blob: ed297e6782030cb32cb50788f25eda22ae9ce53c [file] [log] [blame]
//===-- X86FixupBWInsts.cpp - Fixup Byte or Word instructions -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file defines the pass that looks through the machine instructions
/// late in the compilation, and finds byte or word instructions that
/// can be profitably replaced with 32 bit instructions that give equivalent
/// results for the bits of the results that are used. There are two possible
/// reasons to do this.
///
/// One reason is to avoid false-dependences on the upper portions
/// of the registers. Only instructions that have a destination register
/// which is not in any of the source registers can be affected by this.
/// Any instruction where one of the source registers is also the destination
/// register is unaffected, because it has a true dependence on the source
/// register already. So, this consideration primarily affects load
/// instructions and register-to-register moves. It would
/// seem like cmov(s) would also be affected, but because of the way cmov is
/// really implemented by most machines as reading both the destination and
/// and source registers, and then "merging" the two based on a condition,
/// it really already should be considered as having a true dependence on the
/// destination register as well.
///
/// The other reason to do this is for potential code size savings. Word
/// operations need an extra override byte compared to their 32 bit
/// versions. So this can convert many word operations to their larger
/// size, saving a byte in encoding. This could introduce partial register
/// dependences where none existed however. As an example take:
/// orw ax, $0x1000
/// addw ax, $3
/// now if this were to get transformed into
/// orw ax, $1000
/// addl eax, $3
/// because the addl encodes shorter than the addw, this would introduce
/// a use of a register that was only partially written earlier. On older
/// Intel processors this can be quite a performance penalty, so this should
/// probably only be done when it can be proven that a new partial dependence
/// wouldn't be created, or when your know a newer processor is being
/// targeted, or when optimizing for minimum code size.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define FIXUPBW_DESC "X86 Byte/Word Instruction Fixup"
#define FIXUPBW_NAME "x86-fixup-bw-insts"
#define DEBUG_TYPE FIXUPBW_NAME
// Option to allow this optimization pass to have fine-grained control.
static cl::opt<bool>
FixupBWInsts("fixup-byte-word-insts",
cl::desc("Change byte and word instructions to larger sizes"),
cl::init(true), cl::Hidden);
namespace {
class FixupBWInstPass : public MachineFunctionPass {
/// Loop over all of the instructions in the basic block replacing applicable
/// byte or word instructions with better alternatives.
void processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB);
/// This sets the \p SuperDestReg to the 32 bit super reg of the original
/// destination register of the MachineInstr passed in. It returns true if
/// that super register is dead just prior to \p OrigMI, and false if not.
bool getSuperRegDestIfDead(MachineInstr *OrigMI,
unsigned &SuperDestReg) const;
/// Change the MachineInstr \p MI into the equivalent extending load to 32 bit
/// register if it is safe to do so. Return the replacement instruction if
/// OK, otherwise return nullptr.
MachineInstr *tryReplaceLoad(unsigned New32BitOpcode, MachineInstr *MI) const;
/// Change the MachineInstr \p MI into the equivalent 32-bit copy if it is
/// safe to do so. Return the replacement instruction if OK, otherwise return
/// nullptr.
MachineInstr *tryReplaceCopy(MachineInstr *MI) const;
// Change the MachineInstr \p MI into an eqivalent 32 bit instruction if
// possible. Return the replacement instruction if OK, return nullptr
// otherwise.
MachineInstr *tryReplaceInstr(MachineInstr *MI, MachineBasicBlock &MBB) const;
public:
static char ID;
StringRef getPassName() const override { return FIXUPBW_DESC; }
FixupBWInstPass() : MachineFunctionPass(ID) {
initializeFixupBWInstPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineLoopInfo>(); // Machine loop info is used to
// guide some heuristics.
MachineFunctionPass::getAnalysisUsage(AU);
}
/// Loop over all of the basic blocks, replacing byte and word instructions by
/// equivalent 32 bit instructions where performance or code size can be
/// improved.
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
MachineFunction *MF;
/// Machine instruction info used throughout the class.
const X86InstrInfo *TII;
/// Local member for function's OptForSize attribute.
bool OptForSize;
/// Machine loop info used for guiding some heruistics.
MachineLoopInfo *MLI;
/// Register Liveness information after the current instruction.
LivePhysRegs LiveRegs;
};
char FixupBWInstPass::ID = 0;
}
INITIALIZE_PASS(FixupBWInstPass, FIXUPBW_NAME, FIXUPBW_DESC, false, false)
FunctionPass *llvm::createX86FixupBWInsts() { return new FixupBWInstPass(); }
bool FixupBWInstPass::runOnMachineFunction(MachineFunction &MF) {
if (!FixupBWInsts || skipFunction(MF.getFunction()))
return false;
this->MF = &MF;
TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
OptForSize = MF.getFunction().optForSize();
MLI = &getAnalysis<MachineLoopInfo>();
LiveRegs.init(TII->getRegisterInfo());
LLVM_DEBUG(dbgs() << "Start X86FixupBWInsts\n";);
// Process all basic blocks.
for (auto &MBB : MF)
processBasicBlock(MF, MBB);
LLVM_DEBUG(dbgs() << "End X86FixupBWInsts\n";);
return true;
}
/// Check if after \p OrigMI the only portion of super register
/// of the destination register of \p OrigMI that is alive is that
/// destination register.
///
/// If so, return that super register in \p SuperDestReg.
bool FixupBWInstPass::getSuperRegDestIfDead(MachineInstr *OrigMI,
unsigned &SuperDestReg) const {
auto *TRI = &TII->getRegisterInfo();
unsigned OrigDestReg = OrigMI->getOperand(0).getReg();
SuperDestReg = getX86SubSuperRegister(OrigDestReg, 32);
const auto SubRegIdx = TRI->getSubRegIndex(SuperDestReg, OrigDestReg);
// Make sure that the sub-register that this instruction has as its
// destination is the lowest order sub-register of the super-register.
// If it isn't, then the register isn't really dead even if the
// super-register is considered dead.
if (SubRegIdx == X86::sub_8bit_hi)
return false;
// If neither the destination-super register nor any applicable subregisters
// are live after this instruction, then the super register is safe to use.
if (!LiveRegs.contains(SuperDestReg)) {
// If the original destination register was not the low 8-bit subregister
// then the super register check is sufficient.
if (SubRegIdx != X86::sub_8bit)
return true;
// If the original destination register was the low 8-bit subregister and
// we also need to check the 16-bit subregister and the high 8-bit
// subregister.
if (!LiveRegs.contains(getX86SubSuperRegister(OrigDestReg, 16)) &&
!LiveRegs.contains(getX86SubSuperRegister(SuperDestReg, 8,
/*High=*/true)))
return true;
// Otherwise, we have a little more checking to do.
}
// If we get here, the super-register destination (or some part of it) is
// marked as live after the original instruction.
//
// The X86 backend does not have subregister liveness tracking enabled,
// so liveness information might be overly conservative. Specifically, the
// super register might be marked as live because it is implicitly defined
// by the instruction we are examining.
//
// However, for some specific instructions (this pass only cares about MOVs)
// we can produce more precise results by analysing that MOV's operands.
//
// Indeed, if super-register is not live before the mov it means that it
// was originally <read-undef> and so we are free to modify these
// undef upper bits. That may happen in case where the use is in another MBB
// and the vreg/physreg corresponding to the move has higher width than
// necessary (e.g. due to register coalescing with a "truncate" copy).
// So, we would like to handle patterns like this:
//
// %bb.2: derived from LLVM BB %if.then
// Live Ins: %rdi
// Predecessors according to CFG: %bb.0
// %ax<def> = MOV16rm killed %rdi, 1, %noreg, 0, %noreg, implicit-def %eax
// ; No implicit %eax
// Successors according to CFG: %bb.3(?%)
//
// %bb.3: derived from LLVM BB %if.end
// Live Ins: %eax Only %ax is actually live
// Predecessors according to CFG: %bb.2 %bb.1
// %ax = KILL %ax, implicit killed %eax
// RET 0, %ax
unsigned Opc = OrigMI->getOpcode(); (void)Opc;
// These are the opcodes currently handled by the pass, if something
// else will be added we need to ensure that new opcode has the same
// properties.
assert((Opc == X86::MOV8rm || Opc == X86::MOV16rm || Opc == X86::MOV8rr ||
Opc == X86::MOV16rr) &&
"Unexpected opcode.");
bool IsDefined = false;
for (auto &MO: OrigMI->implicit_operands()) {
if (!MO.isReg())
continue;
assert((MO.isDef() || MO.isUse()) && "Expected Def or Use only!");
if (MO.isDef() && TRI->isSuperRegisterEq(OrigDestReg, MO.getReg()))
IsDefined = true;
// If MO is a use of any part of the destination register but is not equal
// to OrigDestReg or one of its subregisters, we cannot use SuperDestReg.
// For example, if OrigDestReg is %al then an implicit use of %ah, %ax,
// %eax, or %rax will prevent us from using the %eax register.
if (MO.isUse() && !TRI->isSubRegisterEq(OrigDestReg, MO.getReg()) &&
TRI->regsOverlap(SuperDestReg, MO.getReg()))
return false;
}
// Reg is not Imp-def'ed -> it's live both before/after the instruction.
if (!IsDefined)
return false;
// Otherwise, the Reg is not live before the MI and the MOV can't
// make it really live, so it's in fact dead even after the MI.
return true;
}
MachineInstr *FixupBWInstPass::tryReplaceLoad(unsigned New32BitOpcode,
MachineInstr *MI) const {
unsigned NewDestReg;
// We are going to try to rewrite this load to a larger zero-extending
// load. This is safe if all portions of the 32 bit super-register
// of the original destination register, except for the original destination
// register are dead. getSuperRegDestIfDead checks that.
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
// Safe to change the instruction.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(New32BitOpcode), NewDestReg);
unsigned NumArgs = MI->getNumOperands();
for (unsigned i = 1; i < NumArgs; ++i)
MIB.add(MI->getOperand(i));
MIB.setMemRefs(MI->memoperands());
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceCopy(MachineInstr *MI) const {
assert(MI->getNumExplicitOperands() == 2);
auto &OldDest = MI->getOperand(0);
auto &OldSrc = MI->getOperand(1);
unsigned NewDestReg;
if (!getSuperRegDestIfDead(MI, NewDestReg))
return nullptr;
unsigned NewSrcReg = getX86SubSuperRegister(OldSrc.getReg(), 32);
// This is only correct if we access the same subregister index: otherwise,
// we could try to replace "movb %ah, %al" with "movl %eax, %eax".
auto *TRI = &TII->getRegisterInfo();
if (TRI->getSubRegIndex(NewSrcReg, OldSrc.getReg()) !=
TRI->getSubRegIndex(NewDestReg, OldDest.getReg()))
return nullptr;
// Safe to change the instruction.
// Don't set src flags, as we don't know if we're also killing the superreg.
// However, the superregister might not be defined; make it explicit that
// we don't care about the higher bits by reading it as Undef, and adding
// an imp-use on the original subregister.
MachineInstrBuilder MIB =
BuildMI(*MF, MI->getDebugLoc(), TII->get(X86::MOV32rr), NewDestReg)
.addReg(NewSrcReg, RegState::Undef)
.addReg(OldSrc.getReg(), RegState::Implicit);
// Drop imp-defs/uses that would be redundant with the new def/use.
for (auto &Op : MI->implicit_operands())
if (Op.getReg() != (Op.isDef() ? NewDestReg : NewSrcReg))
MIB.add(Op);
return MIB;
}
MachineInstr *FixupBWInstPass::tryReplaceInstr(MachineInstr *MI,
MachineBasicBlock &MBB) const {
// See if this is an instruction of the type we are currently looking for.
switch (MI->getOpcode()) {
case X86::MOV8rm:
// Only replace 8 bit loads with the zero extending versions if
// in an inner most loop and not optimizing for size. This takes
// an extra byte to encode, and provides limited performance upside.
if (MachineLoop *ML = MLI->getLoopFor(&MBB))
if (ML->begin() == ML->end() && !OptForSize)
return tryReplaceLoad(X86::MOVZX32rm8, MI);
break;
case X86::MOV16rm:
// Always try to replace 16 bit load with 32 bit zero extending.
// Code size is the same, and there is sometimes a perf advantage
// from eliminating a false dependence on the upper portion of
// the register.
return tryReplaceLoad(X86::MOVZX32rm16, MI);
case X86::MOV8rr:
case X86::MOV16rr:
// Always try to replace 8/16 bit copies with a 32 bit copy.
// Code size is either less (16) or equal (8), and there is sometimes a
// perf advantage from eliminating a false dependence on the upper portion
// of the register.
return tryReplaceCopy(MI);
default:
// nothing to do here.
break;
}
return nullptr;
}
void FixupBWInstPass::processBasicBlock(MachineFunction &MF,
MachineBasicBlock &MBB) {
// This algorithm doesn't delete the instructions it is replacing
// right away. By leaving the existing instructions in place, the
// register liveness information doesn't change, and this makes the
// analysis that goes on be better than if the replaced instructions
// were immediately removed.
//
// This algorithm always creates a replacement instruction
// and notes that and the original in a data structure, until the
// whole BB has been analyzed. This keeps the replacement instructions
// from making it seem as if the larger register might be live.
SmallVector<std::pair<MachineInstr *, MachineInstr *>, 8> MIReplacements;
// Start computing liveness for this block. We iterate from the end to be able
// to update this for each instruction.
LiveRegs.clear();
// We run after PEI, so we need to AddPristinesAndCSRs.
LiveRegs.addLiveOuts(MBB);
for (auto I = MBB.rbegin(); I != MBB.rend(); ++I) {
MachineInstr *MI = &*I;
if (MachineInstr *NewMI = tryReplaceInstr(MI, MBB))
MIReplacements.push_back(std::make_pair(MI, NewMI));
// We're done with this instruction, update liveness for the next one.
LiveRegs.stepBackward(*MI);
}
while (!MIReplacements.empty()) {
MachineInstr *MI = MIReplacements.back().first;
MachineInstr *NewMI = MIReplacements.back().second;
MIReplacements.pop_back();
MBB.insert(MI, NewMI);
MBB.erase(MI);
}
}