blob: 4ab1f8497adb619cc357edeaf92da423a5378f89 [file] [log] [blame]
//===-- llvm/IR/Statepoint.h - gc.statepoint utilities ------ --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains utility functions and a wrapper class analogous to
// CallSite for accessing the fields of gc.statepoint, gc.relocate, and
// gc.result intrinsics
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_STATEPOINT_H
#define LLVM_IR_STATEPOINT_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/Compiler.h"
namespace llvm {
/// The statepoint intrinsic accepts a set of flags as its third argument.
/// Valid values come out of this set.
enum class StatepointFlags {
None = 0,
GCTransition = 1, ///< Indicates that this statepoint is a transition from
///< GC-aware code to code that is not GC-aware.
MaskAll = GCTransition ///< A bitmask that includes all valid flags.
};
class GCRelocateOperands;
class ImmutableStatepoint;
bool isStatepoint(const ImmutableCallSite &CS);
bool isStatepoint(const Value *V);
bool isStatepoint(const Value &V);
bool isGCRelocate(const Value *V);
bool isGCRelocate(const ImmutableCallSite &CS);
bool isGCResult(const Value *V);
bool isGCResult(const ImmutableCallSite &CS);
/// Analogous to CallSiteBase, this provides most of the actual
/// functionality for Statepoint and ImmutableStatepoint. It is
/// templatized to allow easily specializing of const and non-const
/// concrete subtypes. This is structured analogous to CallSite
/// rather than the IntrinsicInst.h helpers since we want to support
/// invokable statepoints in the near future.
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallSiteTy>
class StatepointBase {
CallSiteTy StatepointCS;
void *operator new(size_t, unsigned) = delete;
void *operator new(size_t s) = delete;
protected:
explicit StatepointBase(InstructionTy *I) {
if (isStatepoint(I)) {
StatepointCS = CallSiteTy(I);
assert(StatepointCS && "isStatepoint implies CallSite");
}
}
explicit StatepointBase(CallSiteTy CS) {
if (isStatepoint(CS))
StatepointCS = CS;
}
public:
typedef typename CallSiteTy::arg_iterator arg_iterator;
enum {
IDPos = 0,
NumPatchBytesPos = 1,
CalledFunctionPos = 2,
NumCallArgsPos = 3,
FlagsPos = 4,
CallArgsBeginPos = 5,
};
explicit operator bool() const {
// We do not assign non-statepoint CallSites to StatepointCS.
return (bool)StatepointCS;
}
/// Return the underlying CallSite.
CallSiteTy getCallSite() const {
assert(*this && "check validity first!");
return StatepointCS;
}
uint64_t getFlags() const {
return cast<ConstantInt>(getCallSite().getArgument(FlagsPos))
->getZExtValue();
}
/// Return the ID associated with this statepoint.
uint64_t getID() const {
const Value *IDVal = getCallSite().getArgument(IDPos);
return cast<ConstantInt>(IDVal)->getZExtValue();
}
/// Return the number of patchable bytes associated with this statepoint.
uint32_t getNumPatchBytes() const {
const Value *NumPatchBytesVal = getCallSite().getArgument(NumPatchBytesPos);
uint64_t NumPatchBytes =
cast<ConstantInt>(NumPatchBytesVal)->getZExtValue();
assert(isInt<32>(NumPatchBytes) && "should fit in 32 bits!");
return NumPatchBytes;
}
/// Return the value actually being called or invoked.
ValueTy *getCalledValue() const {
return getCallSite().getArgument(CalledFunctionPos);
}
InstructionTy *getInstruction() const {
return getCallSite().getInstruction();
}
/// Return the function being called if this is a direct call, otherwise
/// return null (if it's an indirect call).
FunTy *getCalledFunction() const {
return dyn_cast<Function>(getCalledValue());
}
/// Return the caller function for this statepoint.
FunTy *getCaller() const { return getCallSite().getCaller(); }
/// Determine if the statepoint cannot unwind.
bool doesNotThrow() const {
Function *F = getCalledFunction();
return getCallSite().doesNotThrow() || (F ? F->doesNotThrow() : false);
}
/// Return the type of the value returned by the call underlying the
/// statepoint.
Type *getActualReturnType() const {
auto *FTy = cast<FunctionType>(
cast<PointerType>(getCalledValue()->getType())->getElementType());
return FTy->getReturnType();
}
/// Number of arguments to be passed to the actual callee.
int getNumCallArgs() const {
const Value *NumCallArgsVal = getCallSite().getArgument(NumCallArgsPos);
return cast<ConstantInt>(NumCallArgsVal)->getZExtValue();
}
size_t arg_size() const { return getNumCallArgs(); }
typename CallSiteTy::arg_iterator arg_begin() const {
assert(CallArgsBeginPos <= (int)getCallSite().arg_size());
return getCallSite().arg_begin() + CallArgsBeginPos;
}
typename CallSiteTy::arg_iterator arg_end() const {
auto I = arg_begin() + arg_size();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
ValueTy *getArgument(unsigned Index) {
assert(Index < arg_size() && "out of bounds!");
return *(arg_begin() + Index);
}
/// range adapter for call arguments
iterator_range<arg_iterator> call_args() const {
return iterator_range<arg_iterator>(arg_begin(), arg_end());
}
/// \brief Return true if the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attribute::AttrKind A) const {
Function *F = getCalledFunction();
return getCallSite().paramHasAttr(i + CallArgsBeginPos, A) ||
(F ? F->getAttributes().hasAttribute(i, A) : false);
}
/// Number of GC transition args.
int getNumTotalGCTransitionArgs() const {
const Value *NumGCTransitionArgs = *arg_end();
return cast<ConstantInt>(NumGCTransitionArgs)->getZExtValue();
}
typename CallSiteTy::arg_iterator gc_transition_args_begin() const {
auto I = arg_end() + 1;
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
typename CallSiteTy::arg_iterator gc_transition_args_end() const {
auto I = gc_transition_args_begin() + getNumTotalGCTransitionArgs();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
/// range adapter for GC transition arguments
iterator_range<arg_iterator> gc_transition_args() const {
return iterator_range<arg_iterator>(gc_transition_args_begin(),
gc_transition_args_end());
}
/// Number of additional arguments excluding those intended
/// for garbage collection.
int getNumTotalVMSArgs() const {
const Value *NumVMSArgs = *gc_transition_args_end();
return cast<ConstantInt>(NumVMSArgs)->getZExtValue();
}
typename CallSiteTy::arg_iterator vm_state_begin() const {
auto I = gc_transition_args_end() + 1;
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
typename CallSiteTy::arg_iterator vm_state_end() const {
auto I = vm_state_begin() + getNumTotalVMSArgs();
assert((getCallSite().arg_end() - I) >= 0);
return I;
}
/// range adapter for vm state arguments
iterator_range<arg_iterator> vm_state_args() const {
return iterator_range<arg_iterator>(vm_state_begin(), vm_state_end());
}
typename CallSiteTy::arg_iterator gc_args_begin() const {
return vm_state_end();
}
typename CallSiteTy::arg_iterator gc_args_end() const {
return getCallSite().arg_end();
}
/// range adapter for gc arguments
iterator_range<arg_iterator> gc_args() const {
return iterator_range<arg_iterator>(gc_args_begin(), gc_args_end());
}
/// Get list of all gc reloactes linked to this statepoint
/// May contain several relocations for the same base/derived pair.
/// For example this could happen due to relocations on unwinding
/// path of invoke.
std::vector<GCRelocateOperands> getRelocates() const;
/// Get the experimental_gc_result call tied to this statepoint. Can be
/// nullptr if there isn't a gc_result tied to this statepoint. Guaranteed to
/// be a CallInst if non-null.
InstructionTy *getGCResult() const {
for (auto *U : getInstruction()->users())
if (isGCResult(U))
return cast<CallInst>(U);
return nullptr;
}
#ifndef NDEBUG
/// Asserts if this statepoint is malformed. Common cases for failure
/// include incorrect length prefixes for variable length sections or
/// illegal values for parameters.
void verify() {
assert(getNumCallArgs() >= 0 &&
"number of arguments to actually callee can't be negative");
// The internal asserts in the iterator accessors do the rest.
(void)arg_begin();
(void)arg_end();
(void)gc_transition_args_begin();
(void)gc_transition_args_end();
(void)vm_state_begin();
(void)vm_state_end();
(void)gc_args_begin();
(void)gc_args_end();
}
#endif
};
/// A specialization of it's base class for read only access
/// to a gc.statepoint.
class ImmutableStatepoint
: public StatepointBase<const Function, const Instruction, const Value,
ImmutableCallSite> {
typedef StatepointBase<const Function, const Instruction, const Value,
ImmutableCallSite> Base;
public:
explicit ImmutableStatepoint(const Instruction *I) : Base(I) {}
explicit ImmutableStatepoint(ImmutableCallSite CS) : Base(CS) {}
};
/// A specialization of it's base class for read-write access
/// to a gc.statepoint.
class Statepoint
: public StatepointBase<Function, Instruction, Value, CallSite> {
typedef StatepointBase<Function, Instruction, Value, CallSite> Base;
public:
explicit Statepoint(Instruction *I) : Base(I) {}
explicit Statepoint(CallSite CS) : Base(CS) {}
};
/// Wraps a call to a gc.relocate and provides access to it's operands.
/// TODO: This should likely be refactored to resememble the wrappers in
/// InstrinsicInst.h.
class GCRelocateOperands {
ImmutableCallSite RelocateCS;
public:
GCRelocateOperands(const User *U) : RelocateCS(U) { assert(isGCRelocate(U)); }
GCRelocateOperands(const Instruction *inst) : RelocateCS(inst) {
assert(isGCRelocate(inst));
}
GCRelocateOperands(CallSite CS) : RelocateCS(CS) { assert(isGCRelocate(CS)); }
/// Return true if this relocate is tied to the invoke statepoint.
/// This includes relocates which are on the unwinding path.
bool isTiedToInvoke() const {
const Value *Token = RelocateCS.getArgument(0);
return isa<ExtractValueInst>(Token) || isa<InvokeInst>(Token);
}
/// Get enclosed relocate intrinsic
ImmutableCallSite getUnderlyingCallSite() { return RelocateCS; }
/// The statepoint with which this gc.relocate is associated.
const Instruction *getStatepoint() {
const Value *Token = RelocateCS.getArgument(0);
// This takes care both of relocates for call statepoints and relocates
// on normal path of invoke statepoint.
if (!isa<ExtractValueInst>(Token)) {
return cast<Instruction>(Token);
}
// This relocate is on exceptional path of an invoke statepoint
const BasicBlock *InvokeBB =
cast<Instruction>(Token)->getParent()->getUniquePredecessor();
assert(InvokeBB && "safepoints should have unique landingpads");
assert(InvokeBB->getTerminator() &&
"safepoint block should be well formed");
assert(isStatepoint(InvokeBB->getTerminator()));
return InvokeBB->getTerminator();
}
/// The index into the associate statepoint's argument list
/// which contains the base pointer of the pointer whose
/// relocation this gc.relocate describes.
unsigned getBasePtrIndex() {
return cast<ConstantInt>(RelocateCS.getArgument(1))->getZExtValue();
}
/// The index into the associate statepoint's argument list which
/// contains the pointer whose relocation this gc.relocate describes.
unsigned getDerivedPtrIndex() {
return cast<ConstantInt>(RelocateCS.getArgument(2))->getZExtValue();
}
Value *getBasePtr() {
ImmutableCallSite CS(getStatepoint());
return *(CS.arg_begin() + getBasePtrIndex());
}
Value *getDerivedPtr() {
ImmutableCallSite CS(getStatepoint());
return *(CS.arg_begin() + getDerivedPtrIndex());
}
};
template <typename FunTy, typename InstructionTy, typename ValueTy,
typename CallSiteTy>
std::vector<GCRelocateOperands>
StatepointBase<FunTy, InstructionTy, ValueTy, CallSiteTy>::getRelocates()
const {
std::vector<GCRelocateOperands> Result;
CallSiteTy StatepointCS = getCallSite();
// Search for relocated pointers. Note that working backwards from the
// gc_relocates ensures that we only get pairs which are actually relocated
// and used after the statepoint.
for (const User *U : getInstruction()->users())
if (isGCRelocate(U))
Result.push_back(GCRelocateOperands(U));
if (!StatepointCS.isInvoke())
return Result;
// We need to scan thorough exceptional relocations if it is invoke statepoint
LandingPadInst *LandingPad =
cast<InvokeInst>(getInstruction())->getLandingPadInst();
// Search for extract value from landingpad instruction to which
// gc relocates will be attached
for (const User *LandingPadUser : LandingPad->users()) {
if (!isa<ExtractValueInst>(LandingPadUser))
continue;
// gc relocates should be attached to this extract value
for (const User *U : LandingPadUser->users())
if (isGCRelocate(U))
Result.push_back(GCRelocateOperands(U));
}
return Result;
}
}
#endif