blob: 9c1f99d1b3a2d40a968b7dadfef1300909d1f374 [file] [log] [blame]
//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class. For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_TYPE_H
#define LLVM_IR_TYPE_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <iterator>
namespace llvm {
template<class GraphType> struct GraphTraits;
class IntegerType;
class LLVMContext;
class PointerType;
class raw_ostream;
class StringRef;
/// The instances of the Type class are immutable: once they are created,
/// they are never changed. Also note that only one instance of a particular
/// type is ever created. Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods
/// in class Type and in derived classes. Once allocated, Types are never
/// free'd.
///
class Type {
public:
//===--------------------------------------------------------------------===//
/// Definitions of all of the base types for the Type system. Based on this
/// value, you can cast to a class defined in DerivedTypes.h.
/// Note: If you add an element to this, you need to add an element to the
/// Type::getPrimitiveType function, or else things will break!
/// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
///
enum TypeID {
// PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
VoidTyID = 0, ///< 0: type with no size
HalfTyID, ///< 1: 16-bit floating point type
FloatTyID, ///< 2: 32-bit floating point type
DoubleTyID, ///< 3: 64-bit floating point type
X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
LabelTyID, ///< 7: Labels
MetadataTyID, ///< 8: Metadata
X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
TokenTyID, ///< 10: Tokens
// Derived types... see DerivedTypes.h file.
// Make sure FirstDerivedTyID stays up to date!
IntegerTyID, ///< 11: Arbitrary bit width integers
FunctionTyID, ///< 12: Functions
StructTyID, ///< 13: Structures
ArrayTyID, ///< 14: Arrays
PointerTyID, ///< 15: Pointers
VectorTyID ///< 16: SIMD 'packed' format, or other vector type
};
private:
/// This refers to the LLVMContext in which this type was uniqued.
LLVMContext &Context;
TypeID ID : 8; // The current base type of this type.
unsigned SubclassData : 24; // Space for subclasses to store data.
// Note that this should be synchronized with
// MAX_INT_BITS value in IntegerType class.
protected:
friend class LLVMContextImpl;
explicit Type(LLVMContext &C, TypeID tid)
: Context(C), ID(tid), SubclassData(0) {}
~Type() = default;
unsigned getSubclassData() const { return SubclassData; }
void setSubclassData(unsigned val) {
SubclassData = val;
// Ensure we don't have any accidental truncation.
assert(getSubclassData() == val && "Subclass data too large for field");
}
/// Keeps track of how many Type*'s there are in the ContainedTys list.
unsigned NumContainedTys = 0;
/// A pointer to the array of Types contained by this Type. For example, this
/// includes the arguments of a function type, the elements of a structure,
/// the pointee of a pointer, the element type of an array, etc. This pointer
/// may be 0 for types that don't contain other types (Integer, Double,
/// Float).
Type * const *ContainedTys = nullptr;
static bool isSequentialType(TypeID TyID) {
return TyID == ArrayTyID || TyID == VectorTyID;
}
public:
/// Print the current type.
/// Omit the type details if \p NoDetails == true.
/// E.g., let %st = type { i32, i16 }
/// When \p NoDetails is true, we only print %st.
/// Put differently, \p NoDetails prints the type as if
/// inlined with the operands when printing an instruction.
void print(raw_ostream &O, bool IsForDebug = false,
bool NoDetails = false) const;
void dump() const;
/// Return the LLVMContext in which this type was uniqued.
LLVMContext &getContext() const { return Context; }
//===--------------------------------------------------------------------===//
// Accessors for working with types.
//
/// Return the type id for the type. This will return one of the TypeID enum
/// elements defined above.
TypeID getTypeID() const { return ID; }
/// Return true if this is 'void'.
bool isVoidTy() const { return getTypeID() == VoidTyID; }
/// Return true if this is 'half', a 16-bit IEEE fp type.
bool isHalfTy() const { return getTypeID() == HalfTyID; }
/// Return true if this is 'float', a 32-bit IEEE fp type.
bool isFloatTy() const { return getTypeID() == FloatTyID; }
/// Return true if this is 'double', a 64-bit IEEE fp type.
bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
/// Return true if this is x86 long double.
bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
/// Return true if this is 'fp128'.
bool isFP128Ty() const { return getTypeID() == FP128TyID; }
/// Return true if this is powerpc long double.
bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
/// Return true if this is one of the six floating-point types
bool isFloatingPointTy() const {
return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
getTypeID() == DoubleTyID ||
getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
getTypeID() == PPC_FP128TyID;
}
const fltSemantics &getFltSemantics() const {
switch (getTypeID()) {
case HalfTyID: return APFloat::IEEEhalf();
case FloatTyID: return APFloat::IEEEsingle();
case DoubleTyID: return APFloat::IEEEdouble();
case X86_FP80TyID: return APFloat::x87DoubleExtended();
case FP128TyID: return APFloat::IEEEquad();
case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
default: llvm_unreachable("Invalid floating type");
}
}
/// Return true if this is X86 MMX.
bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
/// Return true if this is a FP type or a vector of FP.
bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
/// Return true if this is 'label'.
bool isLabelTy() const { return getTypeID() == LabelTyID; }
/// Return true if this is 'metadata'.
bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
/// Return true if this is 'token'.
bool isTokenTy() const { return getTypeID() == TokenTyID; }
/// True if this is an instance of IntegerType.
bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
/// Return true if this is an IntegerType of the given width.
bool isIntegerTy(unsigned Bitwidth) const;
/// Return true if this is an integer type or a vector of integer types.
bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
/// Return true if this is an integer type or a vector of integer types of
/// the given width.
bool isIntOrIntVectorTy(unsigned BitWidth) const {
return getScalarType()->isIntegerTy(BitWidth);
}
/// Return true if this is an integer type or a pointer type.
bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
/// True if this is an instance of FunctionType.
bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
/// True if this is an instance of StructType.
bool isStructTy() const { return getTypeID() == StructTyID; }
/// True if this is an instance of ArrayType.
bool isArrayTy() const { return getTypeID() == ArrayTyID; }
/// True if this is an instance of PointerType.
bool isPointerTy() const { return getTypeID() == PointerTyID; }
/// Return true if this is a pointer type or a vector of pointer types.
bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
/// True if this is an instance of VectorType.
bool isVectorTy() const { return getTypeID() == VectorTyID; }
/// Return true if this type could be converted with a lossless BitCast to
/// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
/// same size only where no re-interpretation of the bits is done.
/// Determine if this type could be losslessly bitcast to Ty
bool canLosslesslyBitCastTo(Type *Ty) const;
/// Return true if this type is empty, that is, it has no elements or all of
/// its elements are empty.
bool isEmptyTy() const;
/// Return true if the type is "first class", meaning it is a valid type for a
/// Value.
bool isFirstClassType() const {
return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
}
/// Return true if the type is a valid type for a register in codegen. This
/// includes all first-class types except struct and array types.
bool isSingleValueType() const {
return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
isPointerTy() || isVectorTy();
}
/// Return true if the type is an aggregate type. This means it is valid as
/// the first operand of an insertvalue or extractvalue instruction. This
/// includes struct and array types, but does not include vector types.
bool isAggregateType() const {
return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
}
/// Return true if it makes sense to take the size of this type. To get the
/// actual size for a particular target, it is reasonable to use the
/// DataLayout subsystem to do this.
bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
// If it's a primitive, it is always sized.
if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
getTypeID() == PointerTyID ||
getTypeID() == X86_MMXTyID)
return true;
// If it is not something that can have a size (e.g. a function or label),
// it doesn't have a size.
if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
getTypeID() != VectorTyID)
return false;
// Otherwise we have to try harder to decide.
return isSizedDerivedType(Visited);
}
/// Return the basic size of this type if it is a primitive type. These are
/// fixed by LLVM and are not target-dependent.
/// This will return zero if the type does not have a size or is not a
/// primitive type.
///
/// Note that this may not reflect the size of memory allocated for an
/// instance of the type or the number of bytes that are written when an
/// instance of the type is stored to memory. The DataLayout class provides
/// additional query functions to provide this information.
///
unsigned getPrimitiveSizeInBits() const LLVM_READONLY;
/// If this is a vector type, return the getPrimitiveSizeInBits value for the
/// element type. Otherwise return the getPrimitiveSizeInBits value for this
/// type.
unsigned getScalarSizeInBits() const LLVM_READONLY;
/// Return the width of the mantissa of this type. This is only valid on
/// floating-point types. If the FP type does not have a stable mantissa (e.g.
/// ppc long double), this method returns -1.
int getFPMantissaWidth() const;
/// If this is a vector type, return the element type, otherwise return
/// 'this'.
Type *getScalarType() const {
if (isVectorTy())
return getVectorElementType();
return const_cast<Type*>(this);
}
//===--------------------------------------------------------------------===//
// Type Iteration support.
//
using subtype_iterator = Type * const *;
subtype_iterator subtype_begin() const { return ContainedTys; }
subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
ArrayRef<Type*> subtypes() const {
return makeArrayRef(subtype_begin(), subtype_end());
}
using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
subtype_reverse_iterator subtype_rbegin() const {
return subtype_reverse_iterator(subtype_end());
}
subtype_reverse_iterator subtype_rend() const {
return subtype_reverse_iterator(subtype_begin());
}
/// This method is used to implement the type iterator (defined at the end of
/// the file). For derived types, this returns the types 'contained' in the
/// derived type.
Type *getContainedType(unsigned i) const {
assert(i < NumContainedTys && "Index out of range!");
return ContainedTys[i];
}
/// Return the number of types in the derived type.
unsigned getNumContainedTypes() const { return NumContainedTys; }
//===--------------------------------------------------------------------===//
// Helper methods corresponding to subclass methods. This forces a cast to
// the specified subclass and calls its accessor. "getVectorNumElements" (for
// example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
// only intended to cover the core methods that are frequently used, helper
// methods should not be added here.
inline unsigned getIntegerBitWidth() const;
inline Type *getFunctionParamType(unsigned i) const;
inline unsigned getFunctionNumParams() const;
inline bool isFunctionVarArg() const;
inline StringRef getStructName() const;
inline unsigned getStructNumElements() const;
inline Type *getStructElementType(unsigned N) const;
inline Type *getSequentialElementType() const {
assert(isSequentialType(getTypeID()) && "Not a sequential type!");
return ContainedTys[0];
}
inline uint64_t getArrayNumElements() const;
Type *getArrayElementType() const {
assert(getTypeID() == ArrayTyID);
return ContainedTys[0];
}
inline unsigned getVectorNumElements() const;
Type *getVectorElementType() const {
assert(getTypeID() == VectorTyID);
return ContainedTys[0];
}
Type *getPointerElementType() const {
assert(getTypeID() == PointerTyID);
return ContainedTys[0];
}
/// Get the address space of this pointer or pointer vector type.
inline unsigned getPointerAddressSpace() const;
//===--------------------------------------------------------------------===//
// Static members exported by the Type class itself. Useful for getting
// instances of Type.
//
/// Return a type based on an identifier.
static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
//===--------------------------------------------------------------------===//
// These are the builtin types that are always available.
//
static Type *getVoidTy(LLVMContext &C);
static Type *getLabelTy(LLVMContext &C);
static Type *getHalfTy(LLVMContext &C);
static Type *getFloatTy(LLVMContext &C);
static Type *getDoubleTy(LLVMContext &C);
static Type *getMetadataTy(LLVMContext &C);
static Type *getX86_FP80Ty(LLVMContext &C);
static Type *getFP128Ty(LLVMContext &C);
static Type *getPPC_FP128Ty(LLVMContext &C);
static Type *getX86_MMXTy(LLVMContext &C);
static Type *getTokenTy(LLVMContext &C);
static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
static IntegerType *getInt1Ty(LLVMContext &C);
static IntegerType *getInt8Ty(LLVMContext &C);
static IntegerType *getInt16Ty(LLVMContext &C);
static IntegerType *getInt32Ty(LLVMContext &C);
static IntegerType *getInt64Ty(LLVMContext &C);
static IntegerType *getInt128Ty(LLVMContext &C);
template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
int noOfBits = sizeof(ScalarTy) * CHAR_BIT;
if (std::is_integral<ScalarTy>::value) {
return (Type*) Type::getIntNTy(C, noOfBits);
} else if (std::is_floating_point<ScalarTy>::value) {
switch (noOfBits) {
case 32:
return Type::getFloatTy(C);
case 64:
return Type::getDoubleTy(C);
}
}
llvm_unreachable("Unsupported type in Type::getScalarTy");
}
//===--------------------------------------------------------------------===//
// Convenience methods for getting pointer types with one of the above builtin
// types as pointee.
//
static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
/// Return a pointer to the current type. This is equivalent to
/// PointerType::get(Foo, AddrSpace).
PointerType *getPointerTo(unsigned AddrSpace = 0) const;
private:
/// Derived types like structures and arrays are sized iff all of the members
/// of the type are sized as well. Since asking for their size is relatively
/// uncommon, move this operation out-of-line.
bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
};
// Printing of types.
inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
T.print(OS);
return OS;
}
// allow isa<PointerType>(x) to work without DerivedTypes.h included.
template <> struct isa_impl<PointerType, Type> {
static inline bool doit(const Type &Ty) {
return Ty.getTypeID() == Type::PointerTyID;
}
};
//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types.
template <> struct GraphTraits<Type *> {
using NodeRef = Type *;
using ChildIteratorType = Type::subtype_iterator;
static NodeRef getEntryNode(Type *T) { return T; }
static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};
template <> struct GraphTraits<const Type*> {
using NodeRef = const Type *;
using ChildIteratorType = Type::subtype_iterator;
static NodeRef getEntryNode(NodeRef T) { return T; }
static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)
/* Specialized opaque type conversions.
*/
inline Type **unwrap(LLVMTypeRef* Tys) {
return reinterpret_cast<Type**>(Tys);
}
inline LLVMTypeRef *wrap(Type **Tys) {
return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
}
} // end namespace llvm
#endif // LLVM_IR_TYPE_H