blob: 9a56b275088bc7c20dc2c4d3024443edf2c13930 [file] [log] [blame]
//===-- Latency.cpp ---------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "Latency.h"
#include "Assembler.h"
#include "BenchmarkRunner.h"
#include "MCInstrDescView.h"
#include "PerfHelper.h"
#include "Target.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/FormatVariadic.h"
namespace llvm {
namespace exegesis {
struct ExecutionClass {
ExecutionMode Mask;
const char *Description;
} static const kExecutionClasses[] = {
{ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS |
ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS,
"Repeating a single implicitly serial instruction"},
{ExecutionMode::SERIAL_VIA_EXPLICIT_REGS,
"Repeating a single explicitly serial instruction"},
{ExecutionMode::SERIAL_VIA_MEMORY_INSTR |
ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR,
"Repeating two instructions"},
};
static constexpr size_t kMaxAliasingInstructions = 10;
static std::vector<Instruction>
computeAliasingInstructions(const LLVMState &State, const Instruction &Instr,
size_t MaxAliasingInstructions) {
// Randomly iterate the set of instructions.
std::vector<unsigned> Opcodes;
Opcodes.resize(State.getInstrInfo().getNumOpcodes());
std::iota(Opcodes.begin(), Opcodes.end(), 0U);
std::shuffle(Opcodes.begin(), Opcodes.end(), randomGenerator());
std::vector<Instruction> AliasingInstructions;
for (const unsigned OtherOpcode : Opcodes) {
if (OtherOpcode == Instr.Description->getOpcode())
continue;
const Instruction &OtherInstr = State.getIC().getInstr(OtherOpcode);
if (OtherInstr.hasMemoryOperands())
continue;
if (Instr.hasAliasingRegistersThrough(OtherInstr))
AliasingInstructions.push_back(std::move(OtherInstr));
if (AliasingInstructions.size() >= MaxAliasingInstructions)
break;
}
return AliasingInstructions;
}
static ExecutionMode getExecutionModes(const Instruction &Instr) {
ExecutionMode EM = ExecutionMode::UNKNOWN;
if (Instr.hasAliasingImplicitRegisters())
EM |= ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS;
if (Instr.hasTiedRegisters())
EM |= ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS;
if (Instr.hasMemoryOperands())
EM |= ExecutionMode::SERIAL_VIA_MEMORY_INSTR;
else {
if (Instr.hasAliasingRegisters())
EM |= ExecutionMode::SERIAL_VIA_EXPLICIT_REGS;
if (Instr.hasOneUseOrOneDef())
EM |= ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR;
}
return EM;
}
static void appendCodeTemplates(const LLVMState &State,
const Instruction &Instr,
ExecutionMode ExecutionModeBit,
llvm::StringRef ExecutionClassDescription,
std::vector<CodeTemplate> &CodeTemplates) {
assert(isEnumValue(ExecutionModeBit) && "Bit must be a power of two");
switch (ExecutionModeBit) {
case ExecutionMode::ALWAYS_SERIAL_IMPLICIT_REGS_ALIAS:
// Nothing to do, the instruction is always serial.
LLVM_FALLTHROUGH;
case ExecutionMode::ALWAYS_SERIAL_TIED_REGS_ALIAS: {
// Picking whatever value for the tied variable will make the instruction
// serial.
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = ExecutionClassDescription;
CT.Instructions.push_back(Instr);
CodeTemplates.push_back(std::move(CT));
return;
}
case ExecutionMode::SERIAL_VIA_MEMORY_INSTR: {
// Select back-to-back memory instruction.
// TODO: Implement me.
return;
}
case ExecutionMode::SERIAL_VIA_EXPLICIT_REGS: {
// Making the execution of this instruction serial by selecting one def
// register to alias with one use register.
const AliasingConfigurations SelfAliasing(Instr, Instr);
assert(!SelfAliasing.empty() && !SelfAliasing.hasImplicitAliasing() &&
"Instr must alias itself explicitly");
InstructionTemplate IT(Instr);
// This is a self aliasing instruction so defs and uses are from the same
// instance, hence twice IT in the following call.
setRandomAliasing(SelfAliasing, IT, IT);
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = ExecutionClassDescription;
CT.Instructions.push_back(std::move(IT));
CodeTemplates.push_back(std::move(CT));
return;
}
case ExecutionMode::SERIAL_VIA_NON_MEMORY_INSTR: {
// Select back-to-back non-memory instruction.
for (const auto OtherInstr :
computeAliasingInstructions(State, Instr, kMaxAliasingInstructions)) {
const AliasingConfigurations Forward(Instr, OtherInstr);
const AliasingConfigurations Back(OtherInstr, Instr);
InstructionTemplate ThisIT(Instr);
InstructionTemplate OtherIT(OtherInstr);
if (!Forward.hasImplicitAliasing())
setRandomAliasing(Forward, ThisIT, OtherIT);
if (!Back.hasImplicitAliasing())
setRandomAliasing(Back, OtherIT, ThisIT);
CodeTemplate CT;
CT.Execution = ExecutionModeBit;
CT.Info = ExecutionClassDescription;
CT.Instructions.push_back(std::move(ThisIT));
CT.Instructions.push_back(std::move(OtherIT));
CodeTemplates.push_back(std::move(CT));
}
return;
}
default:
llvm_unreachable("Unhandled enum value");
}
}
LatencySnippetGenerator::~LatencySnippetGenerator() = default;
llvm::Expected<std::vector<CodeTemplate>>
LatencySnippetGenerator::generateCodeTemplates(const Instruction &Instr) const {
std::vector<CodeTemplate> Results;
const ExecutionMode EM = getExecutionModes(Instr);
for (const auto EC : kExecutionClasses) {
for (const auto ExecutionModeBit : getExecutionModeBits(EM & EC.Mask))
appendCodeTemplates(State, Instr, ExecutionModeBit, EC.Description,
Results);
if (!Results.empty())
break;
}
if (Results.empty())
return llvm::make_error<BenchmarkFailure>(
"No strategy found to make the execution serial");
return std::move(Results);
}
LatencyBenchmarkRunner::~LatencyBenchmarkRunner() = default;
llvm::Expected<std::vector<BenchmarkMeasure>>
LatencyBenchmarkRunner::runMeasurements(
const FunctionExecutor &Executor) const {
// Cycle measurements include some overhead from the kernel. Repeat the
// measure several times and take the minimum value.
constexpr const int NumMeasurements = 30;
int64_t MinValue = std::numeric_limits<int64_t>::max();
const char *CounterName = State.getPfmCounters().CycleCounter;
if (!CounterName)
llvm::report_fatal_error("sched model does not define a cycle counter");
for (size_t I = 0; I < NumMeasurements; ++I) {
auto ExpectedCounterValue = Executor.runAndMeasure(CounterName);
if (!ExpectedCounterValue)
return ExpectedCounterValue.takeError();
if (*ExpectedCounterValue < MinValue)
MinValue = *ExpectedCounterValue;
}
std::vector<BenchmarkMeasure> Result = {
BenchmarkMeasure::Create("latency", MinValue)};
return std::move(Result);
}
} // namespace exegesis
} // namespace llvm