blob: 351e9c6dfd0fa0db902ed2e45cbb97d998f9629a [file] [log] [blame]
/**************************************************************/
/* ********************************************************** */
/* * * */
/* * CLAUSES * */
/* * * */
/* * $Module: CLAUSE * */
/* * * */
/* * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001 * */
/* * MPI fuer Informatik * */
/* * * */
/* * This program is free software; you can redistribute * */
/* * it and/or modify it under the terms of the GNU * */
/* * General Public License as published by the Free * */
/* * Software Foundation; either version 2 of the License, * */
/* * or (at your option) any later version. * */
/* * * */
/* * This program is distributed in the hope that it will * */
/* * be useful, but WITHOUT ANY WARRANTY; without even * */
/* * the implied warranty of MERCHANTABILITY or FITNESS * */
/* * FOR A PARTICULAR PURPOSE. See the GNU General Public * */
/* * License for more details. * */
/* * * */
/* * You should have received a copy of the GNU General * */
/* * Public License along with this program; if not, write * */
/* * to the Free Software Foundation, Inc., 59 Temple * */
/* * Place, Suite 330, Boston, MA 02111-1307 USA * */
/* * * */
/* * * */
/* $Revision$ * */
/* $State$ * */
/* $Date$ * */
/* $Author$ * */
/* * * */
/* * Contact: * */
/* * Christoph Weidenbach * */
/* * MPI fuer Informatik * */
/* * Stuhlsatzenhausweg 85 * */
/* * 66123 Saarbruecken * */
/* * Email: weidenb@mpi-sb.mpg.de * */
/* * Germany * */
/* * * */
/* ********************************************************** */
/**************************************************************/
/* $RCSfile$ */
#ifndef _CLAUSE_
#define _CLAUSE_
/**************************************************************/
/* Includes */
/**************************************************************/
#include "sharing.h"
#include "foldfg.h"
#include "order.h"
#include "subst.h"
#include "flags.h"
#include "symbol.h"
/**************************************************************/
/* Data Structures and Constants */
/**************************************************************/
/* Means weight of literal or clause is undefined */
extern const NAT clause_WEIGHTUNDEFINED;
extern int clause_CLAUSECOUNTER;
typedef enum {MAXIMAL=1, STRICTMAXIMAL=2, LITSELECT=4} MAXFLAG;
typedef enum {CLAUSE_DELETION, EMPTY_SORT, SORT_RESOLUTION,
EQUALITY_RESOLUTION, EQUALITY_FACTORING, MERGING_PARAMODULATION,
PARAMODULATION, ORDERED_PARAMODULATION,
SUPERPOSITION_RIGHT, SUPERPOSITION_LEFT,
SIMPLE_HYPER, ORDERED_HYPER, UR_RESOLUTION,
GENERAL_RESOLUTION, GENERAL_FACTORING, SPLITTING, INPUT,
CONDENSING, ASSIGNMENT_EQUATION_DELETION, OBVIOUS_REDUCTIONS,
SORT_SIMPLIFICATION, REWRITING, CONTEXTUAL_REWRITING,
MATCHING_REPLACEMENT_RESOLUTION, UNIT_CONFLICT, DEFAPPLICATION,
TERMINATOR, TEMPORARY
} RULE;
typedef unsigned long SPLITFIELDENTRY;
typedef SPLITFIELDENTRY* SPLITFIELD;
typedef enum {WORKEDOFF=1,CLAUSESELECT=2,DOCCLAUSE=4,CONCLAUSE=8,BLOCKED=16,
NOPARAINTO=32, MARKED=64, HIDDEN=128} CLAUSE_FLAGS;
/* As there are a lot of implications a clauses properties may have */
/* for the prover, this information should be kept with the clause. */
/* That for a flagfield is foreseen, most likely an integer used */
/* like the sort-Bitfield existing for term, now used for varoccs. */
typedef struct CLAUSE_HELP{
int clausenumber;
NAT weight; /* The sum of the weight of all literals */
NAT depth; /* The depth of the clause in the derivation */
NAT validlevel; /* Level of splitting where clause is valid. */
SPLITFIELD splitfield;
unsigned splitfield_length;
LIST parentCls, parentLits; /* Parents clauses' clause and lit numbers.*/
NAT flags;
SYMBOL maxVar; /* The maximal variable symbol in the clause */
struct LITERAL_HELP{
NAT maxLit; /* for clause intern literal ordering */
NAT weight; /* weight of the <atomWithSign> below */
BOOL oriented; /* Flag, TRUE if clause is oriented, i.e. equalities
with bigger first arg and all other predicates */
struct CLAUSE_HELP *owningClause;
TERM atomWithSign; /* Pointer to the term, where an unshared
Term for the sign of negative literals
is supplied additionally. */
} **literals; /* An Array of (c+a+s) literalpointers in this order. */
int c; /* number of constraint literals */
int a; /* number of antecedent literals */
int s; /* number of succedent literals */
RULE origin;
} *CLAUSE, CLAUSE_NODE;
typedef struct LITERAL_HELP *LITERAL, LITERAL_NODE;
/**************************************************************/
/* Functions Prototypes */
/**************************************************************/
/**************************************************************/
/* Functions on clauses and literals creation and deletion. */
/**************************************************************/
void clause_Init(void);
CLAUSE clause_CreateBody(int);
CLAUSE clause_Create(LIST, LIST, LIST, FLAGSTORE, PRECEDENCE);
CLAUSE clause_CreateCrude(LIST, LIST, LIST, BOOL);
CLAUSE clause_CreateUnnormalized(LIST, LIST, LIST);
CLAUSE clause_CreateFromLiterals(LIST, BOOL, BOOL, BOOL, FLAGSTORE, PRECEDENCE);
void clause_Delete(CLAUSE);
LITERAL clause_LiteralCreate(TERM, CLAUSE);
LITERAL clause_LiteralCreateNegative(TERM, CLAUSE); /* Unused */
void clause_LiteralDelete(LITERAL);
LIST clause_CopyConstraint(CLAUSE);
LIST clause_CopyAntecedentExcept(CLAUSE, int);
LIST clause_CopySuccedent(CLAUSE);
LIST clause_CopySuccedentExcept(CLAUSE, int);
/**************************************************************/
/* Functions to use the sharing for clauses and literals. */
/**************************************************************/
void clause_InsertIntoSharing(CLAUSE, SHARED_INDEX, FLAGSTORE, PRECEDENCE);
void clause_DeleteFromSharing(CLAUSE, SHARED_INDEX, FLAGSTORE, PRECEDENCE);
void clause_MakeUnshared(CLAUSE, SHARED_INDEX);
void clause_MoveSharedClause(CLAUSE, SHARED_INDEX, SHARED_INDEX, FLAGSTORE, PRECEDENCE);
void clause_DeleteSharedLiteral(CLAUSE, int, SHARED_INDEX, FLAGSTORE, PRECEDENCE);
void clause_LiteralInsertIntoSharing(LITERAL, SHARED_INDEX);
void clause_LiteralDeleteFromSharing(LITERAL, SHARED_INDEX); /* Used only in clause.c */
void clause_DeleteClauseList(LIST);
void clause_DeleteSharedClauseList(LIST, SHARED_INDEX, FLAGSTORE, PRECEDENCE);
void clause_DeleteAllIndexedClauses(SHARED_INDEX, FLAGSTORE, PRECEDENCE); /* Necessary? */
void clause_PrintAllIndexedClauses(SHARED_INDEX); /* For Debugging */
LIST clause_AllIndexedClauses(SHARED_INDEX);
/**************************************************************/
/* Clause Comparisons */
/**************************************************************/
BOOL clause_IsHornClause(CLAUSE);
int clause_CompareAbstract(CLAUSE, CLAUSE);
/**************************************************************/
/* Clause and literal Input and Output Functions */
/**************************************************************/
void clause_Print(CLAUSE);
void clause_PrintVerbose(CLAUSE, FLAGSTORE, PRECEDENCE);
void clause_PrintMaxLitsOnly(CLAUSE, FLAGSTORE, PRECEDENCE); /* For Debugging */
void clause_FPrint(FILE*, CLAUSE); /* For Debugging */
void clause_FPrintRule(FILE*, CLAUSE);
void clause_FPrintOtter(FILE*, CLAUSE); /* Unused */
void clause_FPrintCnfDFG(FILE* , BOOL, LIST, LIST, FLAGSTORE, PRECEDENCE);
void clause_FPrintCnfDFGProblem(FILE* , const char*, const char*, const char*, const char*, LIST);
void clause_FPrintCnfFormulasDFGProblem(FILE* , BOOL, const char*, const char*, const char*, const char*, LIST, LIST, FLAGSTORE, PRECEDENCE);
void clause_FPrintCnfDFGDerivables(FILE*, LIST, BOOL);
void clause_FPrintDFG(FILE*, CLAUSE, BOOL);
void clause_FPrintDFGStep(FILE*, CLAUSE, BOOL);
void clause_FPrintFormulaDFG(FILE*, CLAUSE, BOOL);
void clause_FPrintCnfOtter(FILE*, LIST, FLAGSTORE);
void clause_LiteralPrint(LITERAL); /* For Debugging */
void clause_LiteralListPrint(LIST); /* For Debugging */
void clause_LiteralPrintUnsigned(LITERAL); /* For Debugging */
void clause_LiteralPrintSigned(LITERAL); /* For Debugging */
void clause_LiteralFPrint(FILE*, LITERAL); /* For Debugging */
void clause_ListPrint(LIST);
void clause_PrintParentClauses(CLAUSE); /* For Debugging */
void clause_PrintOrigin(CLAUSE); /* For Debugging */
void clause_FPrintOrigin(FILE*, CLAUSE);
/**************************************************************/
/* Specials */
/**************************************************************/
CLAUSE clause_Copy(CLAUSE);
LITERAL clause_LiteralCopy(LITERAL);
static __inline__ LIST clause_CopyClauseList(LIST List)
{
return list_CopyWithElement(List, (POINTER (*)(POINTER)) clause_Copy);
}
void clause_DeleteLiteral(CLAUSE, int, FLAGSTORE, PRECEDENCE);
void clause_DeleteLiteralNN(CLAUSE, int);
void clause_DeleteLiterals(CLAUSE, LIST, FLAGSTORE, PRECEDENCE); /* Unused */
LIST clause_GetLiteralSubSetList(CLAUSE, int, int, FLAGSTORE, PRECEDENCE);
void clause_ReplaceLiteralSubSet(CLAUSE, int, int, LIST, FLAGSTORE, PRECEDENCE);
void clause_FixLiteralOrder(CLAUSE, FLAGSTORE, PRECEDENCE);
SYMBOL clause_AtomMaxVar(TERM);
void clause_SetMaxLitFlags(CLAUSE, FLAGSTORE, PRECEDENCE);
SYMBOL clause_LiteralMaxVar(LITERAL); /* Used only in clause.c */
SYMBOL clause_SearchMaxVar(CLAUSE);
void clause_UpdateMaxVar(CLAUSE);
void clause_RenameVarsBiggerThan(CLAUSE, SYMBOL);
void clause_Normalize(CLAUSE);
void clause_SetSortConstraint(CLAUSE, BOOL, FLAGSTORE, PRECEDENCE);
void clause_SubstApply(SUBST, CLAUSE);
void clause_ReplaceVariable(CLAUSE, SYMBOL, TERM);
void clause_OrientEqualities(CLAUSE, FLAGSTORE, PRECEDENCE);
NAT clause_NumberOfVarOccs(CLAUSE);
NAT clause_NumberOfSymbolOccurrences(CLAUSE, SYMBOL);
NAT clause_ComputeWeight(CLAUSE, FLAGSTORE);
NAT clause_LiteralComputeWeight(LITERAL, FLAGSTORE);
NAT clause_ComputeTermDepth(CLAUSE);
NAT clause_MaxTermDepthClauseList(LIST);
NAT clause_ComputeSize(CLAUSE);
BOOL clause_WeightCorrect(CLAUSE, FLAGSTORE, PRECEDENCE); /* Unused */
LIST clause_MoveBestLiteralToFront(LIST, SUBST, SYMBOL,
BOOL (*)(LITERAL, NAT, LITERAL, NAT));
LIST clause_InsertWeighed(CLAUSE, LIST, FLAGSTORE, PRECEDENCE);
LIST clause_ListSortWeighed(LIST);
BOOL clause_HasTermSortConstraintLits(CLAUSE);
BOOL clause_HasSolvedConstraint(CLAUSE);
BOOL clause_IsDeclarationClause(CLAUSE);
BOOL clause_IsSortTheoryClause(CLAUSE, FLAGSTORE, PRECEDENCE);
BOOL clause_IsPartOfDefinition(CLAUSE, TERM, int*, LIST);
BOOL clause_IsPotentialSortTheoryClause(CLAUSE, FLAGSTORE, PRECEDENCE);
BOOL clause_HasOnlyVarsInConstraint(CLAUSE, FLAGSTORE, PRECEDENCE);
BOOL clause_HasSortInSuccedent(CLAUSE, FLAGSTORE, PRECEDENCE);
BOOL clause_ContainsPotPredDef(CLAUSE, FLAGSTORE, PRECEDENCE, NAT*, LIST*);
BOOL clause_LitsHaveCommonVar(LITERAL, LITERAL);
void clause_SelectLiteral(CLAUSE, FLAGSTORE);
void clause_SetSpecialFlags(CLAUSE,BOOL, FLAGSTORE, PRECEDENCE);
BOOL clause_LiteralIsLiteral(LITERAL);
BOOL clause_IsClause(CLAUSE, FLAGSTORE, PRECEDENCE);
BOOL clause_IsUnorderedClause(CLAUSE);
BOOL clause_ContainsPositiveEquations(CLAUSE);
BOOL clause_ContainsNegativeEquations(CLAUSE);
int clause_ContainsFolAtom(CLAUSE,BOOL*,BOOL*,BOOL*,BOOL*);
BOOL clause_ContainsVariables(CLAUSE);
BOOL clause_ContainsFunctions(CLAUSE);
BOOL clause_ContainsSymbol(CLAUSE, SYMBOL);
void clause_ContainsSortRestriction(CLAUSE,BOOL*,BOOL*);
BOOL clause_ImpliesFiniteDomain(CLAUSE);
BOOL clause_ImpliesNonTrivialDomain(CLAUSE);
LIST clause_FiniteMonadicPredicates(LIST);
CLAUSE clause_GetNumberedCl(int, LIST);
LIST clause_NumberSort(LIST);
LIST clause_NumberDelete(LIST,int);
void clause_Check(CLAUSE, FLAGSTORE, PRECEDENCE);
void clause_DeleteFlatFromIndex(CLAUSE, st_INDEX);
void clause_InsertFlatIntoIndex(CLAUSE, st_INDEX);
void clause_DeleteClauseListFlatFromIndex(LIST, st_INDEX);
RULE clause_GetOriginFromString(const char*);
void clause_CountSymbols(CLAUSE);
LIST clause_ListOfPredicates(CLAUSE);
LIST clause_ListOfConstants(CLAUSE);
LIST clause_ListOfVariables(CLAUSE);
LIST clause_ListOfFunctions(CLAUSE);
/* special output functions for clauses with parent pointers */
void clause_PParentsFPrint(FILE*, CLAUSE);
void clause_PParentsListFPrint(FILE*, LIST L);
void clause_PParentsPrint(CLAUSE);
void clause_PParentsListPrint(LIST);
void clause_PParentsFPrintGen(FILE*, CLAUSE, BOOL);
/**************************************************************/
/* Inline Functions */
/**************************************************************/
/**************************************************************/
/* Accessing Literals 1 */
/**************************************************************/
static __inline__ TERM clause_LiteralSignedAtom(LITERAL L)
{
return L->atomWithSign;
}
static __inline__ CLAUSE clause_LiteralOwningClause(LITERAL L)
{
return L->owningClause;
}
static __inline__ void clause_LiteralSetOwningClause(LITERAL L, CLAUSE C)
{
L->owningClause = C;
}
static __inline__ void clause_LiteralSetOrientedEquality(LITERAL L)
{
L->oriented = TRUE;
}
static __inline__ void clause_LiteralSetNoOrientedEquality(LITERAL L)
{
L->oriented = FALSE;
}
static __inline__ NAT clause_LiteralWeight(LITERAL L)
{
#ifdef CHECK
if (L->weight == clause_WEIGHTUNDEFINED) {
misc_StartErrorReport();
misc_ErrorReport("\n In clause_LiteralWeight:");
misc_ErrorReport(" Tried to access undefined weight.");
misc_FinishErrorReport();
}
#endif
return L->weight;
}
static __inline__ void clause_UpdateLiteralWeight(LITERAL L, FLAGSTORE Flags)
{
L->weight = clause_LiteralComputeWeight(L, Flags);
}
static __inline__ void clause_LiteralFlagReset(LITERAL L)
{
L->maxLit = 0;
}
static __inline__ BOOL clause_LiteralGetFlag(LITERAL L, MAXFLAG Flag)
{
return ((L->maxLit & Flag) != 0);
}
static __inline__ void clause_LiteralSetFlag(LITERAL L, MAXFLAG Flag)
{
L->maxLit = (L->maxLit) | Flag;
}
static __inline__ BOOL clause_LiteralIsMaximal(LITERAL L)
{
return clause_LiteralGetFlag(L, MAXIMAL);
}
static __inline__ BOOL clause_LiteralIsOrientedEquality(LITERAL L)
{
return L->oriented;
}
static __inline__ BOOL clause_LiteralIsNotOrientedEquality(LITERAL L)
{
return !(L->oriented);
}
/**************************************************************/
/* Literal Comparison 1 */
/**************************************************************/
static __inline__ BOOL clause_LiteralIsNegative(LITERAL L)
{
return (term_TopSymbol(clause_LiteralSignedAtom(L)) == fol_Not());
}
static __inline__ BOOL clause_LiteralIsPositive(LITERAL L)
{
return !clause_LiteralIsNegative(L);
}
static __inline__ BOOL clause_LiteralsAreComplementary(LITERAL L1, LITERAL L2)
{
return ((clause_LiteralIsNegative(L1) &&
clause_LiteralIsPositive(L2)) ||
(clause_LiteralIsNegative(L2) &&
clause_LiteralIsPositive(L1))); /* xor */
}
static __inline__ BOOL clause_HyperLiteralIsBetter(LITERAL Dummy1, NAT S1,
LITERAL Dummy2, NAT S2)
/**************************************************************
INPUT: Two literals and its sizes wrt. some substitution.
RETURNS: TRUE, if the first literal is 'better' than the second literal,
FALSE otherwise.
EFFECT: A literal is 'better' than another, if S1 > Ss.
Since we have to find unifiable complementary literals
for every remaining antecedent literal, it seems to be
a good idea to try the most 'difficult' literal first,
in order to stop the search as early as possible..
Here we prefer the literal with the highest number
of symbols..
This function is used as parameter for the function
clause_MoveBestLiteralToFront.
CAUTION: The parameters <Dummy1> and <Dummy2> are unused, they're just
added to keep the compiler quiet.
***************************************************************/
{
return (S1 > S2);
}
/**************************************************************/
/* Accessing Literals 2 */
/**************************************************************/
static __inline__ TERM clause_LiteralAtom(LITERAL L)
{
if (clause_LiteralIsNegative(L))
return term_FirstArgument(clause_LiteralSignedAtom(L));
else
return clause_LiteralSignedAtom(L);
}
static __inline__ SYMBOL clause_LiteralPredicate(LITERAL L)
{
return term_TopSymbol(clause_LiteralAtom(L));
}
static __inline__ BOOL clause_LiteralIsPredicate(LITERAL L)
{
return !fol_IsEquality(clause_LiteralAtom(L));
}
static __inline__ BOOL clause_LiteralIsEquality(LITERAL L)
{
return fol_IsEquality(clause_LiteralAtom(L));
}
static __inline__ BOOL clause_LiteralIsSort(LITERAL L)
{
SYMBOL S;
S = clause_LiteralPredicate(L);
return (symbol_IsPredicate(S) &&
(symbol_Arity(S) == 1));
}
static __inline__ void clause_LiteralSetAtom(LITERAL L, TERM A)
{
if (clause_LiteralIsNegative(L))
list_Rplaca(term_ArgumentList(clause_LiteralSignedAtom(L)),A);
else
L->atomWithSign = A;
}
static __inline__ void clause_LiteralSetNegAtom(LITERAL L, TERM A)
{
list_Rplaca(term_ArgumentList(clause_LiteralSignedAtom(L)), A);
}
static __inline__ void clause_LiteralSetPosAtom(LITERAL L, TERM A)
{
L->atomWithSign = A;
}
static __inline__ void clause_NLiteralSetLiteral(LITERAL L, TERM LIT)
{
L->atomWithSign = LIT;
}
/**************************************************************/
/* Memory management */
/**************************************************************/
static __inline__ void clause_LiteralFree(LITERAL L)
{
memory_Free(L, sizeof(LITERAL_NODE));
}
/**************************************************************/
/* Functions to access literals. */
/**************************************************************/
static __inline__ LITERAL clause_GetLiteral(CLAUSE C, int Index)
{
return C->literals[Index];
}
static __inline__ void clause_SetLiteral(CLAUSE C, int Index, LITERAL L)
{
C->literals[Index]= L;
}
static __inline__ TERM clause_GetLiteralTerm(CLAUSE C, int Index)
{
return clause_LiteralSignedAtom(clause_GetLiteral(C, Index));
}
static __inline__ TERM clause_GetLiteralAtom(CLAUSE C, int Index)
{
return clause_LiteralAtom(clause_GetLiteral(C, Index));
}
static __inline__ int clause_NumOfConsLits(CLAUSE Clause)
{
return Clause->c;
}
static __inline__ int clause_NumOfAnteLits(CLAUSE Clause)
{
return Clause->a;
}
static __inline__ int clause_NumOfSuccLits(CLAUSE Clause)
{
return Clause->s;
}
static __inline__ void clause_SetNumOfConsLits(CLAUSE Clause, int Number)
{
Clause->c = Number;
}
static __inline__ void clause_SetNumOfAnteLits(CLAUSE Clause, int Number)
{
Clause->a = Number;
}
static __inline__ void clause_SetNumOfSuccLits(CLAUSE Clause, int Number)
{
Clause->s = Number;
}
static __inline__ int clause_Length(CLAUSE Clause)
{
return (clause_NumOfConsLits(Clause) +
clause_NumOfAnteLits(Clause) +
clause_NumOfSuccLits(Clause));
}
static __inline__ int clause_LastLitIndex(CLAUSE Clause)
{
return clause_Length(Clause) - 1;
}
static __inline__ int clause_FirstLitIndex(void)
{
return 0;
}
static __inline__ int clause_FirstConstraintLitIndex(CLAUSE Clause)
{
return 0;
}
static __inline__ int clause_FirstAntecedentLitIndex(CLAUSE Clause)
{
return clause_NumOfConsLits(Clause);
}
static __inline__ int clause_FirstSuccedentLitIndex(CLAUSE Clause)
{
return (clause_NumOfAnteLits(Clause) + clause_NumOfConsLits(Clause));
}
static __inline__ int clause_LastConstraintLitIndex(CLAUSE Clause)
{
return clause_NumOfConsLits(Clause) - 1;
}
static __inline__ int clause_LastAntecedentLitIndex(CLAUSE Clause)
{
return clause_FirstSuccedentLitIndex(Clause) - 1;
}
static __inline__ int clause_LastSuccedentLitIndex(CLAUSE Clause)
{
return clause_Length(Clause) - 1;
}
static __inline__ LIST clause_GetLiteralList(CLAUSE Clause)
/**************************************************************
INPUT: A clause.
RETURNS: A new list is created containing all literals of the
clause. The list contains pointers, not literal indexes.
***************************************************************/
{
LIST Result;
int i;
Result = list_Nil();
for (i=clause_FirstLitIndex(); i<=clause_LastLitIndex(Clause); i++)
Result = list_Cons(clause_GetLiteral(Clause, i), Result);
return Result;
}
static __inline__ LIST clause_GetLiteralListExcept(CLAUSE Clause, int Index)
/**************************************************************
INPUT: A clause.
RETURNS: A new list is created containing all literals of the
clause except the literal at <Index>. The list contains
pointers, not literal indexes.
***************************************************************/
{
LIST Result;
int i;
Result = list_Nil();
for (i=clause_FirstLitIndex(); i<=clause_LastLitIndex(Clause); i++)
if (i != Index)
Result = list_Cons(clause_GetLiteral(Clause, i), Result);
return Result;
}
/**************************************************************/
/* Clause Access Macros */
/**************************************************************/
static __inline__ int clause_Counter(void)
{
return clause_CLAUSECOUNTER;
}
static __inline__ void clause_SetCounter(int Value)
{
#ifdef CHECK
if (Value < 0) {
misc_StartErrorReport();
misc_ErrorReport("\n In clause_SetCounter: new counter value is negative.");
misc_FinishErrorReport();
}
#endif
clause_CLAUSECOUNTER = Value;
}
static __inline__ int clause_IncreaseCounter(void)
{
#ifdef CHECK
if (clause_CLAUSECOUNTER == INT_MAX) {
misc_StartErrorReport();
misc_ErrorReport("\n In clause_IncreaseCounter: counter overflow.");
misc_FinishErrorReport();
}
#endif
return clause_CLAUSECOUNTER++;
}
static __inline__ void clause_DecreaseCounter(void)
{
#ifdef CHECK
if (clause_CLAUSECOUNTER == 0) {
misc_FinishErrorReport();
misc_ErrorReport("\n In clause_DecreaseCounter: counter underflow.");
misc_FinishErrorReport();
}
#endif
clause_CLAUSECOUNTER--;
}
static __inline__ NAT clause_Depth(CLAUSE Clause)
{
return Clause->depth;
}
static __inline__ void clause_SetDepth(CLAUSE Clause, NAT NewDepth)
{
Clause->depth = NewDepth;
}
static __inline__ NAT clause_Weight(CLAUSE Clause)
{
#ifdef CHECK
if (Clause->weight == clause_WEIGHTUNDEFINED) {
misc_StartErrorReport();
misc_ErrorReport("\n In clause_Weight: Tried to access undefined weight.");
misc_FinishErrorReport();
}
#endif
return Clause->weight;
}
static __inline__ void clause_UpdateWeight(CLAUSE Clause, FLAGSTORE Flags)
{
Clause->weight = clause_ComputeWeight(Clause, Flags);
}
static __inline__ int clause_Number(const CLAUSE Clause)
{
return Clause->clausenumber;
}
static __inline__ void clause_SetNumber(CLAUSE Clause, int Number)
{
Clause->clausenumber = Number;
}
static __inline__ void clause_NewNumber(CLAUSE Clause)
{
Clause->clausenumber = clause_IncreaseCounter();
}
static __inline__ NAT clause_SplitLevel(CLAUSE Clause)
{
return Clause->validlevel;
}
static __inline__ BOOL clause_CheckSplitLevel(CLAUSE Clause)
/**************************************************************
INPUT: A clause.
RETURNS: TRUE, if the splitlevel invariant for the clause is fulfilled.
EFFECT: Checks, if the validlevel of the clause is the order
of the highest set bit in the SPLITFIELD entry
of the clause.
***************************************************************/
{
if (Clause->validlevel == 0)
return (Clause->splitfield == NULL);
else {
int i, j;
for (i = Clause->splitfield_length-1; i >= 0; i--)
if (Clause->splitfield[i] != 0)
break;
for (j = sizeof(SPLITFIELDENTRY)*CHAR_BIT-1; j >= 0; j--)
if (Clause->splitfield[i] & ((SPLITFIELDENTRY)1 << j))
break;
return (Clause->validlevel == (i*sizeof(SPLITFIELDENTRY)*CHAR_BIT+j));
}
}
static __inline__ LIST clause_ParentClauses(CLAUSE Clause)
{
return Clause->parentCls;
}
static __inline__ LIST clause_ParentLiterals(CLAUSE Clause)
{
return Clause->parentLits;
}
static __inline__ SYMBOL clause_MaxVar(CLAUSE Clause)
{
return Clause->maxVar;
}
static __inline__ void clause_SetMaxVar(CLAUSE Clause, SYMBOL Variable)
{
Clause->maxVar = Variable;
}
static __inline__ RULE clause_Origin(CLAUSE Clause)
{
return Clause->origin;
}
static __inline__ BOOL clause_Exists(CLAUSE Clause)
{
return (Clause != (CLAUSE)NULL);
}
static __inline__ BOOL clause_LiteralExists(LITERAL L)
{
return (L != (LITERAL)NULL);
}
static __inline__ CLAUSE clause_Null(void)
{
return (CLAUSE) NULL;
}
static __inline__ void clause_SetSplitLevel(CLAUSE Clause, NAT Level)
{
Clause->validlevel = Level;
}
static __inline__ void clause_InitSplitData(CLAUSE C)
{
C->splitfield = NULL;
C->splitfield_length = 0;
clause_SetSplitLevel(C, 0);
}
static __inline__ void clause_SetSplitField(CLAUSE Clause, SPLITFIELD B,
unsigned Length)
{
unsigned i;
if (Clause->splitfield_length != Length) {
if (Clause->splitfield != NULL) {
memory_Free(Clause->splitfield,
sizeof(SPLITFIELDENTRY) * Clause->splitfield_length);
}
if (Length != 0) {
Clause->splitfield = memory_Malloc(sizeof(SPLITFIELDENTRY) * Length);
}
else
Clause->splitfield = NULL;
Clause->splitfield_length = Length;
}
for (i=0; i < Length; i++)
Clause->splitfield[i] = B[i];
}
static __inline__ NAT clause_ComputeSplitFieldAddress(NAT n, NAT* field)
{
*field = 0;
while (n >= (sizeof(SPLITFIELDENTRY) * CHAR_BIT)) {
(*field)++;
n -= sizeof(SPLITFIELDENTRY) * CHAR_BIT;
}
return n;
}
static __inline__ void clause_ExpandSplitField(CLAUSE C, NAT Length)
{
SPLITFIELD NewField;
NAT i;
if (C->splitfield_length < Length) {
NewField = memory_Malloc(sizeof(SPLITFIELDENTRY) * Length);
for (i=0; i < C->splitfield_length; i++)
NewField[i] = C->splitfield[i];
for (i=C->splitfield_length; i < Length; i++)
NewField[i] = 0;
if (C->splitfield != NULL) {
memory_Free(C->splitfield,
sizeof(SPLITFIELDENTRY) * C->splitfield_length);
}
C->splitfield = NewField;
C->splitfield_length = Length;
}
}
static __inline__ void clause_UpdateSplitField(CLAUSE C1, CLAUSE C2)
/* Add the split data of <C2> to <C1> */
{
unsigned i;
if (C1->splitfield_length < C2->splitfield_length)
clause_ExpandSplitField(C1, C2->splitfield_length);
for (i=0; i < C2->splitfield_length; i++)
C1->splitfield[i] = C1->splitfield[i] | C2->splitfield[i];
}
static __inline__ void clause_ClearSplitField(CLAUSE C)
{
int i;
for (i=C->splitfield_length-1; i >=0; i--)
C->splitfield[i] = 0;
}
static __inline__ void clause_SetSplitFieldBit(CLAUSE Clause, NAT n)
{
unsigned field;
n = clause_ComputeSplitFieldAddress(n, &field);
if (field >= Clause->splitfield_length)
clause_ExpandSplitField(Clause, field + 1);
Clause->splitfield[field] = (Clause->splitfield[field]) |
((SPLITFIELDENTRY)1 << n);
}
static __inline__ BOOL clause_GetFlag(CLAUSE Clause, CLAUSE_FLAGS Flag)
{
return (Clause->flags & Flag) != 0;
}
static __inline__ void clause_SetFlag(CLAUSE Clause, CLAUSE_FLAGS Flag)
{
Clause->flags = Clause->flags | Flag;
}
static __inline__ void clause_RemoveFlag(CLAUSE Clause, CLAUSE_FLAGS Flag)
{
if (Clause->flags & Flag)
Clause->flags = Clause->flags - Flag;
}
static __inline__ void clause_ClearFlags(CLAUSE Clause)
{
Clause->flags = 0;
}
static __inline__ BOOL clause_DependsOnSplitLevel(CLAUSE C, NAT N)
{
if (N==0)
return TRUE;
else {
unsigned field;
N = clause_ComputeSplitFieldAddress(N, &field);
if (field >= C->splitfield_length)
return FALSE;
else
return (C->splitfield[field] & ((SPLITFIELDENTRY)1 << N)) != 0;
}
}
static __inline__ void clause_SetSplitDataFromFather(CLAUSE Result,
CLAUSE Father)
{
if (clause_GetFlag(Father, CONCLAUSE))
clause_SetFlag(Result, CONCLAUSE);
clause_SetSplitLevel(Result, clause_SplitLevel(Father));
clause_SetSplitField(Result, Father->splitfield, Father->splitfield_length);
}
static __inline__ void clause_UpdateSplitDataFromNewSplitting(CLAUSE Result,
CLAUSE Father,
NAT Level)
{
unsigned field;
NAT i;
clause_SetSplitLevel(Result, Level);
Level = clause_ComputeSplitFieldAddress(Level, &field);
if (field >= Result->splitfield_length) {
if (Result->splitfield != NULL)
memory_Free(Result->splitfield,
sizeof(SPLITFIELDENTRY) * Result->splitfield_length);
Result->splitfield = memory_Malloc((field + 1) * sizeof(SPLITFIELDENTRY));
Result->splitfield_length = field + 1;
}
if (clause_GetFlag(Father, CONCLAUSE))
clause_SetFlag(Result, CONCLAUSE);
for (i=0; i < Father->splitfield_length; i++)
Result->splitfield[i] = Father->splitfield[i];
for (i=Father->splitfield_length; i < Result->splitfield_length; i++)
Result->splitfield[i] = 0;
Result->splitfield[field] = (Result->splitfield[field] | ((SPLITFIELDENTRY)1 << Level));
}
static __inline__ void clause_UpdateSplitDataFromPartner(CLAUSE Result,
CLAUSE Partner)
{
if (clause_GetFlag(Partner, CONCLAUSE))
clause_SetFlag(Result, CONCLAUSE);
if (clause_SplitLevel(Partner) == 0)
return;
/* Set Split level to misc_Max(Partner, Result) */
clause_SetSplitLevel(Result, clause_SplitLevel(Partner) > clause_SplitLevel(Result)
? clause_SplitLevel(Partner)
: clause_SplitLevel(Result));
clause_UpdateSplitField(Result, Partner);
}
static __inline__ void clause_SetSplitDataFromList(CLAUSE Result, LIST List)
{
CLAUSE TempClause;
LIST Scan;
NAT l;
Scan = List;
l = Result->splitfield_length;
while (!list_Empty(Scan)) {
TempClause = (CLAUSE) list_Top(Scan);
if (clause_GetFlag(TempClause, CONCLAUSE))
clause_SetFlag(Result, CONCLAUSE);
clause_SetSplitLevel(Result,
clause_SplitLevel(TempClause) > clause_SplitLevel(Result)
? clause_SplitLevel(TempClause)
: clause_SplitLevel(Result));
if (l < TempClause->splitfield_length)
l = TempClause->splitfield_length;
Scan = list_Cdr(Scan);
}
if (l > Result->splitfield_length) {
if (Result->splitfield != NULL)
memory_Free(Result->splitfield,
sizeof(SPLITFIELDENTRY) * Result->splitfield_length);
Result->splitfield = memory_Malloc(sizeof(SPLITFIELDENTRY) * l);
Result->splitfield_length = l;
}
for (l=0; l < Result->splitfield_length; l++)
Result->splitfield[l] = 0;
while (!list_Empty(List)) {
TempClause= (CLAUSE) list_Top(List);
List = list_Cdr(List);
for (l=0; l < TempClause->splitfield_length; l++)
Result->splitfield[l] = Result->splitfield[l] | TempClause->splitfield[l];
}
}
static __inline__ void clause_SetSplitDataFromParents(CLAUSE Result,
CLAUSE Mother,
CLAUSE Father)
{
NAT i;
if (clause_GetFlag(Father, CONCLAUSE) || clause_GetFlag(Mother, CONCLAUSE))
clause_SetFlag(Result, CONCLAUSE);
if ((clause_SplitLevel(Father) == 0) && (clause_SplitLevel(Mother) == 0))
return;
clause_SetSplitLevel(Result, clause_SplitLevel(Mother) > clause_SplitLevel(Father)
? clause_SplitLevel(Mother)
: clause_SplitLevel(Father));
if (Mother->splitfield_length > Father->splitfield_length) {
if (Result->splitfield != NULL)
memory_Free(Result->splitfield,
sizeof(SPLITFIELDENTRY) * Result->splitfield_length);
Result->splitfield = memory_Malloc(sizeof(SPLITFIELDENTRY) *
Mother->splitfield_length);
Result->splitfield_length = Mother->splitfield_length;
for (i=0; i < Father->splitfield_length; i++)
Result->splitfield[i] =
Mother->splitfield[i] | Father->splitfield[i];
for (i=Father->splitfield_length; i < Mother->splitfield_length; i++)
Result->splitfield[i] = Mother->splitfield[i];
}
else {
if (Result->splitfield != NULL)
memory_Free(Result->splitfield,
sizeof(SPLITFIELDENTRY) * Result->splitfield_length);
Result->splitfield = memory_Malloc(sizeof(SPLITFIELDENTRY) *
Father->splitfield_length);
Result->splitfield_length = Father->splitfield_length;
for (i=0; i < Mother->splitfield_length; i++)
Result->splitfield[i] =
Mother->splitfield[i] | Father->splitfield[i];
for (i=Mother->splitfield_length; i < Father->splitfield_length; i++)
Result->splitfield[i] = Father->splitfield[i];
}
}
static __inline__ void clause_SetParentClauses(CLAUSE Clause, LIST PClauses)
{
Clause->parentCls = PClauses;
}
static __inline__ void clause_AddParentClause(CLAUSE Clause, int PClause)
{
Clause->parentCls = list_Cons((POINTER) PClause, Clause->parentCls);
}
static __inline__ void clause_SetParentLiterals(CLAUSE Clause, LIST PLits)
{
Clause->parentLits = PLits;
}
static __inline__ void clause_AddParentLiteral(CLAUSE Clause, int PLit)
{
Clause->parentLits = list_Cons((POINTER) PLit, Clause->parentLits);
}
static __inline__ BOOL clause_ValidityIsNotSmaller(CLAUSE C1, CLAUSE C2)
{
return (C1->validlevel <= C2->validlevel);
}
static __inline__ BOOL clause_IsMoreValid(CLAUSE C1, CLAUSE C2)
{
return (C1->validlevel < C2->validlevel);
}
static __inline__ BOOL clause_CompareAbstractLEQ (CLAUSE Left, CLAUSE Right)
/**************************************************************
INPUT: Two clauses.
RETURNS: TRUE if left <= right, FALSE otherwise.
EFFECTS: Internal function used to compare clauses for
sorting.
CAUTION: Expects clause literal order to be fixed.
***************************************************************/
{
return (BOOL) (clause_CompareAbstract(Left, Right) <= 0);
}
static __inline__ BOOL clause_IsFromRewriting(CLAUSE Clause)
{
return Clause->origin == REWRITING;
}
static __inline__ BOOL clause_IsFromCondensing(CLAUSE Clause)
{
return Clause->origin == CONDENSING;
}
static __inline__ BOOL clause_IsFromObviousReductions(CLAUSE Clause)
{
return Clause->origin == OBVIOUS_REDUCTIONS;
}
static __inline__ BOOL clause_IsFromSortSimplification(CLAUSE Clause)
{
return Clause->origin == SORT_SIMPLIFICATION;
}
static __inline__ BOOL clause_IsFromMatchingReplacementResolution(CLAUSE Clause)
{
return Clause->origin == MATCHING_REPLACEMENT_RESOLUTION;
}
static __inline__ BOOL clause_IsFromClauseDeletion(CLAUSE Clause)
{
return Clause->origin == CLAUSE_DELETION;
}
static __inline__ BOOL clause_IsFromEmptySort(CLAUSE Clause)
{
return Clause->origin == EMPTY_SORT;
}
static __inline__ BOOL clause_IsFromSortResolution(CLAUSE Clause)
{
return Clause->origin == SORT_RESOLUTION;
}
static __inline__ BOOL clause_IsFromUnitConflict(CLAUSE Clause)
{
return Clause->origin == UNIT_CONFLICT;
}
static __inline__ BOOL clause_IsFromEqualityResolution(CLAUSE Clause)
{
return Clause->origin == EQUALITY_RESOLUTION;
}
static __inline__ BOOL clause_IsFromEqualityFactoring(CLAUSE Clause)
{
return Clause->origin == EQUALITY_FACTORING;
}
static __inline__ BOOL clause_IsFromMergingParamodulation(CLAUSE Clause)
{
return Clause->origin == MERGING_PARAMODULATION;
}
static __inline__ BOOL clause_IsFromSuperpositionRight(CLAUSE Clause)
{
return Clause->origin == SUPERPOSITION_RIGHT;
}
static __inline__ BOOL clause_IsFromSuperpositionLeft(CLAUSE Clause)
{
return Clause->origin == SUPERPOSITION_LEFT;
}
static __inline__ BOOL clause_IsFromGeneralResolution(CLAUSE Clause)
{
return Clause->origin == GENERAL_RESOLUTION;
}
static __inline__ BOOL clause_IsFromGeneralFactoring(CLAUSE Clause)
{
return Clause->origin == GENERAL_FACTORING;
}
static __inline__ BOOL clause_IsFromSplitting(CLAUSE Clause)
{
return Clause->origin == SPLITTING;
}
static __inline__ BOOL clause_IsFromDefApplication(CLAUSE Clause)
{
return Clause->origin == DEFAPPLICATION;
}
static __inline__ BOOL clause_IsFromTerminator(CLAUSE Clause)
{
return Clause->origin == TERMINATOR;
}
static __inline__ BOOL clause_IsTemporary(CLAUSE Clause)
{
return Clause->origin == TEMPORARY;
}
static __inline__ BOOL clause_IsFromInput(CLAUSE Clause)
{
return Clause->origin == INPUT;
}
static __inline__ BOOL clause_HasReducedPredecessor(CLAUSE Clause)
{
RULE origin = clause_Origin(Clause);
return (origin == CONDENSING ||
origin == REWRITING ||
origin == SPLITTING ||
origin == ASSIGNMENT_EQUATION_DELETION ||
origin == SORT_SIMPLIFICATION ||
origin == OBVIOUS_REDUCTIONS);
}
static __inline__ BOOL clause_IsSplitFather(CLAUSE C1, CLAUSE C2)
{
return (C1->clausenumber == (int)list_Car(C2->parentCls));
}
static __inline__ void clause_SetFromRewriting(CLAUSE Clause)
{
Clause->origin = REWRITING;
}
static __inline__ void clause_SetFromContextualRewriting(CLAUSE Clause)
{
Clause->origin = CONTEXTUAL_REWRITING;
}
static __inline__ void clause_SetFromUnitConflict(CLAUSE Clause)
{
Clause->origin = UNIT_CONFLICT;
}
static __inline__ void clause_SetFromCondensing(CLAUSE Clause)
{
Clause->origin = CONDENSING;
}
static __inline__ void clause_SetFromAssignmentEquationDeletion(CLAUSE Clause)
{
Clause->origin = ASSIGNMENT_EQUATION_DELETION;
}
static __inline__ void clause_SetFromObviousReductions(CLAUSE Clause)
{
Clause->origin = OBVIOUS_REDUCTIONS;
}
static __inline__ void clause_SetFromSortSimplification(CLAUSE Clause)
{
Clause->origin = SORT_SIMPLIFICATION;
}
static __inline__ void clause_SetFromMatchingReplacementResolution(CLAUSE Clause)
{
Clause->origin = MATCHING_REPLACEMENT_RESOLUTION;
}
static __inline__ void clause_SetFromClauseDeletion(CLAUSE Clause)
{
Clause->origin = CLAUSE_DELETION;
}
static __inline__ void clause_SetFromEmptySort(CLAUSE Clause)
{
Clause->origin = EMPTY_SORT;
}
static __inline__ void clause_SetFromSortResolution(CLAUSE Clause)
{
Clause->origin = SORT_RESOLUTION;
}
static __inline__ void clause_SetFromEqualityResolution(CLAUSE Clause)
{
Clause->origin = EQUALITY_RESOLUTION;
}
static __inline__ void clause_SetFromEqualityFactoring(CLAUSE Clause)
{
Clause->origin = EQUALITY_FACTORING;
}
static __inline__ void clause_SetFromMergingParamodulation(CLAUSE Clause)
{
Clause->origin = MERGING_PARAMODULATION;
}
static __inline__ void clause_SetFromParamodulation(CLAUSE Clause)
{
Clause->origin = PARAMODULATION;
}
static __inline__ void clause_SetFromOrderedParamodulation(CLAUSE Clause)
{
Clause->origin = ORDERED_PARAMODULATION;
}
static __inline__ void clause_SetFromSuperpositionRight(CLAUSE Clause)
{
Clause->origin = SUPERPOSITION_RIGHT;
}
static __inline__ void clause_SetFromSuperpositionLeft(CLAUSE Clause)
{
Clause->origin = SUPERPOSITION_LEFT;
}
static __inline__ void clause_SetFromGeneralResolution(CLAUSE Clause)
{
Clause->origin = GENERAL_RESOLUTION;
}
static __inline__ void clause_SetFromOrderedHyperResolution(CLAUSE Clause)
{
Clause->origin = ORDERED_HYPER;
}
static __inline__ void clause_SetFromSimpleHyperResolution(CLAUSE Clause)
{
Clause->origin = SIMPLE_HYPER;
}
static __inline__ void clause_SetFromURResolution(CLAUSE Clause)
{
Clause->origin = UR_RESOLUTION;
}
static __inline__ void clause_SetFromGeneralFactoring(CLAUSE Clause)
{
Clause->origin = GENERAL_FACTORING;
}
static __inline__ void clause_SetFromSplitting(CLAUSE Clause)
{
Clause->origin = SPLITTING;
}
static __inline__ void clause_SetFromDefApplication(CLAUSE Clause)
{
Clause->origin = DEFAPPLICATION;
}
static __inline__ void clause_SetFromTerminator(CLAUSE Clause)
{
Clause->origin = TERMINATOR;
}
static __inline__ void clause_SetTemporary(CLAUSE Clause)
{
Clause->origin = TEMPORARY;
}
static __inline__ void clause_SetFromInput(CLAUSE Clause)
{
Clause->origin = INPUT;
}
static __inline__ LITERAL clause_FirstConstraintLit(CLAUSE Clause)
{
return Clause->literals[0];
}
static __inline__ LITERAL clause_FirstAntecedentLit(CLAUSE Clause)
{
return Clause->literals[clause_FirstAntecedentLitIndex(Clause)];
}
static __inline__ LITERAL clause_FirstSuccedentLit(CLAUSE Clause)
{
return Clause->literals[clause_FirstSuccedentLitIndex(Clause)];
}
static __inline__ LITERAL clause_LastConstraintLit(CLAUSE Clause)
{
return Clause->literals[clause_LastConstraintLitIndex(Clause)];
}
static __inline__ LITERAL clause_LastAntecedentLit(CLAUSE Clause)
{
return Clause->literals[clause_LastAntecedentLitIndex(Clause)];
}
static __inline__ LITERAL clause_LastSuccedentLit(CLAUSE Clause)
{
return Clause->literals[clause_LastSuccedentLitIndex(Clause)];
}
static __inline__ BOOL clause_HasEmptyConstraint(CLAUSE Clause)
{
return clause_NumOfConsLits(Clause) == 0;
}
static __inline__ BOOL clause_HasEmptyAntecedent(CLAUSE Clause)
{
return clause_NumOfAnteLits(Clause) == 0;
}
static __inline__ BOOL clause_HasEmptySuccedent(CLAUSE Clause)
{
return clause_NumOfSuccLits(Clause) == 0;
}
static __inline__ BOOL clause_IsGround(CLAUSE Clause)
{
#ifdef CHECK
if (!symbol_Equal(clause_MaxVar(Clause), clause_SearchMaxVar(Clause))) {
misc_StartErrorReport();
misc_ErrorReport("\n In clause_IsGround: Clause is corrupted.");
misc_FinishErrorReport();
}
#endif
return (symbol_VarIndex(clause_MaxVar(Clause)) ==
symbol_GetInitialStandardVarCounter());
}
static __inline__ BOOL clause_IsEmptyClause(CLAUSE C)
{
return (C != (CLAUSE)NULL &&
clause_HasEmptyAntecedent(C) &&
clause_HasEmptySuccedent(C) &&
clause_HasEmptyConstraint(C));
}
static __inline__ int clause_LiteralGetIndex(LITERAL L)
{
int j = 0;
while (clause_GetLiteral(clause_LiteralOwningClause(L), j) != L)
j++;
return j;
}
static __inline__ BOOL clause_LiteralIsFromConstraint(LITERAL Literal)
{
int index = clause_LiteralGetIndex(Literal);
CLAUSE clause = clause_LiteralOwningClause(Literal);
return (index <= clause_LastConstraintLitIndex(clause) &&
index >= clause_FirstConstraintLitIndex(clause));
}
static __inline__ BOOL clause_LiteralIsFromAntecedent(LITERAL Literal)
{
int index = clause_LiteralGetIndex(Literal);
CLAUSE clause = clause_LiteralOwningClause(Literal);
return (index <= clause_LastAntecedentLitIndex(clause) &&
index >= clause_FirstAntecedentLitIndex(clause));
}
static __inline__ BOOL clause_LiteralIsFromSuccedent(LITERAL Literal)
{
int index;
CLAUSE clause;
index = clause_LiteralGetIndex(Literal);
clause = clause_LiteralOwningClause(Literal);
return (index <= clause_LastSuccedentLitIndex(clause) &&
index >= clause_FirstSuccedentLitIndex(clause));
}
static __inline__ BOOL clause_IsSimpleSortClause(CLAUSE Clause)
{
return (clause_HasEmptyAntecedent(Clause) &&
(clause_NumOfSuccLits(Clause) == 1) &&
clause_LiteralIsSort(clause_GetLiteral(Clause,
clause_NumOfConsLits(Clause))) &&
clause_HasSolvedConstraint(Clause));
}
static __inline__ BOOL clause_IsSubsortClause(CLAUSE Clause)
{
return (clause_IsSimpleSortClause(Clause) &&
term_IsVariable(term_FirstArgument(
clause_LiteralSignedAtom(
clause_GetLiteral(Clause, clause_NumOfConsLits(Clause))))));
}
static __inline__ BOOL clause_HasSuccLits(CLAUSE Clause)
{
return (clause_NumOfSuccLits(Clause) > 1);
}
static __inline__ BOOL clause_HasGroundSuccLit(CLAUSE Clause)
{
int i, l;
l = clause_Length(Clause);
for (i = clause_FirstSuccedentLitIndex(Clause); i < l; i++)
if (term_IsGround(Clause->literals[i]->atomWithSign))
return TRUE;
return FALSE;
}
static __inline__ LITERAL clause_GetGroundSuccLit(CLAUSE Clause)
{
int i, l;
l = clause_Length(Clause);
for (i = clause_FirstSuccedentLitIndex(Clause); i < l; i++)
if (term_IsGround(Clause->literals[i]->atomWithSign))
return Clause->literals[i];
return (LITERAL)NULL;
}
static __inline__ void clause_Free(CLAUSE Clause)
{
memory_Free(Clause, sizeof(CLAUSE_NODE));
}
static __inline__ void clause_ReInit(CLAUSE Clause,
FLAGSTORE Flags,
PRECEDENCE Precedence)
{
clause_Normalize(Clause);
clause_SetMaxLitFlags(Clause, Flags, Precedence);
clause_UpdateWeight(Clause, Flags);
clause_UpdateMaxVar(Clause);
}
static __inline__ void clause_OrientAndReInit(CLAUSE Clause, FLAGSTORE Flags,
PRECEDENCE Precedence)
{
clause_OrientEqualities(Clause, Flags, Precedence);
clause_ReInit(Clause, Flags, Precedence);
}
static __inline__ void clause_SetDataFromFather(CLAUSE Result, CLAUSE Father,
int i, FLAGSTORE Flags,
PRECEDENCE Precedence)
{
clause_OrientAndReInit(Result, Flags, Precedence);
clause_SetSplitDataFromFather(Result, Father);
clause_SetDepth(Result, clause_Depth(Father) + 1);
clause_AddParentClause(Result, clause_Number(Father));
clause_AddParentLiteral(Result, i);
}
static __inline__ void clause_SetDataFromParents(CLAUSE Result, CLAUSE Father,
int i, CLAUSE Mother, int j,
FLAGSTORE Flags,
PRECEDENCE Precedence)
{
clause_OrientAndReInit(Result, Flags, Precedence);
clause_SetSplitDataFromParents(Result, Father, Mother);
clause_SetDepth(Result,
misc_Max(clause_Depth(Father), clause_Depth(Mother)) +1);
clause_AddParentClause(Result, clause_Number(Father));
clause_AddParentLiteral(Result, i);
clause_AddParentClause(Result, clause_Number(Mother));
clause_AddParentLiteral(Result, j);
}
#endif