blob: ec3c8e7bae465ba4b788ad2b350ac60679ca5aa1 [file] [log] [blame]
//===- ELFTypes.h - Endian specific types for ELF ---------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_OBJECT_ELFTYPES_H
#define LLVM_OBJECT_ELFTYPES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/Object/Error.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include <cassert>
#include <cstdint>
#include <cstring>
#include <type_traits>
namespace llvm {
namespace object {
using support::endianness;
template <class ELFT> struct Elf_Ehdr_Impl;
template <class ELFT> struct Elf_Shdr_Impl;
template <class ELFT> struct Elf_Sym_Impl;
template <class ELFT> struct Elf_Dyn_Impl;
template <class ELFT> struct Elf_Phdr_Impl;
template <class ELFT, bool isRela> struct Elf_Rel_Impl;
template <class ELFT> struct Elf_Verdef_Impl;
template <class ELFT> struct Elf_Verdaux_Impl;
template <class ELFT> struct Elf_Verneed_Impl;
template <class ELFT> struct Elf_Vernaux_Impl;
template <class ELFT> struct Elf_Versym_Impl;
template <class ELFT> struct Elf_Hash_Impl;
template <class ELFT> struct Elf_GnuHash_Impl;
template <class ELFT> struct Elf_Chdr_Impl;
template <class ELFT> struct Elf_Nhdr_Impl;
template <class ELFT> class Elf_Note_Impl;
template <class ELFT> class Elf_Note_Iterator_Impl;
template <class ELFT> struct Elf_CGProfile_Impl;
template <endianness E, bool Is64> struct ELFType {
private:
template <typename Ty>
using packed = support::detail::packed_endian_specific_integral<Ty, E, 1>;
public:
static const endianness TargetEndianness = E;
static const bool Is64Bits = Is64;
using uint = typename std::conditional<Is64, uint64_t, uint32_t>::type;
using Ehdr = Elf_Ehdr_Impl<ELFType<E, Is64>>;
using Shdr = Elf_Shdr_Impl<ELFType<E, Is64>>;
using Sym = Elf_Sym_Impl<ELFType<E, Is64>>;
using Dyn = Elf_Dyn_Impl<ELFType<E, Is64>>;
using Phdr = Elf_Phdr_Impl<ELFType<E, Is64>>;
using Rel = Elf_Rel_Impl<ELFType<E, Is64>, false>;
using Rela = Elf_Rel_Impl<ELFType<E, Is64>, true>;
using Relr = packed<uint>;
using Verdef = Elf_Verdef_Impl<ELFType<E, Is64>>;
using Verdaux = Elf_Verdaux_Impl<ELFType<E, Is64>>;
using Verneed = Elf_Verneed_Impl<ELFType<E, Is64>>;
using Vernaux = Elf_Vernaux_Impl<ELFType<E, Is64>>;
using Versym = Elf_Versym_Impl<ELFType<E, Is64>>;
using Hash = Elf_Hash_Impl<ELFType<E, Is64>>;
using GnuHash = Elf_GnuHash_Impl<ELFType<E, Is64>>;
using Chdr = Elf_Chdr_Impl<ELFType<E, Is64>>;
using Nhdr = Elf_Nhdr_Impl<ELFType<E, Is64>>;
using Note = Elf_Note_Impl<ELFType<E, Is64>>;
using NoteIterator = Elf_Note_Iterator_Impl<ELFType<E, Is64>>;
using CGProfile = Elf_CGProfile_Impl<ELFType<E, Is64>>;
using DynRange = ArrayRef<Dyn>;
using ShdrRange = ArrayRef<Shdr>;
using SymRange = ArrayRef<Sym>;
using RelRange = ArrayRef<Rel>;
using RelaRange = ArrayRef<Rela>;
using RelrRange = ArrayRef<Relr>;
using PhdrRange = ArrayRef<Phdr>;
using Half = packed<uint16_t>;
using Word = packed<uint32_t>;
using Sword = packed<int32_t>;
using Xword = packed<uint64_t>;
using Sxword = packed<int64_t>;
using Addr = packed<uint>;
using Off = packed<uint>;
};
using ELF32LE = ELFType<support::little, false>;
using ELF32BE = ELFType<support::big, false>;
using ELF64LE = ELFType<support::little, true>;
using ELF64BE = ELFType<support::big, true>;
// Use an alignment of 2 for the typedefs since that is the worst case for
// ELF files in archives.
// I really don't like doing this, but the alternative is copypasta.
#define LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) \
using Elf_Addr = typename ELFT::Addr; \
using Elf_Off = typename ELFT::Off; \
using Elf_Half = typename ELFT::Half; \
using Elf_Word = typename ELFT::Word; \
using Elf_Sword = typename ELFT::Sword; \
using Elf_Xword = typename ELFT::Xword; \
using Elf_Sxword = typename ELFT::Sxword;
#define LLVM_ELF_COMMA ,
#define LLVM_ELF_IMPORT_TYPES(E, W) \
LLVM_ELF_IMPORT_TYPES_ELFT(ELFType<E LLVM_ELF_COMMA W>)
// Section header.
template <class ELFT> struct Elf_Shdr_Base;
template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Word sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Word sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Word sh_addralign; // Section address alignment
Elf_Word sh_entsize; // Size of records contained within the section
};
template <endianness TargetEndianness>
struct Elf_Shdr_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word sh_name; // Section name (index into string table)
Elf_Word sh_type; // Section type (SHT_*)
Elf_Xword sh_flags; // Section flags (SHF_*)
Elf_Addr sh_addr; // Address where section is to be loaded
Elf_Off sh_offset; // File offset of section data, in bytes
Elf_Xword sh_size; // Size of section, in bytes
Elf_Word sh_link; // Section type-specific header table index link
Elf_Word sh_info; // Section type-specific extra information
Elf_Xword sh_addralign; // Section address alignment
Elf_Xword sh_entsize; // Size of records contained within the section
};
template <class ELFT>
struct Elf_Shdr_Impl : Elf_Shdr_Base<ELFT> {
using Elf_Shdr_Base<ELFT>::sh_entsize;
using Elf_Shdr_Base<ELFT>::sh_size;
/// Get the number of entities this section contains if it has any.
unsigned getEntityCount() const {
if (sh_entsize == 0)
return 0;
return sh_size / sh_entsize;
}
};
template <class ELFT> struct Elf_Sym_Base;
template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word st_name; // Symbol name (index into string table)
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Word st_size; // Size of the symbol
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
};
template <endianness TargetEndianness>
struct Elf_Sym_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word st_name; // Symbol name (index into string table)
unsigned char st_info; // Symbol's type and binding attributes
unsigned char st_other; // Must be zero; reserved
Elf_Half st_shndx; // Which section (header table index) it's defined in
Elf_Addr st_value; // Value or address associated with the symbol
Elf_Xword st_size; // Size of the symbol
};
template <class ELFT>
struct Elf_Sym_Impl : Elf_Sym_Base<ELFT> {
using Elf_Sym_Base<ELFT>::st_info;
using Elf_Sym_Base<ELFT>::st_shndx;
using Elf_Sym_Base<ELFT>::st_other;
using Elf_Sym_Base<ELFT>::st_value;
// These accessors and mutators correspond to the ELF32_ST_BIND,
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
unsigned char getBinding() const { return st_info >> 4; }
unsigned char getType() const { return st_info & 0x0f; }
uint64_t getValue() const { return st_value; }
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
void setBindingAndType(unsigned char b, unsigned char t) {
st_info = (b << 4) + (t & 0x0f);
}
/// Access to the STV_xxx flag stored in the first two bits of st_other.
/// STV_DEFAULT: 0
/// STV_INTERNAL: 1
/// STV_HIDDEN: 2
/// STV_PROTECTED: 3
unsigned char getVisibility() const { return st_other & 0x3; }
void setVisibility(unsigned char v) {
assert(v < 4 && "Invalid value for visibility");
st_other = (st_other & ~0x3) | v;
}
bool isAbsolute() const { return st_shndx == ELF::SHN_ABS; }
bool isCommon() const {
return getType() == ELF::STT_COMMON || st_shndx == ELF::SHN_COMMON;
}
bool isDefined() const { return !isUndefined(); }
bool isProcessorSpecific() const {
return st_shndx >= ELF::SHN_LOPROC && st_shndx <= ELF::SHN_HIPROC;
}
bool isOSSpecific() const {
return st_shndx >= ELF::SHN_LOOS && st_shndx <= ELF::SHN_HIOS;
}
bool isReserved() const {
// ELF::SHN_HIRESERVE is 0xffff so st_shndx <= ELF::SHN_HIRESERVE is always
// true and some compilers warn about it.
return st_shndx >= ELF::SHN_LORESERVE;
}
bool isUndefined() const { return st_shndx == ELF::SHN_UNDEF; }
bool isExternal() const {
return getBinding() != ELF::STB_LOCAL;
}
Expected<StringRef> getName(StringRef StrTab) const;
};
template <class ELFT>
Expected<StringRef> Elf_Sym_Impl<ELFT>::getName(StringRef StrTab) const {
uint32_t Offset = this->st_name;
if (Offset >= StrTab.size())
return errorCodeToError(object_error::parse_failed);
return StringRef(StrTab.data() + Offset);
}
/// Elf_Versym: This is the structure of entries in the SHT_GNU_versym section
/// (.gnu.version). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Versym_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vs_index; // Version index with flags (e.g. VERSYM_HIDDEN)
};
/// Elf_Verdef: This is the structure of entries in the SHT_GNU_verdef section
/// (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdef_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
using Elf_Verdaux = Elf_Verdaux_Impl<ELFT>;
Elf_Half vd_version; // Version of this structure (e.g. VER_DEF_CURRENT)
Elf_Half vd_flags; // Bitwise flags (VER_DEF_*)
Elf_Half vd_ndx; // Version index, used in .gnu.version entries
Elf_Half vd_cnt; // Number of Verdaux entries
Elf_Word vd_hash; // Hash of name
Elf_Word vd_aux; // Offset to the first Verdaux entry (in bytes)
Elf_Word vd_next; // Offset to the next Verdef entry (in bytes)
/// Get the first Verdaux entry for this Verdef.
const Elf_Verdaux *getAux() const {
return reinterpret_cast<const Elf_Verdaux *>((const char *)this + vd_aux);
}
};
/// Elf_Verdaux: This is the structure of auxiliary data in the SHT_GNU_verdef
/// section (.gnu.version_d). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verdaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vda_name; // Version name (offset in string table)
Elf_Word vda_next; // Offset to next Verdaux entry (in bytes)
};
/// Elf_Verneed: This is the structure of entries in the SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Verneed_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half vn_version; // Version of this structure (e.g. VER_NEED_CURRENT)
Elf_Half vn_cnt; // Number of associated Vernaux entries
Elf_Word vn_file; // Library name (string table offset)
Elf_Word vn_aux; // Offset to first Vernaux entry (in bytes)
Elf_Word vn_next; // Offset to next Verneed entry (in bytes)
};
/// Elf_Vernaux: This is the structure of auxiliary data in SHT_GNU_verneed
/// section (.gnu.version_r). This structure is identical for ELF32 and ELF64.
template <class ELFT>
struct Elf_Vernaux_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word vna_hash; // Hash of dependency name
Elf_Half vna_flags; // Bitwise Flags (VER_FLAG_*)
Elf_Half vna_other; // Version index, used in .gnu.version entries
Elf_Word vna_name; // Dependency name
Elf_Word vna_next; // Offset to next Vernaux entry (in bytes)
};
/// Elf_Dyn_Base: This structure matches the form of entries in the dynamic
/// table section (.dynamic) look like.
template <class ELFT> struct Elf_Dyn_Base;
template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Sword d_tag;
union {
Elf_Word d_val;
Elf_Addr d_ptr;
} d_un;
};
template <endianness TargetEndianness>
struct Elf_Dyn_Base<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Sxword d_tag;
union {
Elf_Xword d_val;
Elf_Addr d_ptr;
} d_un;
};
/// Elf_Dyn_Impl: This inherits from Elf_Dyn_Base, adding getters.
template <class ELFT>
struct Elf_Dyn_Impl : Elf_Dyn_Base<ELFT> {
using Elf_Dyn_Base<ELFT>::d_tag;
using Elf_Dyn_Base<ELFT>::d_un;
using intX_t = typename std::conditional<ELFT::Is64Bits,
int64_t, int32_t>::type;
using uintX_t = typename std::conditional<ELFT::Is64Bits,
uint64_t, uint32_t>::type;
intX_t getTag() const { return d_tag; }
uintX_t getVal() const { return d_un.d_val; }
uintX_t getPtr() const { return d_un.d_ptr; }
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
static const bool IsRela = false;
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Word r_info; // Symbol table index and type of relocation to apply
uint32_t getRInfo(bool isMips64EL) const {
assert(!isMips64EL);
return r_info;
}
void setRInfo(uint32_t R, bool IsMips64EL) {
assert(!IsMips64EL);
r_info = R;
}
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
// and ELF32_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return this->getRInfo(isMips64EL) >> 8;
}
unsigned char getType(bool isMips64EL) const {
return (unsigned char)(this->getRInfo(isMips64EL) & 0x0ff);
}
void setSymbol(uint32_t s, bool IsMips64EL) {
setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
}
void setType(unsigned char t, bool IsMips64EL) {
setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
}
void setSymbolAndType(uint32_t s, unsigned char t, bool IsMips64EL) {
this->setRInfo((s << 8) + t, IsMips64EL);
}
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, false>, true>
: public Elf_Rel_Impl<ELFType<TargetEndianness, false>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
static const bool IsRela = true;
Elf_Sword r_addend; // Compute value for relocatable field by adding this
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
static const bool IsRela = false;
Elf_Addr r_offset; // Location (file byte offset, or program virtual addr)
Elf_Xword r_info; // Symbol table index and type of relocation to apply
uint64_t getRInfo(bool isMips64EL) const {
uint64_t t = r_info;
if (!isMips64EL)
return t;
// Mips64 little endian has a "special" encoding of r_info. Instead of one
// 64 bit little endian number, it is a little endian 32 bit number followed
// by a 32 bit big endian number.
return (t << 32) | ((t >> 8) & 0xff000000) | ((t >> 24) & 0x00ff0000) |
((t >> 40) & 0x0000ff00) | ((t >> 56) & 0x000000ff);
}
void setRInfo(uint64_t R, bool IsMips64EL) {
if (IsMips64EL)
r_info = (R >> 32) | ((R & 0xff000000) << 8) | ((R & 0x00ff0000) << 24) |
((R & 0x0000ff00) << 40) | ((R & 0x000000ff) << 56);
else
r_info = R;
}
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
// and ELF64_R_INFO macros defined in the ELF specification:
uint32_t getSymbol(bool isMips64EL) const {
return (uint32_t)(this->getRInfo(isMips64EL) >> 32);
}
uint32_t getType(bool isMips64EL) const {
return (uint32_t)(this->getRInfo(isMips64EL) & 0xffffffffL);
}
void setSymbol(uint32_t s, bool IsMips64EL) {
setSymbolAndType(s, getType(IsMips64EL), IsMips64EL);
}
void setType(uint32_t t, bool IsMips64EL) {
setSymbolAndType(getSymbol(IsMips64EL), t, IsMips64EL);
}
void setSymbolAndType(uint32_t s, uint32_t t, bool IsMips64EL) {
this->setRInfo(((uint64_t)s << 32) + (t & 0xffffffffL), IsMips64EL);
}
};
template <endianness TargetEndianness>
struct Elf_Rel_Impl<ELFType<TargetEndianness, true>, true>
: public Elf_Rel_Impl<ELFType<TargetEndianness, true>, false> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
static const bool IsRela = true;
Elf_Sxword r_addend; // Compute value for relocatable field by adding this.
};
template <class ELFT>
struct Elf_Ehdr_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
unsigned char e_ident[ELF::EI_NIDENT]; // ELF Identification bytes
Elf_Half e_type; // Type of file (see ET_*)
Elf_Half e_machine; // Required architecture for this file (see EM_*)
Elf_Word e_version; // Must be equal to 1
Elf_Addr e_entry; // Address to jump to in order to start program
Elf_Off e_phoff; // Program header table's file offset, in bytes
Elf_Off e_shoff; // Section header table's file offset, in bytes
Elf_Word e_flags; // Processor-specific flags
Elf_Half e_ehsize; // Size of ELF header, in bytes
Elf_Half e_phentsize; // Size of an entry in the program header table
Elf_Half e_phnum; // Number of entries in the program header table
Elf_Half e_shentsize; // Size of an entry in the section header table
Elf_Half e_shnum; // Number of entries in the section header table
Elf_Half e_shstrndx; // Section header table index of section name
// string table
bool checkMagic() const {
return (memcmp(e_ident, ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
}
unsigned char getFileClass() const { return e_ident[ELF::EI_CLASS]; }
unsigned char getDataEncoding() const { return e_ident[ELF::EI_DATA]; }
};
template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word p_type; // Type of segment
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Word p_flags; // Segment flags
Elf_Word p_align; // Segment alignment constraint
};
template <endianness TargetEndianness>
struct Elf_Phdr_Impl<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word p_type; // Type of segment
Elf_Word p_flags; // Segment flags
Elf_Off p_offset; // FileOffset where segment is located, in bytes
Elf_Addr p_vaddr; // Virtual Address of beginning of segment
Elf_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
Elf_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
Elf_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
Elf_Xword p_align; // Segment alignment constraint
};
// ELFT needed for endianness.
template <class ELFT>
struct Elf_Hash_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word nbucket;
Elf_Word nchain;
ArrayRef<Elf_Word> buckets() const {
return ArrayRef<Elf_Word>(&nbucket + 2, &nbucket + 2 + nbucket);
}
ArrayRef<Elf_Word> chains() const {
return ArrayRef<Elf_Word>(&nbucket + 2 + nbucket,
&nbucket + 2 + nbucket + nchain);
}
};
// .gnu.hash section
template <class ELFT>
struct Elf_GnuHash_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word nbuckets;
Elf_Word symndx;
Elf_Word maskwords;
Elf_Word shift2;
ArrayRef<Elf_Off> filter() const {
return ArrayRef<Elf_Off>(reinterpret_cast<const Elf_Off *>(&shift2 + 1),
maskwords);
}
ArrayRef<Elf_Word> buckets() const {
return ArrayRef<Elf_Word>(
reinterpret_cast<const Elf_Word *>(filter().end()), nbuckets);
}
ArrayRef<Elf_Word> values(unsigned DynamicSymCount) const {
return ArrayRef<Elf_Word>(buckets().end(), DynamicSymCount - symndx);
}
};
// Compressed section headers.
// http://www.sco.com/developers/gabi/latest/ch4.sheader.html#compression_header
template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word ch_type;
Elf_Word ch_size;
Elf_Word ch_addralign;
};
template <endianness TargetEndianness>
struct Elf_Chdr_Impl<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word ch_type;
Elf_Word ch_reserved;
Elf_Xword ch_size;
Elf_Xword ch_addralign;
};
/// Note header
template <class ELFT>
struct Elf_Nhdr_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word n_namesz;
Elf_Word n_descsz;
Elf_Word n_type;
/// The alignment of the name and descriptor.
///
/// Implementations differ from the specification here: in practice all
/// variants align both the name and descriptor to 4-bytes.
static const unsigned int Align = 4;
/// Get the size of the note, including name, descriptor, and padding.
size_t getSize() const {
return sizeof(*this) + alignTo<Align>(n_namesz) + alignTo<Align>(n_descsz);
}
};
/// An ELF note.
///
/// Wraps a note header, providing methods for accessing the name and
/// descriptor safely.
template <class ELFT>
class Elf_Note_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
const Elf_Nhdr_Impl<ELFT> &Nhdr;
template <class NoteIteratorELFT> friend class Elf_Note_Iterator_Impl;
Elf_Note_Impl(const Elf_Nhdr_Impl<ELFT> &Nhdr) : Nhdr(Nhdr) {}
public:
/// Get the note's name, excluding the terminating null byte.
StringRef getName() const {
if (!Nhdr.n_namesz)
return StringRef();
return StringRef(reinterpret_cast<const char *>(&Nhdr) + sizeof(Nhdr),
Nhdr.n_namesz - 1);
}
/// Get the note's descriptor.
ArrayRef<uint8_t> getDesc() const {
if (!Nhdr.n_descsz)
return ArrayRef<uint8_t>();
return ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(&Nhdr) + sizeof(Nhdr) +
alignTo<Elf_Nhdr_Impl<ELFT>::Align>(Nhdr.n_namesz),
Nhdr.n_descsz);
}
/// Get the note's type.
Elf_Word getType() const { return Nhdr.n_type; }
};
template <class ELFT>
class Elf_Note_Iterator_Impl
: std::iterator<std::forward_iterator_tag, Elf_Note_Impl<ELFT>> {
// Nhdr being a nullptr marks the end of iteration.
const Elf_Nhdr_Impl<ELFT> *Nhdr = nullptr;
size_t RemainingSize = 0u;
Error *Err = nullptr;
template <class ELFFileELFT> friend class ELFFile;
// Stop iteration and indicate an overflow.
void stopWithOverflowError() {
Nhdr = nullptr;
*Err = make_error<StringError>("ELF note overflows container",
object_error::parse_failed);
}
// Advance Nhdr by NoteSize bytes, starting from NhdrPos.
//
// Assumes NoteSize <= RemainingSize. Ensures Nhdr->getSize() <= RemainingSize
// upon returning. Handles stopping iteration when reaching the end of the
// container, either cleanly or with an overflow error.
void advanceNhdr(const uint8_t *NhdrPos, size_t NoteSize) {
RemainingSize -= NoteSize;
if (RemainingSize == 0u) {
// Ensure that if the iterator walks to the end, the error is checked
// afterwards.
*Err = Error::success();
Nhdr = nullptr;
} else if (sizeof(*Nhdr) > RemainingSize)
stopWithOverflowError();
else {
Nhdr = reinterpret_cast<const Elf_Nhdr_Impl<ELFT> *>(NhdrPos + NoteSize);
if (Nhdr->getSize() > RemainingSize)
stopWithOverflowError();
else
*Err = Error::success();
}
}
Elf_Note_Iterator_Impl() {}
explicit Elf_Note_Iterator_Impl(Error &Err) : Err(&Err) {}
Elf_Note_Iterator_Impl(const uint8_t *Start, size_t Size, Error &Err)
: RemainingSize(Size), Err(&Err) {
consumeError(std::move(Err));
assert(Start && "ELF note iterator starting at NULL");
advanceNhdr(Start, 0u);
}
public:
Elf_Note_Iterator_Impl &operator++() {
assert(Nhdr && "incremented ELF note end iterator");
const uint8_t *NhdrPos = reinterpret_cast<const uint8_t *>(Nhdr);
size_t NoteSize = Nhdr->getSize();
advanceNhdr(NhdrPos, NoteSize);
return *this;
}
bool operator==(Elf_Note_Iterator_Impl Other) const {
if (!Nhdr && Other.Err)
(void)(bool)(*Other.Err);
if (!Other.Nhdr && Err)
(void)(bool)(*Err);
return Nhdr == Other.Nhdr;
}
bool operator!=(Elf_Note_Iterator_Impl Other) const {
return !(*this == Other);
}
Elf_Note_Impl<ELFT> operator*() const {
assert(Nhdr && "dereferenced ELF note end iterator");
return Elf_Note_Impl<ELFT>(*Nhdr);
}
};
template <class ELFT> struct Elf_CGProfile_Impl {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Word cgp_from;
Elf_Word cgp_to;
Elf_Xword cgp_weight;
};
// MIPS .reginfo section
template <class ELFT>
struct Elf_Mips_RegInfo;
template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, false>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, false)
Elf_Word ri_gprmask; // bit-mask of used general registers
Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
Elf_Addr ri_gp_value; // gp register value
};
template <support::endianness TargetEndianness>
struct Elf_Mips_RegInfo<ELFType<TargetEndianness, true>> {
LLVM_ELF_IMPORT_TYPES(TargetEndianness, true)
Elf_Word ri_gprmask; // bit-mask of used general registers
Elf_Word ri_pad; // unused padding field
Elf_Word ri_cprmask[4]; // bit-mask of used co-processor registers
Elf_Addr ri_gp_value; // gp register value
};
// .MIPS.options section
template <class ELFT> struct Elf_Mips_Options {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
uint8_t kind; // Determines interpretation of variable part of descriptor
uint8_t size; // Byte size of descriptor, including this header
Elf_Half section; // Section header index of section affected,
// or 0 for global options
Elf_Word info; // Kind-specific information
Elf_Mips_RegInfo<ELFT> &getRegInfo() {
assert(kind == ELF::ODK_REGINFO);
return *reinterpret_cast<Elf_Mips_RegInfo<ELFT> *>(
(uint8_t *)this + sizeof(Elf_Mips_Options));
}
const Elf_Mips_RegInfo<ELFT> &getRegInfo() const {
return const_cast<Elf_Mips_Options *>(this)->getRegInfo();
}
};
// .MIPS.abiflags section content
template <class ELFT> struct Elf_Mips_ABIFlags {
LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
Elf_Half version; // Version of the structure
uint8_t isa_level; // ISA level: 1-5, 32, and 64
uint8_t isa_rev; // ISA revision (0 for MIPS I - MIPS V)
uint8_t gpr_size; // General purpose registers size
uint8_t cpr1_size; // Co-processor 1 registers size
uint8_t cpr2_size; // Co-processor 2 registers size
uint8_t fp_abi; // Floating-point ABI flag
Elf_Word isa_ext; // Processor-specific extension
Elf_Word ases; // ASEs flags
Elf_Word flags1; // General flags
Elf_Word flags2; // General flags
};
} // end namespace object.
} // end namespace llvm.
#endif // LLVM_OBJECT_ELFTYPES_H