathExtras.h. It counts the number of zeros from the least | |

/// significant bit to the first set bit. | |

/// | |

/// \returns BitWidth if the value is zero, otherwise returns the number of | |

/// zeros from the least significant bit to the first one bit. | |

unsigned countTrailingZeros() const { | |

if (isSingleWord()) | |

return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth); | |

return countTrailingZerosSlowCase(); | |

} | |

/// Count the number of trailing one bits. | |

/// | |

/// This function is an APInt version of the countTrailingOnes | |

/// functions in MathExtras.h. It counts the number of ones from the least | |

/// significant bit to the first zero bit. | |

/// | |

/// \returns BitWidth if the value is all ones, otherwise returns the number | |

/// of ones from the least significant bit to the first zero bit. | |

unsigned countTrailingOnes() const { | |

if (isSingleWord()) | |

return llvm::countTrailingOnes(U.VAL); | |

return countTrailingOnesSlowCase(); | |

} | |

/// Count the number of bits set. | |

/// | |

/// This function is an APInt version of the countPopulation functions | |

/// in MathExtras.h. It counts the number of 1 bits in the APInt value. | |

/// | |

/// \returns 0 if the value is zero, otherwise returns the number of set bits. | |

unsigned countPopulation() const { | |

if (isSingleWord()) | |

return llvm::countPopulation(U.VAL); | |

return countPopulationSlowCase(); | |

} | |

/// @} | |

/// \name Conversion Functions | |

/// @{ | |

void print(raw_ostream &OS, bool isSigned) const; | |

/// Converts an APInt to a string and append it to Str. Str is commonly a | |

/// SmallString. | |

void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, | |

bool formatAsCLiteral = false) const; | |

/// Considers the APInt to be unsigned and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10 16, or 36. | |

void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |

toString(Str, Radix, false, false); | |

} | |

/// Considers the APInt to be signed and converts it into a string in the | |

/// radix given. The radix can be 2, 8, 10, 16, or 36. | |

void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |

toString(Str, Radix, true, false); | |

} | |

/// Return the APInt as a std::string. | |

/// | |

/// Note that this is an inefficient method. It is better to pass in a | |

/// SmallVector/SmallString to the methods above to avoid thrashing the heap | |

/// for the string. | |

std::string toString(unsigned Radix, bool Signed) const; | |

/// \returns a byte-swapped representation of this APInt Value. | |

APInt byteSwap() const; | |

/// \returns the value with the bit representation reversed of this APInt | |

/// Value. | |

APInt reverseBits() const; | |

/// Converts this APInt to a double value. | |

double roundToDouble(bool isSigned) const; | |

/// Converts this unsigned APInt to a double value. | |

double roundToDouble() const { return roundToDouble(false); } | |

/// Converts this signed APInt to a double value. | |

double signedRoundToDouble() const { return roundToDouble(true); } | |

/// Converts APInt bits to a double | |

/// | |

/// The conversion does not do a translation from integer to double, it just | |

/// re-interprets the bits as a double. Note that it is valid to do this on | |

/// any bit width. Exactly 64 bits will be translated. | |

double bitsToDouble() const { | |

return BitsToDouble(getWord(0)); | |

} | |

/// Converts APInt bits to a double | |

/// | |

/// The conversion does not do a translation from integer to float, it just | |

/// re-interprets the bits as a float. Note that it is valid to do this on | |

/// any bit width. Exactly 32 bits will be translated. | |

float bitsToFloat() const { | |

return BitsToFloat(getWord(0)); | |

} | |

/// Converts a double to APInt bits. | |

/// | |

/// The conversion does not do a translation from double to integer, it just | |

/// re-interprets the bits of the double. | |

static APInt doubleToBits(double V) { | |

return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); | |

} | |

/// Converts a float to APInt bits. | |

/// | |

/// The conversion does not do a translation from float to integer, it just | |

/// re-interprets the bits of the float. | |

static APInt floatToBits(float V) { | |

return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); | |

} | |

/// @} | |

/// \name Mathematics Operations | |

/// @{ | |

/// \returns the floor log base 2 of this APInt. | |

unsigned logBase2() const { return getActiveBits() - 1; } | |

/// \returns the ceil log base 2 of this APInt. | |

unsigned ceilLogBase2() const { | |

APInt temp(*this); | |

--temp; | |

return temp.getActiveBits(); | |

} | |

/// \returns the nearest log base 2 of this APInt. Ties round up. | |

/// | |

/// NOTE: When we have a BitWidth of 1, we define: | |

/// | |

/// log2(0) = UINT32_MAX | |

/// log2(1) = 0 | |

/// | |

/// to get around any mathematical concerns resulting from | |

/// referencing 2 in a space where 2 does no exist. | |

unsigned nearestLogBase2() const { | |

// Special case when we have a bitwidth of 1. If VAL is 1, then we | |

// get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to | |

// UINT32_MAX. | |

if (BitWidth == 1) | |

return U.VAL - 1; | |

// Handle the zero case. | |

if (isNullValue()) | |

return UINT32_MAX; | |

// The non-zero case is handled by computing: | |

// | |

// nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. | |

// | |

// where x[i] is referring to the value of the ith bit of x. | |

unsigned lg = logBase2(); | |

return lg + unsigned((*this)[lg - 1]); | |

} | |

/// \returns the log base 2 of this APInt if its an exact power of two, -1 | |

/// otherwise | |

int32_t exactLogBase2() const { | |

if (!isPowerOf2()) | |

return -1; | |

return logBase2(); | |

} | |

/// Compute the square root | |

APInt sqrt() const; | |

/// Get the absolute value; | |

/// | |

/// If *this is < 0 then return -(*this), otherwise *this; | |

APInt abs() const { | |

if (isNegative()) | |

return -(*this); | |

return *this; | |

} | |

/// \returns the multiplicative inverse for a given modulo. | |

APInt multiplicativeInverse(const APInt &modulo) const; | |

/// @} | |

/// \name Support for division by constant | |

/// @{ | |

/// Calculate the magic number for signed division by a constant. | |

struct ms; | |

ms magic() const; | |

/// Calculate the magic number for unsigned division by a constant. | |

struct mu; | |

mu magicu(unsigned LeadingZeros = 0) const; | |

/// @} | |

/// \name Building-block Operations for APInt and APFloat | |

/// @{ | |

// These building block operations operate on a representation of arbitrary | |

// precision, two's-complement, bignum integer values. They should be | |

// sufficient to implement APInt and APFloat bignum requirements. Inputs are | |

// generally a pointer to the base of an array of integer parts, representing | |

// an unsigned bignum, and a count of how many parts there are. | |

/// Sets the least significant part of a bignum to the input value, and zeroes | |

/// out higher parts. | |

static void tcSet(WordType *, WordType, unsigned); | |

/// Assign one bignum to another. | |

static void tcAssign(WordType *, const WordType *, unsigned); | |

/// Returns true if a bignum is zero, false otherwise. | |

static bool tcIsZero(const WordType *, unsigned); | |

/// Extract the given bit of a bignum; returns 0 or 1. Zero-based. | |

static int tcExtractBit(const WordType *, unsigned bit); | |

/// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to | |

/// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least | |

/// significant bit of DST. All high bits above srcBITS in DST are | |

/// zero-filled. | |

static void tcExtract(WordType *, unsigned dstCount, | |

const WordType *, unsigned srcBits, | |

unsigned srcLSB); | |

/// Set the given bit of a bignum. Zero-based. | |

static void tcSetBit(WordType *, unsigned bit); | |

/// Clear the given bit of a bignum. Zero-based. | |

static void tcClearBit(WordType *, unsigned bit); | |

/// Returns the bit number of the least or most significant set bit of a | |

/// number. If the input number has no bits set -1U is returned. | |

static unsigned tcLSB(const WordType *, unsigned n); | |

static unsigned tcMSB(const WordType *parts, unsigned n); | |

/// Negate a bignum in-place. | |

static void tcNegate(WordType *, unsigned); | |

/// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |

static WordType tcAdd(WordType *, const WordType *, | |

WordType carry, unsigned); | |

/// DST += RHS. Returns the carry flag. | |

static WordType tcAddPart(WordType *, WordType, unsigned); | |

/// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |

static WordType tcSubtract(WordType *, const WordType *, | |

WordType carry, unsigned); | |

/// DST -= RHS. Returns the carry flag. | |

static WordType tcSubtractPart(WordType *, WordType, unsigned); | |

/// DST += SRC * MULTIPLIER + PART if add is true | |

/// DST = SRC * MULTIPLIER + PART if add is false | |

/// | |

/// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must | |

/// start at the same point, i.e. DST == SRC. | |

/// | |

/// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. | |

/// Otherwise DST is filled with the least significant DSTPARTS parts of the | |

/// result, and if all of the omitted higher parts were zero return zero, | |

/// otherwise overflow occurred and return one. | |

static int tcMultiplyPart(WordType *dst, const WordType *src, | |

WordType multiplier, WordType carry, | |

unsigned srcParts, unsigned dstParts, | |

bool add); | |

/// DST = LHS * RHS, where DST has the same width as the operands and is | |

/// filled with the least significant parts of the result. Returns one if | |

/// overflow occurred, otherwise zero. DST must be disjoint from both | |

/// operands. | |

static int tcMultiply(WordType *, const WordType *, const WordType *, | |

unsigned); | |

/// DST = LHS * RHS, where DST has width the sum of the widths of the | |

/// operands. No overflow occurs. DST must be disjoint from both operands. | |

static void tcFullMultiply(WordType *, const WordType *, | |

const WordType *, unsigned, unsigned); | |

/// If RHS is zero LHS and REMAINDER are left unchanged, return one. | |

/// Otherwise set LHS to LHS / RHS with the fractional part discarded, set | |

/// REMAINDER to the remainder, return zero. i.e. | |

/// | |

/// OLD_LHS = RHS * LHS + REMAINDER | |

/// | |

/// SCRATCH is a bignum of the same size as the operands and result for use by | |

/// the routine; its contents need not be initialized and are destroyed. LHS, | |

/// REMAINDER and SCRATCH must be distinct. | |

static int tcDivide(WordType *lhs, const WordType *rhs, | |

WordType *remainder, WordType *scratch, | |

unsigned parts); | |

/// Shift a bignum left Count bits. Shifted in bits are zero. There are no | |

/// restrictions on Count. | |

static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); | |

/// Shift a bignum right Count bits. Shifted in bits are zero. There are no | |

/// restrictions on Count. | |

static void tcShiftRight(WordType *, unsigned Words, unsigned Count); | |

/// The obvious AND, OR and XOR and complement operations. | |

static void tcAnd(WordType *, const WordType *, unsigned); | |

static void tcOr(WordType *, const WordType *, unsigned); | |

static void tcXor(WordType *, const WordType *, unsigned); | |

static void tcComplement(WordType *, unsigned); | |

/// Comparison (unsigned) of two bignums. | |

static int tcCompare(const WordType *, const WordType *, unsigned); | |

/// Increment a bignum in-place. Return the carry flag. | |

static WordType tcIncrement(WordType *dst, unsigned parts) { | |

return tcAddPart(dst, 1, parts); | |

} | |

/// Decrement a bignum in-place. Return the borrow flag. | |

static WordType tcDecrement(WordType *dst, unsigned parts) { | |

return tcSubtractPart(dst, 1, parts); | |

} | |

/// Set the least significant BITS and clear the rest. | |

static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); | |

/// debug method | |

void dump() const; | |

/// @} | |

}; | |

/// Magic data for optimising signed division by a constant. | |

struct APInt::ms { | |

APInt m; ///< magic number | |

unsigned s; ///< shift amount | |

}; | |

/// Magic data for optimising unsigned division by a constant. | |

struct APInt::mu { | |

APInt m; ///< magic number | |

bool a; ///< add indicator | |

unsigned s; ///< shift amount | |

}; | |

inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } | |

inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } | |

/// Unary bitwise complement operator. | |

/// | |

/// \returns an APInt that is the bitwise complement of \p v. | |

inline APInt operator~(APInt v) { | |

v.flipAllBits(); | |

return v; | |

} | |

inline APInt operator&(APInt a, const APInt &b) { | |

a &= b; | |

return a; | |

} | |

inline APInt operator&(const APInt &a, APInt &&b) { | |

b &= a; | |

return std::move(b); | |

} | |

inline APInt operator&(APInt a, uint64_t RHS) { | |

a &= RHS; | |

return a; | |

} | |

inline APInt operator&(uint64_t LHS, APInt b) { | |

b &= LHS; | |

return b; | |

} | |

inline APInt operator|(APInt a, const APInt &b) { | |

a |= b; | |

return a; | |

} | |

inline APInt operator|(const APInt &a, APInt &&b) { | |

b |= a; | |

return std::move(b); | |

} | |

inline APInt operator|(APInt a, uint64_t RHS) { | |

a |= RHS; | |

return a; | |

} | |

inline APInt operator|(uint64_t LHS, APInt b) { | |

b |= LHS; | |

return b; | |

} | |

inline APInt operator^(APInt a, const APInt &b) { | |

a ^= b; | |

return a; | |

} | |

inline APInt operator^(const APInt &a, APInt &&b) { | |

b ^= a; | |

return std::move(b); | |

} | |

inline APInt operator^(APInt a, uint64_t RHS) { | |

a ^= RHS; | |

return a; | |

} | |

inline APInt operator^(uint64_t LHS, APInt b) { | |

b ^= LHS; | |

return b; | |

} | |

inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { | |

I.print(OS, true); | |

return OS; | |

} | |

inline APInt operator-(APInt v) { | |

v.negate(); | |

return v; | |

} | |

inline APInt operator+(APInt a, const APInt &b) { | |

a += b; | |

return a; | |

} | |

inline APInt operator+(const APInt &a, APInt &&b) { | |

b += a; | |

return std::move(b); | |

} | |

inline APInt operator+(APInt a, uint64_t RHS) { | |

a += RHS; | |

return a; | |

} | |

inline APInt operator+(uint64_t LHS, APInt b) { | |

b += LHS; | |

return b; | |

} | |

inline APInt operator-(APInt a, const APInt &b) { | |

a -= b; | |

return a; | |

} | |

inline APInt operator-(const APInt &a, APInt &&b) { | |

b.negate(); | |

b += a; | |

return std::move(b); | |

} | |

inline APInt operator-(APInt a, uint64_t RHS) { | |

a -= RHS; | |

return a; | |

} | |

inline APInt operator-(uint64_t LHS, APInt b) { | |

b.negate(); | |

b += LHS; | |

return b; | |

} | |

inline APInt operator*(APInt a, uint64_t RHS) { | |

a *= RHS; | |

return a; | |

} | |

inline APInt operator*(uint64_t LHS, APInt b) { | |

b *= LHS; | |

return b; | |

} | |

namespace APIntOps { | |

/// Determine the smaller of two APInts considered to be signed. | |

inline const APInt &smin(const APInt &A, const APInt &B) { | |

return A.slt(B) ? A : B; | |

} | |

/// Determine the larger of two APInts considered to be signed. | |

inline const APInt &smax(const APInt &A, const APInt &B) { | |

return A.sgt(B) ? A : B; | |

} | |

/// Determine the smaller of two APInts considered to be signed. | |

inline const APInt &umin(const APInt &A, const APInt &B) { | |

return A.ult(B) ? A : B; | |

} | |

/// Determine the larger of two APInts considered to be unsigned. | |

inline const APInt &umax(const APInt &A, const APInt &B) { | |

return A.ugt(B) ? A : B; | |

} | |

/// Compute GCD of two unsigned APInt values. | |

/// | |

/// This function returns the greatest common divisor of the two APInt values | |

/// using Stein's algorithm. | |

/// | |

/// \returns the greatest common divisor of A and B. | |

APInt GreatestCommonDivisor(APInt A, APInt B); | |

/// Converts the given APInt to a double value. | |

/// | |

/// Treats the APInt as an unsigned value for conversion purposes. | |

inline double RoundAPIntToDouble(const APInt &APIVal) { | |

return APIVal.roundToDouble(); | |

} | |

/// Converts the given APInt to a double value. | |

/// | |

/// Treats the APInt as a signed value for conversion purposes. | |

inline double RoundSignedAPIntToDouble(const APInt &APIVal) { | |

return APIVal.signedRoundToDouble(); | |

} | |

/// Converts the given APInt to a float vlalue. | |

inline float RoundAPIntToFloat(const APInt &APIVal) { | |

return float(RoundAPIntToDouble(APIVal)); | |

} | |

/// Converts the given APInt to a float value. | |

/// | |

/// Treast the APInt as a signed value for conversion purposes. | |

inline float RoundSignedAPIntToFloat(const APInt &APIVal) { | |

return float(APIVal.signedRoundToDouble()); | |

} | |

/// Converts the given double value into a APInt. | |

/// | |

/// This function convert a double value to an APInt value. | |

APInt RoundDoubleToAPInt(double Double, unsigned width); | |

/// Converts a float value into a APInt. | |

/// | |

/// Converts a float value into an APInt value. | |

inline APInt RoundFloatToAPInt(float Float, unsigned width) { | |

return RoundDoubleToAPInt(double(Float), width); | |

} | |

/// Return A unsign-divided by B, rounded by the given rounding mode. | |

APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | |

/// Return A sign-divided by B, rounded by the given rounding mode. | |

APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | |

/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range | |

/// (e.g. 32 for i32). | |

/// This function finds the smallest number n, such that | |

/// (a) n >= 0 and q(n) = 0, or | |

/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all | |

/// integers, belong to two different intervals [Rk, Rk+R), | |

/// where R = 2^BW, and k is an integer. | |

/// The idea here is to find when q(n) "overflows" 2^BW, while at the | |

/// same time "allowing" subtraction. In unsigned modulo arithmetic a | |

/// subtraction (treated as addition of negated numbers) would always | |

/// count as an overflow, but here we want to allow values to decrease | |

/// and increase as long as they are within the same interval. | |

/// Specifically, adding of two negative numbers should not cause an | |

/// overflow (as long as the magnitude does not exceed the bith width). | |

/// On the other hand, given a positive number, adding a negative | |

/// number to it can give a negative result, which would cause the | |

/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is | |

/// treated as a special case of an overflow. | |

/// | |

/// This function returns None if after finding k that minimizes the | |

/// positive solution to q(n) = kR, both solutions are contained between | |

/// two consecutive integers. | |

/// | |

/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation | |

/// in arithmetic modulo 2^BW, and treating the values as signed) by the | |

/// virtue of *signed* overflow. This function will *not* find such an n, | |

/// however it may find a value of n satisfying the inequalities due to | |

/// an *unsigned* overflow (if the values are treated as unsigned). | |

/// To find a solution for a signed overflow, treat it as a problem of | |

/// finding an unsigned overflow with a range with of BW-1. | |

/// | |

/// The returned value may have a different bit width from the input | |

/// coefficients. | |

Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | |

unsigned RangeWidth); | |

} // End of APIntOps namespace | |

// See friend declaration above. This additional declaration is required in | |

// order to compile LLVM with IBM xlC compiler. | |

hash_code hash_value(const APInt &Arg); | |

} // End of llvm namespace | |

#endif |