blob: 097fb666330b13c6db743d42da2c52e8df9a1cab [file] [log] [blame]
/*!
*************************************************************************************
* \file cabac.c
*
* \brief
* CABAC entropy coding routines
*
* \author
* Main contributors (see contributors.h for copyright, address and affiliation details)
* - Detlev Marpe <marpe@hhi.de>
**************************************************************************************
*/
#include <stdlib.h>
#include <assert.h>
#include <memory.h>
#include "global.h"
#include "cabac.h"
#include "image.h"
#include "mb_access.h"
int last_dquant = 0;
#if TRACE
#define CABAC_TRACE if (dp->bitstream->trace_enabled) trace2out_cabac (se)
#else
#define CABAC_TRACE
#endif
/***********************************************************************
* L O C A L L Y D E F I N E D F U N C T I O N P R O T O T Y P E S
***********************************************************************
*/
void unary_bin_encode(EncodingEnvironmentPtr eep_frame,
unsigned int symbol,
BiContextTypePtr ctx,
int ctx_offset);
void unary_bin_max_encode(EncodingEnvironmentPtr eep_frame,
unsigned int symbol,
BiContextTypePtr ctx,
int ctx_offset,
unsigned int max_symbol);
void unary_exp_golomb_level_encode( EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx);
void unary_exp_golomb_mv_encode(EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx,
unsigned int max_bin);
void cabac_new_slice(void)
{
last_dquant=0;
}
/*!
************************************************************************
* \brief
* Check for available neighbouring blocks
* and set pointers in current macroblock
************************************************************************
*/
void CheckAvailabilityOfNeighborsCABAC(void)
{
int mb_nr = img->current_mb_nr;
Macroblock *currMB = &img->mb_data[mb_nr];
PixelPos up, left;
getNeighbour(mb_nr, -1, 0, IS_LUMA, &left);
getNeighbour(mb_nr, 0, -1, IS_LUMA, &up);
if (up.available)
currMB->mb_available_up = &img->mb_data[up.mb_addr];
else
currMB->mb_available_up = NULL;
if (left.available)
currMB->mb_available_left = &img->mb_data[left.mb_addr];
else
currMB->mb_available_left = NULL;
}
/*!
************************************************************************
* \brief
* Allocation of contexts models for the motion info
* used for arithmetic encoding
************************************************************************
*/
MotionInfoContexts* create_contexts_MotionInfo(void)
{
MotionInfoContexts* enco_ctx;
enco_ctx = (MotionInfoContexts*) calloc(1, sizeof(MotionInfoContexts) );
if( enco_ctx == NULL )
no_mem_exit("create_contexts_MotionInfo: enco_ctx");
return enco_ctx;
}
/*!
************************************************************************
* \brief
* Allocates of contexts models for the texture info
* used for arithmetic encoding
************************************************************************
*/
TextureInfoContexts* create_contexts_TextureInfo(void)
{
TextureInfoContexts* enco_ctx;
enco_ctx = (TextureInfoContexts*) calloc(1, sizeof(TextureInfoContexts) );
if( enco_ctx == NULL )
no_mem_exit("create_contexts_TextureInfo: enco_ctx");
return enco_ctx;
}
/*!
************************************************************************
* \brief
* Frees the memory of the contexts models
* used for arithmetic encoding of the motion info.
************************************************************************
*/
void delete_contexts_MotionInfo(MotionInfoContexts *enco_ctx)
{
if( enco_ctx == NULL )
return;
free( enco_ctx );
return;
}
/*!
************************************************************************
* \brief
* Frees the memory of the contexts models
* used for arithmetic encoding of the texture info.
************************************************************************
*/
void delete_contexts_TextureInfo(TextureInfoContexts *enco_ctx)
{
if( enco_ctx == NULL )
return;
free( enco_ctx );
return;
}
/*!
***************************************************************************
* \brief
* This function is used to arithmetically encode the field
* mode info of a given MB in the case of mb-based frame/field decision
***************************************************************************
*/
void writeFieldModeInfo_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int a,b,act_ctx;
MotionInfoContexts *ctx = (img->currentSlice)->mot_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int mb_field = se->value1;
a = currMB->mbAvailA ? img->mb_data[currMB->mbAddrA].mb_field : 0;
b = currMB->mbAvailB ? img->mb_data[currMB->mbAddrB].mb_field : 0;
act_ctx = a + b;
biari_encode_symbol(eep_dp, (signed short) (mb_field != 0),&ctx->mb_aff_contexts[act_ctx]);
se->context = act_ctx;
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
***************************************************************************
* \brief
* This function is used to arithmetically encode the mb_skip_flag.
***************************************************************************
*/
void writeMB_skip_flagInfo_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int a,b,act_ctx;
int bframe = (img->type==B_SLICE);
MotionInfoContexts *ctx = (img->currentSlice)->mot_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int curr_mb_type = se->value1;
if (bframe)
{
if (currMB->mb_available_up == NULL)
b = 0;
else
b = (currMB->mb_available_up->skip_flag==0 ? 1 : 0);
if (currMB->mb_available_left == NULL)
a = 0;
else
a = (currMB->mb_available_left->skip_flag==0 ? 1 : 0);
act_ctx = 7 + a + b;
if (se->value1==0 && se->value2==0) // DIRECT mode, no coefficients
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][act_ctx]);
else
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[2][act_ctx]);
currMB->skip_flag = (se->value1==0 && se->value2==0)?1:0;
}
else
{
if (currMB->mb_available_up == NULL)
b = 0;
else
b = (( (currMB->mb_available_up)->skip_flag == 0) ? 1 : 0 );
if (currMB->mb_available_left == NULL)
a = 0;
else
a = (( (currMB->mb_available_left)->skip_flag == 0) ? 1 : 0 );
act_ctx = a + b;
if (curr_mb_type==0) // SKIP
biari_encode_symbol(eep_dp, 1,&ctx->mb_type_contexts[1][act_ctx]);
else
biari_encode_symbol(eep_dp, 0,&ctx->mb_type_contexts[1][act_ctx]);
currMB->skip_flag = (curr_mb_type==0)?1:0;
}
se->context = act_ctx;
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
***************************************************************************
* \brief
* This function is used to arithmetically encode the macroblock
* intra_pred_size flag info of a given MB.
***************************************************************************
*/
void writeMB_transform_size_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int a, b;
int act_ctx = 0;
int act_sym;
MotionInfoContexts *ctx = (img->currentSlice)->mot_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
b = (currMB->mb_available_up == NULL) ? 0 : currMB->mb_available_up->luma_transform_size_8x8_flag;
a = (currMB->mb_available_left == NULL) ? 0 :currMB->mb_available_left->luma_transform_size_8x8_flag;
act_ctx = a + b;
act_sym = currMB->luma_transform_size_8x8_flag;
se->context = act_ctx; // store context
biari_encode_symbol(eep_dp, (signed short) (act_sym != 0), ctx->transform_size_contexts + act_ctx );
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
***************************************************************************
* \brief
* This function is used to arithmetically encode the macroblock
* type info of a given MB.
***************************************************************************
*/
void writeMB_typeInfo_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int a, b;
int act_ctx = 0;
int act_sym;
signed short csym;
int bframe = (img->type==B_SLICE);
int mode_sym = 0;
int mode16x16;
MotionInfoContexts *ctx = (img->currentSlice)->mot_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int curr_mb_type = se->value1;
if(img->type == I_SLICE) // INTRA-frame
{
if (currMB->mb_available_up == NULL)
b = 0;
else
b = ((currMB->mb_available_up->mb_type != I4MB && currMB->mb_available_up->mb_type != I8MB) ? 1 : 0 );
if (currMB->mb_available_left == NULL)
a = 0;
else
a = ((currMB->mb_available_left->mb_type != I4MB && currMB->mb_available_left->mb_type != I8MB) ? 1 : 0 );
act_ctx = a + b;
act_sym = curr_mb_type;
se->context = act_ctx; // store context
if (act_sym==0) // 4x4 Intra
{
biari_encode_symbol(eep_dp, 0, ctx->mb_type_contexts[0] + act_ctx );
}
else if( act_sym == 25 ) // PCM-MODE
{
biari_encode_symbol(eep_dp, 1, ctx->mb_type_contexts[0] + act_ctx );
biari_encode_symbol_final(eep_dp, 1);
}
else // 16x16 Intra
{
biari_encode_symbol(eep_dp, 1, ctx->mb_type_contexts[0] + act_ctx );
biari_encode_symbol_final(eep_dp, 0);
mode_sym = act_sym-1; // Values in the range of 0...23
act_ctx = 4;
act_sym = mode_sym/12;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[0] + act_ctx ); // coding of AC/no AC
mode_sym = mode_sym % 12;
act_sym = mode_sym / 4; // coding of cbp: 0,1,2
act_ctx = 5;
if (act_sym==0)
{
biari_encode_symbol(eep_dp, 0, ctx->mb_type_contexts[0] + act_ctx );
}
else
{
biari_encode_symbol(eep_dp, 1, ctx->mb_type_contexts[0] + act_ctx );
act_ctx=6;
biari_encode_symbol(eep_dp, (signed short) (act_sym!=1), ctx->mb_type_contexts[0] + act_ctx );
}
mode_sym = mode_sym & 0x03; // coding of I pred-mode: 0,1,2,3
act_sym = mode_sym >> 1;
act_ctx = 7;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[0] + act_ctx );
act_ctx = 8;
act_sym = mode_sym & 0x01;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[0] + act_ctx );
}
}
else // INTER
{
if (bframe)
{
if (currMB->mb_available_up == NULL)
b = 0;
else
b = ((currMB->mb_available_up->mb_type != 0) ? 1 : 0 );
if (currMB->mb_available_left == NULL)
a = 0;
else
a = ((currMB->mb_available_left->mb_type != 0) ? 1 : 0 );
act_ctx = a + b;
se->context = act_ctx; // store context
}
act_sym = curr_mb_type;
if (act_sym>=(mode16x16=(bframe?24:7)))
{
mode_sym = act_sym-mode16x16;
act_sym = mode16x16; // 16x16 mode info
}
if (!bframe)
{
switch (act_sym)
{
case 0:
break;
case 1:
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][5]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][6]);
break;
case 2:
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][5]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][7]);
break;
case 3:
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][5]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][7]);
break;
case 4:
case 5:
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][5]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][6]);
break;
case 6:
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[1][7]);
break;
case 7:
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][4]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[1][7]);
break;
default:
printf ("Unsupported MB-MODE in writeMB_typeInfo_CABAC!\n");
exit (1);
}
}
else //===== B-FRAMES =====
{
if (act_sym==0)
{
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[2][act_ctx]);
}
else if (act_sym<=2)
{
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][act_ctx]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[2][4]);
csym = (act_sym-1 != 0);
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
}
else if (act_sym<=10)
{
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][act_ctx]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][4]);
biari_encode_symbol (eep_dp, 0, &ctx->mb_type_contexts[2][5]);
csym=(((act_sym-3)>>2)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
csym=(((act_sym-3)>>1)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
csym=((act_sym-3)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
}
else if (act_sym==11 || act_sym==22)
{
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][act_ctx]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][4]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][5]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][6]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][6]);
csym = (act_sym != 11);
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
}
else
{
if (act_sym > 22) act_sym--;
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][act_ctx]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][4]);
biari_encode_symbol (eep_dp, 1, &ctx->mb_type_contexts[2][5]);
csym=(((act_sym-12)>>3)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
csym=(((act_sym-12)>>2)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
csym=(((act_sym-12)>>1)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
csym=((act_sym-12)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->mb_type_contexts[2][6]);
if (act_sym >=22) act_sym++;
}
}
if(act_sym==mode16x16) // additional info for 16x16 Intra-mode
{
if( mode_sym==25 )
{
biari_encode_symbol_final(eep_dp, 1 );
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
biari_encode_symbol_final(eep_dp, 0 );
act_ctx = 8;
act_sym = mode_sym/12;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[1] + act_ctx ); // coding of AC/no AC
mode_sym = mode_sym % 12;
act_sym = mode_sym / 4; // coding of cbp: 0,1,2
act_ctx = 9;
if (act_sym==0)
{
biari_encode_symbol(eep_dp, 0, ctx->mb_type_contexts[1] + act_ctx );
}
else
{
biari_encode_symbol(eep_dp, 1, ctx->mb_type_contexts[1] + act_ctx );
biari_encode_symbol(eep_dp, (signed short) (act_sym!=1), ctx->mb_type_contexts[1] + act_ctx );
}
mode_sym = mode_sym % 4; // coding of I pred-mode: 0,1,2,3
act_ctx = 10;
act_sym = mode_sym/2;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[1] + act_ctx );
act_sym = mode_sym%2;
biari_encode_symbol(eep_dp, (signed short) act_sym, ctx->mb_type_contexts[1] + act_ctx );
}
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
***************************************************************************
* \brief
* This function is used to arithmetically encode the 8x8 block
* type info
***************************************************************************
*/
void writeB8_typeInfo_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int act_ctx;
int act_sym;
signed short csym;
int bframe=(img->type==B_SLICE);
MotionInfoContexts *ctx = (img->currentSlice)->mot_ctx;
act_sym = se->value1;
act_ctx = 0;
if (!bframe)
{
switch (act_sym)
{
case 0:
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[0][1]);
break;
case 1:
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[0][1]);
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[0][3]);
break;
case 2:
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[0][1]);
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[0][3]);
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[0][4]);
break;
case 3:
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[0][1]);
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[0][3]);
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[0][4]);
break;
}
}
else //===== B-FRAME =====
{
if (act_sym==0)
{
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[1][0]);
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
else
{
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[1][0]);
act_sym--;
}
if (act_sym<2)
{
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[1][1]);
biari_encode_symbol (eep_dp, (signed short) (act_sym!=0), &ctx->b8_type_contexts[1][3]);
}
else if (act_sym<6)
{
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[1][1]);
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[1][2]);
csym=(((act_sym-2)>>1)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->b8_type_contexts[1][3]);
csym=((act_sym-2)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->b8_type_contexts[1][3]);
}
else
{
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[1][1]);
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[1][2]);
csym=(((act_sym-6)>>2)&0x01);
if (csym)
{
biari_encode_symbol (eep_dp, 1, &ctx->b8_type_contexts[1][3]);
csym=((act_sym-6)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->b8_type_contexts[1][3]);
}
else
{
biari_encode_symbol (eep_dp, 0, &ctx->b8_type_contexts[1][3]);
csym=(((act_sym-6)>>1)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->b8_type_contexts[1][3]);
csym=((act_sym-6)&0x01) != 0;
biari_encode_symbol (eep_dp, csym, &ctx->b8_type_contexts[1][3]);
}
}
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode a pair of
* intra prediction modes of a given MB.
****************************************************************************
*/
void writeIntraPredMode_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
// use_most_probable_mode
if (se->value1 == -1)
biari_encode_symbol(eep_dp, 1, ctx->ipr_contexts);
else
{
biari_encode_symbol(eep_dp, 0, ctx->ipr_contexts);
// remaining_mode_selector
biari_encode_symbol(eep_dp,(signed short)( se->value1 & 0x1 ), ctx->ipr_contexts+1);
biari_encode_symbol(eep_dp,(signed short)((se->value1 & 0x2)>>1), ctx->ipr_contexts+1);
biari_encode_symbol(eep_dp,(signed short)((se->value1 & 0x4)>>2), ctx->ipr_contexts+1);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the reference
* parameter of a given MB.
****************************************************************************
*/
void writeRefFrame_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int mb_nr = img->current_mb_nr;
MotionInfoContexts *ctx = img->currentSlice->mot_ctx;
Macroblock *currMB = &img->mb_data[mb_nr];
int addctx = 0;
int a, b;
int act_ctx;
int act_sym;
signed char** refframe_array = enc_picture->ref_idx[se->value2];
int bslice = (img->type==B_SLICE);
int b8a, b8b;
PixelPos block_a, block_b;
getLuma4x4Neighbour(mb_nr, (img->subblock_x << 2) - 1, (img->subblock_y << 2), &block_a);
getLuma4x4Neighbour(mb_nr, (img->subblock_x << 2), (img->subblock_y << 2) - 1, &block_b);
b8a=((block_a.x >> 1) & 0x01)+2*((block_a.y >> 1) & 0x01);
b8b=((block_b.x >> 1) & 0x01)+2*((block_b.y >> 1) & 0x01);
if (!block_b.available)
b=0;
//else if (IS_DIRECT(&img->mb_data[block_b.mb_addr]) || (img->mb_data[block_b.mb_addr].b8mode[b8b]==0 && bslice))
else if ((IS_DIRECT(&img->mb_data[block_b.mb_addr]) && !giRDOpt_B8OnlyFlag) || (img->mb_data[block_b.mb_addr].b8mode[b8b]==0 && bslice))
b=0;
else
{
if (img->MbaffFrameFlag && (currMB->mb_field == 0) && (img->mb_data[block_b.mb_addr].mb_field == 1))
b = (refframe_array[block_b.pos_y][block_b.pos_x] > 1 ? 1 : 0);
else
b = (refframe_array[block_b.pos_y][block_b.pos_x] > 0 ? 1 : 0);
}
if (!block_a.available)
a=0;
// else if (IS_DIRECT(&img->mb_data[block_a.mb_addr]) || (img->mb_data[block_a.mb_addr].b8mode[b8a]==0 && bslice))
else if ((IS_DIRECT(&img->mb_data[block_a.mb_addr]) && !giRDOpt_B8OnlyFlag) || (img->mb_data[block_a.mb_addr].b8mode[b8a]==0 && bslice))
a=0;
else
{
if (img->MbaffFrameFlag && (currMB->mb_field == 0) && (img->mb_data[block_a.mb_addr].mb_field == 1))
a = (refframe_array[block_a.pos_y][block_a.pos_x] > 1 ? 1 : 0);
else
a = (refframe_array[block_a.pos_y][block_a.pos_x] > 0 ? 1 : 0);
}
act_ctx = a + 2*b;
se->context = act_ctx; // store context
act_sym = se->value1;
if (act_sym==0)
{
biari_encode_symbol(eep_dp, 0, ctx->ref_no_contexts[addctx] + act_ctx );
}
else
{
biari_encode_symbol(eep_dp, 1, ctx->ref_no_contexts[addctx] + act_ctx);
act_sym--;
act_ctx=4;
unary_bin_encode(eep_dp, act_sym,ctx->ref_no_contexts[addctx]+act_ctx,1);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of a given delta quant.
****************************************************************************
*/
void writeDquant_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
MotionInfoContexts *ctx = img->currentSlice->mot_ctx;
int act_ctx;
int act_sym;
int dquant = se->value1;
int sign=0;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
last_dquant=currMB->prev_delta_qp;
if (dquant <= 0)
sign = 1;
act_sym = iabs(dquant) << 1;
act_sym += sign;
act_sym --;
act_ctx = ( (last_dquant != 0) ? 1 : 0);
if (act_sym==0)
{
biari_encode_symbol(eep_dp, 0, ctx->delta_qp_contexts + act_ctx );
}
else
{
biari_encode_symbol(eep_dp, 1, ctx->delta_qp_contexts + act_ctx);
act_ctx=2;
act_sym--;
unary_bin_encode(eep_dp, act_sym,ctx->delta_qp_contexts+act_ctx,1);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the motion
* vector data of a B-frame MB.
****************************************************************************
*/
void writeMVD_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
int i = (img->subblock_x << 2);
int j = (img->subblock_y << 2);
int a, b;
int act_ctx;
int act_sym;
int mv_pred_res;
int mv_local_err;
int mv_sign;
int list_idx = se->value2 & 0x01;
int k = (se->value2>>1); // MVD component
int mb_nr = img->current_mb_nr;
PixelPos block_a, block_b;
MotionInfoContexts *ctx = img->currentSlice->mot_ctx;
Macroblock *currMB = &img->mb_data[mb_nr];
getLuma4x4Neighbour(mb_nr, i - 1, j, &block_a);
getLuma4x4Neighbour(mb_nr, i , j - 1, &block_b);
if (block_b.available)
{
b = iabs(img->mb_data[block_b.mb_addr].mvd[list_idx][block_b.y][block_b.x][k]);
if (img->MbaffFrameFlag && (k==1))
{
if ((currMB->mb_field==0) && (img->mb_data[block_b.mb_addr].mb_field==1))
b *= 2;
else if ((currMB->mb_field==1) && (img->mb_data[block_b.mb_addr].mb_field==0))
b /= 2;
}
}
else
b=0;
if (block_a.available)
{
a = iabs(img->mb_data[block_a.mb_addr].mvd[list_idx][block_a.y][block_a.x][k]);
if (img->MbaffFrameFlag && (k==1))
{
if ((currMB->mb_field==0) && (img->mb_data[block_a.mb_addr].mb_field==1))
a *= 2;
else if ((currMB->mb_field==1) && (img->mb_data[block_a.mb_addr].mb_field==0))
a /= 2;
}
}
else
a = 0;
if ((mv_local_err=a+b)<3)
act_ctx = 5*k;
else
{
if (mv_local_err>32)
act_ctx=5*k+3;
else
act_ctx=5*k+2;
}
mv_pred_res = se->value1;
se->context = act_ctx;
act_sym = iabs(mv_pred_res);
if (act_sym == 0)
biari_encode_symbol(eep_dp, 0, &ctx->mv_res_contexts[0][act_ctx] );
else
{
biari_encode_symbol(eep_dp, 1, &ctx->mv_res_contexts[0][act_ctx] );
act_sym--;
act_ctx=5*k;
unary_exp_golomb_mv_encode(eep_dp,act_sym,ctx->mv_res_contexts[1]+act_ctx,3);
mv_sign = (mv_pred_res<0) ? 1: 0;
biari_encode_symbol_eq_prob(eep_dp, (signed short) mv_sign);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the chroma
* intra prediction mode of an 8x8 block
****************************************************************************
*/
void writeCIPredMode_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int act_ctx,a,b;
int act_sym = se->value1;
if (currMB->mb_available_up == NULL) b = 0;
else b = ( ((currMB->mb_available_up)->c_ipred_mode != 0) ? 1 : 0);
if (currMB->mb_available_left == NULL) a = 0;
else a = ( ((currMB->mb_available_left)->c_ipred_mode != 0) ? 1 : 0);
act_ctx = a+b;
if (act_sym==0)
biari_encode_symbol(eep_dp, 0, ctx->cipr_contexts + act_ctx );
else
{
biari_encode_symbol(eep_dp, 1, ctx->cipr_contexts + act_ctx );
unary_bin_max_encode(eep_dp,(unsigned int) (act_sym-1),ctx->cipr_contexts+3,0,2);
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of an 8x8 block
****************************************************************************
*/
void writeCBP_BIT_CABAC (int b8, int bit, int cbp, Macroblock* currMB, int inter, EncodingEnvironmentPtr eep_dp)
{
PixelPos block_a;
int a, b;
int mb_x=(b8 & 0x01)<<1;
int mb_y=(b8 >> 1)<<1;
if (mb_y == 0)
{
if (currMB->mb_available_up == NULL)
b = 0;
else
{
if((currMB->mb_available_up)->mb_type==IPCM)
b=0;
else
b = (( ((currMB->mb_available_up)->cbp & (1<<(2+(mb_x>>1)))) == 0) ? 1 : 0); //VG-ADD
}
}
else
b = ( ((cbp & (1<<(mb_x/2))) == 0) ? 1: 0);
if (mb_x == 0)
{
getLuma4x4Neighbour(img->current_mb_nr, (mb_x << 2) - 1, (mb_y << 2), &block_a);
if (block_a.available)
{
{
if(img->mb_data[block_a.mb_addr].mb_type==IPCM)
a=0;
else
a = (( (img->mb_data[block_a.mb_addr].cbp & (1<<(2*(block_a.y>>1)+1))) == 0) ? 1 : 0); //VG-ADD
}
}
else
a=0;
}
else
a = ( ((cbp & (1<<mb_y)) == 0) ? 1: 0);
//===== WRITE BIT =====
biari_encode_symbol (eep_dp, (signed short) bit,
img->currentSlice->tex_ctx->cbp_contexts[0] + a+2*b);
}
/*!
****************************************************************************
* \brief
* This function is used to arithmetically encode the coded
* block pattern of a macroblock
****************************************************************************
*/
void writeCBP_CABAC(SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
TextureInfoContexts *ctx = img->currentSlice->tex_ctx;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int a, b;
int curr_cbp_ctx, curr_cbp_idx;
int cbp = se->value1; // symbol to encode
int cbp_bit;
int b8;
for (b8=0; b8<4; b8++)
{
curr_cbp_idx = (currMB->b8mode[b8] == IBLOCK ? 0 : 1);
writeCBP_BIT_CABAC (b8, cbp&(1<<b8), cbp, currMB, curr_cbp_idx, eep_dp);
}
if (img->yuv_format != YUV400)
{
// coding of chroma part
b = 0;
if (currMB->mb_available_up != NULL)
{
if((currMB->mb_available_up)->mb_type==IPCM)
b=1;
else
b = ((currMB->mb_available_up)->cbp > 15) ? 1 : 0;
}
a = 0;
if (currMB->mb_available_left != NULL)
{
if((currMB->mb_available_left)->mb_type==IPCM)
a=1;
else
a = ((currMB->mb_available_left)->cbp > 15) ? 1 : 0;
}
curr_cbp_ctx = a+2*b;
cbp_bit = (cbp > 15 ) ? 1 : 0;
biari_encode_symbol(eep_dp, (signed short) cbp_bit, ctx->cbp_contexts[1] + curr_cbp_ctx );
if (cbp > 15)
{
b = 0;
if (currMB->mb_available_up != NULL)
{
if((currMB->mb_available_up)->mb_type==IPCM)
b=1;
else
if ((currMB->mb_available_up)->cbp > 15)
b = (( ((currMB->mb_available_up)->cbp >> 4) == 2) ? 1 : 0);
}
a = 0;
if (currMB->mb_available_left != NULL)
{
if((currMB->mb_available_left)->mb_type==IPCM)
a=1;
else
if ((currMB->mb_available_left)->cbp > 15)
a = (( ((currMB->mb_available_left)->cbp >> 4) == 2) ? 1 : 0);
}
curr_cbp_ctx = a+2*b;
cbp_bit = ((cbp>>4) == 2) ? 1 : 0;
biari_encode_symbol(eep_dp, (signed short) cbp_bit, ctx->cbp_contexts[2] + curr_cbp_ctx );
}
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
static const int maxpos [] = {16, 15, 64, 32, 32, 16, 4, 15, 8, 16};
static const int c1isdc [] = { 1, 0, 1, 1, 1, 1, 1, 0, 1, 1};
static const int type2ctx_bcbp[] = { 0, 1, 2, 2, 3, 4, 5, 6, 5, 5}; // 7
static const int type2ctx_map [] = { 0, 1, 2, 3, 4, 5, 6, 7, 6, 6}; // 8
static const int type2ctx_last[] = { 0, 1, 2, 3, 4, 5, 6, 7, 6, 6}; // 8
static const int type2ctx_one [] = { 0, 1, 2, 3, 3, 4, 5, 6, 5, 5}; // 7
static const int type2ctx_abs [] = { 0, 1, 2, 3, 3, 4, 5, 6, 5, 5}; // 7
static const int max_c2 [] = { 4, 4, 4, 4, 4, 4, 3, 4, 3, 3}; // 9
/*!
****************************************************************************
* \brief
* Write CBP4-BIT
****************************************************************************
*/
void write_and_store_CBP_block_bit (Macroblock* currMB, EncodingEnvironmentPtr eep_dp, int type, int cbp_bit)
{
#define BIT_SET(x,n) ((int)(((x)&((int64)1<<(n)))>>(n)))
int y_ac = (type==LUMA_16AC || type==LUMA_8x8 || type==LUMA_8x4 || type==LUMA_4x8 || type==LUMA_4x4);
int y_dc = (type==LUMA_16DC);
int u_ac = (type==CHROMA_AC && !img->is_v_block);
int v_ac = (type==CHROMA_AC && img->is_v_block);
int chroma_dc = (type==CHROMA_DC || type==CHROMA_DC_2x4 || type==CHROMA_DC_4x4);
int u_dc = (chroma_dc && !img->is_v_block);
int v_dc = (chroma_dc && img->is_v_block);
int j = (y_ac || u_ac || v_ac ? img->subblock_y : 0);
int i = (y_ac || u_ac || v_ac ? img->subblock_x : 0);
int bit = (y_dc ? 0 : y_ac ? 1 : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 : 23);
int default_bit = (img->is_intra_block ? 1 : 0);
int upper_bit = default_bit;
int left_bit = default_bit;
int ctx;
int bit_pos_a = 0;
int bit_pos_b = 0;
PixelPos block_a, block_b;
if (y_ac || y_dc)
{
getLuma4x4Neighbour(img->current_mb_nr, (i<<2) - 1, (j << 2), &block_a);
getLuma4x4Neighbour(img->current_mb_nr, (i<<2), (j << 2) -1, &block_b);
if (y_ac)
{
if (block_a.available)
bit_pos_a = 4*block_a.y + block_a.x;
if (block_b.available)
bit_pos_b = 4*block_b.y + block_b.x;
}
}
else
{
getChroma4x4Neighbour(img->current_mb_nr, (i<<2)-1, (j<<2), &block_a);
getChroma4x4Neighbour(img->current_mb_nr, (i<<2), (j<<2)-1,&block_b);
if (u_ac||v_ac)
{
if (block_a.available)
bit_pos_a = 4*block_a.y + block_a.x;
if (block_b.available)
bit_pos_b = 4*block_b.y + block_b.x;
}
}
bit = (y_dc ? 0 : y_ac ? 1+4*j+i : u_dc ? 17 : v_dc ? 18 : u_ac ? 19+4*j+i : 35+4*j+i);
//--- set bits for current block ---
if (cbp_bit)
{
if (type==LUMA_8x8)
{
currMB->cbp_bits |= ((int64)1<< bit );
currMB->cbp_bits |= ((int64)1<<(bit+1));
currMB->cbp_bits |= ((int64)1<<(bit+4));
currMB->cbp_bits |= ((int64)1<<(bit+5));
}
else if (type==LUMA_8x4)
{
currMB->cbp_bits |= ((int64)1<< bit );
currMB->cbp_bits |= ((int64)1<<(bit+1));
}
else if (type==LUMA_4x8)
{
currMB->cbp_bits |= ((int64)1<< bit );
currMB->cbp_bits |= ((int64)1<<(bit+4));
}
else
{
currMB->cbp_bits |= ((int64)1<<bit);
}
}
bit = (y_dc ? 0 : y_ac ? 1 : u_dc ? 17 : v_dc ? 18 : u_ac ? 19 : 35);
if (type!=LUMA_8x8)
{
if (block_b.available)
{
if(img->mb_data[block_b.mb_addr].mb_type==IPCM)
upper_bit=1;
else
upper_bit = BIT_SET(img->mb_data[block_b.mb_addr].cbp_bits,bit+bit_pos_b);
}
if (block_a.available)
{
if(img->mb_data[block_a.mb_addr].mb_type==IPCM)
left_bit=1;
else
left_bit = BIT_SET(img->mb_data[block_a.mb_addr].cbp_bits,bit+bit_pos_a);
}
ctx = 2*upper_bit+left_bit;
//===== encode symbol =====
biari_encode_symbol (eep_dp, (short)cbp_bit, img->currentSlice->tex_ctx->bcbp_contexts[type2ctx_bcbp[type]]+ctx);
}
}
//===== position -> ctx for MAP =====
//--- zig-zag scan ----
static const int pos2ctx_map8x8 [] = { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9, 10, 9, 8, 7,
7, 6, 11, 12, 13, 11, 6, 7, 8, 9, 14, 10, 9, 8, 6, 11,
12, 13, 11, 6, 9, 14, 10, 9, 11, 12, 13, 11 ,14, 10, 12, 14}; // 15 CTX
static const int pos2ctx_map8x4 [] = { 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 9, 8, 6, 7, 8,
9, 10, 11, 9, 8, 6, 12, 8, 9, 10, 11, 9, 13, 13, 14, 14}; // 15 CTX
static const int pos2ctx_map4x4 [] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14}; // 15 CTX
static const int pos2ctx_map2x4c[] = { 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; // 15 CTX
static const int pos2ctx_map4x4c[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2}; // 15 CTX
static const int* pos2ctx_map [] = {pos2ctx_map4x4, pos2ctx_map4x4, pos2ctx_map8x8, pos2ctx_map8x4,
pos2ctx_map8x4, pos2ctx_map4x4, pos2ctx_map4x4, pos2ctx_map4x4,
pos2ctx_map2x4c, pos2ctx_map4x4c};
//--- interlace scan ----
//Taken from ABT
static const int pos2ctx_map8x8i[] = { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
6, 9, 10, 10, 8, 11, 12, 11, 9, 9, 10, 10, 8, 11, 12, 11,
9, 9, 10, 10, 8, 11, 12, 11, 9, 9, 10, 10, 8, 13, 13, 9,
9, 10, 10, 8, 13, 13, 9, 9, 10, 10, 14, 14, 14, 14, 14, 14}; // 15 CTX
static const int pos2ctx_map8x4i[] = { 0, 1, 2, 3, 4, 5, 6, 3, 4, 5, 6, 3, 4, 7, 6, 8,
9, 7, 6, 8, 9, 10, 11, 12, 12, 10, 11, 13, 13, 14, 14, 14}; // 15 CTX
static const int pos2ctx_map4x8i[] = { 0, 1, 1, 1, 2, 3, 3, 4, 4, 4, 5, 6, 2, 7, 7, 8,
8, 8, 5, 6, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 14, 14}; // 15 CTX
static const int* pos2ctx_map_int[] = {pos2ctx_map4x4, pos2ctx_map4x4, pos2ctx_map8x8i,pos2ctx_map8x4i,
pos2ctx_map4x8i,pos2ctx_map4x4, pos2ctx_map4x4, pos2ctx_map4x4,
pos2ctx_map2x4c, pos2ctx_map4x4c};
//===== position -> ctx for LAST =====
static const int pos2ctx_last8x8 [] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8}; // 9 CTX
static const int pos2ctx_last8x4 [] = { 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8}; // 9 CTX
static const int pos2ctx_last4x4 [] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; // 15 CTX
static const int pos2ctx_last2x4c[] = { 0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2}; // 15 CTX
static const int pos2ctx_last4x4c[] = { 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2}; // 15 CTX
static const int* pos2ctx_last [] = {pos2ctx_last4x4, pos2ctx_last4x4, pos2ctx_last8x8, pos2ctx_last8x4,
pos2ctx_last8x4, pos2ctx_last4x4, pos2ctx_last4x4, pos2ctx_last4x4,
pos2ctx_last2x4c, pos2ctx_last4x4c};
/*!
****************************************************************************
* \brief
* Write Significance MAP
****************************************************************************
*/
void write_significance_map (Macroblock* currMB, EncodingEnvironmentPtr eep_dp, int type, int coeff[], int coeff_ctr)
{
int k;
unsigned short sig, last;
int k0 = 0;
int k1 = maxpos[type]-1;
TextureInfoContexts* tex_ctx = img->currentSlice->tex_ctx;
int fld = ( img->structure!=FRAME || currMB->mb_field );
BiContextTypePtr map_ctx = ( fld
? tex_ctx->fld_map_contexts[type2ctx_map [type]]
: tex_ctx->map_contexts[type2ctx_map [type]] );
BiContextTypePtr last_ctx = ( fld
? tex_ctx->fld_last_contexts[type2ctx_last[type]]
: tex_ctx->last_contexts[type2ctx_last[type]] );
if (!c1isdc[type])
{
k0++; k1++; coeff--;
}
if (!fld)
{
for (k=k0; k<k1; k++) // if last coeff is reached, it has to be significant
{
sig = (coeff[k] != 0);
biari_encode_symbol (eep_dp, sig, map_ctx + pos2ctx_map [type][k]);
if (sig)
{
last = (--coeff_ctr == 0);
biari_encode_symbol(eep_dp, last, last_ctx + pos2ctx_last[type][k]);
if (last) return;
}
}
return;
}
else
{
for (k=k0; k<k1; k++) // if last coeff is reached, it has to be significant
{
sig = (coeff[k] != 0);
biari_encode_symbol (eep_dp, sig, map_ctx + pos2ctx_map_int [type][k]);
if (sig)
{
last = (--coeff_ctr == 0);
biari_encode_symbol(eep_dp, last, last_ctx + pos2ctx_last[type][k]);
if (last) return;
}
}
}
}
/*!
****************************************************************************
* \brief
* Write Levels
****************************************************************************
*/
void write_significant_coefficients (Macroblock* currMB, EncodingEnvironmentPtr eep_dp, int type, int coeff[])
{
int i;
int absLevel;
int ctx;
short sign;
short greater_one;
int c1 = 1;
int c2 = 0;
for (i=maxpos[type]-1; i>=0; i--)
{
if (coeff[i]!=0)
{
if (coeff[i]>0) {absLevel = coeff[i]; sign = 0;}
else {absLevel = -coeff[i]; sign = 1;}
greater_one = (absLevel>1);
//--- if coefficient is one ---
ctx = imin(c1,4);
biari_encode_symbol (eep_dp, greater_one, img->currentSlice->tex_ctx->one_contexts[type2ctx_one[type]] + ctx);
if (greater_one)
{
ctx = imin(c2, max_c2[type]);
unary_exp_golomb_level_encode(eep_dp, absLevel-2, img->currentSlice->tex_ctx->abs_contexts[type2ctx_abs[type]] + ctx);
c1 = 0;
c2++;
}
else if (c1)
{
c1++;
}
biari_encode_symbol_eq_prob (eep_dp, sign);
}
}
}
/*!
****************************************************************************
* \brief
* Write Block-Transform Coefficients
****************************************************************************
*/
void writeRunLevel_CABAC (SyntaxElement *se, DataPartition *dp)
{
EncodingEnvironmentPtr eep_dp = &(dp->ee_cabac);
int curr_len = arienco_bits_written(eep_dp);
static int coeff[64];
static int coeff_ctr = 0;
static int pos = 0;
//--- accumulate run-level information ---
if (se->value1 != 0)
{
pos += se->value2;
coeff[pos++] = se->value1;
coeff_ctr++;
//return;
}
else
{
Macroblock* currMB = &img->mb_data[img->current_mb_nr];
//===== encode CBP-BIT =====
if (coeff_ctr>0)
{
write_and_store_CBP_block_bit (currMB, eep_dp, se->context, 1);
//===== encode significance map =====
write_significance_map (currMB, eep_dp, se->context, coeff, coeff_ctr);
//===== encode significant coefficients =====
write_significant_coefficients (currMB, eep_dp, se->context, coeff);
}
else
write_and_store_CBP_block_bit (currMB, eep_dp, se->context, 0);
//--- reset counters ---
pos = coeff_ctr = 0;
memset(coeff, 0 , 64 * sizeof(int));
}
dp->bitstream->write_flag = 1;
se->len = (arienco_bits_written(eep_dp) - curr_len);
CABAC_TRACE;
return;
}
/*!
************************************************************************
* \brief
* Unary binarization and encoding of a symbol by using
* one or two distinct models for the first two and all
* remaining bins
*
************************************************************************/
void unary_bin_encode(EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx,
int ctx_offset)
{
unsigned int l;
BiContextTypePtr ictx;
if (symbol==0)
{
biari_encode_symbol(eep_dp, 0, ctx );
return;
}
else
{
biari_encode_symbol(eep_dp, 1, ctx );
l = symbol;
ictx = ctx+ctx_offset;
while ((--l)>0)
biari_encode_symbol(eep_dp, 1, ictx);
biari_encode_symbol(eep_dp, 0, ictx);
}
return;
}
/*!
************************************************************************
* \brief
* Unary binarization and encoding of a symbol by using
* one or two distinct models for the first two and all
* remaining bins; no terminating "0" for max_symbol
* (finite symbol alphabet)
************************************************************************
*/
void unary_bin_max_encode(EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx,
int ctx_offset,
unsigned int max_symbol)
{
unsigned int l;
BiContextTypePtr ictx;
if (symbol==0)
{
biari_encode_symbol(eep_dp, 0, ctx );
return;
}
else
{
biari_encode_symbol(eep_dp, 1, ctx );
l=symbol;
ictx=ctx+ctx_offset;
while ((--l)>0)
biari_encode_symbol(eep_dp, 1, ictx);
if (symbol<max_symbol)
biari_encode_symbol(eep_dp, 0, ictx);
}
return;
}
/*!
************************************************************************
* \brief
* Exp Golomb binarization and encoding
************************************************************************
*/
void exp_golomb_encode_eq_prob( EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
int k)
{
while(1)
{
if (symbol >= (unsigned int)(1<<k))
{
biari_encode_symbol_eq_prob(eep_dp, 1); //first unary part
symbol = symbol - (1<<k);
k++;
}
else
{
biari_encode_symbol_eq_prob(eep_dp, 0); //now terminated zero of unary part
while (k--) //next binary part
biari_encode_symbol_eq_prob(eep_dp, (signed short)((symbol>>k)&1));
break;
}
}
return;
}
/*!
************************************************************************
* \brief
* Exp-Golomb for Level Encoding
*
************************************************************************/
void unary_exp_golomb_level_encode( EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx)
{
unsigned int l,k;
unsigned int exp_start = 13; // 15-2 : 0,1 level decision always sent
if (symbol==0)
{
biari_encode_symbol(eep_dp, 0, ctx );
return;
}
else
{
biari_encode_symbol(eep_dp, 1, ctx );
l=symbol;
k=1;
while (((--l)>0) && (++k <= exp_start))
biari_encode_symbol(eep_dp, 1, ctx);
if (symbol < exp_start) biari_encode_symbol(eep_dp, 0, ctx);
else exp_golomb_encode_eq_prob(eep_dp,symbol-exp_start,0);
}
return;
}
/*!
************************************************************************
* \brief
* Exp-Golomb for MV Encoding
*
************************************************************************/
void unary_exp_golomb_mv_encode(EncodingEnvironmentPtr eep_dp,
unsigned int symbol,
BiContextTypePtr ctx,
unsigned int max_bin)
{
unsigned int l,k;
unsigned int bin=1;
BiContextTypePtr ictx=ctx;
unsigned int exp_start = 8; // 9-1 : 0 mvd decision always sent
if (symbol==0)
{
biari_encode_symbol(eep_dp, 0, ictx );
return;
}
else
{
biari_encode_symbol(eep_dp, 1, ictx );
l=symbol;
k=1;
ictx++;
while (((--l)>0) && (++k <= exp_start))
{
biari_encode_symbol(eep_dp, 1, ictx );
if ((++bin)==2) ictx++;
if (bin==max_bin) ictx++;
}
if (symbol < exp_start) biari_encode_symbol(eep_dp, 0, ictx);
else exp_golomb_encode_eq_prob(eep_dp,symbol-exp_start,3);
}
return;
}