blob: 452492b862a6b2f9cdf9228d6a1fa73cccf96706 [file] [log] [blame]
//===-- LLParser.h - Parser Class -------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the parser class for .ll files.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_ASMPARSER_LLPARSER_H
#define LLVM_LIB_ASMPARSER_LLPARSER_H
#include "LLLexer.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/ValueHandle.h"
#include <map>
namespace llvm {
class Module;
class OpaqueType;
class Function;
class Value;
class BasicBlock;
class Instruction;
class Constant;
class GlobalValue;
class Comdat;
class MDString;
class MDNode;
struct SlotMapping;
class StructType;
/// ValID - Represents a reference of a definition of some sort with no type.
/// There are several cases where we have to parse the value but where the
/// type can depend on later context. This may either be a numeric reference
/// or a symbolic (%var) reference. This is just a discriminated union.
struct ValID {
enum {
t_LocalID, t_GlobalID, // ID in UIntVal.
t_LocalName, t_GlobalName, // Name in StrVal.
t_APSInt, t_APFloat, // Value in APSIntVal/APFloatVal.
t_Null, t_Undef, t_Zero, t_None, // No value.
t_EmptyArray, // No value: []
t_Constant, // Value in ConstantVal.
t_InlineAsm, // Value in FTy/StrVal/StrVal2/UIntVal.
t_ConstantStruct, // Value in ConstantStructElts.
t_PackedConstantStruct // Value in ConstantStructElts.
} Kind = t_LocalID;
LLLexer::LocTy Loc;
unsigned UIntVal;
FunctionType *FTy = nullptr;
std::string StrVal, StrVal2;
APSInt APSIntVal;
APFloat APFloatVal{0.0};
Constant *ConstantVal;
std::unique_ptr<Constant *[]> ConstantStructElts;
ValID() = default;
ValID(const ValID &RHS)
: Kind(RHS.Kind), Loc(RHS.Loc), UIntVal(RHS.UIntVal), FTy(RHS.FTy),
StrVal(RHS.StrVal), StrVal2(RHS.StrVal2), APSIntVal(RHS.APSIntVal),
APFloatVal(RHS.APFloatVal), ConstantVal(RHS.ConstantVal) {
assert(!RHS.ConstantStructElts);
}
bool operator<(const ValID &RHS) const {
if (Kind == t_LocalID || Kind == t_GlobalID)
return UIntVal < RHS.UIntVal;
assert((Kind == t_LocalName || Kind == t_GlobalName ||
Kind == t_ConstantStruct || Kind == t_PackedConstantStruct) &&
"Ordering not defined for this ValID kind yet");
return StrVal < RHS.StrVal;
}
};
class LLParser {
public:
typedef LLLexer::LocTy LocTy;
private:
LLVMContext &Context;
LLLexer Lex;
// Module being parsed, null if we are only parsing summary index.
Module *M;
// Summary index being parsed, null if we are only parsing Module.
ModuleSummaryIndex *Index;
SlotMapping *Slots;
// Instruction metadata resolution. Each instruction can have a list of
// MDRef info associated with them.
//
// The simpler approach of just creating temporary MDNodes and then calling
// RAUW on them when the definition is processed doesn't work because some
// instruction metadata kinds, such as dbg, get stored in the IR in an
// "optimized" format which doesn't participate in the normal value use
// lists. This means that RAUW doesn't work, even on temporary MDNodes
// which otherwise support RAUW. Instead, we defer resolving MDNode
// references until the definitions have been processed.
struct MDRef {
SMLoc Loc;
unsigned MDKind, MDSlot;
};
SmallVector<Instruction*, 64> InstsWithTBAATag;
// Type resolution handling data structures. The location is set when we
// have processed a use of the type but not a definition yet.
StringMap<std::pair<Type*, LocTy> > NamedTypes;
std::map<unsigned, std::pair<Type*, LocTy> > NumberedTypes;
std::map<unsigned, TrackingMDNodeRef> NumberedMetadata;
std::map<unsigned, std::pair<TempMDTuple, LocTy>> ForwardRefMDNodes;
// Global Value reference information.
std::map<std::string, std::pair<GlobalValue*, LocTy> > ForwardRefVals;
std::map<unsigned, std::pair<GlobalValue*, LocTy> > ForwardRefValIDs;
std::vector<GlobalValue*> NumberedVals;
// Comdat forward reference information.
std::map<std::string, LocTy> ForwardRefComdats;
// References to blockaddress. The key is the function ValID, the value is
// a list of references to blocks in that function.
std::map<ValID, std::map<ValID, GlobalValue *>> ForwardRefBlockAddresses;
class PerFunctionState;
/// Reference to per-function state to allow basic blocks to be
/// forward-referenced by blockaddress instructions within the same
/// function.
PerFunctionState *BlockAddressPFS;
// Attribute builder reference information.
std::map<Value*, std::vector<unsigned> > ForwardRefAttrGroups;
std::map<unsigned, AttrBuilder> NumberedAttrBuilders;
// Summary global value reference information.
std::map<unsigned, std::vector<std::pair<ValueInfo *, LocTy>>>
ForwardRefValueInfos;
std::map<unsigned, std::vector<std::pair<AliasSummary *, LocTy>>>
ForwardRefAliasees;
std::vector<ValueInfo> NumberedValueInfos;
// Summary type id reference information.
std::map<unsigned, std::vector<std::pair<GlobalValue::GUID *, LocTy>>>
ForwardRefTypeIds;
// Map of module ID to path.
std::map<unsigned, StringRef> ModuleIdMap;
/// Only the llvm-as tool may set this to false to bypass
/// UpgradeDebuginfo so it can generate broken bitcode.
bool UpgradeDebugInfo;
/// DataLayout string to override that in LLVM assembly.
StringRef DataLayoutStr;
std::string SourceFileName;
public:
LLParser(StringRef F, SourceMgr &SM, SMDiagnostic &Err, Module *M,
ModuleSummaryIndex *Index, LLVMContext &Context,
SlotMapping *Slots = nullptr, bool UpgradeDebugInfo = true,
StringRef DataLayoutString = "")
: Context(Context), Lex(F, SM, Err, Context), M(M), Index(Index),
Slots(Slots), BlockAddressPFS(nullptr),
UpgradeDebugInfo(UpgradeDebugInfo), DataLayoutStr(DataLayoutString) {
if (!DataLayoutStr.empty())
M->setDataLayout(DataLayoutStr);
}
bool Run();
bool parseStandaloneConstantValue(Constant *&C, const SlotMapping *Slots);
bool parseTypeAtBeginning(Type *&Ty, unsigned &Read,
const SlotMapping *Slots);
LLVMContext &getContext() { return Context; }
private:
bool Error(LocTy L, const Twine &Msg) const {
return Lex.Error(L, Msg);
}
bool TokError(const Twine &Msg) const {
return Error(Lex.getLoc(), Msg);
}
/// Restore the internal name and slot mappings using the mappings that
/// were created at an earlier parsing stage.
void restoreParsingState(const SlotMapping *Slots);
/// GetGlobalVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
GlobalValue *GetGlobalVal(const std::string &N, Type *Ty, LocTy Loc,
bool IsCall);
GlobalValue *GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, bool IsCall);
/// Get a Comdat with the specified name, creating a forward reference
/// record if needed.
Comdat *getComdat(const std::string &Name, LocTy Loc);
// Helper Routines.
bool ParseToken(lltok::Kind T, const char *ErrMsg);
bool EatIfPresent(lltok::Kind T) {
if (Lex.getKind() != T) return false;
Lex.Lex();
return true;
}
FastMathFlags EatFastMathFlagsIfPresent() {
FastMathFlags FMF;
while (true)
switch (Lex.getKind()) {
case lltok::kw_fast: FMF.setFast(); Lex.Lex(); continue;
case lltok::kw_nnan: FMF.setNoNaNs(); Lex.Lex(); continue;
case lltok::kw_ninf: FMF.setNoInfs(); Lex.Lex(); continue;
case lltok::kw_nsz: FMF.setNoSignedZeros(); Lex.Lex(); continue;
case lltok::kw_arcp: FMF.setAllowReciprocal(); Lex.Lex(); continue;
case lltok::kw_contract:
FMF.setAllowContract(true);
Lex.Lex();
continue;
case lltok::kw_reassoc: FMF.setAllowReassoc(); Lex.Lex(); continue;
case lltok::kw_afn: FMF.setApproxFunc(); Lex.Lex(); continue;
default: return FMF;
}
return FMF;
}
bool ParseOptionalToken(lltok::Kind T, bool &Present,
LocTy *Loc = nullptr) {
if (Lex.getKind() != T) {
Present = false;
} else {
if (Loc)
*Loc = Lex.getLoc();
Lex.Lex();
Present = true;
}
return false;
}
bool ParseStringConstant(std::string &Result);
bool ParseUInt32(unsigned &Val);
bool ParseUInt32(unsigned &Val, LocTy &Loc) {
Loc = Lex.getLoc();
return ParseUInt32(Val);
}
bool ParseUInt64(uint64_t &Val);
bool ParseUInt64(uint64_t &Val, LocTy &Loc) {
Loc = Lex.getLoc();
return ParseUInt64(Val);
}
bool ParseFlag(unsigned &Val);
bool ParseStringAttribute(AttrBuilder &B);
bool ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM);
bool ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM);
bool ParseOptionalUnnamedAddr(GlobalVariable::UnnamedAddr &UnnamedAddr);
bool ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS = 0);
bool ParseOptionalProgramAddrSpace(unsigned &AddrSpace) {
return ParseOptionalAddrSpace(
AddrSpace, M->getDataLayout().getProgramAddressSpace());
};
bool ParseOptionalParamAttrs(AttrBuilder &B);
bool ParseOptionalReturnAttrs(AttrBuilder &B);
bool ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
unsigned &Visibility, unsigned &DLLStorageClass,
bool &DSOLocal);
void ParseOptionalDSOLocal(bool &DSOLocal);
void ParseOptionalVisibility(unsigned &Res);
void ParseOptionalDLLStorageClass(unsigned &Res);
bool ParseOptionalCallingConv(unsigned &CC);
bool ParseOptionalAlignment(unsigned &Alignment);
bool ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, uint64_t &Bytes);
bool ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
AtomicOrdering &Ordering);
bool ParseScope(SyncScope::ID &SSID);
bool ParseOrdering(AtomicOrdering &Ordering);
bool ParseOptionalStackAlignment(unsigned &Alignment);
bool ParseOptionalCommaAlign(unsigned &Alignment, bool &AteExtraComma);
bool ParseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
bool &AteExtraComma);
bool ParseOptionalCommaInAlloca(bool &IsInAlloca);
bool parseAllocSizeArguments(unsigned &BaseSizeArg,
Optional<unsigned> &HowManyArg);
bool ParseIndexList(SmallVectorImpl<unsigned> &Indices,
bool &AteExtraComma);
bool ParseIndexList(SmallVectorImpl<unsigned> &Indices) {
bool AteExtraComma;
if (ParseIndexList(Indices, AteExtraComma)) return true;
if (AteExtraComma)
return TokError("expected index");
return false;
}
// Top-Level Entities
bool ParseTopLevelEntities();
bool ValidateEndOfModule();
bool ValidateEndOfIndex();
bool ParseTargetDefinition();
bool ParseModuleAsm();
bool ParseSourceFileName();
bool ParseDepLibs(); // FIXME: Remove in 4.0.
bool ParseUnnamedType();
bool ParseNamedType();
bool ParseDeclare();
bool ParseDefine();
bool ParseGlobalType(bool &IsConstant);
bool ParseUnnamedGlobal();
bool ParseNamedGlobal();
bool ParseGlobal(const std::string &Name, LocTy NameLoc, unsigned Linkage,
bool HasLinkage, unsigned Visibility,
unsigned DLLStorageClass, bool DSOLocal,
GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr);
bool parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
unsigned L, unsigned Visibility,
unsigned DLLStorageClass, bool DSOLocal,
GlobalVariable::ThreadLocalMode TLM,
GlobalVariable::UnnamedAddr UnnamedAddr);
bool parseComdat();
bool ParseStandaloneMetadata();
bool ParseNamedMetadata();
bool ParseMDString(MDString *&Result);
bool ParseMDNodeID(MDNode *&Result);
bool ParseUnnamedAttrGrp();
bool ParseFnAttributeValuePairs(AttrBuilder &B,
std::vector<unsigned> &FwdRefAttrGrps,
bool inAttrGrp, LocTy &BuiltinLoc);
// Module Summary Index Parsing.
bool SkipModuleSummaryEntry();
bool ParseSummaryEntry();
bool ParseModuleEntry(unsigned ID);
bool ParseModuleReference(StringRef &ModulePath);
bool ParseGVReference(ValueInfo &VI, unsigned &GVId);
bool ParseGVEntry(unsigned ID);
bool ParseFunctionSummary(std::string Name, GlobalValue::GUID, unsigned ID);
bool ParseVariableSummary(std::string Name, GlobalValue::GUID, unsigned ID);
bool ParseAliasSummary(std::string Name, GlobalValue::GUID, unsigned ID);
bool ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags);
bool ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags);
bool ParseOptionalFFlags(FunctionSummary::FFlags &FFlags);
bool ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls);
bool ParseHotness(CalleeInfo::HotnessType &Hotness);
bool ParseOptionalTypeIdInfo(FunctionSummary::TypeIdInfo &TypeIdInfo);
bool ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests);
bool ParseVFuncIdList(lltok::Kind Kind,
std::vector<FunctionSummary::VFuncId> &VFuncIdList);
bool ParseConstVCallList(
lltok::Kind Kind,
std::vector<FunctionSummary::ConstVCall> &ConstVCallList);
using IdToIndexMapType =
std::map<unsigned, std::vector<std::pair<unsigned, LocTy>>>;
bool ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
IdToIndexMapType &IdToIndexMap, unsigned Index);
bool ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
IdToIndexMapType &IdToIndexMap, unsigned Index);
bool ParseOptionalRefs(std::vector<ValueInfo> &Refs);
bool ParseTypeIdEntry(unsigned ID);
bool ParseTypeIdSummary(TypeIdSummary &TIS);
bool ParseTypeTestResolution(TypeTestResolution &TTRes);
bool ParseOptionalWpdResolutions(
std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap);
bool ParseWpdRes(WholeProgramDevirtResolution &WPDRes);
bool ParseOptionalResByArg(
std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
&ResByArg);
bool ParseArgs(std::vector<uint64_t> &Args);
void AddGlobalValueToIndex(std::string Name, GlobalValue::GUID,
GlobalValue::LinkageTypes Linkage, unsigned ID,
std::unique_ptr<GlobalValueSummary> Summary);
// Type Parsing.
bool ParseType(Type *&Result, const Twine &Msg, bool AllowVoid = false);
bool ParseType(Type *&Result, bool AllowVoid = false) {
return ParseType(Result, "expected type", AllowVoid);
}
bool ParseType(Type *&Result, const Twine &Msg, LocTy &Loc,
bool AllowVoid = false) {
Loc = Lex.getLoc();
return ParseType(Result, Msg, AllowVoid);
}
bool ParseType(Type *&Result, LocTy &Loc, bool AllowVoid = false) {
Loc = Lex.getLoc();
return ParseType(Result, AllowVoid);
}
bool ParseAnonStructType(Type *&Result, bool Packed);
bool ParseStructBody(SmallVectorImpl<Type*> &Body);
bool ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
std::pair<Type*, LocTy> &Entry,
Type *&ResultTy);
bool ParseArrayVectorType(Type *&Result, bool isVector);
bool ParseFunctionType(Type *&Result);
// Function Semantic Analysis.
class PerFunctionState {
LLParser &P;
Function &F;
std::map<std::string, std::pair<Value*, LocTy> > ForwardRefVals;
std::map<unsigned, std::pair<Value*, LocTy> > ForwardRefValIDs;
std::vector<Value*> NumberedVals;
/// FunctionNumber - If this is an unnamed function, this is the slot
/// number of it, otherwise it is -1.
int FunctionNumber;
public:
PerFunctionState(LLParser &p, Function &f, int functionNumber);
~PerFunctionState();
Function &getFunction() const { return F; }
bool FinishFunction();
/// GetVal - Get a value with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// exists but does not have the right type.
Value *GetVal(const std::string &Name, Type *Ty, LocTy Loc, bool IsCall);
Value *GetVal(unsigned ID, Type *Ty, LocTy Loc, bool IsCall);
/// SetInstName - After an instruction is parsed and inserted into its
/// basic block, this installs its name.
bool SetInstName(int NameID, const std::string &NameStr, LocTy NameLoc,
Instruction *Inst);
/// GetBB - Get a basic block with the specified name or ID, creating a
/// forward reference record if needed. This can return null if the value
/// is not a BasicBlock.
BasicBlock *GetBB(const std::string &Name, LocTy Loc);
BasicBlock *GetBB(unsigned ID, LocTy Loc);
/// DefineBB - Define the specified basic block, which is either named or
/// unnamed. If there is an error, this returns null otherwise it returns
/// the block being defined.
BasicBlock *DefineBB(const std::string &Name, int NameID, LocTy Loc);
bool resolveForwardRefBlockAddresses();
};
bool ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
PerFunctionState *PFS, bool IsCall);
Value *checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
Value *Val, bool IsCall);
bool parseConstantValue(Type *Ty, Constant *&C);
bool ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS);
bool ParseValue(Type *Ty, Value *&V, PerFunctionState &PFS) {
return ParseValue(Ty, V, &PFS);
}
bool ParseValue(Type *Ty, Value *&V, LocTy &Loc,
PerFunctionState &PFS) {
Loc = Lex.getLoc();
return ParseValue(Ty, V, &PFS);
}
bool ParseTypeAndValue(Value *&V, PerFunctionState *PFS);
bool ParseTypeAndValue(Value *&V, PerFunctionState &PFS) {
return ParseTypeAndValue(V, &PFS);
}
bool ParseTypeAndValue(Value *&V, LocTy &Loc, PerFunctionState &PFS) {
Loc = Lex.getLoc();
return ParseTypeAndValue(V, PFS);
}
bool ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
PerFunctionState &PFS);
bool ParseTypeAndBasicBlock(BasicBlock *&BB, PerFunctionState &PFS) {
LocTy Loc;
return ParseTypeAndBasicBlock(BB, Loc, PFS);
}
struct ParamInfo {
LocTy Loc;
Value *V;
AttributeSet Attrs;
ParamInfo(LocTy loc, Value *v, AttributeSet attrs)
: Loc(loc), V(v), Attrs(attrs) {}
};
bool ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
PerFunctionState &PFS,
bool IsMustTailCall = false,
bool InVarArgsFunc = false);
bool
ParseOptionalOperandBundles(SmallVectorImpl<OperandBundleDef> &BundleList,
PerFunctionState &PFS);
bool ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
PerFunctionState &PFS);
// Constant Parsing.
bool ParseValID(ValID &ID, PerFunctionState *PFS = nullptr);
bool ParseGlobalValue(Type *Ty, Constant *&C);
bool ParseGlobalTypeAndValue(Constant *&V);
bool ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
Optional<unsigned> *InRangeOp = nullptr);
bool parseOptionalComdat(StringRef GlobalName, Comdat *&C);
bool ParseMetadataAsValue(Value *&V, PerFunctionState &PFS);
bool ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
PerFunctionState *PFS);
bool ParseMetadata(Metadata *&MD, PerFunctionState *PFS);
bool ParseMDTuple(MDNode *&MD, bool IsDistinct = false);
bool ParseMDNode(MDNode *&N);
bool ParseMDNodeTail(MDNode *&N);
bool ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
bool ParseMetadataAttachment(unsigned &Kind, MDNode *&MD);
bool ParseInstructionMetadata(Instruction &Inst);
bool ParseGlobalObjectMetadataAttachment(GlobalObject &GO);
bool ParseOptionalFunctionMetadata(Function &F);
template <class FieldTy>
bool ParseMDField(LocTy Loc, StringRef Name, FieldTy &Result);
template <class FieldTy> bool ParseMDField(StringRef Name, FieldTy &Result);
template <class ParserTy>
bool ParseMDFieldsImplBody(ParserTy parseField);
template <class ParserTy>
bool ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc);
bool ParseSpecializedMDNode(MDNode *&N, bool IsDistinct = false);
#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
bool Parse##CLASS(MDNode *&Result, bool IsDistinct);
#include "llvm/IR/Metadata.def"
// Function Parsing.
struct ArgInfo {
LocTy Loc;
Type *Ty;
AttributeSet Attrs;
std::string Name;
ArgInfo(LocTy L, Type *ty, AttributeSet Attr, const std::string &N)
: Loc(L), Ty(ty), Attrs(Attr), Name(N) {}
};
bool ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, bool &isVarArg);
bool ParseFunctionHeader(Function *&Fn, bool isDefine);
bool ParseFunctionBody(Function &Fn);
bool ParseBasicBlock(PerFunctionState &PFS);
enum TailCallType { TCT_None, TCT_Tail, TCT_MustTail };
// Instruction Parsing. Each instruction parsing routine can return with a
// normal result, an error result, or return having eaten an extra comma.
enum InstResult { InstNormal = 0, InstError = 1, InstExtraComma = 2 };
int ParseInstruction(Instruction *&Inst, BasicBlock *BB,
PerFunctionState &PFS);
bool ParseCmpPredicate(unsigned &P, unsigned Opc);
bool ParseRet(Instruction *&Inst, BasicBlock *BB, PerFunctionState &PFS);
bool ParseBr(Instruction *&Inst, PerFunctionState &PFS);
bool ParseSwitch(Instruction *&Inst, PerFunctionState &PFS);
bool ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS);
bool ParseInvoke(Instruction *&Inst, PerFunctionState &PFS);
bool ParseResume(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCallBr(Instruction *&Inst, PerFunctionState &PFS);
bool ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc,
unsigned OperandType);
bool ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc,
unsigned OperandType);
bool ParseLogical(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc);
bool ParseCompare(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc);
bool ParseCast(Instruction *&Inst, PerFunctionState &PFS, unsigned Opc);
bool ParseSelect(Instruction *&Inst, PerFunctionState &PFS);
bool ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS);
bool ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS);
bool ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS);
bool ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS);
int ParsePHI(Instruction *&Inst, PerFunctionState &PFS);
bool ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS);
bool ParseCall(Instruction *&Inst, PerFunctionState &PFS,
CallInst::TailCallKind TCK);
int ParseAlloc(Instruction *&Inst, PerFunctionState &PFS);
int ParseLoad(Instruction *&Inst, PerFunctionState &PFS);
int ParseStore(Instruction *&Inst, PerFunctionState &PFS);
int ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS);
int ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS);
int ParseFence(Instruction *&Inst, PerFunctionState &PFS);
int ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS);
int ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS);
int ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS);
// Use-list order directives.
bool ParseUseListOrder(PerFunctionState *PFS = nullptr);
bool ParseUseListOrderBB();
bool ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes);
bool sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, SMLoc Loc);
};
} // End llvm namespace
#endif