blob: 61c9e5a5252558ba462acff564c1a1fb0e7bd061 [file] [log] [blame]
//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAGISel class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "ScheduleDAGSDNodes.h"
#include "SelectionDAGBuilder.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/FastISel.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/StackProtector.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "isel"
STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
STATISTIC(NumFastIselFailLowerArguments,
"Number of entry blocks where fast isel failed to lower arguments");
static cl::opt<int> EnableFastISelAbort(
"fast-isel-abort", cl::Hidden,
cl::desc("Enable abort calls when \"fast\" instruction selection "
"fails to lower an instruction: 0 disable the abort, 1 will "
"abort but for args, calls and terminators, 2 will also "
"abort for argument lowering, and 3 will never fallback "
"to SelectionDAG."));
static cl::opt<bool> EnableFastISelFallbackReport(
"fast-isel-report-on-fallback", cl::Hidden,
cl::desc("Emit a diagnostic when \"fast\" instruction selection "
"falls back to SelectionDAG."));
static cl::opt<bool>
UseMBPI("use-mbpi",
cl::desc("use Machine Branch Probability Info"),
cl::init(true), cl::Hidden);
#ifndef NDEBUG
static cl::opt<std::string>
FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
cl::desc("Only display the basic block whose name "
"matches this for all view-*-dags options"));
static cl::opt<bool>
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the first "
"dag combine pass"));
static cl::opt<bool>
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize types"));
static cl::opt<bool>
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before legalize"));
static cl::opt<bool>
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the second "
"dag combine pass"));
static cl::opt<bool>
ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
cl::desc("Pop up a window to show dags before the post legalize types"
" dag combine pass"));
static cl::opt<bool>
ViewISelDAGs("view-isel-dags", cl::Hidden,
cl::desc("Pop up a window to show isel dags as they are selected"));
static cl::opt<bool>
ViewSchedDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
static cl::opt<bool>
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
cl::desc("Pop up a window to show SUnit dags after they are processed"));
#else
static const bool ViewDAGCombine1 = false,
ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
ViewDAGCombine2 = false,
ViewDAGCombineLT = false,
ViewISelDAGs = false, ViewSchedDAGs = false,
ViewSUnitDAGs = false;
#endif
//===---------------------------------------------------------------------===//
///
/// RegisterScheduler class - Track the registration of instruction schedulers.
///
//===---------------------------------------------------------------------===//
MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
RegisterScheduler::Registry;
//===---------------------------------------------------------------------===//
///
/// ISHeuristic command line option for instruction schedulers.
///
//===---------------------------------------------------------------------===//
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
RegisterPassParser<RegisterScheduler>>
ISHeuristic("pre-RA-sched",
cl::init(&createDefaultScheduler), cl::Hidden,
cl::desc("Instruction schedulers available (before register"
" allocation):"));
static RegisterScheduler
defaultListDAGScheduler("default", "Best scheduler for the target",
createDefaultScheduler);
namespace llvm {
//===--------------------------------------------------------------------===//
/// This class is used by SelectionDAGISel to temporarily override
/// the optimization level on a per-function basis.
class OptLevelChanger {
SelectionDAGISel &IS;
CodeGenOpt::Level SavedOptLevel;
bool SavedFastISel;
public:
OptLevelChanger(SelectionDAGISel &ISel,
CodeGenOpt::Level NewOptLevel) : IS(ISel) {
SavedOptLevel = IS.OptLevel;
if (NewOptLevel == SavedOptLevel)
return;
IS.OptLevel = NewOptLevel;
IS.TM.setOptLevel(NewOptLevel);
LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
<< IS.MF->getFunction().getName() << "\n");
LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
<< NewOptLevel << "\n");
SavedFastISel = IS.TM.Options.EnableFastISel;
if (NewOptLevel == CodeGenOpt::None) {
IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
LLVM_DEBUG(
dbgs() << "\tFastISel is "
<< (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
<< "\n");
}
}
~OptLevelChanger() {
if (IS.OptLevel == SavedOptLevel)
return;
LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
<< IS.MF->getFunction().getName() << "\n");
LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
<< SavedOptLevel << "\n");
IS.OptLevel = SavedOptLevel;
IS.TM.setOptLevel(SavedOptLevel);
IS.TM.setFastISel(SavedFastISel);
}
};
//===--------------------------------------------------------------------===//
/// createDefaultScheduler - This creates an instruction scheduler appropriate
/// for the target.
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
CodeGenOpt::Level OptLevel) {
const TargetLowering *TLI = IS->TLI;
const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
// Try first to see if the Target has its own way of selecting a scheduler
if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
return SchedulerCtor(IS, OptLevel);
}
if (OptLevel == CodeGenOpt::None ||
(ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
TLI->getSchedulingPreference() == Sched::Source)
return createSourceListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::RegPressure)
return createBURRListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::Hybrid)
return createHybridListDAGScheduler(IS, OptLevel);
if (TLI->getSchedulingPreference() == Sched::VLIW)
return createVLIWDAGScheduler(IS, OptLevel);
assert(TLI->getSchedulingPreference() == Sched::ILP &&
"Unknown sched type!");
return createILPListDAGScheduler(IS, OptLevel);
}
} // end namespace llvm
// EmitInstrWithCustomInserter - This method should be implemented by targets
// that mark instructions with the 'usesCustomInserter' flag. These
// instructions are special in various ways, which require special support to
// insert. The specified MachineInstr is created but not inserted into any
// basic blocks, and this method is called to expand it into a sequence of
// instructions, potentially also creating new basic blocks and control flow.
// When new basic blocks are inserted and the edges from MBB to its successors
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
// DenseMap.
MachineBasicBlock *
TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const {
#ifndef NDEBUG
dbgs() << "If a target marks an instruction with "
"'usesCustomInserter', it must implement "
"TargetLowering::EmitInstrWithCustomInserter!";
#endif
llvm_unreachable(nullptr);
}
void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
SDNode *Node) const {
assert(!MI.hasPostISelHook() &&
"If a target marks an instruction with 'hasPostISelHook', "
"it must implement TargetLowering::AdjustInstrPostInstrSelection!");
}
//===----------------------------------------------------------------------===//
// SelectionDAGISel code
//===----------------------------------------------------------------------===//
SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
CodeGenOpt::Level OL) :
MachineFunctionPass(ID), TM(tm),
FuncInfo(new FunctionLoweringInfo()),
CurDAG(new SelectionDAG(tm, OL)),
SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
AA(), GFI(),
OptLevel(OL),
DAGSize(0) {
initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
initializeBranchProbabilityInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
initializeTargetLibraryInfoWrapperPassPass(
*PassRegistry::getPassRegistry());
}
SelectionDAGISel::~SelectionDAGISel() {
delete SDB;
delete CurDAG;
delete FuncInfo;
}
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
if (OptLevel != CodeGenOpt::None)
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<GCModuleInfo>();
AU.addRequired<StackProtector>();
AU.addPreserved<GCModuleInfo>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
if (UseMBPI && OptLevel != CodeGenOpt::None)
AU.addRequired<BranchProbabilityInfoWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
/// may trap on it. In this case we have to split the edge so that the path
/// through the predecessor block that doesn't go to the phi block doesn't
/// execute the possibly trapping instruction. If available, we pass domtree
/// and loop info to be updated when we split critical edges. This is because
/// SelectionDAGISel preserves these analyses.
/// This is required for correctness, so it must be done at -O0.
///
static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
LoopInfo *LI) {
// Loop for blocks with phi nodes.
for (BasicBlock &BB : Fn) {
PHINode *PN = dyn_cast<PHINode>(BB.begin());
if (!PN) continue;
ReprocessBlock:
// For each block with a PHI node, check to see if any of the input values
// are potentially trapping constant expressions. Constant expressions are
// the only potentially trapping value that can occur as the argument to a
// PHI.
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
if (!CE || !CE->canTrap()) continue;
// The only case we have to worry about is when the edge is critical.
// Since this block has a PHI Node, we assume it has multiple input
// edges: check to see if the pred has multiple successors.
BasicBlock *Pred = PN->getIncomingBlock(i);
if (Pred->getTerminator()->getNumSuccessors() == 1)
continue;
// Okay, we have to split this edge.
SplitCriticalEdge(
Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
goto ReprocessBlock;
}
}
}
static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
MachineModuleInfo &MMI) {
// Only needed for MSVC
if (!TT.isKnownWindowsMSVCEnvironment())
return;
// If it's already set, nothing to do.
if (MMI.usesMSVCFloatingPoint())
return;
for (const Instruction &I : instructions(F)) {
if (I.getType()->isFPOrFPVectorTy()) {
MMI.setUsesMSVCFloatingPoint(true);
return;
}
for (const auto &Op : I.operands()) {
if (Op->getType()->isFPOrFPVectorTy()) {
MMI.setUsesMSVCFloatingPoint(true);
return;
}
}
}
}
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
// If we already selected that function, we do not need to run SDISel.
if (mf.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected))
return false;
// Do some sanity-checking on the command-line options.
assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
"-fast-isel-abort > 0 requires -fast-isel");
const Function &Fn = mf.getFunction();
MF = &mf;
// Reset the target options before resetting the optimization
// level below.
// FIXME: This is a horrible hack and should be processed via
// codegen looking at the optimization level explicitly when
// it wants to look at it.
TM.resetTargetOptions(Fn);
// Reset OptLevel to None for optnone functions.
CodeGenOpt::Level NewOptLevel = OptLevel;
if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
NewOptLevel = CodeGenOpt::None;
OptLevelChanger OLC(*this, NewOptLevel);
TII = MF->getSubtarget().getInstrInfo();
TLI = MF->getSubtarget().getTargetLowering();
RegInfo = &MF->getRegInfo();
LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
CurDAG->init(*MF, *ORE, this, LibInfo,
getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
FuncInfo->set(Fn, *MF, CurDAG);
// Now get the optional analyzes if we want to.
// This is based on the possibly changed OptLevel (after optnone is taken
// into account). That's unfortunate but OK because it just means we won't
// ask for passes that have been required anyway.
if (UseMBPI && OptLevel != CodeGenOpt::None)
FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
else
FuncInfo->BPI = nullptr;
if (OptLevel != CodeGenOpt::None)
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
else
AA = nullptr;
SDB->init(GFI, AA, LibInfo);
MF->setHasInlineAsm(false);
FuncInfo->SplitCSR = false;
// We split CSR if the target supports it for the given function
// and the function has only return exits.
if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
FuncInfo->SplitCSR = true;
// Collect all the return blocks.
for (const BasicBlock &BB : Fn) {
if (!succ_empty(&BB))
continue;
const Instruction *Term = BB.getTerminator();
if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
continue;
// Bail out if the exit block is not Return nor Unreachable.
FuncInfo->SplitCSR = false;
break;
}
}
MachineBasicBlock *EntryMBB = &MF->front();
if (FuncInfo->SplitCSR)
// This performs initialization so lowering for SplitCSR will be correct.
TLI->initializeSplitCSR(EntryMBB);
SelectAllBasicBlocks(Fn);
if (FastISelFailed && EnableFastISelFallbackReport) {
DiagnosticInfoISelFallback DiagFallback(Fn);
Fn.getContext().diagnose(DiagFallback);
}
// If the first basic block in the function has live ins that need to be
// copied into vregs, emit the copies into the top of the block before
// emitting the code for the block.
const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
// Insert copies in the entry block and the return blocks.
if (FuncInfo->SplitCSR) {
SmallVector<MachineBasicBlock*, 4> Returns;
// Collect all the return blocks.
for (MachineBasicBlock &MBB : mf) {
if (!MBB.succ_empty())
continue;
MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
if (Term != MBB.end() && Term->isReturn()) {
Returns.push_back(&MBB);
continue;
}
}
TLI->insertCopiesSplitCSR(EntryMBB, Returns);
}
DenseMap<unsigned, unsigned> LiveInMap;
if (!FuncInfo->ArgDbgValues.empty())
for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
if (LI.second)
LiveInMap.insert(LI);
// Insert DBG_VALUE instructions for function arguments to the entry block.
for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
bool hasFI = MI->getOperand(0).isFI();
unsigned Reg =
hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg))
EntryMBB->insert(EntryMBB->begin(), MI);
else {
MachineInstr *Def = RegInfo->getVRegDef(Reg);
if (Def) {
MachineBasicBlock::iterator InsertPos = Def;
// FIXME: VR def may not be in entry block.
Def->getParent()->insert(std::next(InsertPos), MI);
} else
LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
<< TargetRegisterInfo::virtReg2Index(Reg) << "\n");
}
// If Reg is live-in then update debug info to track its copy in a vreg.
DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
if (LDI != LiveInMap.end()) {
assert(!hasFI && "There's no handling of frame pointer updating here yet "
"- add if needed");
MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
MachineBasicBlock::iterator InsertPos = Def;
const MDNode *Variable = MI->getDebugVariable();
const MDNode *Expr = MI->getDebugExpression();
DebugLoc DL = MI->getDebugLoc();
bool IsIndirect = MI->isIndirectDebugValue();
if (IsIndirect)
assert(MI->getOperand(1).getImm() == 0 &&
"DBG_VALUE with nonzero offset");
assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
"Expected inlined-at fields to agree");
// Def is never a terminator here, so it is ok to increment InsertPos.
BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
IsIndirect, LDI->second, Variable, Expr);
// If this vreg is directly copied into an exported register then
// that COPY instructions also need DBG_VALUE, if it is the only
// user of LDI->second.
MachineInstr *CopyUseMI = nullptr;
for (MachineRegisterInfo::use_instr_iterator
UI = RegInfo->use_instr_begin(LDI->second),
E = RegInfo->use_instr_end(); UI != E; ) {
MachineInstr *UseMI = &*(UI++);
if (UseMI->isDebugValue()) continue;
if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
CopyUseMI = UseMI; continue;
}
// Otherwise this is another use or second copy use.
CopyUseMI = nullptr; break;
}
if (CopyUseMI) {
// Use MI's debug location, which describes where Variable was
// declared, rather than whatever is attached to CopyUseMI.
MachineInstr *NewMI =
BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
CopyUseMI->getOperand(0).getReg(), Variable, Expr);
MachineBasicBlock::iterator Pos = CopyUseMI;
EntryMBB->insertAfter(Pos, NewMI);
}
}
}
// Determine if there are any calls in this machine function.
MachineFrameInfo &MFI = MF->getFrameInfo();
for (const auto &MBB : *MF) {
if (MFI.hasCalls() && MF->hasInlineAsm())
break;
for (const auto &MI : MBB) {
const MCInstrDesc &MCID = TII->get(MI.getOpcode());
if ((MCID.isCall() && !MCID.isReturn()) ||
MI.isStackAligningInlineAsm()) {
MFI.setHasCalls(true);
}
if (MI.isInlineAsm()) {
MF->setHasInlineAsm(true);
}
}
}
// Determine if there is a call to setjmp in the machine function.
MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
// Determine if floating point is used for msvc
computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
// Replace forward-declared registers with the registers containing
// the desired value.
MachineRegisterInfo &MRI = MF->getRegInfo();
for (DenseMap<unsigned, unsigned>::iterator
I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
I != E; ++I) {
unsigned From = I->first;
unsigned To = I->second;
// If To is also scheduled to be replaced, find what its ultimate
// replacement is.
while (true) {
DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
if (J == E) break;
To = J->second;
}
// Make sure the new register has a sufficiently constrained register class.
if (TargetRegisterInfo::isVirtualRegister(From) &&
TargetRegisterInfo::isVirtualRegister(To))
MRI.constrainRegClass(To, MRI.getRegClass(From));
// Replace it.
// Replacing one register with another won't touch the kill flags.
// We need to conservatively clear the kill flags as a kill on the old
// register might dominate existing uses of the new register.
if (!MRI.use_empty(To))
MRI.clearKillFlags(From);
MRI.replaceRegWith(From, To);
}
TLI->finalizeLowering(*MF);
// Release function-specific state. SDB and CurDAG are already cleared
// at this point.
FuncInfo->clear();
LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
LLVM_DEBUG(MF->print(dbgs()));
return true;
}
static void reportFastISelFailure(MachineFunction &MF,
OptimizationRemarkEmitter &ORE,
OptimizationRemarkMissed &R,
bool ShouldAbort) {
// Print the function name explicitly if we don't have a debug location (which
// makes the diagnostic less useful) or if we're going to emit a raw error.
if (!R.getLocation().isValid() || ShouldAbort)
R << (" (in function: " + MF.getName() + ")").str();
if (ShouldAbort)
report_fatal_error(R.getMsg());
ORE.emit(R);
}
void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End,
bool &HadTailCall) {
// Allow creating illegal types during DAG building for the basic block.
CurDAG->NewNodesMustHaveLegalTypes = false;
// Lower the instructions. If a call is emitted as a tail call, cease emitting
// nodes for this block.
for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
if (!ElidedArgCopyInstrs.count(&*I))
SDB->visit(*I);
}
// Make sure the root of the DAG is up-to-date.
CurDAG->setRoot(SDB->getControlRoot());
HadTailCall = SDB->HasTailCall;
SDB->resolveOrClearDbgInfo();
SDB->clear();
// Final step, emit the lowered DAG as machine code.
CodeGenAndEmitDAG();
}
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
SmallPtrSet<SDNode*, 16> VisitedNodes;
SmallVector<SDNode*, 128> Worklist;
Worklist.push_back(CurDAG->getRoot().getNode());
KnownBits Known;
do {
SDNode *N = Worklist.pop_back_val();
// If we've already seen this node, ignore it.
if (!VisitedNodes.insert(N).second)
continue;
// Otherwise, add all chain operands to the worklist.
for (const SDValue &Op : N->op_values())
if (Op.getValueType() == MVT::Other)
Worklist.push_back(Op.getNode());
// If this is a CopyToReg with a vreg dest, process it.
if (N->getOpcode() != ISD::CopyToReg)
continue;
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
continue;
// Ignore non-integer values.
SDValue Src = N->getOperand(2);
EVT SrcVT = Src.getValueType();
if (!SrcVT.isInteger())
continue;
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
Known = CurDAG->computeKnownBits(Src);
FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
} while (!Worklist.empty());
}
void SelectionDAGISel::CodeGenAndEmitDAG() {
StringRef GroupName = "sdag";
StringRef GroupDescription = "Instruction Selection and Scheduling";
std::string BlockName;
int BlockNumber = -1;
(void)BlockNumber;
bool MatchFilterBB = false; (void)MatchFilterBB;
#ifndef NDEBUG
TargetTransformInfo &TTI =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
#endif
// Pre-type legalization allow creation of any node types.
CurDAG->NewNodesMustHaveLegalTypes = false;
#ifndef NDEBUG
MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
FilterDAGBasicBlockName ==
FuncInfo->MBB->getBasicBlock()->getName());
#endif
#ifdef NDEBUG
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
ViewSUnitDAGs)
#endif
{
BlockNumber = FuncInfo->MBB->getNumber();
BlockName =
(MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
}
LLVM_DEBUG(dbgs() << "Initial selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
if (ViewDAGCombine1 && MatchFilterBB)
CurDAG->viewGraph("dag-combine1 input for " + BlockName);
// Run the DAG combiner in pre-legalize mode.
{
NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
}
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
// Second step, hack on the DAG until it only uses operations and types that
// the target supports.
if (ViewLegalizeTypesDAGs && MatchFilterBB)
CurDAG->viewGraph("legalize-types input for " + BlockName);
bool Changed;
{
NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
GroupDescription, TimePassesIsEnabled);
Changed = CurDAG->LegalizeTypes();
}
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
// Only allow creation of legal node types.
CurDAG->NewNodesMustHaveLegalTypes = true;
if (Changed) {
if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
{
NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
GroupName, GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
}
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
}
{
NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
GroupDescription, TimePassesIsEnabled);
Changed = CurDAG->LegalizeVectors();
}
if (Changed) {
LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
{
NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
GroupDescription, TimePassesIsEnabled);
CurDAG->LegalizeTypes();
}
LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
if (ViewDAGCombineLT && MatchFilterBB)
CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
// Run the DAG combiner in post-type-legalize mode.
{
NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
GroupName, GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
}
LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
}
if (ViewLegalizeDAGs && MatchFilterBB)
CurDAG->viewGraph("legalize input for " + BlockName);
{
NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
GroupDescription, TimePassesIsEnabled);
CurDAG->Legalize();
}
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
if (ViewDAGCombine2 && MatchFilterBB)
CurDAG->viewGraph("dag-combine2 input for " + BlockName);
// Run the DAG combiner in post-legalize mode.
{
NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
GroupDescription, TimePassesIsEnabled);
CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
}
#ifndef NDEBUG
if (TTI.hasBranchDivergence())
CurDAG->VerifyDAGDiverence();
#endif
LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
if (OptLevel != CodeGenOpt::None)
ComputeLiveOutVRegInfo();
if (ViewISelDAGs && MatchFilterBB)
CurDAG->viewGraph("isel input for " + BlockName);
// Third, instruction select all of the operations to machine code, adding the
// code to the MachineBasicBlock.
{
NamedRegionTimer T("isel", "Instruction Selection", GroupName,
GroupDescription, TimePassesIsEnabled);
DoInstructionSelection();
}
LLVM_DEBUG(dbgs() << "Selected selection DAG: "
<< printMBBReference(*FuncInfo->MBB) << " '" << BlockName
<< "'\n";
CurDAG->dump());
if (ViewSchedDAGs && MatchFilterBB)
CurDAG->viewGraph("scheduler input for " + BlockName);
// Schedule machine code.
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
{
NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
GroupDescription, TimePassesIsEnabled);
Scheduler->Run(CurDAG, FuncInfo->MBB);
}
if (ViewSUnitDAGs && MatchFilterBB)
Scheduler->viewGraph();
// Emit machine code to BB. This can change 'BB' to the last block being
// inserted into.
MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
{
NamedRegionTimer T("emit", "Instruction Creation", GroupName,
GroupDescription, TimePassesIsEnabled);
// FuncInfo->InsertPt is passed by reference and set to the end of the
// scheduled instructions.
LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
}
// If the block was split, make sure we update any references that are used to
// update PHI nodes later on.
if (FirstMBB != LastMBB)
SDB->UpdateSplitBlock(FirstMBB, LastMBB);
// Free the scheduler state.
{
NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
GroupDescription, TimePassesIsEnabled);
delete Scheduler;
}
// Free the SelectionDAG state, now that we're finished with it.
CurDAG->clear();
}
namespace {
/// ISelUpdater - helper class to handle updates of the instruction selection
/// graph.
class ISelUpdater : public SelectionDAG::DAGUpdateListener {
SelectionDAG::allnodes_iterator &ISelPosition;
public:
ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
: SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
/// NodeDeleted - Handle nodes deleted from the graph. If the node being
/// deleted is the current ISelPosition node, update ISelPosition.
///
void NodeDeleted(SDNode *N, SDNode *E) override {
if (ISelPosition == SelectionDAG::allnodes_iterator(N))
++ISelPosition;
}
};
} // end anonymous namespace
// This function is used to enforce the topological node id property
// property leveraged during Instruction selection. Before selection all
// nodes are given a non-negative id such that all nodes have a larger id than
// their operands. As this holds transitively we can prune checks that a node N
// is a predecessor of M another by not recursively checking through M's
// operands if N's ID is larger than M's ID. This is significantly improves
// performance of for various legality checks (e.g. IsLegalToFold /
// UpdateChains).
// However, when we fuse multiple nodes into a single node
// during selection we may induce a predecessor relationship between inputs and
// outputs of distinct nodes being merged violating the topological property.
// Should a fused node have a successor which has yet to be selected, our
// legality checks would be incorrect. To avoid this we mark all unselected
// sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
// We use bit-negation to more clearly enforce that node id -1 can only be
// achieved by selected nodes). As the conversion is reversable the original Id,
// topological pruning can still be leveraged when looking for unselected nodes.
// This method is call internally in all ISel replacement calls.
void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
SmallVector<SDNode *, 4> Nodes;
Nodes.push_back(Node);
while (!Nodes.empty()) {
SDNode *N = Nodes.pop_back_val();
for (auto *U : N->uses()) {
auto UId = U->getNodeId();
if (UId > 0) {
InvalidateNodeId(U);
Nodes.push_back(U);
}
}
}
}
// InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
// NodeId with the equivalent node id which is invalid for topological
// pruning.
void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
int InvalidId = -(N->getNodeId() + 1);
N->setNodeId(InvalidId);
}
// getUninvalidatedNodeId - get original uninvalidated node id.
int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
int Id = N->getNodeId();
if (Id < -1)
return -(Id + 1);
return Id;
}
void SelectionDAGISel::DoInstructionSelection() {
LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
<< printMBBReference(*FuncInfo->MBB) << " '"
<< FuncInfo->MBB->getName() << "'\n");
PreprocessISelDAG();
// Select target instructions for the DAG.
{
// Number all nodes with a topological order and set DAGSize.
DAGSize = CurDAG->AssignTopologicalOrder();
// Create a dummy node (which is not added to allnodes), that adds
// a reference to the root node, preventing it from being deleted,
// and tracking any changes of the root.
HandleSDNode Dummy(CurDAG->getRoot());
SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
++ISelPosition;
// Make sure that ISelPosition gets properly updated when nodes are deleted
// in calls made from this function.
ISelUpdater ISU(*CurDAG, ISelPosition);
// The AllNodes list is now topological-sorted. Visit the
// nodes by starting at the end of the list (the root of the
// graph) and preceding back toward the beginning (the entry
// node).
while (ISelPosition != CurDAG->allnodes_begin()) {
SDNode *Node = &*--ISelPosition;
// Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
// but there are currently some corner cases that it misses. Also, this
// makes it theoretically possible to disable the DAGCombiner.
if (Node->use_empty())
continue;
#ifndef NDEBUG
SmallVector<SDNode *, 4> Nodes;
Nodes.push_back(Node);
while (!Nodes.empty()) {
auto N = Nodes.pop_back_val();
if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
continue;
for (const SDValue &Op : N->op_values()) {
if (Op->getOpcode() == ISD::TokenFactor)
Nodes.push_back(Op.getNode());
else {
// We rely on topological ordering of node ids for checking for
// cycles when fusing nodes during selection. All unselected nodes
// successors of an already selected node should have a negative id.
// This assertion will catch such cases. If this assertion triggers
// it is likely you using DAG-level Value/Node replacement functions
// (versus equivalent ISEL replacement) in backend-specific
// selections. See comment in EnforceNodeIdInvariant for more
// details.
assert(Op->getNodeId() != -1 &&
"Node has already selected predecessor node");
}
}
}
#endif
// When we are using non-default rounding modes or FP exception behavior
// FP operations are represented by StrictFP pseudo-operations. They
// need to be simplified here so that the target-specific instruction
// selectors know how to handle them.
//
// If the current node is a strict FP pseudo-op, the isStrictFPOp()
// function will provide the corresponding normal FP opcode to which the
// node should be mutated.
//
// FIXME: The backends need a way to handle FP constraints.
if (Node->isStrictFPOpcode())
Node = CurDAG->mutateStrictFPToFP(Node);
LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
Node->dump(CurDAG));
Select(Node);
}
CurDAG->setRoot(Dummy.getValue());
}
LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
PostprocessISelDAG();
}
static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
for (const User *U : CPI->users()) {
if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
if (IID == Intrinsic::eh_exceptionpointer ||
IID == Intrinsic::eh_exceptioncode)
return true;
}
}
return false;
}
// wasm.landingpad.index intrinsic is for associating a landing pad index number
// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
// and store the mapping in the function.
static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
const CatchPadInst *CPI) {
MachineFunction *MF = MBB->getParent();
// In case of single catch (...), we don't emit LSDA, so we don't need
// this information.
bool IsSingleCatchAllClause =
CPI->getNumArgOperands() == 1 &&
cast<Constant>(CPI->getArgOperand(0))->isNullValue();
if (!IsSingleCatchAllClause) {
// Create a mapping from landing pad label to landing pad index.
bool IntrFound = false;
for (const User *U : CPI->users()) {
if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
Intrinsic::ID IID = Call->getIntrinsicID();
if (IID == Intrinsic::wasm_landingpad_index) {
Value *IndexArg = Call->getArgOperand(1);
int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
MF->setWasmLandingPadIndex(MBB, Index);
IntrFound = true;
break;
}
}
}
assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
(void)IntrFound;
}
}
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
/// do other setup for EH landing-pad blocks.
bool SelectionDAGISel::PrepareEHLandingPad() {
MachineBasicBlock *MBB = FuncInfo->MBB;
const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
const BasicBlock *LLVMBB = MBB->getBasicBlock();
const TargetRegisterClass *PtrRC =
TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
auto Pers = classifyEHPersonality(PersonalityFn);
// Catchpads have one live-in register, which typically holds the exception
// pointer or code.
if (isFuncletEHPersonality(Pers)) {
if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
if (hasExceptionPointerOrCodeUser(CPI)) {
// Get or create the virtual register to hold the pointer or code. Mark
// the live in physreg and copy into the vreg.
MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
assert(EHPhysReg && "target lacks exception pointer register");
MBB->addLiveIn(EHPhysReg);
unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
TII->get(TargetOpcode::COPY), VReg)
.addReg(EHPhysReg, RegState::Kill);
}
}
return true;
}
// Add a label to mark the beginning of the landing pad. Deletion of the
// landing pad can thus be detected via the MachineModuleInfo.
MCSymbol *Label = MF->addLandingPad(MBB);
const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
.addSym(Label);
if (Pers == EHPersonality::Wasm_CXX) {
if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
mapWasmLandingPadIndex(MBB, CPI);
} else {
// Assign the call site to the landing pad's begin label.
MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
// Mark exception register as live in.
if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
// Mark exception selector register as live in.
if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
}
return true;
}
/// isFoldedOrDeadInstruction - Return true if the specified instruction is
/// side-effect free and is either dead or folded into a generated instruction.
/// Return false if it needs to be emitted.
static bool isFoldedOrDeadInstruction(const Instruction *I,
FunctionLoweringInfo *FuncInfo) {
return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
!I->isTerminator() && // Terminators aren't folded.
!isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
!I->isEHPad() && // EH pad instructions aren't folded.
!FuncInfo->isExportedInst(I); // Exported instrs must be computed.
}
/// Set up SwiftErrorVals by going through the function. If the function has
/// swifterror argument, it will be the first entry.
static void setupSwiftErrorVals(const Function &Fn, const TargetLowering *TLI,
FunctionLoweringInfo *FuncInfo) {
if (!TLI->supportSwiftError())
return;
FuncInfo->SwiftErrorVals.clear();
FuncInfo->SwiftErrorVRegDefMap.clear();
FuncInfo->SwiftErrorVRegUpwardsUse.clear();
FuncInfo->SwiftErrorVRegDefUses.clear();
FuncInfo->SwiftErrorArg = nullptr;
// Check if function has a swifterror argument.
bool HaveSeenSwiftErrorArg = false;
for (Function::const_arg_iterator AI = Fn.arg_begin(), AE = Fn.arg_end();
AI != AE; ++AI)
if (AI->hasSwiftErrorAttr()) {
assert(!HaveSeenSwiftErrorArg &&
"Must have only one swifterror parameter");
(void)HaveSeenSwiftErrorArg; // silence warning.
HaveSeenSwiftErrorArg = true;
FuncInfo->SwiftErrorArg = &*AI;
FuncInfo->SwiftErrorVals.push_back(&*AI);
}
for (const auto &LLVMBB : Fn)
for (const auto &Inst : LLVMBB) {
if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(&Inst))
if (Alloca->isSwiftError())
FuncInfo->SwiftErrorVals.push_back(Alloca);
}
}
static void createSwiftErrorEntriesInEntryBlock(FunctionLoweringInfo *FuncInfo,
FastISel *FastIS,
const TargetLowering *TLI,
const TargetInstrInfo *TII,
SelectionDAGBuilder *SDB) {
if (!TLI->supportSwiftError())
return;
// We only need to do this when we have swifterror parameter or swifterror
// alloc.
if (FuncInfo->SwiftErrorVals.empty())
return;
assert(FuncInfo->MBB == &*FuncInfo->MF->begin() &&
"expected to insert into entry block");
auto &DL = FuncInfo->MF->getDataLayout();
auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
for (const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
// We will always generate a copy from the argument. It is always used at
// least by the 'return' of the swifterror.
if (FuncInfo->SwiftErrorArg && FuncInfo->SwiftErrorArg == SwiftErrorVal)
continue;
unsigned VReg = FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
// Assign Undef to Vreg. We construct MI directly to make sure it works
// with FastISel.
BuildMI(*FuncInfo->MBB, FuncInfo->MBB->getFirstNonPHI(),
SDB->getCurDebugLoc(), TII->get(TargetOpcode::IMPLICIT_DEF),
VReg);
// Keep FastIS informed about the value we just inserted.
if (FastIS)
FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorVal, VReg);
}
}
/// Collect llvm.dbg.declare information. This is done after argument lowering
/// in case the declarations refer to arguments.
static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
MachineFunction *MF = FuncInfo->MF;
const DataLayout &DL = MF->getDataLayout();
for (const BasicBlock &BB : *FuncInfo->Fn) {
for (const Instruction &I : BB) {
const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
if (!DI)
continue;
assert(DI->getVariable() && "Missing variable");
assert(DI->getDebugLoc() && "Missing location");
const Value *Address = DI->getAddress();
if (!Address)
continue;
// Look through casts and constant offset GEPs. These mostly come from
// inalloca.
APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
// Check if the variable is a static alloca or a byval or inalloca
// argument passed in memory. If it is not, then we will ignore this
// intrinsic and handle this during isel like dbg.value.
int FI = std::numeric_limits<int>::max();
if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
auto SI = FuncInfo->StaticAllocaMap.find(AI);
if (SI != FuncInfo->StaticAllocaMap.end())
FI = SI->second;
} else if (const auto *Arg = dyn_cast<Argument>(Address))
FI = FuncInfo->getArgumentFrameIndex(Arg);
if (FI == std::numeric_limits<int>::max())
continue;
DIExpression *Expr = DI->getExpression();
if (Offset.getBoolValue())
Expr = DIExpression::prepend(Expr, DIExpression::NoDeref,
Offset.getZExtValue());
MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
}
}
}
/// Propagate swifterror values through the machine function CFG.
static void propagateSwiftErrorVRegs(FunctionLoweringInfo *FuncInfo) {
auto *TLI = FuncInfo->TLI;
if (!TLI->supportSwiftError())
return;
// We only need to do this when we have swifterror parameter or swifterror
// alloc.
if (FuncInfo->SwiftErrorVals.empty())
return;
// For each machine basic block in reverse post order.
ReversePostOrderTraversal<MachineFunction *> RPOT(FuncInfo->MF);
for (MachineBasicBlock *MBB : RPOT) {
// For each swifterror value in the function.
for(const auto *SwiftErrorVal : FuncInfo->SwiftErrorVals) {
auto Key = std::make_pair(MBB, SwiftErrorVal);
auto UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
auto VRegDefIt = FuncInfo->SwiftErrorVRegDefMap.find(Key);
bool UpwardsUse = UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end();
unsigned UUseVReg = UpwardsUse ? UUseIt->second : 0;
bool DownwardDef = VRegDefIt != FuncInfo->SwiftErrorVRegDefMap.end();
assert(!(UpwardsUse && !DownwardDef) &&
"We can't have an upwards use but no downwards def");
// If there is no upwards exposed use and an entry for the swifterror in
// the def map for this value we don't need to do anything: We already
// have a downward def for this basic block.
if (!UpwardsUse && DownwardDef)
continue;
// Otherwise we either have an upwards exposed use vreg that we need to
// materialize or need to forward the downward def from predecessors.
// Check whether we have a single vreg def from all predecessors.
// Otherwise we need a phi.
SmallVector<std::pair<MachineBasicBlock *, unsigned>, 4> VRegs;
SmallSet<const MachineBasicBlock*, 8> Visited;
for (auto *Pred : MBB->predecessors()) {
if (!Visited.insert(Pred).second)
continue;
VRegs.push_back(std::make_pair(
Pred, FuncInfo->getOrCreateSwiftErrorVReg(Pred, SwiftErrorVal)));
if (Pred != MBB)
continue;
// We have a self-edge.
// If there was no upwards use in this basic block there is now one: the
// phi needs to use it self.
if (!UpwardsUse) {
UpwardsUse = true;
UUseIt = FuncInfo->SwiftErrorVRegUpwardsUse.find(Key);
assert(UUseIt != FuncInfo->SwiftErrorVRegUpwardsUse.end());
UUseVReg = UUseIt->second;
}
}
// We need a phi node if we have more than one predecessor with different
// downward defs.
bool needPHI =
VRegs.size() >= 1 &&
std::find_if(
VRegs.begin(), VRegs.end(),
[&](const std::pair<const MachineBasicBlock *, unsigned> &V)
-> bool { return V.second != VRegs[0].second; }) !=
VRegs.end();
// If there is no upwards exposed used and we don't need a phi just
// forward the swifterror vreg from the predecessor(s).
if (!UpwardsUse && !needPHI) {
assert(!VRegs.empty() &&
"No predecessors? The entry block should bail out earlier");
// Just forward the swifterror vreg from the predecessor(s).
FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, VRegs[0].second);
continue;
}
auto DLoc = isa<Instruction>(SwiftErrorVal)
? cast<Instruction>(SwiftErrorVal)->getDebugLoc()
: DebugLoc();
const auto *TII = FuncInfo->MF->getSubtarget().getInstrInfo();
// If we don't need a phi create a copy to the upward exposed vreg.
if (!needPHI) {
assert(UpwardsUse);
assert(!VRegs.empty() &&
"No predecessors? Is the Calling Convention correct?");
unsigned DestReg = UUseVReg;
BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc, TII->get(TargetOpcode::COPY),
DestReg)
.addReg(VRegs[0].second);
continue;
}
// We need a phi: if there is an upwards exposed use we already have a
// destination virtual register number otherwise we generate a new one.
auto &DL = FuncInfo->MF->getDataLayout();
auto const *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
unsigned PHIVReg =
UpwardsUse ? UUseVReg
: FuncInfo->MF->getRegInfo().createVirtualRegister(RC);
MachineInstrBuilder SwiftErrorPHI =
BuildMI(*MBB, MBB->getFirstNonPHI(), DLoc,
TII->get(TargetOpcode::PHI), PHIVReg);
for (auto BBRegPair : VRegs) {
SwiftErrorPHI.addReg(BBRegPair.second).addMBB(BBRegPair.first);
}
// We did not have a definition in this block before: store the phi's vreg
// as this block downward exposed def.
if (!UpwardsUse)
FuncInfo->setCurrentSwiftErrorVReg(MBB, SwiftErrorVal, PHIVReg);
}
}
}
static void preassignSwiftErrorRegs(const TargetLowering *TLI,
FunctionLoweringInfo *FuncInfo,
BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End) {
if (!TLI->supportSwiftError() || FuncInfo->SwiftErrorVals.empty())
return;
// Iterator over instructions and assign vregs to swifterror defs and uses.
for (auto It = Begin; It != End; ++It) {
ImmutableCallSite CS(&*It);
if (CS) {
// A call-site with a swifterror argument is both use and def.
const Value *SwiftErrorAddr = nullptr;
for (auto &Arg : CS.args()) {
if (!Arg->isSwiftError())
continue;
// Use of swifterror.
assert(!SwiftErrorAddr && "Cannot have multiple swifterror arguments");
SwiftErrorAddr = &*Arg;
assert(SwiftErrorAddr->isSwiftError() &&
"Must have a swifterror value argument");
unsigned VReg; bool CreatedReg;
std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
&*It, FuncInfo->MBB, SwiftErrorAddr);
assert(CreatedReg);
}
if (!SwiftErrorAddr)
continue;
// Def of swifterror.
unsigned VReg; bool CreatedReg;
std::tie(VReg, CreatedReg) =
FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
assert(CreatedReg);
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
// A load is a use.
} else if (const LoadInst *LI = dyn_cast<const LoadInst>(&*It)) {
const Value *V = LI->getOperand(0);
if (!V->isSwiftError())
continue;
unsigned VReg; bool CreatedReg;
std::tie(VReg, CreatedReg) =
FuncInfo->getOrCreateSwiftErrorVRegUseAt(LI, FuncInfo->MBB, V);
assert(CreatedReg);
// A store is a def.
} else if (const StoreInst *SI = dyn_cast<const StoreInst>(&*It)) {
const Value *SwiftErrorAddr = SI->getOperand(1);
if (!SwiftErrorAddr->isSwiftError())
continue;
// Def of swifterror.
unsigned VReg; bool CreatedReg;
std::tie(VReg, CreatedReg) =
FuncInfo->getOrCreateSwiftErrorVRegDefAt(&*It);
assert(CreatedReg);
FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, SwiftErrorAddr, VReg);
// A return in a swiferror returning function is a use.
} else if (const ReturnInst *R = dyn_cast<const ReturnInst>(&*It)) {
const Function *F = R->getParent()->getParent();
if(!F->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
continue;
unsigned VReg; bool CreatedReg;
std::tie(VReg, CreatedReg) = FuncInfo->getOrCreateSwiftErrorVRegUseAt(
R, FuncInfo->MBB, FuncInfo->SwiftErrorArg);
assert(CreatedReg);
}
}
}
void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
FastISelFailed = false;
// Initialize the Fast-ISel state, if needed.
FastISel *FastIS = nullptr;
if (TM.Options.EnableFastISel) {
LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
}
setupSwiftErrorVals(Fn, TLI, FuncInfo);
ReversePostOrderTraversal<const Function*> RPOT(&Fn);
// Lower arguments up front. An RPO iteration always visits the entry block
// first.
assert(*RPOT.begin() == &Fn.getEntryBlock());
++NumEntryBlocks;
// Set up FuncInfo for ISel. Entry blocks never have PHIs.
FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
FuncInfo->InsertPt = FuncInfo->MBB->begin();
CurDAG->setFunctionLoweringInfo(FuncInfo);
if (!FastIS) {
LowerArguments(Fn);
} else {
// See if fast isel can lower the arguments.
FastIS->startNewBlock();
if (!FastIS->lowerArguments()) {
FastISelFailed = true;
// Fast isel failed to lower these arguments
++NumFastIselFailLowerArguments;
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
Fn.getSubprogram(),
&Fn.getEntryBlock());
R << "FastISel didn't lower all arguments: "
<< ore::NV("Prototype", Fn.getType());
reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
// Use SelectionDAG argument lowering
LowerArguments(Fn);
CurDAG->setRoot(SDB->getControlRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// If we inserted any instructions at the beginning, make a note of
// where they are, so we can be sure to emit subsequent instructions
// after them.
if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
else
FastIS->setLastLocalValue(nullptr);
}
createSwiftErrorEntriesInEntryBlock(FuncInfo, FastIS, TLI, TII, SDB);
processDbgDeclares(FuncInfo);
// Iterate over all basic blocks in the function.
StackProtector &SP = getAnalysis<StackProtector>();
for (const BasicBlock *LLVMBB : RPOT) {
if (OptLevel != CodeGenOpt::None) {
bool AllPredsVisited = true;
for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
PI != PE; ++PI) {
if (!FuncInfo->VisitedBBs.count(*PI)) {
AllPredsVisited = false;
break;
}
}
if (AllPredsVisited) {
for (const PHINode &PN : LLVMBB->phis())
FuncInfo->ComputePHILiveOutRegInfo(&PN);
} else {
for (const PHINode &PN : LLVMBB->phis())
FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
}
FuncInfo->VisitedBBs.insert(LLVMBB);
}
BasicBlock::const_iterator const Begin =
LLVMBB->getFirstNonPHI()->getIterator();
BasicBlock::const_iterator const End = LLVMBB->end();
BasicBlock::const_iterator BI = End;
FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
if (!FuncInfo->MBB)
continue; // Some blocks like catchpads have no code or MBB.
// Insert new instructions after any phi or argument setup code.
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Setup an EH landing-pad block.
FuncInfo->ExceptionPointerVirtReg = 0;
FuncInfo->ExceptionSelectorVirtReg = 0;
if (LLVMBB->isEHPad())
if (!PrepareEHLandingPad())
continue;
// Before doing SelectionDAG ISel, see if FastISel has been requested.
if (FastIS) {
if (LLVMBB != &Fn.getEntryBlock())
FastIS->startNewBlock();
unsigned NumFastIselRemaining = std::distance(Begin, End);
// Pre-assign swifterror vregs.
preassignSwiftErrorRegs(TLI, FuncInfo, Begin, End);
// Do FastISel on as many instructions as possible.
for (; BI != Begin; --BI) {
const Instruction *Inst = &*std::prev(BI);
// If we no longer require this instruction, skip it.
if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
ElidedArgCopyInstrs.count(Inst)) {
--NumFastIselRemaining;
continue;
}
// Bottom-up: reset the insert pos at the top, after any local-value
// instructions.
FastIS->recomputeInsertPt();
// Try to select the instruction with FastISel.
if (FastIS->selectInstruction(Inst)) {
--NumFastIselRemaining;
++NumFastIselSuccess;
// If fast isel succeeded, skip over all the folded instructions, and
// then see if there is a load right before the selected instructions.
// Try to fold the load if so.
const Instruction *BeforeInst = Inst;
while (BeforeInst != &*Begin) {
BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
break;
}
if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
BeforeInst->hasOneUse() &&
FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
// If we succeeded, don't re-select the load.
BI = std::next(BasicBlock::const_iterator(BeforeInst));
--NumFastIselRemaining;
++NumFastIselSuccess;
}
continue;
}
FastISelFailed = true;
// Then handle certain instructions as single-LLVM-Instruction blocks.
// We cannot separate out GCrelocates to their own blocks since we need
// to keep track of gc-relocates for a particular gc-statepoint. This is
// done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
// visitGCRelocate.
if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
!isGCResult(Inst)) {
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
Inst->getDebugLoc(), LLVMBB);
R << "FastISel missed call";
if (R.isEnabled() || EnableFastISelAbort) {
std::string InstStrStorage;
raw_string_ostream InstStr(InstStrStorage);
InstStr << *Inst;
R << ": " << InstStr.str();
}
reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
!Inst->use_empty()) {
unsigned &R = FuncInfo->ValueMap[Inst];
if (!R)
R = FuncInfo->CreateRegs(Inst->getType());
}
bool HadTailCall = false;
MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
// If the call was emitted as a tail call, we're done with the block.
// We also need to delete any previously emitted instructions.
if (HadTailCall) {
FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
--BI;
break;
}
// Recompute NumFastIselRemaining as Selection DAG instruction
// selection may have handled the call, input args, etc.
unsigned RemainingNow = std::distance(Begin, BI);
NumFastIselFailures += NumFastIselRemaining - RemainingNow;
NumFastIselRemaining = RemainingNow;
continue;
}
OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
Inst->getDebugLoc(), LLVMBB);
bool ShouldAbort = EnableFastISelAbort;
if (Inst->isTerminator()) {
// Use a different message for terminator misses.
R << "FastISel missed terminator";
// Don't abort for terminator unless the level is really high
ShouldAbort = (EnableFastISelAbort > 2);
} else {
R << "FastISel missed";
}
if (R.isEnabled() || EnableFastISelAbort) {
std::string InstStrStorage;
raw_string_ostream InstStr(InstStrStorage);
InstStr << *Inst;
R << ": " << InstStr.str();
}
reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
NumFastIselFailures += NumFastIselRemaining;
break;
}
FastIS->recomputeInsertPt();
}
if (SP.shouldEmitSDCheck(*LLVMBB)) {
bool FunctionBasedInstrumentation =
TLI->getSSPStackGuardCheck(*Fn.getParent());
SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
FunctionBasedInstrumentation);
}
if (Begin != BI)
++NumDAGBlocks;
else
++NumFastIselBlocks;
if (Begin != BI) {
// Run SelectionDAG instruction selection on the remainder of the block
// not handled by FastISel. If FastISel is not run, this is the entire
// block.
bool HadTailCall;
SelectBasicBlock(Begin, BI, HadTailCall);
// But if FastISel was run, we already selected some of the block.
// If we emitted a tail-call, we need to delete any previously emitted
// instruction that follows it.
if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
}
if (FastIS)
FastIS->finishBasicBlock();
FinishBasicBlock();
FuncInfo->PHINodesToUpdate.clear();
ElidedArgCopyInstrs.clear();
}
SP.copyToMachineFrameInfo(MF->getFrameInfo());
propagateSwiftErrorVRegs(FuncInfo);
delete FastIS;
SDB->clearDanglingDebugInfo();
SDB->SPDescriptor.resetPerFunctionState();
}
/// Given that the input MI is before a partial terminator sequence TSeq, return
/// true if M + TSeq also a partial terminator sequence.
///
/// A Terminator sequence is a sequence of MachineInstrs which at this point in
/// lowering copy vregs into physical registers, which are then passed into
/// terminator instructors so we can satisfy ABI constraints. A partial
/// terminator sequence is an improper subset of a terminator sequence (i.e. it
/// may be the whole terminator sequence).
static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
// If we do not have a copy or an implicit def, we return true if and only if
// MI is a debug value.
if (!MI.isCopy() && !MI.isImplicitDef())
// Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
// physical registers if there is debug info associated with the terminator
// of our mbb. We want to include said debug info in our terminator
// sequence, so we return true in that case.
return MI.isDebugValue();
// We have left the terminator sequence if we are not doing one of the
// following:
//
// 1. Copying a vreg into a physical register.
// 2. Copying a vreg into a vreg.
// 3. Defining a register via an implicit def.
// OPI should always be a register definition...
MachineInstr::const_mop_iterator OPI = MI.operands_begin();
if (!OPI->isReg() || !OPI->isDef())
return false;
// Defining any register via an implicit def is always ok.
if (MI.isImplicitDef())
return true;
// Grab the copy source...
MachineInstr::const_mop_iterator OPI2 = OPI;
++OPI2;
assert(OPI2 != MI.operands_end()
&& "Should have a copy implying we should have 2 arguments.");
// Make sure that the copy dest is not a vreg when the copy source is a
// physical register.
if (!OPI2->isReg() ||
(!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
return false;
return true;
}
/// Find the split point at which to splice the end of BB into its success stack
/// protector check machine basic block.
///
/// On many platforms, due to ABI constraints, terminators, even before register
/// allocation, use physical registers. This creates an issue for us since
/// physical registers at this point can not travel across basic
/// blocks. Luckily, selectiondag always moves physical registers into vregs
/// when they enter functions and moves them through a sequence of copies back
/// into the physical registers right before the terminator creating a
/// ``Terminator Sequence''. This function is searching for the beginning of the
/// terminator sequence so that we can ensure that we splice off not just the
/// terminator, but additionally the copies that move the vregs into the
/// physical registers.
static MachineBasicBlock::iterator
FindSplitPointForStackProtector(MachineBasicBlock *BB) {
MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
//
if (SplitPoint == BB->begin())
return SplitPoint;
MachineBasicBlock::iterator Start = BB->begin();
MachineBasicBlock::iterator Previous = SplitPoint;
--Previous;
while (MIIsInTerminatorSequence(*Previous)) {
SplitPoint = Previous;
if (Previous == Start)
break;
--Previous;
}
return SplitPoint;
}
void
SelectionDAGISel::FinishBasicBlock() {
LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
<< FuncInfo->PHINodesToUpdate.size() << "\n";
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
++i) dbgs()
<< "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
<< ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
// Next, now that we know what the last MBB the LLVM BB expanded is, update
// PHI nodes in successors.
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
continue;
PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
}
// Handle stack protector.
if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
// The target provides a guard check function. There is no need to
// generate error handling code or to split current basic block.
MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
// Add load and check to the basicblock.
FuncInfo->MBB = ParentMBB;
FuncInfo->InsertPt =
FindSplitPointForStackProtector(ParentMBB);
SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// Clear the Per-BB State.
SDB->SPDescriptor.resetPerBBState();
} else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
// Find the split point to split the parent mbb. At the same time copy all
// physical registers used in the tail of parent mbb into virtual registers
// before the split point and back into physical registers after the split
// point. This prevents us needing to deal with Live-ins and many other
// register allocation issues caused by us splitting the parent mbb. The
// register allocator will clean up said virtual copies later on.
MachineBasicBlock::iterator SplitPoint =
FindSplitPointForStackProtector(ParentMBB);
// Splice the terminator of ParentMBB into SuccessMBB.
SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
SplitPoint,
ParentMBB->end());
// Add compare/jump on neq/jump to the parent BB.
FuncInfo->MBB = ParentMBB;
FuncInfo->InsertPt = ParentMBB->end();
SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// CodeGen Failure MBB if we have not codegened it yet.
MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
if (FailureMBB->empty()) {
FuncInfo->MBB = FailureMBB;
FuncInfo->InsertPt = FailureMBB->end();
SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// Clear the Per-BB State.
SDB->SPDescriptor.resetPerBBState();
}
// Lower each BitTestBlock.
for (auto &BTB : SDB->BitTestCases) {
// Lower header first, if it wasn't already lowered
if (!BTB.Emitted) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = BTB.Parent;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
BranchProbability UnhandledProb = BTB.Prob;
for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
UnhandledProb -= BTB.Cases[j].ExtraProb;
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = BTB.Cases[j].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
// If all cases cover a contiguous range, it is not necessary to jump to
// the default block after the last bit test fails. This is because the
// range check during bit test header creation has guaranteed that every
// case here doesn't go outside the range. In this case, there is no need
// to perform the last bit test, as it will always be true. Instead, make
// the second-to-last bit-test fall through to the target of the last bit
// test, and delete the last bit test.
MachineBasicBlock *NextMBB;
if (BTB.ContiguousRange && j + 2 == ej) {
// Second-to-last bit-test with contiguous range: fall through to the
// target of the final bit test.
NextMBB = BTB.Cases[j + 1].TargetBB;
} else if (j + 1 == ej) {
// For the last bit test, fall through to Default.
NextMBB = BTB.Default;
} else {
// Otherwise, fall through to the next bit test.
NextMBB = BTB.Cases[j + 1].ThisBB;
}
SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
if (BTB.ContiguousRange && j + 2 == ej) {
// Since we're not going to use the final bit test, remove it.
BTB.Cases.pop_back();
break;
}
}
// Update PHI Nodes
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
pi != pe; ++pi) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
// This is "default" BB. We have two jumps to it. From "header" BB and
// from last "case" BB, unless the latter was skipped.
if (PHIBB == BTB.Default) {
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
if (!BTB.ContiguousRange) {
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
.addMBB(BTB.Cases.back().ThisBB);
}
}
// One of "cases" BB.
for (unsigned j = 0, ej = BTB.Cases.size();
j != ej; ++j) {
MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
if (cBB->isSuccessor(PHIBB))
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
}
}
}
SDB->BitTestCases.clear();
// If the JumpTable record is filled in, then we need to emit a jump table.
// Updating the PHI nodes is tricky in this case, since we need to determine
// whether the PHI is a successor of the range check MBB or the jump table MBB
for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
// Lower header first, if it wasn't already lowered
if (!SDB->JTCases[i].first.Emitted) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
}
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->JTCases[i].second.MBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Emit the code
SDB->visitJumpTable(SDB->JTCases[i].second);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// Update PHI Nodes
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
pi != pe; ++pi) {
MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
MachineBasicBlock *PHIBB = PHI->getParent();
assert(PHI->isPHI() &&
"This is not a machine PHI node that we are updating!");
// "default" BB. We can go there only from header BB.
if (PHIBB == SDB->JTCases[i].second.Default)
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
.addMBB(SDB->JTCases[i].first.HeaderBB);
// JT BB. Just iterate over successors here
if (FuncInfo->MBB->isSuccessor(PHIBB))
PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
}
}
SDB->JTCases.clear();
// If we generated any switch lowering information, build and codegen any
// additional DAGs necessary.
for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
// Set the current basic block to the mbb we wish to insert the code into
FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
FuncInfo->InsertPt = FuncInfo->MBB->end();
// Determine the unique successors.
SmallVector<MachineBasicBlock *, 2> Succs;
Succs.push_back(SDB->SwitchCases[i].TrueBB);
if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
Succs.push_back(SDB->SwitchCases[i].FalseBB);
// Emit the code. Note that this could result in FuncInfo->MBB being split.
SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
CurDAG->setRoot(SDB->getRoot());
SDB->clear();
CodeGenAndEmitDAG();
// Remember the last block, now that any splitting is done, for use in
// populating PHI nodes in successors.
MachineBasicBlock *ThisBB = FuncInfo->MBB;
// Handle any PHI nodes in successors of this chunk, as if we were coming
// from the original BB before switch expansion. Note that PHI nodes can
// occur multiple times in PHINodesToUpdate. We have to be very careful to
// handle them the right number of times.
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
FuncInfo->MBB = Succs[i];
FuncInfo->InsertPt = FuncInfo->MBB->end();
// FuncInfo->MBB may have been removed from the CFG if a branch was
// constant folded.
if (ThisBB->isSuccessor(FuncInfo->MBB)) {
for (MachineBasicBlock::iterator
MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
MachineInstrBuilder PHI(*MF, MBBI);
// This value for this PHI node is recorded in PHINodesToUpdate.
for (unsigned pn = 0; ; ++pn) {
assert(pn != FuncInfo->PHINodesToUpdate.size() &&
"Didn't find PHI entry!");
if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
break;
}
}
}
}
}
}
SDB->SwitchCases.clear();
}
/// Create the scheduler. If a specific scheduler was specified
/// via the SchedulerRegistry, use it, otherwise select the
/// one preferred by the target.
///
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
return ISHeuristic(this, OptLevel);
}
//===----------------------------------------------------------------------===//
// Helper functions used by the generated instruction selector.
//===----------------------------------------------------------------------===//
// Calls to these methods are generated by tblgen.
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (!ActualMask.isSubsetOf(DesiredMask))
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
/// the dag combiner simplified the 255, we still want to match. RHS is the
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
/// specified in the .td file (e.g. 255).
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const {
const APInt &ActualMask = RHS->getAPIntValue();
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
// If the actual mask exactly matches, success!
if (ActualMask == DesiredMask)
return true;
// If the actual AND mask is allowing unallowed bits, this doesn't match.
if (!ActualMask.isSubsetOf(DesiredMask))
return false;
// Otherwise, the DAG Combiner may have proven that the value coming in is
// either already zero or is not demanded. Check for known zero input bits.
APInt NeededMask = DesiredMask & ~ActualMask;
KnownBits Known = CurDAG->computeKnownBits(LHS);
// If all the missing bits in the or are already known to be set, match!
if (NeededMask.isSubsetOf(Known.One))
return true;
// TODO: check to see if missing bits are just not demanded.
// Otherwise, this pattern doesn't match.
return false;
}
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
/// by tblgen. Others should not call it.
void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
const SDLoc &DL) {
std::vector<SDValue> InOps;
std::swap(InOps, Ops);
Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
if (InOps[e-1].getValueType() == MVT::Glue)
--e; // Don't process a glue operand if it is here.
while (i != e) {
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
if (!InlineAsm::isMemKind(Flags)) {
// Just skip over this operand, copying the operands verbatim.
Ops.insert(Ops.end(), InOps.begin()+i,
InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
i += InlineAsm::getNumOperandRegisters(Flags) + 1;
} else {
assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
"Memory operand with multiple values?");
unsigned TiedToOperand;
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
// We need the constraint ID from the operand this is tied to.
unsigned CurOp = InlineAsm::Op_FirstOperand;
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
for (; TiedToOperand; --TiedToOperand) {
CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
}
}
// Otherwise, this is a memory operand. Ask the target to select it.
std::vector<SDValue> SelOps;
unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
report_fatal_error("Could not match memory address. Inline asm"
" failure!");
// Add this to the output node.
unsigned NewFlags =
InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
i += 2;
}
}
// Add the glue input back if present.
if (e != InOps.size())
Ops.push_back(InOps.back());
}
/// findGlueUse - Return use of MVT::Glue value produced by the specified
/// SDNode.
///
static SDNode *findGlueUse(SDNode *N) {
unsigned FlagResNo = N->getNumValues()-1;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDUse &Use = I.getUse();
if (Use.getResNo() == FlagResNo)
return Use.getUser();
}
return nullptr;
}
/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
/// beyond "ImmedUse". We may ignore chains as they are checked separately.
static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
bool IgnoreChains) {
SmallPtrSet<const SDNode *, 16> Visited;
SmallVector<const SDNode *, 16> WorkList;
// Only check if we have non-immediate uses of Def.
if (ImmedUse->isOnlyUserOf(Def))
return false;
// We don't care about paths to Def that go through ImmedUse so mark it
// visited and mark non-def operands as used.
Visited.insert(ImmedUse);
for (const SDValue &Op : ImmedUse->op_values()) {
SDNode *N = Op.getNode();
// Ignore chain deps (they are validated by
// HandleMergeInputChains) and immediate uses
if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
continue;
if (!Visited.insert(N).second)
continue;
WorkList.push_back(N);
}
// Initialize worklist to operands of Root.
if (Root != ImmedUse) {
for (const SDValue &Op : Root->op_values()) {
SDNode *N = Op.getNode();
// Ignore chains (they are validated by HandleMergeInputChains)
if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
continue;
if (!Visited.insert(N).second)
continue;
WorkList.push_back(N);
}
}
return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
}
/// IsProfitableToFold - Returns true if it's profitable to fold the specific
/// operand node N of U during instruction selection that starts at Root.
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
SDNode *Root) const {
if (OptLevel == CodeGenOpt::None) return false;
return N.hasOneUse();
}
/// IsLegalToFold - Returns true if the specific operand node N of
/// U can be folded during instruction selection that starts at Root.
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
CodeGenOpt::Level OptLevel,
bool IgnoreChains) {
if (OptLevel == CodeGenOpt::None) return false;
// If Root use can somehow reach N through a path that that doesn't contain
// U then folding N would create a cycle. e.g. In the following
// diagram, Root can reach N through X. If N is folded into Root, then
// X is both a predecessor and a successor of U.
//
// [N*] //
// ^ ^ //
// / \ //
// [U*] [X]? //
// ^ ^ //
// \ / //
// \ / //
// [Root*] //
//
// * indicates nodes to be folded together.
//
// If Root produces glue, then it gets (even more) interesting. Since it
// will be "glued" together with its glue use in the scheduler, we need to
// check if it might reach N.
//
// [N*] //
// ^ ^ //
// / \ //
// [U*] [X]? //
// ^ ^ //
// \ \ //
// \ | //
// [Root*] | //
// ^ | //
// f | //
// | / //
// [Y] / //
// ^ / //
// f / //
// | / //
// [GU] //
//
// If GU (glue use) indirectly reaches N (the load), and Root folds N
// (call it Fold), then X is a predecessor of GU and a successor of
// Fold. But since Fold and GU are glued together, this will create
// a cycle in the scheduling graph.
// If the node has glue, walk down the graph to the "lowest" node in the
// glueged set.
EVT VT = Root->getValueType(Root->getNumValues()-1);
while (VT == MVT::Glue) {
SDNode *GU = findGlueUse(Root);
if (!GU)
break;
Root = GU;
VT = Root->getValueType(Root->getNumValues()-1);
// If our query node has a glue result with a use, we've walked up it. If
// the user (which has already been selected) has a chain or indirectly uses
// the chain, HandleMergeInputChains will not consider it. Because of
// this, we cannot ignore chains in this predicate.
IgnoreChains = false;
}
return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
}
void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
SDLoc DL(N);
std::vector<SDValue> Ops(N->op_begin(), N->op_end());
SelectInlineAsmMemoryOperands(Ops, DL);
const EVT VTs[] = {MVT::Other, MVT::Glue};
SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
New->setNodeId(-1);
ReplaceUses(N, New.getNode());
CurDAG->RemoveDeadNode(N);
}
void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
unsigned Reg =
TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
*CurDAG);
SDValue New = CurDAG->getCopyFromReg(
Op->getOperand(0), dl, Reg, Op->getValueType(0));
New->setNodeId(-1);
ReplaceUses(Op, New.getNode());
CurDAG->RemoveDeadNode(Op);
}
void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
SDLoc dl(Op);
MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
Op->getOperand(2).getValueType(),
*CurDAG);
SDValue New = CurDAG->getCopyToReg(
Op->getOperand(0), dl, Reg, Op->getOperand(2));
New->setNodeId(-1);
ReplaceUses(Op, New.getNode());
CurDAG->RemoveDeadNode(Op);
}
void SelectionDAGISel::Select_UNDEF(SDNode *N) {
CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
}
/// GetVBR - decode a vbr encoding whose top bit is set.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
assert(Val >= 128 && "Not a VBR");
Val &= 127; // Remove first vbr bit.
unsigned Shift = 7;
uint64_t NextBits;
do {
NextBits = MatcherTable[Idx++];
Val |= (NextBits&127) << Shift;
Shift += 7;
} while (NextBits & 128);
return Val;
}
/// When a match is complete, this method updates uses of interior chain results
/// to use the new results.
void SelectionDAGISel::UpdateChains(
SDNode *NodeToMatch, SDValue InputChain,
SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
SmallVector<SDNode*, 4> NowDeadNodes;
// Now that all the normal results are replaced, we replace the chain and
// glue results if present.
if (!ChainNodesMatched.empty()) {
assert(InputChain.getNode() &&
"Matched input chains but didn't produce a chain");
// Loop over all of the nodes we matched that produced a chain result.
// Replace all the chain results with the final chain we ended up with.
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
SDNode *ChainNode = ChainNodesMatched[i];
// If ChainNode is null, it's because we replaced it on a previous
// iteration and we cleared it out of the map. Just skip it.
if (!ChainNode)
continue;
assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
"Deleted node left in chain");
// Don't replace the results of the root node if we're doing a
// MorphNodeTo.
if (ChainNode == NodeToMatch && isMorphNodeTo)
continue;
SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
if (ChainVal.getValueType() == MVT::Glue)
ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
SelectionDAG::DAGNodeDeletedListener NDL(
*CurDAG, [&](SDNode *N, SDNode *E) {
std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
static_cast<SDNode *>(nullptr));
});
if (ChainNode->getOpcode() != ISD::TokenFactor)
ReplaceUses(ChainVal, InputChain);
// If the node became dead and we haven't already seen it, delete it.
if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
NowDeadNodes.push_back(ChainNode);
}
}
if (!NowDeadNodes.empty())
CurDAG->RemoveDeadNodes(NowDeadNodes);
LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
}
/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
/// operation for when the pattern matched at least one node with a chains. The
/// input vector contains a list of all of the chained nodes that we match. We
/// must determine if this is a valid thing to cover (i.e. matching it won't
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
/// be used as the input node chain for the generated nodes.
static SDValue
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
SelectionDAG *CurDAG) {
SmallPtrSet<const SDNode *, 16> Visited;
SmallVector<const SDNode *, 8> Worklist;
SmallVector<SDValue, 3> InputChains;
unsigned int Max = 8192;
// Quick exit on trivial merge.
if (ChainNodesMatched.size() == 1)
return ChainNodesMatched[0]->getOperand(0);
// Add chains that aren't already added (internal). Peek through
// token factors.
std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
if (V.getValueType() != MVT::Other)
return;
if (V->getOpcode() == ISD::EntryToken)
return;
if (!Visited.insert(V.getNode()).second)
return;
if (V->getOpcode() == ISD::TokenFactor) {
for (const SDValue &Op : V->op_values())
AddChains(Op);
} else
InputChains.push_back(V);
};
for (auto *N : ChainNodesMatched) {
Worklist.push_back(N);
Visited.insert(N);
}
while (!Worklist.empty())
AddChains(Worklist.pop_back_val()->getOperand(0));
// Skip the search if there are no chain dependencies.
if (InputChains.size() == 0)
return CurDAG->getEntryNode();
// If one of these chains is a successor of input, we must have a
// node that is both the predecessor and successor of the
// to-be-merged nodes. Fail.
Visited.clear();
for (SDValue V : InputChains)
Worklist.push_back(V.getNode());
for (auto *N : ChainNodesMatched)
if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
return SDValue();
// Return merged chain.
if (InputChains.size() == 1)
return InputChains[0];
return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
MVT::Other, InputChains);
}
/// MorphNode - Handle morphing a node in place for the selector.
SDNode *SelectionDAGISel::
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
// It is possible we're using MorphNodeTo to replace a node with no
// normal results with one that has a normal result (or we could be
// adding a chain) and the input could have glue and chains as well.
// In this case we need to shift the operands down.
// FIXME: This is a horrible hack and broken in obscure cases, no worse
// than the old isel though.
int OldGlueResultNo = -1, OldChainResultNo = -1;
unsigned NTMNumResults = Node->getNumValues();
if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
OldGlueResultNo = NTMNumResults-1;
if (NTMNumResults != 1 &&
Node->getValueType(NTMNumResults-2) == MVT::Other)
OldChainResultNo = NTMNumResults-2;
} else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
OldChainResultNo = NTMNumResults-1;
// Call the underlying SelectionDAG routine to do the transmogrification. Note
// that this deletes operands of the old node that become dead.
SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
// MorphNodeTo can operate in two ways: if an existing node with the
// specified operands exists, it can just return it. Otherwise, it
// updates the node in place to have the requested operands.
if (Res == Node) {
// If we updated the node in place, reset the node ID. To the isel,
// this should be just like a newly allocated machine node.
Res->setNodeId(-1);
}
unsigned ResNumResults = Res->getNumValues();
// Move the glue if needed.
if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
(unsigned)OldGlueResultNo != ResNumResults-1)
ReplaceUses(SDValue(Node, OldGlueResultNo),
SDValue(Res, ResNumResults - 1));
if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
--ResNumResults;
// Move the chain reference if needed.
if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
(unsigned)OldChainResultNo != ResNumResults-1)
ReplaceUses(SDValue(Node, OldChainResultNo),
SDValue(Res, ResNumResults - 1));
// Otherwise, no replacement happened because the node already exists. Replace
// Uses of the old node with the new one.
if (Res != Node) {
ReplaceNode(Node, Res);
} else {
EnforceNodeIdInvariant(Res);
}
return Res;
}
/// CheckSame - Implements OP_CheckSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N,
const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
// Accept if it is exactly the same as a previously recorded node.
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
return N == RecordedNodes[RecNo].first;
}
/// CheckChildSame - Implements OP_CheckChildXSame.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N,
const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
RecordedNodes);
}
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
const SelectionDAGISel &SDISel) {
return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
}
/// CheckNodePredicate - Implements OP_CheckNodePredicate.
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
const SelectionDAGISel &SDISel, SDNode *N) {
return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDNode *N) {
uint16_t Opc = MatcherTable[MatcherIndex++];
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
return N->getOpcode() == Opc;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
const TargetLowering *TLI, const DataLayout &DL) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (N.getValueType() == VT) return true;
// Handle the case when VT is iPTR.
return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const TargetLowering *TLI, const DataLayout &DL,
unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N) {
return cast<CondCodeSDNode>(N)->get() ==
(ISD::CondCode)MatcherTable[MatcherIndex++];
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N) {
if (2 >= N.getNumOperands())
return false;
return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (cast<VTSDNode>(N)->getVT() == VT)
return true;
// Handle the case when VT is iPTR.
return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
return C && C->getSExtValue() == Val;
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, unsigned ChildNo) {
if (ChildNo >= N.getNumOperands())
return false; // Match fails if out of range child #.
return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const SelectionDAGISel &SDISel) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
if (N->getOpcode() != ISD::AND) return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
}
LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
SDValue N, const SelectionDAGISel &SDISel) {
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
if (N->getOpcode() != ISD::OR) return false;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
}
/// IsPredicateKnownToFail - If we know how and can do so without pushing a
/// scope, evaluate the current node. If the current predicate is known to
/// fail, set Result=true and return anything. If the current predicate is
/// known to pass, set Result=false and return the MatcherIndex to continue
/// with. If the current predicate is unknown, set Result=false and return the
/// MatcherIndex to continue with.
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
unsigned Index, SDValue N,
bool &Result,
const SelectionDAGISel &SDISel,
SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
switch (Table[Index++]) {
default:
Result = false;
return Index-1; // Could not evaluate this predicate.
case SelectionDAGISel::OPC_CheckSame:
Result = !::CheckSame(Table, Index, N, RecordedNodes);
return Index;
case SelectionDAGISel::OPC_CheckChild0Same:
case SelectionDAGISel::OPC_CheckChild1Same:
case SelectionDAGISel::OPC_CheckChild2Same:
case SelectionDAGISel::OPC_CheckChild3Same:
Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
return Index;
case SelectionDAGISel::OPC_CheckPatternPredicate:
Result = !::CheckPatternPredicate(Table, Index, SDISel);
return Index;
case SelectionDAGISel::OPC_CheckPredicate:
Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
return Index;
case SelectionDAGISel::OPC_CheckOpcode:
Result = !::CheckOpcode(Table, Index, N.getNode());
return Index;
case SelectionDAGISel::OPC_CheckType:
Result = !::CheckType(Table, Index, N, SDISel.TLI,
SDISel.CurDAG->getDataLayout());
return Index;
case SelectionDAGISel::OPC_CheckTypeRes: {
unsigned Res = Table[Index++];
Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
SDISel.CurDAG->getDataLayout());
return Index;
}
case SelectionDAGISel::OPC_CheckChild0Type:
case SelectionDAGISel::OPC_CheckChild1Type:
case SelectionDAGISel::OPC_CheckChild2Type:
case SelectionDAGISel::OPC_CheckChild3Type:
case SelectionDAGISel::OPC_CheckChild4Type:
case SelectionDAGISel::OPC_CheckChild5Type:
case SelectionDAGISel::OPC_CheckChild6Type:
case SelectionDAGISel::OPC_CheckChild7Type:
Result = !::CheckChildType(
Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
return Index;
case SelectionDAGISel::OPC_CheckCondCode:
Result = !::CheckCondCode(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckChild2CondCode:
Result = !::CheckChild2CondCode(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckValueType:
Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
SDISel.CurDAG->getDataLayout());
return Index;
case SelectionDAGISel::OPC_CheckInteger:
Result = !::CheckInteger(Table, Index, N);
return Index;
case SelectionDAGISel::OPC_CheckChild0Integer:
case SelectionDAGISel::OPC_CheckChild1Integer:
case SelectionDAGISel::OPC_CheckChild2Integer:
case SelectionDAGISel::OPC_CheckChild3Integer:
case SelectionDAGISel::OPC_CheckChild4Integer:
Result = !::CheckChildInteger(Table, Index, N,
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
return Index;
case SelectionDAGISel::OPC_CheckAndImm:
Result = !::CheckAndImm(Table, Index, N, SDISel);
return Index;
case SelectionDAGISel::OPC_CheckOrImm:
Result = !::CheckOrImm(Table, Index, N, SDISel);
return Index;
}
}
namespace {
struct MatchScope {
/// FailIndex - If this match fails, this is the index to continue with.
unsigned FailIndex;
/// NodeStack - The node stack when the scope was formed.
SmallVector<SDValue, 4> NodeStack;
/// NumRecordedNodes - The number of recorded nodes when the scope was formed.
unsigned NumRecordedNodes;
/// NumMatchedMemRefs - The number of matched memref entries.
unsigned NumMatchedMemRefs;
/// InputChain/InputGlue - The current chain/glue
SDValue InputChain, InputGlue;
/// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
bool HasChainNodesMatched;
};
/// \A DAG update listener to keep the matching state
/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
/// change the DAG while matching. X86 addressing mode matcher is an example
/// for this.
class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
{
SDNode **NodeToMatch;
SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
SmallVectorImpl<MatchScope> &MatchScopes;
public:
MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
SmallVectorImpl<MatchScope> &MS)
: SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
RecordedNodes(RN), MatchScopes(MS) {}
void NodeDeleted(SDNode *N, SDNode *E) override {
// Some early-returns here to avoid the search if we deleted the node or
// if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
// do, so it's unnecessary to update matching state at that point).
// Neither of these can occur currently because we only install this
// update listener during matching a complex patterns.
if (!E || E->isMachineOpcode())
return;
// Check if NodeToMatch was updated.
if (N == *NodeToMatch)
*NodeToMatch = E;
// Performing linear search here does not matter because we almost never
// run this code. You'd have to have a CSE during complex pattern
// matching.
for (auto &I : RecordedNodes)
if (I.first.getNode() == N)
I.first.setNode(E);
for (auto &I : MatchScopes)
for (auto &J : I.NodeStack)
if (J.getNode() == N)
J.setNode(E);
}
};
} // end anonymous namespace
void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
const unsigned char *MatcherTable,
unsigned TableSize) {
// FIXME: Should these even be selected? Handle these cases in the caller?
switch (NodeToMatch->getOpcode()) {
default:
break;
case ISD::EntryToken: // These nodes remain the same.
case ISD::BasicBlock:
case ISD::Register:
case ISD::RegisterMask:
case ISD::HANDLENODE:
case ISD::MDNODE_SDNODE:
case ISD::TargetConstant:
case ISD::TargetConstantFP:
case ISD::TargetConstantPool:
case ISD::TargetFrameIndex:
case ISD::TargetExternalSymbol:
case ISD::MCSymbol:
case ISD::TargetBlockAddress:
case ISD::TargetJumpTable:
case ISD::TargetGlobalTLSAddress:
case ISD::TargetGlobalAddress:
case ISD::TokenFactor:
case ISD::CopyFromReg:
case ISD::CopyToReg:
case ISD::EH_LABEL:
case ISD::ANNOTATION_LABEL:
case ISD::LIFETIME_START:
case ISD::LIFETIME_END:
NodeToMatch->setNodeId(-1); // Mark selected.
return;
case ISD::AssertSext:
case ISD::AssertZext:
ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
CurDAG->RemoveDeadNode(NodeToMatch);
return;
case ISD::INLINEASM:
case ISD::INLINEASM_BR:
Select_INLINEASM(NodeToMatch,
NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
return;
case ISD::READ_REGISTER:
Select_READ_REGISTER(NodeToMatch);
return;
case ISD::WRITE_REGISTER:
Select_WRITE_REGISTER(NodeToMatch);
return;
case ISD::UNDEF:
Select_UNDEF(NodeToMatch);
return;
}
assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
// Set up the node stack with NodeToMatch as the only node on the stack.
SmallVector<SDValue, 8> NodeStack;
SDValue N = SDValue(NodeToMatch, 0);
NodeStack.push_back(N);
// MatchScopes - Scopes used when matching, if a match failure happens, this
// indicates where to continue checking.
SmallVector<MatchScope, 8> MatchScopes;
// RecordedNodes - This is the set of nodes that have been recorded by the
// state machine. The second value is the parent of the node, or null if the
// root is recorded.
SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
// MatchedMemRefs - This is the set of MemRef's we've seen in the input
// pattern.
SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
// These are the current input chain and glue for use when generating nodes.
// Various Emit operations change these. For example, emitting a copytoreg
// uses and updates these.
SDValue InputChain, InputGlue;
// ChainNodesMatched - If a pattern matches nodes that have input/output
// chains, the OPC_EmitMergeInputChains operation is emitted which indicates
// which ones they are. The result is captured into this list so that we can
// update the chain results when the pattern is complete.
SmallVector<SDNode*, 3> ChainNodesMatched;
LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
// Determine where to start the interpreter. Normally we start at opcode #0,
// but if the state machine starts with an OPC_SwitchOpcode, then we
// accelerate the first lookup (which is guaranteed to be hot) with the
// OpcodeOffset table.
unsigned MatcherIndex = 0;
if (!OpcodeOffset.empty()) {
// Already computed the OpcodeOffset table, just index into it.
if (N.getOpcode() < OpcodeOffset.size())
MatcherIndex = OpcodeOffset[N.getOpcode()];
LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
} else if (MatcherTable[0] == OPC_SwitchOpcode) {
// Otherwise, the table isn't computed, but the state machine does start
// with an OPC_SwitchOpcode instruction. Populate the table now, since this
// is the first time we're selecting an instruction.
unsigned Idx = 1;
while (true) {
// Get the size of this case.
unsigned CaseSize = MatcherTable[Idx++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
if (CaseSize == 0) break;
// Get the opcode, add the index to the table.
uint16_t Opc = MatcherTable[Idx++];
Opc |= (unsigned short)MatcherTable[Idx++] << 8;
if (Opc >= OpcodeOffset.size())
OpcodeOffset.resize((Opc+1)*2);
OpcodeOffset[Opc] = Idx;
Idx += CaseSize;
}
// Okay, do the lookup for the first opcode.
if (N.getOpcode() < OpcodeOffset.size())
MatcherIndex = OpcodeOffset[N.getOpcode()];
}
while (true) {
assert(MatcherIndex < TableSize && "Invalid index");
#ifndef NDEBUG
unsigned CurrentOpcodeIndex = MatcherIndex;
#endif
BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
switch (Opcode) {
case OPC_Scope: {
// Okay, the semantics of this operation are that we should push a scope
// then evaluate the first child. However, pushing a scope only to have
// the first check fail (which then pops it) is inefficient. If we can
// determine immediately that the first check (or first several) will
// immediately fail, don't even bother pushing a scope for them.
unsigned FailIndex;
while (true) {
unsigned NumToSkip = MatcherTable[MatcherIndex++];
if (NumToSkip & 128)
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
// Found the end of the scope with no match.
if (NumToSkip == 0) {
FailIndex = 0;
break;
}
FailIndex = MatcherIndex+NumToSkip;
unsigned MatcherIndexOfPredicate = MatcherIndex;
(void)MatcherIndexOfPredicate; // silence warning.
// If we can't evaluate this predicate without pushing a scope (e.g. if
// it is a 'MoveParent') or if the predicate succeeds on this node, we
// push the scope and evaluate the full predicate chain.
bool Result;
MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
Result, *this, RecordedNodes);
if (!Result)
break;
LLVM_DEBUG(
dbgs() << " Skipped scope entry (due to false predicate) at "
<< "index " << MatcherIndexOfPredicate << ", continuing at "
<< FailIndex << "\n");
++NumDAGIselRetries;
// Otherwise, we know that this case of the Scope is guaranteed to fail,
// move to the next case.
MatcherIndex = FailIndex;
}
// If the whole scope failed to match, bail.
if (FailIndex == 0) break;
// Push a MatchScope which indicates where to go if the first child fails
// to match.
MatchScope NewEntry;
NewEntry.FailIndex = FailIndex;
NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
NewEntry.NumRecordedNodes = RecordedNodes.size();
NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
NewEntry.InputChain = InputChain;
NewEntry.InputGlue = InputGlue;
NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
MatchScopes.push_back(NewEntry);
continue;
}
case OPC_RecordNode: {
// Remember this node, it may end up being an operand in the pattern.
SDNode *Parent = nullptr;
if (NodeStack.size() > 1)
Parent = NodeStack[NodeStack.size()-2].getNode();
RecordedNodes.push_back(std::make_pair(N, Parent));
continue;
}
case OPC_RecordChild0: case OPC_RecordChild1:
case OPC_RecordChild2: case OPC_RecordChild3:
case OPC_RecordChild4: case OPC_RecordChild5:
case OPC_RecordChild6: case OPC_RecordChild7: {
unsigned ChildNo = Opcode-OPC_RecordChild0;
if (ChildNo >= N.getNumOperands())
break; // Match fails if out of range child #.
RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
N.getNode()));
continue;
}
case OPC_RecordMemRef:
if (auto *MN = dyn_cast<MemSDNode>(N))
MatchedMemRefs.push_back(MN->getMemOperand());
else {
LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
dbgs() << '\n');
}
continue;
case OPC_CaptureGlueInput:
// If the current node has an input glue, capture it in InputGlue.
if (N->getNumOperands() != 0 &&
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
InputGlue = N->getOperand(N->getNumOperands()-1);
continue;
case OPC_MoveChild: {
unsigned ChildNo = MatcherTable[MatcherIndex++];
if (ChildNo >= N.getNumOperands())
break; // Match fails if out of range child #.
N = N.getOperand(ChildNo);
NodeStack.push_back(N);
continue;
}
case OPC_MoveChild0: case OPC_MoveChild1:
case OPC_MoveChild2: case OPC_MoveChild3:
case OPC_MoveChild4: case OPC_MoveChild5:
case OPC_MoveChild6: case OPC_MoveChild7: {
unsigned ChildNo = Opcode-OPC_MoveChild0;
if (ChildNo >= N.getNumOperands())
break; // Match fails if out of range child #.
N = N.getOperand(ChildNo);
NodeStack.push_back(N);
continue;
}
case OPC_MoveParent:
// Pop the current node off the NodeStack.
NodeStack.pop_back();
assert(!NodeStack.empty() && "Node stack imbalance!");
N = NodeStack.back();
continue;
case OPC_CheckSame:
if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
continue;
case OPC_CheckChild0Same: case OPC_CheckChild1Same:
case OPC_CheckChild2Same: case OPC_CheckChild3Same:
if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
Opcode-OPC_CheckChild0Same))
break;
continue;
case OPC_CheckPatternPredicate:
if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
continue;
case OPC_CheckPredicate:
if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
N.getNode()))
break;
continue;
case OPC_CheckPredicateWithOperands: {
unsigned OpNum = MatcherTable[MatcherIndex++];
SmallVector<SDValue, 8> Operands;
for (unsigned i = 0; i < OpNum; ++i)
Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
unsigned PredNo = MatcherTable[MatcherIndex++];
if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
break;
continue;
}
case OPC_CheckComplexPat: {
unsigned CPNum = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
// If target can modify DAG during matching, keep the matching state
// consistent.
std::unique_ptr<MatchStateUpdater> MSU;
if (ComplexPatternFuncMutatesDAG())
MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
MatchScopes));
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
RecordedNodes[RecNo].first, CPNum,
RecordedNodes))
break;
continue;
}
case OPC_CheckOpcode:
if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
continue;
case OPC_CheckType:
if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout()))
break;
continue;
case OPC_CheckTypeRes: {
unsigned Res = MatcherTable[MatcherIndex++];
if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
CurDAG->getDataLayout()))
break;
continue;
}
case OPC_SwitchOpcode: {
unsigned CurNodeOpcode = N.getOpcode();
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
unsigned CaseSize;
while (true) {
// Get the size of this case.
CaseSize = MatcherTable[MatcherIndex++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
if (CaseSize == 0) break;
uint16_t Opc = MatcherTable[MatcherIndex++];
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
// If the opcode matches, then we will execute this case.
if (CurNodeOpcode == Opc)
break;
// Otherwise, skip over this case.
MatcherIndex += CaseSize;
}
// If no cases matched, bail out.
if (CaseSize == 0) break;
// Otherwise, execute the case we found.
LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
<< MatcherIndex << "\n");
continue;
}
case OPC_SwitchType: {
MVT CurNodeVT = N.getSimpleValueType();
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
unsigned CaseSize;
while (true) {
// Get the size of this case.
CaseSize = MatcherTable[MatcherIndex++];
if (CaseSize & 128)
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
if (CaseSize == 0) break;
MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (CaseVT == MVT::iPTR)
CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
// If the VT matches, then we will execute this case.
if (CurNodeVT == CaseVT)
break;
// Otherwise, skip over this case.
MatcherIndex += CaseSize;
}
// If no cases matched, bail out.
if (CaseSize == 0) break;
// Otherwise, execute the case we found.
LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
<< "] from " << SwitchStart << " to " << MatcherIndex
<< '\n');
continue;
}
case OPC_CheckChild0Type: case OPC_CheckChild1Type:
case OPC_CheckChild2Type: case OPC_CheckChild3Type:
case OPC_CheckChild4Type: case OPC_CheckChild5Type:
case OPC_CheckChild6Type: case OPC_CheckChild7Type:
if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout(),
Opcode - OPC_CheckChild0Type))
break;
continue;
case OPC_CheckCondCode:
if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckChild2CondCode:
if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckValueType:
if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
CurDAG->getDataLayout()))
break;
continue;
case OPC_CheckInteger:
if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
continue;
case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
case OPC_CheckChild4Integer:
if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
Opcode-OPC_CheckChild0Integer)) break;
continue;
case OPC_CheckAndImm:
if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
continue;
case OPC_CheckOrImm:
if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
continue;
case OPC_CheckImmAllOnesV:
if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
continue;
case OPC_CheckImmAllZerosV:
if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
continue;
case OPC_CheckFoldableChainNode: {
assert(NodeStack.size() != 1 && "No parent node");
// Verify that all intermediate nodes between the root and this one have
// a single use.
bool HasMultipleUses = false;
for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
if (!NodeStack[i].getNode()->hasOneUse()) {
HasMultipleUses = true;
break;
}
if (HasMultipleUses) break;
// Check to see that the target thinks this is profitable to fold and that
// we can fold it without inducing cycles in the graph.
if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
NodeToMatch) ||
!IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
NodeToMatch, OptLevel,
true/*We validate our own chains*/))
break;
continue;
}
case OPC_EmitInteger: {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
int64_t Val = MatcherTable[MatcherIndex++];
if (Val & 128)
Val = GetVBR(Val, MatcherTable, MatcherIndex);
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
VT), nullptr));
continue;
}
case OPC_EmitRegister: {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
unsigned RegNo = MatcherTable[MatcherIndex++];
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getRegister(RegNo, VT), nullptr));
continue;
}
case OPC_EmitRegister2: {
// For targets w/ more than 256 register names, the register enum
// values are stored in two bytes in the matcher table (just like
// opcodes).
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
unsigned RegNo = MatcherTable[MatcherIndex++];
RegNo |= MatcherTable[MatcherIndex++] << 8;
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
CurDAG->getRegister(RegNo, VT), nullptr));
continue;
}
case OPC_EmitConvertToTarget: {
// Convert from IMM/FPIMM to target version.
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
SDValue Imm = RecordedNodes[RecNo].first;
if (Imm->getOpcode() == ISD::Constant) {
const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
Imm.getValueType());
} else if (Imm->getOpcode() == ISD::ConstantFP) {
const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
Imm.getValueType());
}
RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
continue;
}
case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
// These are space-optimized forms of OPC_EmitMergeInputChains.
assert(!InputChain.getNode() &&
"EmitMergeInputChains should be the first chain producing node");
assert(ChainNodesMatched.empty() &&
"Should only have one EmitMergeInputChains per match");
// Read all of the chained nodes.
unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
// by this pattern?
if (ChainNodesMatched.back() != NodeToMatch &&
!RecordedNodes[RecNo].first.hasOneUse()) {
ChainNodesMatched.clear();
break;
}
// Merge the input chains if they are not intra-pattern references.
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
if (!InputChain.getNode())
break; // Failed to merge.
continue;
}
case OPC_EmitMergeInputChains: {
assert(!InputChain.getNode() &&
"EmitMergeInputChains should be the first chain producing node");
// This node gets a list of nodes we matched in the input that have
// chains. We want to token factor all of the input chains to these nodes
// together. However, if any of the input chains is actually one of the
// nodes matched in this pattern, then we have an intra-match reference.
// Ignore these because the newly token factored chain should not refer to
// the old nodes.
unsigned NumChains = MatcherTable[MatcherIndex++];
assert(NumChains != 0 && "Can't TF zero chains");
assert(ChainNodesMatched.empty() &&
"Should only have one EmitMergeInputChains per match");
// Read all of the chained nodes.
for (unsigned i = 0; i != NumChains; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
// FIXME: What if other value results of the node have uses not matched
// by this pattern?
if (ChainNodesMatched.back() != NodeToMatch &&
!RecordedNodes[RecNo].first.hasOneUse()) {
ChainNodesMatched.clear();
break;
}
}
// If the inner loop broke out, the match fails.
if (ChainNodesMatched.empty())
break;
// Merge the input chains if they are not intra-pattern references.
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
if (!InputChain.getNode())
break; // Failed to merge.
continue;
}
case OPC_EmitCopyToReg: {
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
unsigned DestPhysReg = MatcherTable[MatcherIndex++];
if (!InputChain.getNode())
InputChain = CurDAG->getEntryNode();
InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
DestPhysReg, RecordedNodes[RecNo].first,
InputGlue);
InputGlue = InputChain.getValue(1);
continue;
}
case OPC_EmitNodeXForm: {
unsigned XFormNo = MatcherTable[MatcherIndex++];
unsigned RecNo = MatcherTable[MatcherIndex++];
assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
continue;
}
case OPC_Coverage: {
// This is emitted right before MorphNode/EmitNode.
// So it should be safe to assume that this node has been selected
unsigned index = MatcherTable[MatcherIndex++];
index |= (MatcherTable[MatcherIndex++] << 8);
dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
continue;
}
case OPC_EmitNode: case OPC_MorphNodeTo:
case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
uint16_t TargetOpc = MatcherTable[MatcherIndex++];
TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
// Get the result VT list.
unsigned NumVTs;
// If this is one of the compressed forms, get the number of VTs based
// on the Opcode. Otherwise read the next byte from the table.
if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
NumVTs = Opcode - OPC_MorphNodeTo0;
else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
NumVTs = Opcode - OPC_EmitNode0;
else
NumVTs = MatcherTable[MatcherIndex++];
SmallVector<EVT, 4> VTs;
for (unsigned i = 0; i != NumVTs; ++i) {
MVT::SimpleValueType VT =
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
if (VT == MVT::iPTR)
VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
VTs.push_back(VT);
}
if (EmitNodeInfo & OPFL_Chain)
VTs.push_back(MVT::Other);
if (EmitNodeInfo & OPFL_GlueOutput)
VTs.push_back(MVT::Glue);
// This is hot code, so optimize the two most common cases of 1 and 2
// results.
SDVTList VTList;
if (VTs.size() == 1)
VTList = CurDAG->getVTList(VTs[0]);
else if (VTs.size() == 2)
VTList = CurDAG->getVTList(VTs[0], VTs[1]);
else
VTList = CurDAG->getVTList(VTs);
// Get the operand list.
unsigned NumOps = MatcherTable[MatcherIndex++];
SmallVector<SDValue, 8> Ops;
for (unsigned i = 0; i != NumOps; ++i) {
unsigned RecNo = MatcherTable[MatcherIndex++];
if (RecNo & 128)
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
Ops.push_back(RecordedNodes[RecNo].first);
}
// If there are variadic operands to add, handle them now.
if (EmitNodeInfo & OPFL_VariadicInfo) {
// Determine the start index to copy from.
unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
"Invalid variadic node");
// Copy all of the variadic operands, not including a potential glue
// input.
for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
i != e; ++i) {
SDValue V = NodeToMatch->getOperand(i);
if (V.getValueType() == MVT::Glue) break;
Ops.push_back(V);
}
}
// If this has chain/glue inputs, add them.
if (EmitNodeInfo & OPFL_Chain)
Ops.push_back(InputChain);
if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
Ops.push_back(InputGlue);
// Create the node.
MachineSDNode *Res = nullptr;
bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
(Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
if (!IsMorphNodeTo) {
// If this is a normal EmitNode command, just create the new node and
// add the results to the RecordedNodes list.
Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
VTList, Ops);
// Add all the non-glue/non-chain results to the RecordedNodes list.
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
nullptr));
}
} else {
assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
"NodeToMatch was removed partway through selection");
SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
SDNode *E) {
CurDAG->salvageDebugInfo(*N);
auto &Chain = ChainNodesMatched;
assert((!E || !is_contained(Chain, N)) &&
"Chain node replaced during MorphNode");
Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
});
Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
Ops, EmitNodeInfo));
}
// If the node had chain/glue results, update our notion of the current
// chain and glue.
if (EmitNodeInfo & OPFL_GlueOutput) {
InputGlue = SDValue(Res, VTs.size()-1);
if (EmitNodeInfo & OPFL_Chain)
InputChain = SDValue(Res, VTs.size()-2);
} else if (EmitNodeInfo & OPFL_Chain)
InputChain = SDValue(Res, VTs.size()-1);
// If the OPFL_MemRefs glue is set on this node, slap all of the
// accumulated memrefs onto it.
//
// FIXME: This is vastly incorrect for patterns with multiple outputs
// instructions that access memory and for ComplexPatterns that match
// loads.
if (EmitNodeInfo & OPFL_MemRefs) {
// Only attach load or store memory operands if the generated
// instruction may load or store.
const MCInstrDesc &MCID = TII->get(TargetOpc);
bool mayLoad = MCID.mayLoad();
bool mayStore = MCID.mayStore();
// We expect to have relatively few of these so just filter them into a
// temporary buffer so that we can easily add them to the instruction.
SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
for (MachineMemOperand *MMO : MatchedMemRefs) {
if (MMO->isLoad()) {
if (mayLoad)
FilteredMemRefs.push_back(MMO);
} else if (MMO->isStore()) {
if (mayStore)
FilteredMemRefs.push_back(MMO);
} else {
FilteredMemRefs.push_back(MMO);
}
}
CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
}
LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
<< " Dropping mem operands\n";
dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
<< " node: ";
Res->dump(CurDAG););
// If this was a MorphNodeTo then we're completely done!
if (IsMorphNodeTo) {
// Update chain uses.
UpdateChains(Res, InputChain, ChainNodesMatched, true);
return;
}
continue;
}
case OPC_CompleteMatch: {
// The match has been completed, and any new nodes (if any) have been
// created. Patch up references to the matched dag to use the newly
// created nodes.
unsigned NumResults = MatcherTable[MatcherIndex++];
for (unsigned i = 0; i != NumResults; ++i) {
unsigned ResSlot = MatcherTable[MatcherIndex++];
if (ResSlot & 128)
ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
SDValue Res = RecordedNodes[ResSlot].first;
assert(i < NodeToMatch->getNumValues() &&
NodeToMatch->getValueType(i) != MVT::Other &&
NodeToMatch->getValueType(i) != MVT::Glue &&
"Invalid number of results to complete!");
assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
NodeToMatch->getValueType(i) == MVT::iPTR ||
Res.getValueType() == MVT::iPTR ||
NodeToMatch->getValueType(i).getSizeInBits() ==
Res.getValueSizeInBits()) &&
"invalid replacement");
ReplaceUses(SDValue(NodeToMatch, i), Res);
}
// Update chain uses.
UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
// If the root node defines glue, we need to update it to the glue result.
// TODO: This never happens in our tests and I think it can be removed /
// replaced with an assert, but if we do it this the way the change is
// NFC.
if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
MVT::Glue &&
InputGlue.getNode())
ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
InputGlue);
assert(NodeToMatch->use_empty() &&
"Didn't replace all uses of the node?");
CurDAG->RemoveDeadNode(NodeToMatch);
return;
}
}
// If the code reached this point, then the match failed. See if there is
// another child to try in the current 'Scope', otherwise pop it until we
// find a case to check.
LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
<< "\n");
++NumDAGIselRetries;
while (true) {
if (MatchScopes.empty()) {
CannotYetSelect(NodeToMatch);
return;
}
// Restore the interpreter state back to the point where the scope was
// formed.
MatchScope &LastScope = MatchScopes.back();
RecordedNodes.resize(LastScope.NumRecordedNodes);
NodeStack.clear();
NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
N = NodeStack.back();
if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
MatcherIndex = LastScope.FailIndex;
LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
InputChain = LastScope.InputChain;
InputGlue = LastScope.InputGlue;
if (!LastScope.HasChainNodesMatched)
ChainNodesMatched.clear();
// Check to see what the offset is at the new MatcherIndex. If it is zero
// we have reached the end of this scope, otherwise we have another child
// in the current scope to try.
unsigned NumToSkip = MatcherTable[MatcherIndex++];
if (NumToSkip & 128)
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
// If we have another child in this scope to match, update FailIndex and
// try it.
if (NumToSkip != 0) {
LastScope.FailIndex = MatcherIndex+NumToSkip;
break;
}
// End of this scope, pop it and try the next child in the containing
// scope.
MatchScopes.pop_back();
}
}
}
bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return false;
// Detect when "or" is used to add an offset to a stack object.
if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
MachineFrameInfo &MFI = MF->getFrameInfo();
unsigned A = MFI.getObjectAlignment(FN->getIndex());
assert(isPowerOf2_32(A) && "Unexpected alignment");
int32_t Off = C->getSExtValue();
// If the alleged offset fits in the zero bits guaranteed by
// the alignment, then this or is really an add.
return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
}
return false;
}
void SelectionDAGISel::CannotYetSelect(SDNode *N) {
std::string msg;
raw_string_ostream Msg(msg);
Msg << "Cannot select: ";
if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
N->getOpcode() != ISD::INTRINSIC_VOID) {
N->printrFull(Msg, CurDAG);
Msg << "\nIn function: " << MF->getName();
} else {
bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
unsigned iid =
cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
if (iid < Intrinsic::num_intrinsics)
Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
Msg << "target intrinsic %" << TII->getName(iid);
else
Msg << "unknown intrinsic #" << iid;
}
report_fatal_error(Msg.str());
}
char SelectionDAGISel::ID = 0;