blob: 55f10a2d0655ca976da81525a3ca6ac27379b4ea [file] [log] [blame]
//===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the RegisterBankInfo class.
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm> // For std::max.
#define DEBUG_TYPE "registerbankinfo"
using namespace llvm;
STATISTIC(NumPartialMappingsCreated,
"Number of partial mappings dynamically created");
STATISTIC(NumPartialMappingsAccessed,
"Number of partial mappings dynamically accessed");
STATISTIC(NumValueMappingsCreated,
"Number of value mappings dynamically created");
STATISTIC(NumValueMappingsAccessed,
"Number of value mappings dynamically accessed");
STATISTIC(NumOperandsMappingsCreated,
"Number of operands mappings dynamically created");
STATISTIC(NumOperandsMappingsAccessed,
"Number of operands mappings dynamically accessed");
STATISTIC(NumInstructionMappingsCreated,
"Number of instruction mappings dynamically created");
STATISTIC(NumInstructionMappingsAccessed,
"Number of instruction mappings dynamically accessed");
const unsigned RegisterBankInfo::DefaultMappingID = UINT_MAX;
const unsigned RegisterBankInfo::InvalidMappingID = UINT_MAX - 1;
//------------------------------------------------------------------------------
// RegisterBankInfo implementation.
//------------------------------------------------------------------------------
RegisterBankInfo::RegisterBankInfo(RegisterBank **RegBanks,
unsigned NumRegBanks)
: RegBanks(RegBanks), NumRegBanks(NumRegBanks) {
#ifndef NDEBUG
for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
assert(RegBanks[Idx] != nullptr && "Invalid RegisterBank");
assert(RegBanks[Idx]->isValid() && "RegisterBank should be valid");
}
#endif // NDEBUG
}
bool RegisterBankInfo::verify(const TargetRegisterInfo &TRI) const {
#ifndef NDEBUG
for (unsigned Idx = 0, End = getNumRegBanks(); Idx != End; ++Idx) {
const RegisterBank &RegBank = getRegBank(Idx);
assert(Idx == RegBank.getID() &&
"ID does not match the index in the array");
LLVM_DEBUG(dbgs() << "Verify " << RegBank << '\n');
assert(RegBank.verify(TRI) && "RegBank is invalid");
}
#endif // NDEBUG
return true;
}
const RegisterBank *
RegisterBankInfo::getRegBank(unsigned Reg, const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
if (TargetRegisterInfo::isPhysicalRegister(Reg))
return &getRegBankFromRegClass(getMinimalPhysRegClass(Reg, TRI));
assert(Reg && "NoRegister does not have a register bank");
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
return RB;
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
return &getRegBankFromRegClass(*RC);
return nullptr;
}
const TargetRegisterClass &
RegisterBankInfo::getMinimalPhysRegClass(unsigned Reg,
const TargetRegisterInfo &TRI) const {
assert(TargetRegisterInfo::isPhysicalRegister(Reg) &&
"Reg must be a physreg");
const auto &RegRCIt = PhysRegMinimalRCs.find(Reg);
if (RegRCIt != PhysRegMinimalRCs.end())
return *RegRCIt->second;
const TargetRegisterClass *PhysRC = TRI.getMinimalPhysRegClass(Reg);
PhysRegMinimalRCs[Reg] = PhysRC;
return *PhysRC;
}
const RegisterBank *RegisterBankInfo::getRegBankFromConstraints(
const MachineInstr &MI, unsigned OpIdx, const TargetInstrInfo &TII,
const TargetRegisterInfo &TRI) const {
// The mapping of the registers may be available via the
// register class constraints.
const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, &TII, &TRI);
if (!RC)
return nullptr;
const RegisterBank &RegBank = getRegBankFromRegClass(*RC);
// Sanity check that the target properly implemented getRegBankFromRegClass.
assert(RegBank.covers(*RC) &&
"The mapping of the register bank does not make sense");
return &RegBank;
}
const TargetRegisterClass *RegisterBankInfo::constrainGenericRegister(
unsigned Reg, const TargetRegisterClass &RC, MachineRegisterInfo &MRI) {
// If the register already has a class, fallback to MRI::constrainRegClass.
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (RegClassOrBank.is<const TargetRegisterClass *>())
return MRI.constrainRegClass(Reg, &RC);
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
// Otherwise, all we can do is ensure the bank covers the class, and set it.
if (RB && !RB->covers(RC))
return nullptr;
// If nothing was set or the class is simply compatible, set it.
MRI.setRegClass(Reg, &RC);
return &RC;
}
/// Check whether or not \p MI should be treated like a copy
/// for the mappings.
/// Copy like instruction are special for mapping because
/// they don't have actual register constraints. Moreover,
/// they sometimes have register classes assigned and we can
/// just use that instead of failing to provide a generic mapping.
static bool isCopyLike(const MachineInstr &MI) {
return MI.isCopy() || MI.isPHI() ||
MI.getOpcode() == TargetOpcode::REG_SEQUENCE;
}
const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstrMappingImpl(const MachineInstr &MI) const {
// For copies we want to walk over the operands and try to find one
// that has a register bank since the instruction itself will not get
// us any constraint.
bool IsCopyLike = isCopyLike(MI);
// For copy like instruction, only the mapping of the definition
// is important. The rest is not constrained.
unsigned NumOperandsForMapping = IsCopyLike ? 1 : MI.getNumOperands();
const MachineFunction &MF = *MI.getMF();
const TargetSubtargetInfo &STI = MF.getSubtarget();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
// We may need to query the instruction encoding to guess the mapping.
const TargetInstrInfo &TII = *STI.getInstrInfo();
// Before doing anything complicated check if the mapping is not
// directly available.
bool CompleteMapping = true;
SmallVector<const ValueMapping *, 8> OperandsMapping(NumOperandsForMapping);
for (unsigned OpIdx = 0, EndIdx = MI.getNumOperands(); OpIdx != EndIdx;
++OpIdx) {
const MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
// The register bank of Reg is just a side effect of the current
// excution and in particular, there is no reason to believe this
// is the best default mapping for the current instruction. Keep
// it as an alternative register bank if we cannot figure out
// something.
const RegisterBank *AltRegBank = getRegBank(Reg, MRI, TRI);
// For copy-like instruction, we want to reuse the register bank
// that is already set on Reg, if any, since those instructions do
// not have any constraints.
const RegisterBank *CurRegBank = IsCopyLike ? AltRegBank : nullptr;
if (!CurRegBank) {
// If this is a target specific instruction, we can deduce
// the register bank from the encoding constraints.
CurRegBank = getRegBankFromConstraints(MI, OpIdx, TII, TRI);
if (!CurRegBank) {
// All our attempts failed, give up.
CompleteMapping = false;
if (!IsCopyLike)
// MI does not carry enough information to guess the mapping.
return getInvalidInstructionMapping();
continue;
}
}
unsigned Size = getSizeInBits(Reg, MRI, TRI);
const ValueMapping *ValMapping = &getValueMapping(0, Size, *CurRegBank);
if (IsCopyLike) {
if (!OperandsMapping[0]) {
if (MI.isRegSequence()) {
// For reg_sequence, the result size does not match the input.
unsigned ResultSize = getSizeInBits(MI.getOperand(0).getReg(),
MRI, TRI);
OperandsMapping[0] = &getValueMapping(0, ResultSize, *CurRegBank);
} else {
OperandsMapping[0] = ValMapping;
}
CompleteMapping = true;
}
break;
}
OperandsMapping[OpIdx] = ValMapping;
}
if (IsCopyLike && !CompleteMapping)
// No way to deduce the type from what we have.
return getInvalidInstructionMapping();
assert(CompleteMapping && "Setting an uncomplete mapping");
return getInstructionMapping(
DefaultMappingID, /*Cost*/ 1,
/*OperandsMapping*/ getOperandsMapping(OperandsMapping),
NumOperandsForMapping);
}
/// Hashing function for PartialMapping.
static hash_code hashPartialMapping(unsigned StartIdx, unsigned Length,
const RegisterBank *RegBank) {
return hash_combine(StartIdx, Length, RegBank ? RegBank->getID() : 0);
}
/// Overloaded version of hash_value for a PartialMapping.
hash_code
llvm::hash_value(const RegisterBankInfo::PartialMapping &PartMapping) {
return hashPartialMapping(PartMapping.StartIdx, PartMapping.Length,
PartMapping.RegBank);
}
const RegisterBankInfo::PartialMapping &
RegisterBankInfo::getPartialMapping(unsigned StartIdx, unsigned Length,
const RegisterBank &RegBank) const {
++NumPartialMappingsAccessed;
hash_code Hash = hashPartialMapping(StartIdx, Length, &RegBank);
const auto &It = MapOfPartialMappings.find(Hash);
if (It != MapOfPartialMappings.end())
return *It->second;
++NumPartialMappingsCreated;
auto &PartMapping = MapOfPartialMappings[Hash];
PartMapping = llvm::make_unique<PartialMapping>(StartIdx, Length, RegBank);
return *PartMapping;
}
const RegisterBankInfo::ValueMapping &
RegisterBankInfo::getValueMapping(unsigned StartIdx, unsigned Length,
const RegisterBank &RegBank) const {
return getValueMapping(&getPartialMapping(StartIdx, Length, RegBank), 1);
}
static hash_code
hashValueMapping(const RegisterBankInfo::PartialMapping *BreakDown,
unsigned NumBreakDowns) {
if (LLVM_LIKELY(NumBreakDowns == 1))
return hash_value(*BreakDown);
SmallVector<size_t, 8> Hashes(NumBreakDowns);
for (unsigned Idx = 0; Idx != NumBreakDowns; ++Idx)
Hashes.push_back(hash_value(BreakDown[Idx]));
return hash_combine_range(Hashes.begin(), Hashes.end());
}
const RegisterBankInfo::ValueMapping &
RegisterBankInfo::getValueMapping(const PartialMapping *BreakDown,
unsigned NumBreakDowns) const {
++NumValueMappingsAccessed;
hash_code Hash = hashValueMapping(BreakDown, NumBreakDowns);
const auto &It = MapOfValueMappings.find(Hash);
if (It != MapOfValueMappings.end())
return *It->second;
++NumValueMappingsCreated;
auto &ValMapping = MapOfValueMappings[Hash];
ValMapping = llvm::make_unique<ValueMapping>(BreakDown, NumBreakDowns);
return *ValMapping;
}
template <typename Iterator>
const RegisterBankInfo::ValueMapping *
RegisterBankInfo::getOperandsMapping(Iterator Begin, Iterator End) const {
++NumOperandsMappingsAccessed;
// The addresses of the value mapping are unique.
// Therefore, we can use them directly to hash the operand mapping.
hash_code Hash = hash_combine_range(Begin, End);
auto &Res = MapOfOperandsMappings[Hash];
if (Res)
return Res.get();
++NumOperandsMappingsCreated;
// Create the array of ValueMapping.
// Note: this array will not hash to this instance of operands
// mapping, because we use the pointer of the ValueMapping
// to hash and we expect them to uniquely identify an instance
// of value mapping.
Res = llvm::make_unique<ValueMapping[]>(std::distance(Begin, End));
unsigned Idx = 0;
for (Iterator It = Begin; It != End; ++It, ++Idx) {
const ValueMapping *ValMap = *It;
if (!ValMap)
continue;
Res[Idx] = *ValMap;
}
return Res.get();
}
const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
const SmallVectorImpl<const RegisterBankInfo::ValueMapping *> &OpdsMapping)
const {
return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
}
const RegisterBankInfo::ValueMapping *RegisterBankInfo::getOperandsMapping(
std::initializer_list<const RegisterBankInfo::ValueMapping *> OpdsMapping)
const {
return getOperandsMapping(OpdsMapping.begin(), OpdsMapping.end());
}
static hash_code
hashInstructionMapping(unsigned ID, unsigned Cost,
const RegisterBankInfo::ValueMapping *OperandsMapping,
unsigned NumOperands) {
return hash_combine(ID, Cost, OperandsMapping, NumOperands);
}
const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstructionMappingImpl(
bool IsInvalid, unsigned ID, unsigned Cost,
const RegisterBankInfo::ValueMapping *OperandsMapping,
unsigned NumOperands) const {
assert(((IsInvalid && ID == InvalidMappingID && Cost == 0 &&
OperandsMapping == nullptr && NumOperands == 0) ||
!IsInvalid) &&
"Mismatch argument for invalid input");
++NumInstructionMappingsAccessed;
hash_code Hash =
hashInstructionMapping(ID, Cost, OperandsMapping, NumOperands);
const auto &It = MapOfInstructionMappings.find(Hash);
if (It != MapOfInstructionMappings.end())
return *It->second;
++NumInstructionMappingsCreated;
auto &InstrMapping = MapOfInstructionMappings[Hash];
if (IsInvalid)
InstrMapping = llvm::make_unique<InstructionMapping>();
else
InstrMapping = llvm::make_unique<InstructionMapping>(
ID, Cost, OperandsMapping, NumOperands);
return *InstrMapping;
}
const RegisterBankInfo::InstructionMapping &
RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
llvm_unreachable("The target must implement this");
}
RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrPossibleMappings(const MachineInstr &MI) const {
InstructionMappings PossibleMappings;
// Put the default mapping first.
PossibleMappings.push_back(&getInstrMapping(MI));
// Then the alternative mapping, if any.
InstructionMappings AltMappings = getInstrAlternativeMappings(MI);
for (const InstructionMapping *AltMapping : AltMappings)
PossibleMappings.push_back(AltMapping);
#ifndef NDEBUG
for (const InstructionMapping *Mapping : PossibleMappings)
assert(Mapping->verify(MI) && "Mapping is invalid");
#endif
return PossibleMappings;
}
RegisterBankInfo::InstructionMappings
RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr &MI) const {
// No alternative for MI.
return InstructionMappings();
}
void RegisterBankInfo::applyDefaultMapping(const OperandsMapper &OpdMapper) {
MachineInstr &MI = OpdMapper.getMI();
MachineRegisterInfo &MRI = OpdMapper.getMRI();
LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
for (unsigned OpIdx = 0,
EndIdx = OpdMapper.getInstrMapping().getNumOperands();
OpIdx != EndIdx; ++OpIdx) {
LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx);
MachineOperand &MO = MI.getOperand(OpIdx);
if (!MO.isReg()) {
LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
continue;
}
if (!MO.getReg()) {
LLVM_DEBUG(dbgs() << " is %%noreg, nothing to be done\n");
continue;
}
assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns !=
0 &&
"Invalid mapping");
assert(OpdMapper.getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns ==
1 &&
"This mapping is too complex for this function");
iterator_range<SmallVectorImpl<unsigned>::const_iterator> NewRegs =
OpdMapper.getVRegs(OpIdx);
if (empty(NewRegs)) {
LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
continue;
}
unsigned OrigReg = MO.getReg();
unsigned NewReg = *NewRegs.begin();
LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg, nullptr));
MO.setReg(NewReg);
LLVM_DEBUG(dbgs() << " with " << printReg(NewReg, nullptr));
// The OperandsMapper creates plain scalar, we may have to fix that.
// Check if the types match and if not, fix that.
LLT OrigTy = MRI.getType(OrigReg);
LLT NewTy = MRI.getType(NewReg);
if (OrigTy != NewTy) {
// The default mapping is not supposed to change the size of
// the storage. However, right now we don't necessarily bump all
// the types to storage size. For instance, we can consider
// s16 G_AND legal whereas the storage size is going to be 32.
assert(OrigTy.getSizeInBits() <= NewTy.getSizeInBits() &&
"Types with difference size cannot be handled by the default "
"mapping");
LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy << " to "
<< OrigTy);
MRI.setType(NewReg, OrigTy);
}
LLVM_DEBUG(dbgs() << '\n');
}
}
unsigned RegisterBankInfo::getSizeInBits(unsigned Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
// The size is not directly available for physical registers.
// Instead, we need to access a register class that contains Reg and
// get the size of that register class.
// Because this is expensive, we'll cache the register class by calling
auto *RC = &getMinimalPhysRegClass(Reg, TRI);
assert(RC && "Expecting Register class");
return TRI.getRegSizeInBits(*RC);
}
return TRI.getRegSizeInBits(Reg, MRI);
}
//------------------------------------------------------------------------------
// Helper classes implementation.
//------------------------------------------------------------------------------
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::PartialMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
bool RegisterBankInfo::PartialMapping::verify() const {
assert(RegBank && "Register bank not set");
assert(Length && "Empty mapping");
assert((StartIdx <= getHighBitIdx()) && "Overflow, switch to APInt?");
// Check if the minimum width fits into RegBank.
assert(RegBank->getSize() >= Length && "Register bank too small for Mask");
return true;
}
void RegisterBankInfo::PartialMapping::print(raw_ostream &OS) const {
OS << "[" << StartIdx << ", " << getHighBitIdx() << "], RegBank = ";
if (RegBank)
OS << *RegBank;
else
OS << "nullptr";
}
bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
if (NumBreakDowns < 2)
return true;
const PartialMapping *First = begin();
for (const PartialMapping *Part = First + 1; Part != end(); ++Part) {
if (Part->Length != First->Length || Part->RegBank != First->RegBank)
return false;
}
return true;
}
bool RegisterBankInfo::ValueMapping::verify(unsigned MeaningfulBitWidth) const {
assert(NumBreakDowns && "Value mapped nowhere?!");
unsigned OrigValueBitWidth = 0;
for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
// Check that each register bank is big enough to hold the partial value:
// this check is done by PartialMapping::verify
assert(PartMap.verify() && "Partial mapping is invalid");
// The original value should completely be mapped.
// Thus the maximum accessed index + 1 is the size of the original value.
OrigValueBitWidth =
std::max(OrigValueBitWidth, PartMap.getHighBitIdx() + 1);
}
assert(OrigValueBitWidth >= MeaningfulBitWidth &&
"Meaningful bits not covered by the mapping");
APInt ValueMask(OrigValueBitWidth, 0);
for (const RegisterBankInfo::PartialMapping &PartMap : *this) {
// Check that the union of the partial mappings covers the whole value,
// without overlaps.
// The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
APInt PartMapMask = APInt::getBitsSet(OrigValueBitWidth, PartMap.StartIdx,
PartMap.getHighBitIdx() + 1);
ValueMask ^= PartMapMask;
assert((ValueMask & PartMapMask) == PartMapMask &&
"Some partial mappings overlap");
}
assert(ValueMask.isAllOnesValue() && "Value is not fully mapped");
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::ValueMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
void RegisterBankInfo::ValueMapping::print(raw_ostream &OS) const {
OS << "#BreakDown: " << NumBreakDowns << " ";
bool IsFirst = true;
for (const PartialMapping &PartMap : *this) {
if (!IsFirst)
OS << ", ";
OS << '[' << PartMap << ']';
IsFirst = false;
}
}
bool RegisterBankInfo::InstructionMapping::verify(
const MachineInstr &MI) const {
// Check that all the register operands are properly mapped.
// Check the constructor invariant.
// For PHI, we only care about mapping the definition.
assert(NumOperands == (isCopyLike(MI) ? 1 : MI.getNumOperands()) &&
"NumOperands must match, see constructor");
assert(MI.getParent() && MI.getMF() &&
"MI must be connected to a MachineFunction");
const MachineFunction &MF = *MI.getMF();
const RegisterBankInfo *RBI = MF.getSubtarget().getRegBankInfo();
(void)RBI;
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
const MachineOperand &MO = MI.getOperand(Idx);
if (!MO.isReg()) {
assert(!getOperandMapping(Idx).isValid() &&
"We should not care about non-reg mapping");
continue;
}
unsigned Reg = MO.getReg();
if (!Reg)
continue;
assert(getOperandMapping(Idx).isValid() &&
"We must have a mapping for reg operands");
const RegisterBankInfo::ValueMapping &MOMapping = getOperandMapping(Idx);
(void)MOMapping;
// Register size in bits.
// This size must match what the mapping expects.
assert(MOMapping.verify(RBI->getSizeInBits(
Reg, MF.getRegInfo(), *MF.getSubtarget().getRegisterInfo())) &&
"Value mapping is invalid");
}
return true;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::InstructionMapping::dump() const {
print(dbgs());
dbgs() << '\n';
}
#endif
void RegisterBankInfo::InstructionMapping::print(raw_ostream &OS) const {
OS << "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
const ValueMapping &ValMapping = getOperandMapping(OpIdx);
if (OpIdx)
OS << ", ";
OS << "{ Idx: " << OpIdx << " Map: " << ValMapping << '}';
}
}
const int RegisterBankInfo::OperandsMapper::DontKnowIdx = -1;
RegisterBankInfo::OperandsMapper::OperandsMapper(
MachineInstr &MI, const InstructionMapping &InstrMapping,
MachineRegisterInfo &MRI)
: MRI(MRI), MI(MI), InstrMapping(InstrMapping) {
unsigned NumOpds = InstrMapping.getNumOperands();
OpToNewVRegIdx.resize(NumOpds, OperandsMapper::DontKnowIdx);
assert(InstrMapping.verify(MI) && "Invalid mapping for MI");
}
iterator_range<SmallVectorImpl<unsigned>::iterator>
RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx) {
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
unsigned NumPartialVal =
getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx) {
// This is the first time we try to access OpIdx.
// Create the cells that will hold all the partial values at the
// end of the list of NewVReg.
StartIdx = NewVRegs.size();
OpToNewVRegIdx[OpIdx] = StartIdx;
for (unsigned i = 0; i < NumPartialVal; ++i)
NewVRegs.push_back(0);
}
SmallVectorImpl<unsigned>::iterator End =
getNewVRegsEnd(StartIdx, NumPartialVal);
return make_range(&NewVRegs[StartIdx], End);
}
SmallVectorImpl<unsigned>::const_iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
unsigned NumVal) const {
return const_cast<OperandsMapper *>(this)->getNewVRegsEnd(StartIdx, NumVal);
}
SmallVectorImpl<unsigned>::iterator
RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx,
unsigned NumVal) {
assert((NewVRegs.size() == StartIdx + NumVal ||
NewVRegs.size() > StartIdx + NumVal) &&
"NewVRegs too small to contain all the partial mapping");
return NewVRegs.size() <= StartIdx + NumVal ? NewVRegs.end()
: &NewVRegs[StartIdx + NumVal];
}
void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx) {
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
iterator_range<SmallVectorImpl<unsigned>::iterator> NewVRegsForOpIdx =
getVRegsMem(OpIdx);
const ValueMapping &ValMapping = getInstrMapping().getOperandMapping(OpIdx);
const PartialMapping *PartMap = ValMapping.begin();
for (unsigned &NewVReg : NewVRegsForOpIdx) {
assert(PartMap != ValMapping.end() && "Out-of-bound access");
assert(NewVReg == 0 && "Register has already been created");
// The new registers are always bound to scalar with the right size.
// The actual type has to be set when the target does the mapping
// of the instruction.
// The rationale is that this generic code cannot guess how the
// target plans to split the input type.
NewVReg = MRI.createGenericVirtualRegister(LLT::scalar(PartMap->Length));
MRI.setRegBank(NewVReg, *PartMap->RegBank);
++PartMap;
}
}
void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx,
unsigned PartialMapIdx,
unsigned NewVReg) {
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
assert(getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns >
PartialMapIdx &&
"Out-of-bound access for partial mapping");
// Make sure the memory is initialized for that operand.
(void)getVRegsMem(OpIdx);
assert(NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] == 0 &&
"This value is already set");
NewVRegs[OpToNewVRegIdx[OpIdx] + PartialMapIdx] = NewVReg;
}
iterator_range<SmallVectorImpl<unsigned>::const_iterator>
RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx,
bool ForDebug) const {
(void)ForDebug;
assert(OpIdx < getInstrMapping().getNumOperands() && "Out-of-bound access");
int StartIdx = OpToNewVRegIdx[OpIdx];
if (StartIdx == OperandsMapper::DontKnowIdx)
return make_range(NewVRegs.end(), NewVRegs.end());
unsigned PartMapSize =
getInstrMapping().getOperandMapping(OpIdx).NumBreakDowns;
SmallVectorImpl<unsigned>::const_iterator End =
getNewVRegsEnd(StartIdx, PartMapSize);
iterator_range<SmallVectorImpl<unsigned>::const_iterator> Res =
make_range(&NewVRegs[StartIdx], End);
#ifndef NDEBUG
for (unsigned VReg : Res)
assert((VReg || ForDebug) && "Some registers are uninitialized");
#endif
return Res;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void RegisterBankInfo::OperandsMapper::dump() const {
print(dbgs(), true);
dbgs() << '\n';
}
#endif
void RegisterBankInfo::OperandsMapper::print(raw_ostream &OS,
bool ForDebug) const {
unsigned NumOpds = getInstrMapping().getNumOperands();
if (ForDebug) {
OS << "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
// Print out the internal state of the index table.
OS << "Populated indices (CellNumber, IndexInNewVRegs): ";
bool IsFirst = true;
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
if (OpToNewVRegIdx[Idx] != DontKnowIdx) {
if (!IsFirst)
OS << ", ";
OS << '(' << Idx << ", " << OpToNewVRegIdx[Idx] << ')';
IsFirst = false;
}
}
OS << '\n';
} else
OS << "Mapping ID: " << getInstrMapping().getID() << ' ';
OS << "Operand Mapping: ";
// If we have a function, we can pretty print the name of the registers.
// Otherwise we will print the raw numbers.
const TargetRegisterInfo *TRI =
getMI().getParent() && getMI().getMF()
? getMI().getMF()->getSubtarget().getRegisterInfo()
: nullptr;
bool IsFirst = true;
for (unsigned Idx = 0; Idx != NumOpds; ++Idx) {
if (OpToNewVRegIdx[Idx] == DontKnowIdx)
continue;
if (!IsFirst)
OS << ", ";
IsFirst = false;
OS << '(' << printReg(getMI().getOperand(Idx).getReg(), TRI) << ", [";
bool IsFirstNewVReg = true;
for (unsigned VReg : getVRegs(Idx)) {
if (!IsFirstNewVReg)
OS << ", ";
IsFirstNewVReg = false;
OS << printReg(VReg, TRI);
}
OS << "])";
}
}