blob: 0a188c0935adba07a0b6eca2b737e0ed468c82a9 [file] [log] [blame]
//=- llvm/CodeGen/DFAPacketizer.cpp - DFA Packetizer for VLIW -*- C++ -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This class implements a deterministic finite automaton (DFA) based
// packetizing mechanism for VLIW architectures. It provides APIs to
// determine whether there exists a legal mapping of instructions to
// functional unit assignments in a packet. The DFA is auto-generated from
// the target's Schedule.td file.
//
// A DFA consists of 3 major elements: states, inputs, and transitions. For
// the packetizing mechanism, the input is the set of instruction classes for
// a target. The state models all possible combinations of functional unit
// consumption for a given set of instructions in a packet. A transition
// models the addition of an instruction to a packet. In the DFA constructed
// by this class, if an instruction can be added to a packet, then a valid
// transition exists from the corresponding state. Invalid transitions
// indicate that the instruction cannot be added to the current packet.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Target/TargetInstrInfo.h"
using namespace llvm;
DFAPacketizer::DFAPacketizer(const InstrItineraryData *I, const int (*SIT)[2],
const unsigned *SET):
InstrItins(I), CurrentState(0), DFAStateInputTable(SIT),
DFAStateEntryTable(SET) {}
//
// ReadTable - Read the DFA transition table and update CachedTable.
//
// Format of the transition tables:
// DFAStateInputTable[][2] = pairs of <Input, Transition> for all valid
// transitions
// DFAStateEntryTable[i] = Index of the first entry in DFAStateInputTable
// for the ith state
//
void DFAPacketizer::ReadTable(unsigned int state) {
unsigned ThisState = DFAStateEntryTable[state];
unsigned NextStateInTable = DFAStateEntryTable[state+1];
// Early exit in case CachedTable has already contains this
// state's transitions.
if (CachedTable.count(UnsignPair(state,
DFAStateInputTable[ThisState][0])))
return;
for (unsigned i = ThisState; i < NextStateInTable; i++)
CachedTable[UnsignPair(state, DFAStateInputTable[i][0])] =
DFAStateInputTable[i][1];
}
// canReserveResources - Check if the resources occupied by a MCInstrDesc
// are available in the current state.
bool DFAPacketizer::canReserveResources(const llvm::MCInstrDesc *MID) {
unsigned InsnClass = MID->getSchedClass();
const llvm::InstrStage *IS = InstrItins->beginStage(InsnClass);
unsigned FuncUnits = IS->getUnits();
UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
ReadTable(CurrentState);
return (CachedTable.count(StateTrans) != 0);
}
// reserveResources - Reserve the resources occupied by a MCInstrDesc and
// change the current state to reflect that change.
void DFAPacketizer::reserveResources(const llvm::MCInstrDesc *MID) {
unsigned InsnClass = MID->getSchedClass();
const llvm::InstrStage *IS = InstrItins->beginStage(InsnClass);
unsigned FuncUnits = IS->getUnits();
UnsignPair StateTrans = UnsignPair(CurrentState, FuncUnits);
ReadTable(CurrentState);
assert(CachedTable.count(StateTrans) != 0);
CurrentState = CachedTable[StateTrans];
}
// canReserveResources - Check if the resources occupied by a machine
// instruction are available in the current state.
bool DFAPacketizer::canReserveResources(llvm::MachineInstr *MI) {
const llvm::MCInstrDesc &MID = MI->getDesc();
return canReserveResources(&MID);
}
// reserveResources - Reserve the resources occupied by a machine
// instruction and change the current state to reflect that change.
void DFAPacketizer::reserveResources(llvm::MachineInstr *MI) {
const llvm::MCInstrDesc &MID = MI->getDesc();
reserveResources(&MID);
}
namespace llvm {
// DefaultVLIWScheduler - This class extends ScheduleDAGInstrs and overrides
// Schedule method to build the dependence graph.
class DefaultVLIWScheduler : public ScheduleDAGInstrs {
public:
DefaultVLIWScheduler(MachineFunction &MF, MachineLoopInfo &MLI,
bool IsPostRA);
// Schedule - Actual scheduling work.
void schedule() override;
};
}
DefaultVLIWScheduler::DefaultVLIWScheduler(MachineFunction &MF,
MachineLoopInfo &MLI, bool IsPostRA)
: ScheduleDAGInstrs(MF, &MLI, IsPostRA) {
CanHandleTerminators = true;
}
void DefaultVLIWScheduler::schedule() {
// Build the scheduling graph.
buildSchedGraph(nullptr);
}
// VLIWPacketizerList Ctor
VLIWPacketizerList::VLIWPacketizerList(MachineFunction &MF,
MachineLoopInfo &MLI, bool IsPostRA)
: MF(MF) {
TII = MF.getSubtarget().getInstrInfo();
ResourceTracker = TII->CreateTargetScheduleState(MF.getSubtarget());
VLIWScheduler = new DefaultVLIWScheduler(MF, MLI, IsPostRA);
}
// VLIWPacketizerList Dtor
VLIWPacketizerList::~VLIWPacketizerList() {
if (VLIWScheduler)
delete VLIWScheduler;
if (ResourceTracker)
delete ResourceTracker;
}
// endPacket - End the current packet, bundle packet instructions and reset
// DFA state.
void VLIWPacketizerList::endPacket(MachineBasicBlock *MBB,
MachineInstr *MI) {
if (CurrentPacketMIs.size() > 1) {
MachineInstr *MIFirst = CurrentPacketMIs.front();
finalizeBundle(*MBB, MIFirst, MI);
}
CurrentPacketMIs.clear();
ResourceTracker->clearResources();
}
// PacketizeMIs - Bundle machine instructions into packets.
void VLIWPacketizerList::PacketizeMIs(MachineBasicBlock *MBB,
MachineBasicBlock::iterator BeginItr,
MachineBasicBlock::iterator EndItr) {
assert(VLIWScheduler && "VLIW Scheduler is not initialized!");
VLIWScheduler->startBlock(MBB);
VLIWScheduler->enterRegion(MBB, BeginItr, EndItr,
std::distance(BeginItr, EndItr));
VLIWScheduler->schedule();
// Generate MI -> SU map.
MIToSUnit.clear();
for (unsigned i = 0, e = VLIWScheduler->SUnits.size(); i != e; ++i) {
SUnit *SU = &VLIWScheduler->SUnits[i];
MIToSUnit[SU->getInstr()] = SU;
}
// The main packetizer loop.
for (; BeginItr != EndItr; ++BeginItr) {
MachineInstr *MI = BeginItr;
this->initPacketizerState();
// End the current packet if needed.
if (this->isSoloInstruction(MI)) {
endPacket(MBB, MI);
continue;
}
// Ignore pseudo instructions.
if (this->ignorePseudoInstruction(MI, MBB))
continue;
SUnit *SUI = MIToSUnit[MI];
assert(SUI && "Missing SUnit Info!");
// Ask DFA if machine resource is available for MI.
bool ResourceAvail = ResourceTracker->canReserveResources(MI);
if (ResourceAvail) {
// Dependency check for MI with instructions in CurrentPacketMIs.
for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(),
VE = CurrentPacketMIs.end(); VI != VE; ++VI) {
MachineInstr *MJ = *VI;
SUnit *SUJ = MIToSUnit[MJ];
assert(SUJ && "Missing SUnit Info!");
// Is it legal to packetize SUI and SUJ together.
if (!this->isLegalToPacketizeTogether(SUI, SUJ)) {
// Allow packetization if dependency can be pruned.
if (!this->isLegalToPruneDependencies(SUI, SUJ)) {
// End the packet if dependency cannot be pruned.
endPacket(MBB, MI);
break;
} // !isLegalToPruneDependencies.
} // !isLegalToPacketizeTogether.
} // For all instructions in CurrentPacketMIs.
} else {
// End the packet if resource is not available.
endPacket(MBB, MI);
}
// Add MI to the current packet.
BeginItr = this->addToPacket(MI);
} // For all instructions in BB.
// End any packet left behind.
endPacket(MBB, EndItr);
VLIWScheduler->exitRegion();
VLIWScheduler->finishBlock();
}