blob: 630f47e8bb5763712f8043b05053e6582b10bb23 [file] [log] [blame]
//===- llvm/Function.h - Class to represent a single function ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Function class, which represents a
// single function/procedure in LLVM.
//
// A function basically consists of a list of basic blocks, a list of arguments,
// and a symbol table.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_FUNCTION_H
#define LLVM_IR_FUNCTION_H
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
namespace llvm {
namespace Intrinsic {
enum ID : unsigned;
}
class AssemblyAnnotationWriter;
class Constant;
class DISubprogram;
class LLVMContext;
class Module;
template <typename T> class Optional;
class raw_ostream;
class Type;
class User;
class Function : public GlobalObject, public ilist_node<Function> {
public:
using BasicBlockListType = SymbolTableList<BasicBlock>;
// BasicBlock iterators...
using iterator = BasicBlockListType::iterator;
using const_iterator = BasicBlockListType::const_iterator;
using arg_iterator = Argument *;
using const_arg_iterator = const Argument *;
private:
// Important things that make up a function!
BasicBlockListType BasicBlocks; ///< The basic blocks
mutable Argument *Arguments = nullptr; ///< The formal arguments
size_t NumArgs;
std::unique_ptr<ValueSymbolTable>
SymTab; ///< Symbol table of args/instructions
AttributeList AttributeSets; ///< Parameter attributes
/*
* Value::SubclassData
*
* bit 0 : HasLazyArguments
* bit 1 : HasPrefixData
* bit 2 : HasPrologueData
* bit 3 : HasPersonalityFn
* bits 4-13 : CallingConvention
* bits 14 : HasGC
* bits 15 : [reserved]
*/
/// Bits from GlobalObject::GlobalObjectSubclassData.
enum {
/// Whether this function is materializable.
IsMaterializableBit = 0,
};
friend class SymbolTableListTraits<Function>;
/// hasLazyArguments/CheckLazyArguments - The argument list of a function is
/// built on demand, so that the list isn't allocated until the first client
/// needs it. The hasLazyArguments predicate returns true if the arg list
/// hasn't been set up yet.
public:
bool hasLazyArguments() const {
return getSubclassDataFromValue() & (1<<0);
}
private:
void CheckLazyArguments() const {
if (hasLazyArguments())
BuildLazyArguments();
}
void BuildLazyArguments() const;
void clearArguments();
/// Function ctor - If the (optional) Module argument is specified, the
/// function is automatically inserted into the end of the function list for
/// the module.
///
Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
const Twine &N = "", Module *M = nullptr);
public:
Function(const Function&) = delete;
void operator=(const Function&) = delete;
~Function();
// This is here to help easily convert from FunctionT * (Function * or
// MachineFunction *) in BlockFrequencyInfoImpl to Function * by calling
// FunctionT->getFunction().
const Function &getFunction() const { return *this; }
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
unsigned AddrSpace, const Twine &N = "",
Module *M = nullptr) {
return new Function(Ty, Linkage, AddrSpace, N, M);
}
// TODO: remove this once all users have been updated to pass an AddrSpace
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N = "", Module *M = nullptr) {
return new Function(Ty, Linkage, static_cast<unsigned>(-1), N, M);
}
/// Creates a new function and attaches it to a module.
///
/// Places the function in the program address space as specified
/// by the module's data layout.
static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
const Twine &N, Module &M);
// Provide fast operand accessors.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Returns the number of non-debug IR instructions in this function.
/// This is equivalent to the sum of the sizes of each basic block contained
/// within this function.
unsigned getInstructionCount() const;
/// Returns the FunctionType for me.
FunctionType *getFunctionType() const {
return cast<FunctionType>(getValueType());
}
/// Returns the type of the ret val.
Type *getReturnType() const { return getFunctionType()->getReturnType(); }
/// getContext - Return a reference to the LLVMContext associated with this
/// function.
LLVMContext &getContext() const;
/// isVarArg - Return true if this function takes a variable number of
/// arguments.
bool isVarArg() const { return getFunctionType()->isVarArg(); }
bool isMaterializable() const {
return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
}
void setIsMaterializable(bool V) {
unsigned Mask = 1 << IsMaterializableBit;
setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
(V ? Mask : 0u));
}
/// getIntrinsicID - This method returns the ID number of the specified
/// function, or Intrinsic::not_intrinsic if the function is not an
/// intrinsic, or if the pointer is null. This value is always defined to be
/// zero to allow easy checking for whether a function is intrinsic or not.
/// The particular intrinsic functions which correspond to this value are
/// defined in llvm/Intrinsics.h.
Intrinsic::ID getIntrinsicID() const LLVM_READONLY { return IntID; }
/// isIntrinsic - Returns true if the function's name starts with "llvm.".
/// It's possible for this function to return true while getIntrinsicID()
/// returns Intrinsic::not_intrinsic!
bool isIntrinsic() const { return HasLLVMReservedName; }
static Intrinsic::ID lookupIntrinsicID(StringRef Name);
/// Recalculate the ID for this function if it is an Intrinsic defined
/// in llvm/Intrinsics.h. Sets the intrinsic ID to Intrinsic::not_intrinsic
/// if the name of this function does not match an intrinsic in that header.
/// Note, this method does not need to be called directly, as it is called
/// from Value::setName() whenever the name of this function changes.
void recalculateIntrinsicID();
/// getCallingConv()/setCallingConv(CC) - These method get and set the
/// calling convention of this function. The enum values for the known
/// calling conventions are defined in CallingConv.h.
CallingConv::ID getCallingConv() const {
return static_cast<CallingConv::ID>((getSubclassDataFromValue() >> 4) &
CallingConv::MaxID);
}
void setCallingConv(CallingConv::ID CC) {
auto ID = static_cast<unsigned>(CC);
assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
setValueSubclassData((getSubclassDataFromValue() & 0xc00f) | (ID << 4));
}
/// Return the attribute list for this Function.
AttributeList getAttributes() const { return AttributeSets; }
/// Set the attribute list for this Function.
void setAttributes(AttributeList Attrs) { AttributeSets = Attrs; }
/// Add function attributes to this function.
void addFnAttr(Attribute::AttrKind Kind) {
addAttribute(AttributeList::FunctionIndex, Kind);
}
/// Add function attributes to this function.
void addFnAttr(StringRef Kind, StringRef Val = StringRef()) {
addAttribute(AttributeList::FunctionIndex,
Attribute::get(getContext(), Kind, Val));
}
/// Add function attributes to this function.
void addFnAttr(Attribute Attr) {
addAttribute(AttributeList::FunctionIndex, Attr);
}
/// Remove function attributes from this function.
void removeFnAttr(Attribute::AttrKind Kind) {
removeAttribute(AttributeList::FunctionIndex, Kind);
}
/// Remove function attribute from this function.
void removeFnAttr(StringRef Kind) {
setAttributes(getAttributes().removeAttribute(
getContext(), AttributeList::FunctionIndex, Kind));
}
enum ProfileCountType { PCT_Invalid, PCT_Real, PCT_Synthetic };
/// Class to represent profile counts.
///
/// This class represents both real and synthetic profile counts.
class ProfileCount {
private:
uint64_t Count;
ProfileCountType PCT;
static ProfileCount Invalid;
public:
ProfileCount() : Count(-1), PCT(PCT_Invalid) {}
ProfileCount(uint64_t Count, ProfileCountType PCT)
: Count(Count), PCT(PCT) {}
bool hasValue() const { return PCT != PCT_Invalid; }
uint64_t getCount() const { return Count; }
ProfileCountType getType() const { return PCT; }
bool isSynthetic() const { return PCT == PCT_Synthetic; }
explicit operator bool() { return hasValue(); }
bool operator!() const { return !hasValue(); }
// Update the count retaining the same profile count type.
ProfileCount &setCount(uint64_t C) {
Count = C;
return *this;
}
static ProfileCount getInvalid() { return ProfileCount(-1, PCT_Invalid); }
};
/// Set the entry count for this function.
///
/// Entry count is the number of times this function was executed based on
/// pgo data. \p Imports points to a set of GUIDs that needs to
/// be imported by the function for sample PGO, to enable the same inlines as
/// the profiled optimized binary.
void setEntryCount(ProfileCount Count,
const DenseSet<GlobalValue::GUID> *Imports = nullptr);
/// A convenience wrapper for setting entry count
void setEntryCount(uint64_t Count, ProfileCountType Type = PCT_Real,
const DenseSet<GlobalValue::GUID> *Imports = nullptr);
/// Get the entry count for this function.
///
/// Entry count is the number of times the function was executed based on
/// pgo data.
ProfileCount getEntryCount() const;
/// Return true if the function is annotated with profile data.
///
/// Presence of entry counts from a profile run implies the function has
/// profile annotations.
bool hasProfileData() const { return getEntryCount().hasValue(); }
/// Returns the set of GUIDs that needs to be imported to the function for
/// sample PGO, to enable the same inlines as the profiled optimized binary.
DenseSet<GlobalValue::GUID> getImportGUIDs() const;
/// Set the section prefix for this function.
void setSectionPrefix(StringRef Prefix);
/// Get the section prefix for this function.
Optional<StringRef> getSectionPrefix() const;
/// Return true if the function has the attribute.
bool hasFnAttribute(Attribute::AttrKind Kind) const {
return AttributeSets.hasFnAttribute(Kind);
}
/// Return true if the function has the attribute.
bool hasFnAttribute(StringRef Kind) const {
return AttributeSets.hasFnAttribute(Kind);
}
/// Return the attribute for the given attribute kind.
Attribute getFnAttribute(Attribute::AttrKind Kind) const {
return getAttribute(AttributeList::FunctionIndex, Kind);
}
/// Return the attribute for the given attribute kind.
Attribute getFnAttribute(StringRef Kind) const {
return getAttribute(AttributeList::FunctionIndex, Kind);
}
/// Return the stack alignment for the function.
unsigned getFnStackAlignment() const {
if (!hasFnAttribute(Attribute::StackAlignment))
return 0;
return AttributeSets.getStackAlignment(AttributeList::FunctionIndex);
}
/// hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm
/// to use during code generation.
bool hasGC() const {
return getSubclassDataFromValue() & (1<<14);
}
const std::string &getGC() const;
void setGC(std::string Str);
void clearGC();
/// adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attribute::AttrKind Kind);
/// adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attribute Attr);
/// adds the attributes to the list of attributes.
void addAttributes(unsigned i, const AttrBuilder &Attrs);
/// adds the attribute to the list of attributes for the given arg.
void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
/// adds the attribute to the list of attributes for the given arg.
void addParamAttr(unsigned ArgNo, Attribute Attr);
/// adds the attributes to the list of attributes for the given arg.
void addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs);
/// removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attribute::AttrKind Kind);
/// removes the attribute from the list of attributes.
void removeAttribute(unsigned i, StringRef Kind);
/// removes the attributes from the list of attributes.
void removeAttributes(unsigned i, const AttrBuilder &Attrs);
/// removes the attribute from the list of attributes.
void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
/// removes the attribute from the list of attributes.
void removeParamAttr(unsigned ArgNo, StringRef Kind);
/// removes the attribute from the list of attributes.
void removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs);
/// check if an attributes is in the list of attributes.
bool hasAttribute(unsigned i, Attribute::AttrKind Kind) const {
return getAttributes().hasAttribute(i, Kind);
}
/// check if an attributes is in the list of attributes.
bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const {
return getAttributes().hasParamAttribute(ArgNo, Kind);
}
/// gets the attribute from the list of attributes.
Attribute getAttribute(unsigned i, Attribute::AttrKind Kind) const {
return AttributeSets.getAttribute(i, Kind);
}
/// gets the attribute from the list of attributes.
Attribute getAttribute(unsigned i, StringRef Kind) const {
return AttributeSets.getAttribute(i, Kind);
}
/// adds the dereferenceable attribute to the list of attributes.
void addDereferenceableAttr(unsigned i, uint64_t Bytes);
/// adds the dereferenceable attribute to the list of attributes for
/// the given arg.
void addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes);
/// adds the dereferenceable_or_null attribute to the list of
/// attributes.
void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes);
/// adds the dereferenceable_or_null attribute to the list of
/// attributes for the given arg.
void addDereferenceableOrNullParamAttr(unsigned ArgNo, uint64_t Bytes);
/// Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned ArgNo) const {
return AttributeSets.getParamAlignment(ArgNo);
}
/// Extract the number of dereferenceable bytes for a call or
/// parameter (0=unknown).
/// @param i AttributeList index, referring to a return value or argument.
uint64_t getDereferenceableBytes(unsigned i) const {
return AttributeSets.getDereferenceableBytes(i);
}
/// Extract the number of dereferenceable bytes for a parameter.
/// @param ArgNo Index of an argument, with 0 being the first function arg.
uint64_t getParamDereferenceableBytes(unsigned ArgNo) const {
return AttributeSets.getParamDereferenceableBytes(ArgNo);
}
/// Extract the number of dereferenceable_or_null bytes for a call or
/// parameter (0=unknown).
/// @param i AttributeList index, referring to a return value or argument.
uint64_t getDereferenceableOrNullBytes(unsigned i) const {
return AttributeSets.getDereferenceableOrNullBytes(i);
}
/// Extract the number of dereferenceable_or_null bytes for a
/// parameter.
/// @param ArgNo AttributeList ArgNo, referring to an argument.
uint64_t getParamDereferenceableOrNullBytes(unsigned ArgNo) const {
return AttributeSets.getParamDereferenceableOrNullBytes(ArgNo);
}
/// Determine if the function does not access memory.
bool doesNotAccessMemory() const {
return hasFnAttribute(Attribute::ReadNone);
}
void setDoesNotAccessMemory() {
addFnAttr(Attribute::ReadNone);
}
/// Determine if the function does not access or only reads memory.
bool onlyReadsMemory() const {
return doesNotAccessMemory() || hasFnAttribute(Attribute::ReadOnly);
}
void setOnlyReadsMemory() {
addFnAttr(Attribute::ReadOnly);
}
/// Determine if the function does not access or only writes memory.
bool doesNotReadMemory() const {
return doesNotAccessMemory() || hasFnAttribute(Attribute::WriteOnly);
}
void setDoesNotReadMemory() {
addFnAttr(Attribute::WriteOnly);
}
/// Determine if the call can access memmory only using pointers based
/// on its arguments.
bool onlyAccessesArgMemory() const {
return hasFnAttribute(Attribute::ArgMemOnly);
}
void setOnlyAccessesArgMemory() { addFnAttr(Attribute::ArgMemOnly); }
/// Determine if the function may only access memory that is
/// inaccessible from the IR.
bool onlyAccessesInaccessibleMemory() const {
return hasFnAttribute(Attribute::InaccessibleMemOnly);
}
void setOnlyAccessesInaccessibleMemory() {
addFnAttr(Attribute::InaccessibleMemOnly);
}
/// Determine if the function may only access memory that is
/// either inaccessible from the IR or pointed to by its arguments.
bool onlyAccessesInaccessibleMemOrArgMem() const {
return hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly);
}
void setOnlyAccessesInaccessibleMemOrArgMem() {
addFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
}
/// Determine if the function cannot return.
bool doesNotReturn() const {
return hasFnAttribute(Attribute::NoReturn);
}
void setDoesNotReturn() {
addFnAttr(Attribute::NoReturn);
}
/// Determine if the function should not perform indirect branch tracking.
bool doesNoCfCheck() const { return hasFnAttribute(Attribute::NoCfCheck); }
/// Determine if the function cannot unwind.
bool doesNotThrow() const {
return hasFnAttribute(Attribute::NoUnwind);
}
void setDoesNotThrow() {
addFnAttr(Attribute::NoUnwind);
}
/// Determine if the call cannot be duplicated.
bool cannotDuplicate() const {
return hasFnAttribute(Attribute::NoDuplicate);
}
void setCannotDuplicate() {
addFnAttr(Attribute::NoDuplicate);
}
/// Determine if the call is convergent.
bool isConvergent() const {
return hasFnAttribute(Attribute::Convergent);
}
void setConvergent() {
addFnAttr(Attribute::Convergent);
}
void setNotConvergent() {
removeFnAttr(Attribute::Convergent);
}
/// Determine if the call has sideeffects.
bool isSpeculatable() const {
return hasFnAttribute(Attribute::Speculatable);
}
void setSpeculatable() {
addFnAttr(Attribute::Speculatable);
}
/// Determine if the function is known not to recurse, directly or
/// indirectly.
bool doesNotRecurse() const {
return hasFnAttribute(Attribute::NoRecurse);
}
void setDoesNotRecurse() {
addFnAttr(Attribute::NoRecurse);
}
/// True if the ABI mandates (or the user requested) that this
/// function be in a unwind table.
bool hasUWTable() const {
return hasFnAttribute(Attribute::UWTable);
}
void setHasUWTable() {
addFnAttr(Attribute::UWTable);
}
/// True if this function needs an unwind table.
bool needsUnwindTableEntry() const {
return hasUWTable() || !doesNotThrow() || hasPersonalityFn();
}
/// Determine if the function returns a structure through first
/// or second pointer argument.
bool hasStructRetAttr() const {
return AttributeSets.hasParamAttribute(0, Attribute::StructRet) ||
AttributeSets.hasParamAttribute(1, Attribute::StructRet);
}
/// Determine if the parameter or return value is marked with NoAlias
/// attribute.
bool returnDoesNotAlias() const {
return AttributeSets.hasAttribute(AttributeList::ReturnIndex,
Attribute::NoAlias);
}
void setReturnDoesNotAlias() {
addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
}
/// Optimize this function for minimum size (-Oz).
bool optForMinSize() const { return hasFnAttribute(Attribute::MinSize); }
/// Optimize this function for size (-Os) or minimum size (-Oz).
bool optForSize() const {
return hasFnAttribute(Attribute::OptimizeForSize) || optForMinSize();
}
/// copyAttributesFrom - copy all additional attributes (those not needed to
/// create a Function) from the Function Src to this one.
void copyAttributesFrom(const Function *Src);
/// deleteBody - This method deletes the body of the function, and converts
/// the linkage to external.
///
void deleteBody() {
dropAllReferences();
setLinkage(ExternalLinkage);
}
/// removeFromParent - This method unlinks 'this' from the containing module,
/// but does not delete it.
///
void removeFromParent();
/// eraseFromParent - This method unlinks 'this' from the containing module
/// and deletes it.
///
void eraseFromParent();
/// Steal arguments from another function.
///
/// Drop this function's arguments and splice in the ones from \c Src.
/// Requires that this has no function body.
void stealArgumentListFrom(Function &Src);
/// Get the underlying elements of the Function... the basic block list is
/// empty for external functions.
///
const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; }
BasicBlockListType &getBasicBlockList() { return BasicBlocks; }
static BasicBlockListType Function::*getSublistAccess(BasicBlock*) {
return &Function::BasicBlocks;
}
const BasicBlock &getEntryBlock() const { return front(); }
BasicBlock &getEntryBlock() { return front(); }
//===--------------------------------------------------------------------===//
// Symbol Table Accessing functions...
/// getSymbolTable() - Return the symbol table if any, otherwise nullptr.
///
inline ValueSymbolTable *getValueSymbolTable() { return SymTab.get(); }
inline const ValueSymbolTable *getValueSymbolTable() const {
return SymTab.get();
}
//===--------------------------------------------------------------------===//
// BasicBlock iterator forwarding functions
//
iterator begin() { return BasicBlocks.begin(); }
const_iterator begin() const { return BasicBlocks.begin(); }
iterator end () { return BasicBlocks.end(); }
const_iterator end () const { return BasicBlocks.end(); }
size_t size() const { return BasicBlocks.size(); }
bool empty() const { return BasicBlocks.empty(); }
const BasicBlock &front() const { return BasicBlocks.front(); }
BasicBlock &front() { return BasicBlocks.front(); }
const BasicBlock &back() const { return BasicBlocks.back(); }
BasicBlock &back() { return BasicBlocks.back(); }
/// @name Function Argument Iteration
/// @{
arg_iterator arg_begin() {
CheckLazyArguments();
return Arguments;
}
const_arg_iterator arg_begin() const {
CheckLazyArguments();
return Arguments;
}
arg_iterator arg_end() {
CheckLazyArguments();
return Arguments + NumArgs;
}
const_arg_iterator arg_end() const {
CheckLazyArguments();
return Arguments + NumArgs;
}
iterator_range<arg_iterator> args() {
return make_range(arg_begin(), arg_end());
}
iterator_range<const_arg_iterator> args() const {
return make_range(arg_begin(), arg_end());
}
/// @}
size_t arg_size() const { return NumArgs; }
bool arg_empty() const { return arg_size() == 0; }
/// Check whether this function has a personality function.
bool hasPersonalityFn() const {
return getSubclassDataFromValue() & (1<<3);
}
/// Get the personality function associated with this function.
Constant *getPersonalityFn() const;
void setPersonalityFn(Constant *Fn);
/// Check whether this function has prefix data.
bool hasPrefixData() const {
return getSubclassDataFromValue() & (1<<1);
}
/// Get the prefix data associated with this function.
Constant *getPrefixData() const;
void setPrefixData(Constant *PrefixData);
/// Check whether this function has prologue data.
bool hasPrologueData() const {
return getSubclassDataFromValue() & (1<<2);
}
/// Get the prologue data associated with this function.
Constant *getPrologueData() const;
void setPrologueData(Constant *PrologueData);
/// Print the function to an output stream with an optional
/// AssemblyAnnotationWriter.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr,
bool ShouldPreserveUseListOrder = false,
bool IsForDebug = false) const;
/// viewCFG - This function is meant for use from the debugger. You can just
/// say 'call F->viewCFG()' and a ghostview window should pop up from the
/// program, displaying the CFG of the current function with the code for each
/// basic block inside. This depends on there being a 'dot' and 'gv' program
/// in your path.
///
void viewCFG() const;
/// viewCFGOnly - This function is meant for use from the debugger. It works
/// just like viewCFG, but it does not include the contents of basic blocks
/// into the nodes, just the label. If you are only interested in the CFG
/// this can make the graph smaller.
///
void viewCFGOnly() const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static bool classof(const Value *V) {
return V->getValueID() == Value::FunctionVal;
}
/// dropAllReferences() - This method causes all the subinstructions to "let
/// go" of all references that they are maintaining. This allows one to
/// 'delete' a whole module at a time, even though there may be circular
/// references... first all references are dropped, and all use counts go to
/// zero. Then everything is deleted for real. Note that no operations are
/// valid on an object that has "dropped all references", except operator
/// delete.
///
/// Since no other object in the module can have references into the body of a
/// function, dropping all references deletes the entire body of the function,
/// including any contained basic blocks.
///
void dropAllReferences();
/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it, or blockaddress expressions.
/// Optionally passes back an offending user for diagnostic purposes.
///
bool hasAddressTaken(const User** = nullptr) const;
/// isDefTriviallyDead - Return true if it is trivially safe to remove
/// this function definition from the module (because it isn't externally
/// visible, does not have its address taken, and has no callers). To make
/// this more accurate, call removeDeadConstantUsers first.
bool isDefTriviallyDead() const;
/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool callsFunctionThatReturnsTwice() const;
/// Set the attached subprogram.
///
/// Calls \a setMetadata() with \a LLVMContext::MD_dbg.
void setSubprogram(DISubprogram *SP);
/// Get the attached subprogram.
///
/// Calls \a getMetadata() with \a LLVMContext::MD_dbg and casts the result
/// to \a DISubprogram.
DISubprogram *getSubprogram() const;
/// Returns true if we should emit debug info for profiling.
bool isDebugInfoForProfiling() const;
/// Check if null pointer dereferencing is considered undefined behavior for
/// the function.
/// Return value: false => null pointer dereference is undefined.
/// Return value: true => null pointer dereference is not undefined.
bool nullPointerIsDefined() const;
private:
void allocHungoffUselist();
template<int Idx> void setHungoffOperand(Constant *C);
/// Shadow Value::setValueSubclassData with a private forwarding method so
/// that subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
void setValueSubclassDataBit(unsigned Bit, bool On);
};
/// Check whether null pointer dereferencing is considered undefined behavior
/// for a given function or an address space.
/// Null pointer access in non-zero address space is not considered undefined.
/// Return value: false => null pointer dereference is undefined.
/// Return value: true => null pointer dereference is not undefined.
bool NullPointerIsDefined(const Function *F, unsigned AS = 0);
template <>
struct OperandTraits<Function> : public HungoffOperandTraits<3> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(Function, Value)
} // end namespace llvm
#endif // LLVM_IR_FUNCTION_H