blob: e772d9540868cd69ed2985efe7af439e1479d059 [file] [log] [blame]
/*!
*************************************************************************************
* \file decoder.c
*
* \brief
* Contains functions that implement the "decoders in the encoder" concept for the
* rate-distortion optimization with losses.
* \date
* October 22nd, 2001
*
* \author
* Main contributors (see contributors.h for copyright, address and
* affiliation details)
* - Dimitrios Kontopodis <dkonto@eikon.tum.de>
*************************************************************************************
*/
#include <stdlib.h>
#include <memory.h>
#include "global.h"
#include "refbuf.h"
#include "image.h"
/*!
*************************************************************************************
* \brief
* decodes one 8x8 partition
*
* \note
* Gives the expected value in the decoder of one 8x8 block. This is done based on the
* stored reconstructed residue decs->resY[][], the reconstructed values imgY[][]
* and the motion vectors. The decoded 8x8 block is moved to decs->decY[][].
*************************************************************************************
*/
void decode_one_b8block (int decoder, int mbmode, int b8block, int b8mode, int b8ref)
{
int i,j,block_y,block_x,bx,by;
int ref_inx = (IMG_NUMBER-1)%img->num_ref_frames;
int mv[2][BLOCK_MULTIPLE][BLOCK_MULTIPLE];
int resY_tmp[MB_BLOCK_SIZE][MB_BLOCK_SIZE];
int i0 = (b8block%2)<<3, i1 = i0+8, bx0 = i0>>2, bx1 = bx0+2;
int j0 = (b8block/2)<<3, j1 = j0+8, by0 = j0>>2, by1 = by0+2;
if (img->type==I_SLICE)
{
for(i=i0;i<i1;i++)
for(j=j0;j<j1;j++)
{
decs->decY[decoder][img->pix_y+j][img->pix_x+i]=enc_picture->imgY[img->pix_y+j][img->pix_x+i];
}
}
else
{
if (mbmode==0 && (img->type==P_SLICE || (img->type==B_SLICE && img->nal_reference_idc>0)))
{
for(i=i0;i<i1;i++)
for(j=j0;j<j1;j++)
{
resY_tmp[j][i]=0;
}
for (by=by0; by<by1; by++)
for (bx=bx0; bx<bx1; bx++)
{
mv[0][by][bx] = mv[1][by][bx] = 0;
}
}
else
{
if (b8mode>=1 && b8mode<=7)
{
for (by=by0; by<by1; by++)
for (bx=bx0; bx<bx1; bx++)
{
mv[0][by][bx] = img->all_mv[by][bx][LIST_0][b8ref][b8mode][0];
mv[1][by][bx] = img->all_mv[by][bx][LIST_0][b8ref][b8mode][1];
}
}
else
{
for (by=by0; by<by1; by++)
for (bx=bx0; bx<bx1; bx++)
{
mv[0][by][bx] = mv[1][by][bx] = 0;
}
}
for(i=i0;i<i1;i++)
for(j=j0;j<j1;j++)
{
resY_tmp[j][i]=decs->resY[j][i];
}
}
// Decode Luminance
if ((b8mode>=1 && b8mode<=7) || (mbmode==0 && (img->type==P_SLICE || (img->type==B_SLICE && img->nal_reference_idc>0))))
{
for (by=by0; by<by1; by++)
for (bx=bx0; bx<bx1; bx++)
{
block_x = img->block_x+bx;
block_y = img->block_y+by;
if (img->type == B_SLICE && enc_picture != enc_frame_picture)
ref_inx = (IMG_NUMBER-b8ref-2)%img->num_ref_frames;
Get_Reference_Block (decs->decref[decoder][ref_inx],
block_y, block_x,
mv[0][by][bx],
mv[1][by][bx],
decs->RefBlock);
for (j=0; j<4; j++)
for (i=0; i<4; i++)
{
decs->decY[decoder][block_y*4+j][block_x*4+i] = resY_tmp[by*4+j][bx*4+i] + decs->RefBlock[j][i];
}
}
}
else
{
// Intra Refresh - Assume no spatial prediction
for(i=i0;i<i1;i++)
for(j=j0;j<j1;j++)
{
decs->decY[decoder][img->pix_y+j][img->pix_x+i] = enc_picture->imgY[img->pix_y+j][img->pix_x+i];
}
}
}
}
/*!
*************************************************************************************
* \brief
* decodes one macroblock
*************************************************************************************
*/
void decode_one_mb (int decoder, Macroblock* currMB)
{
decode_one_b8block (decoder, currMB->mb_type, 0, currMB->b8mode[0], enc_picture->ref_idx[LIST_0][img->block_y+0][img->block_x+0]);//refFrArr[img->block_y+0][img->block_x+0]);
decode_one_b8block (decoder, currMB->mb_type, 1, currMB->b8mode[1], enc_picture->ref_idx[LIST_0][img->block_y+0][img->block_x+2]);//refFrArr[img->block_y+0][img->block_x+2]);
decode_one_b8block (decoder, currMB->mb_type, 2, currMB->b8mode[2], enc_picture->ref_idx[LIST_0][img->block_y+2][img->block_x+0]);//refFrArr[img->block_y+2][img->block_x+0]);
decode_one_b8block (decoder, currMB->mb_type, 3, currMB->b8mode[3], enc_picture->ref_idx[LIST_0][img->block_y+2][img->block_x+2]);//refFrArr[img->block_y+2][img->block_x+2]);
}
/*!
*************************************************************************************
* \brief
* Finds the reference MB given the decoded reference frame
* \note
* This is based on the function UnifiedOneForthPix, only it is modified to
* be used at the "many decoders in the encoder" RD optimization. In this case
* we dont want to keep full upsampled reference frames for all decoders, so
* we just upsample when it is necessary.
* \param imY
* The frame to be upsampled
* \param block_y
* The row of the block, whose prediction we want to find
* \param block_x
* The column of the block, whose prediction we want to track
* \param mvhor
* Motion vector, horizontal part
* \param mvver
* Motion vector, vertical part
* \param out
* Output: The prediction for the block (block_y, block_x)
*************************************************************************************
*/
void Get_Reference_Block(imgpel **imY,
int block_y,
int block_x,
int mvhor,
int mvver,
imgpel **out)
{
int i,j,y,x;
y = block_y * BLOCK_SIZE * 4 + mvver;
x = block_x * BLOCK_SIZE * 4 + mvhor;
for (j=0; j<BLOCK_SIZE; j++)
for (i=0; i<BLOCK_SIZE; i++)
out[j][i] = Get_Reference_Pixel(imY, y+j*4, x+i*4);
}
/*!
*************************************************************************************
* \brief
* Finds a pixel (y,x) of the upsampled reference frame
* \note
* This is based on the function UnifiedOneForthPix, only it is modified to
* be used at the "many decoders in the encoder" RD optimization. In this case
* we dont want to keep full upsampled reference frames for all decoders, so
* we just upsample when it is necessary.
*************************************************************************************
*/
byte Get_Reference_Pixel(imgpel **imY, int y_pos, int x_pos)
{
int dx, x;
int dy, y;
int maxold_x,maxold_y;
int result = 0, result1, result2;
int pres_x;
int pres_y;
int tmp_res[6];
static const int COEF[6] = {
1, -5, 20, 20, -5, 1
};
dx = x_pos&3;
dy = y_pos&3;
x_pos = (x_pos-dx)/4;
y_pos = (y_pos-dy)/4;
maxold_x = img->width-1;
maxold_y = img->height-1;
if (dx == 0 && dy == 0) { /* fullpel position */
result = imY[iClip3(0,maxold_y,y_pos)][iClip3(0,maxold_x,x_pos)];
}
else { /* other positions */
if (dy == 0) {
pres_y = iClip3(0,maxold_y,y_pos);
for(x=-2;x<4;x++) {
pres_x = iClip3(0,maxold_x,x_pos+x);
result += imY[pres_y][pres_x]*COEF[x+2];
}
result = iClip3(0, img->max_imgpel_value, (result+16)/32);
if (dx == 1) {
result = (result + imY[pres_y][iClip3(0,maxold_x,x_pos)])/2;
}
else if (dx == 3) {
result = (result + imY[pres_y][iClip3(0,maxold_x,x_pos+1)])/2;
}
}
else if (dx == 0) {
pres_x = iClip3(0,maxold_x,x_pos);
for(y=-2;y<4;y++) {
pres_y = iClip3(0,maxold_y,y_pos+y);
result += imY[pres_y][pres_x]*COEF[y+2];
}
result = iClip3(0, img->max_imgpel_value, (result+16)/32);
if (dy == 1) {
result = (result + imY[iClip3(0,maxold_y,y_pos)][pres_x])/2;
}
else if (dy == 3) {
result = (result + imY[iClip3(0,maxold_y,y_pos+1)][pres_x])/2;
}
}
else if (dx == 2) {
for(y=-2;y<4;y++) {
result = 0;
pres_y = iClip3(0,maxold_y,y_pos+y);
for(x=-2;x<4;x++) {
pres_x = iClip3(0,maxold_x,x_pos+x);
result += imY[pres_y][pres_x]*COEF[x+2];
}
tmp_res[y+2] = result;
}
result = 0;
for(y=-2;y<4;y++) {
result += tmp_res[y+2]*COEF[y+2];
}
result = iClip3(0, img->max_imgpel_value, (result+512)/1024);
if (dy == 1) {
result = (result + iClip3(0, img->max_imgpel_value, (tmp_res[2]+16)/32))/2;
}
else if (dy == 3) {
result = (result + iClip3(0, img->max_imgpel_value, (tmp_res[3]+16)/32))/2;
}
}
else if (dy == 2) {
for(x=-2;x<4;x++) {
result = 0;
pres_x = iClip3(0,maxold_x,x_pos+x);
for(y=-2;y<4;y++) {
pres_y = iClip3(0,maxold_y,y_pos+y);
result += imY[pres_y][pres_x]*COEF[y+2];
}
tmp_res[x+2] = result;
}
result = 0;
for(x=-2;x<4;x++) {
result += tmp_res[x+2]*COEF[x+2];
}
result = iClip3(0, img->max_imgpel_value, (result+512)/1024);
if (dx == 1) {
result = (result + iClip3(0, img->max_imgpel_value, (tmp_res[2]+16)/32))/2;
}
else {
result = (result + iClip3(0, img->max_imgpel_value, (tmp_res[3]+16)/32))/2;
}
}
else {
result = 0;
pres_y = dy == 1 ? y_pos : y_pos+1;
pres_y = iClip3(0,maxold_y,pres_y);
for(x=-2;x<4;x++) {
pres_x = iClip3(0,maxold_x,x_pos+x);
result += imY[pres_y][pres_x]*COEF[x+2];
}
result1 = iClip3(0, img->max_imgpel_value, (result+16)/32);
result = 0;
pres_x = dx == 1 ? x_pos : x_pos+1;
pres_x = iClip3(0,maxold_x,pres_x);
for(y=-2;y<4;y++) {
pres_y = iClip3(0,maxold_y,y_pos+y);
result += imY[pres_y][pres_x]*COEF[y+2];
}
result2 = iClip3(0, img->max_imgpel_value, (result+16)/32);
result = (result1+result2)/2;
}
}
return result;
}
/*!
*************************************************************************************
* \brief
* Performs the simulation of the packet losses, calls the error concealment funcs
* and copies the decoded images to the reference frame buffers of the decoders
*
*************************************************************************************
*/
void UpdateDecoders()
{
int k;
for (k=0; k<input->NoOfDecoders; k++)
{
Build_Status_Map(decs->status_map); // simulates the packet losses
Error_Concealment(decs->decY_best[k], decs->status_map, decs->decref[k]); // for the moment error concealment is just a "copy"
// Move decoded frames to reference buffers: (at the decoders this is done
// without interpolation (upsampling) - upsampling is done while decoding
DecOneForthPix(decs->decY_best[k], decs->decref[k]);
}
}
/*!
*************************************************************************************
* \brief
* Copies one (reconstructed) image to the respective reference frame buffer
*
* \note
* This is used at the "many decoders in the encoder"
* \param dY
* The reconstructed image
* \param dref
* The reference buffer
*************************************************************************************
*/
void DecOneForthPix(imgpel **dY, imgpel ***dref)
{
int j, ref=IMG_NUMBER%img->buf_cycle;
for (j=0; j<img->height; j++)
memcpy(dref[ref][j], dY[j], img->width*sizeof(imgpel));
}
/*!
*************************************************************************************
* \brief
* Gives the prediction residue for a 8x8 block
*************************************************************************************
*/
void compute_residue_b8block (int b8block, int i16mode) // if not INTRA16x16 it has to be -1
{
int i,j;
int i0 = (b8block%2)<<3, i1 = i0+8;
int j0 = (b8block/2)<<3, j1 = j0+8;
if (i16mode>=0)
{
for (i=i0; i<i1; i++)
for (j=j0; j<j1; j++)
{
decs->resY[j][i] = enc_picture->imgY[img->pix_y+j][img->pix_x+i] - img->mprr_2[i16mode][j][i];
}
}
else
{
for (i=i0; i<i1; i++)
for (j=j0; j<j1; j++)
{
decs->resY[j][i] = enc_picture->imgY[img->pix_y+j][img->pix_x+i] - img->mpr[j][i];
}
}
}
/*!
*************************************************************************************
* \brief
* Gives the prediction residue for a macroblock
*************************************************************************************
*/
void compute_residue_mb (int i16mode)
{
compute_residue_b8block (0, i16mode);
compute_residue_b8block (1, i16mode);
compute_residue_b8block (2, i16mode);
compute_residue_b8block (3, i16mode);
}
/*!
*************************************************************************************
* \brief
* Builds a random status map showing whether each MB is received or lost, based
* on the packet loss rate and the slice structure.
*
* \param s_map
* The status map to be filled
*************************************************************************************
*/
void Build_Status_Map(byte **s_map)
{
int i,j,slice=-1,mb=0,jj,ii,packet_lost=0;
jj = img->height/MB_BLOCK_SIZE;
ii = img->width/MB_BLOCK_SIZE;
for (j=0 ; j<jj; j++)
for (i=0 ; i<ii; i++)
{
if (!input->slice_mode || img->mb_data[mb].slice_nr != slice) /* new slice */
{
packet_lost=0;
if ((double)rand()/(double)RAND_MAX*100 < input->LossRateC) packet_lost += 3;
if ((double)rand()/(double)RAND_MAX*100 < input->LossRateB) packet_lost += 2;
if ((double)rand()/(double)RAND_MAX*100 < input->LossRateA) packet_lost = 1;
slice++;
}
if (!packet_lost)
{
s_map[j][i]=0; //! Packet OK
}
else
{
s_map[j][i]=packet_lost;
if(input->partition_mode == 0) s_map[j][i]=1;
}
mb++;
}
}
/*!
*************************************************************************************
* \brief
* Performs some sort of error concealment for the areas that are lost according
* to the status_map
*
* \param inY
* Error concealment is performed on this frame imY[][]
* \param s_map
* The status map shows which areas are lost.
* \param refY
* The set of reference frames - may be used for the error concealment.
*************************************************************************************
*/
void Error_Concealment(imgpel **inY, byte **s_map, imgpel ***refY)
{
int mb_y, mb_x, mb_h, mb_w;
mb_h = img->height/MB_BLOCK_SIZE;
mb_w = img->width/MB_BLOCK_SIZE;
for (mb_y=0; mb_y < mb_h; mb_y++)
for (mb_x=0; mb_x < mb_w; mb_x++)
{
if (s_map[mb_y][mb_x]) Conceal_Error(inY, mb_y, mb_x, refY, s_map);
}
}
/*!
*************************************************************************************
* \brief
* Copies a certain MB (mb_y,mb_x) of the frame inY[][] from the previous frame.
* For the time there is no better EC...
*************************************************************************************
*/
void Conceal_Error(imgpel **inY, int mb_y, int mb_x, imgpel ***refY, byte **s_map)
{
int i,j,block_x, block_y;
int ref_inx = (IMG_NUMBER-1)%img->num_ref_frames;
int pos_y = mb_y*MB_BLOCK_SIZE, pos_x = mb_x*MB_BLOCK_SIZE;
int mv[2][BLOCK_MULTIPLE][BLOCK_MULTIPLE];
int resY[MB_BLOCK_SIZE][MB_BLOCK_SIZE];
int copy = (decs->dec_mb_mode[mb_y][mb_x]==0 && (img->type==P_SLICE || (img->type==B_SLICE && img->nal_reference_idc>0)));
int inter = (((decs->dec_mb_mode[mb_y][mb_x]>=1 && decs->dec_mb_mode[mb_y][mb_x]<=3) || decs->dec_mb_mode[mb_y][mb_x]==P8x8) && (img->type==P_SLICE || (img->type==B_SLICE && img->nal_reference_idc>0)));
short ***tmp_mv = enc_picture->mv[LIST_0];
switch(s_map[mb_y][mb_x])
{
case 1: //! whole slice lost (at least partition A lost)
if (img->type!=I_SLICE)
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = refY[ref_inx][pos_y+j][pos_x+i];
}
else
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = 127;
}
break;
case 5: //! partition B and partition C lost
//! Copy motion vectors
for (block_y=0; block_y<BLOCK_MULTIPLE; block_y++)
for (block_x=0; block_x<BLOCK_MULTIPLE; block_x++)
for (i=0;i<2;i++)
mv[i][block_y][block_x]=tmp_mv[mb_y*BLOCK_SIZE+block_y][mb_x*BLOCK_SIZE+block_x+4][i];
//! Residue ist set to zero
for(i=0;i<MB_BLOCK_SIZE;i++)
for(j=0;j<MB_BLOCK_SIZE;j++)
resY[j][i]=0;
//! not first frame
if (img->type!=I_SLICE)
{
//! if copy mb
if (copy)
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = refY[ref_inx][pos_y+j][pos_x+i];
}
//! if inter mb
else if (inter)
{
for (block_y = mb_y*BLOCK_SIZE ; block_y < (mb_y*BLOCK_SIZE + BLOCK_MULTIPLE) ; block_y++)
for (block_x = mb_x*BLOCK_SIZE ; block_x < (mb_x*BLOCK_SIZE + BLOCK_MULTIPLE) ; block_x++)
{
Get_Reference_Block(refY[ref_inx],
block_y, block_x,
mv[0][block_y - mb_y*BLOCK_SIZE][block_x - mb_x*BLOCK_SIZE],
mv[1][block_y - mb_y*BLOCK_SIZE][block_x - mb_x*BLOCK_SIZE],
decs->RefBlock);
for (j=0;j<BLOCK_SIZE;j++)
for (i=0;i<BLOCK_SIZE;i++)
{
inY[block_y*BLOCK_SIZE + j][block_x*BLOCK_SIZE + i] = decs->RefBlock[j][i];
}
}
}
else //intra; up to now only copy mb, may integrate nokia EC
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = refY[ref_inx][pos_y+j][pos_x+i];
}
}
else //! first frame; up to now set value to grey, may integrate nokia EC
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = 127;
}
break;
case 3: //! Partition C lost
if(img->type!=I_SLICE)
{
//! Copy motion vectors
for (block_y=0; block_y<BLOCK_MULTIPLE; block_y++)
for (block_x=0; block_x<BLOCK_MULTIPLE; block_x++)
for (i=0;i<2;i++)
mv[i][block_y][block_x]=tmp_mv[mb_y*BLOCK_SIZE+block_y][mb_x*BLOCK_SIZE+block_x+4][i];
//! Residue ist set to zero
for(i=0;i<MB_BLOCK_SIZE;i++)
for(j=0;j<MB_BLOCK_SIZE;j++)
resY[j][i]=0;
//! if copy mb
if (copy)
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = refY[ref_inx][pos_y+j][pos_x+i];
}
//! if inter mb
else if (inter)
{
for (block_y = mb_y*BLOCK_SIZE ; block_y < (mb_y*BLOCK_SIZE + BLOCK_MULTIPLE) ; block_y++)
for (block_x = mb_x*BLOCK_SIZE ; block_x < (mb_x*BLOCK_SIZE + BLOCK_MULTIPLE) ; block_x++)
{
Get_Reference_Block(refY[ref_inx],
block_y, block_x,
mv[0][block_y - mb_y*BLOCK_SIZE][block_x - mb_x*BLOCK_SIZE],
mv[1][block_y - mb_y*BLOCK_SIZE][block_x - mb_x*BLOCK_SIZE],
decs->RefBlock);
for (j=0;j<BLOCK_SIZE;j++)
for (i=0;i<BLOCK_SIZE;i++)
{
inY[block_y*BLOCK_SIZE + j][block_x*BLOCK_SIZE + i] = decs->RefBlock[j][i];
}
}
}
}
break;
case 2: //! Partition B lost
if(img->type!=I_SLICE)
{
if(!inter)
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = refY[ref_inx][pos_y+j][pos_x+i];
}
}
else //! first frame; up to now set value to grey, may integrate nokia EC
{
for (j=0;j<MB_BLOCK_SIZE;j++)
for (i=0;i<MB_BLOCK_SIZE;i++)
inY[pos_y+j][pos_x+i] = 127;
}
break;
} //! End Switch
}