blob: d509f342ae96986b34612e7996ddf20f1c713e72 [file] [log] [blame]
/*
* This file includes code from libmspack adapted for libclamav by
* tkojm@clamav.net
*
* Copyright (C) 2003-2004 Stuart Caie
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301
* USA
*/
#if HAVE_CONFIG_H
#include "clamav-config.h"
#endif
#include <stdio.h>
#include <string.h>
#include "others.h"
#include "clamav.h"
#include "mspack.h"
#if HAVE_LIMITS_H
# include <limits.h>
#endif
#ifndef CHAR_BIT
# define CHAR_BIT (8)
#endif
/***************************************************************************
* MS-ZIP decompression implementation
***************************************************************************
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
* by Microsoft Corporation.
*
* The deflate method was created by Phil Katz. MSZIP is equivalent to the
* deflate method.
*
*/
/* match lengths for literal codes 257.. 285 */
static const unsigned short mszip_lit_lengths[29] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27,
31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258
};
/* match offsets for distance codes 0 .. 29 */
static const unsigned short mszip_dist_offsets[30] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385,
513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577
};
/* extra bits required for literal codes 257.. 285 */
static const unsigned char mszip_lit_extrabits[29] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2,
2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0
};
/* extra bits required for distance codes 0 .. 29 */
static const unsigned char mszip_dist_extrabits[30] = {
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6,
6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13
};
/* the order of the bit length Huffman code lengths */
static const unsigned char mszip_bitlen_order[19] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
/* ANDing with mszip_bit_mask[n] masks the lower n bits */
static const unsigned short mszip_bit_mask_tab[17] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
#define MSZIP_STORE_BITS do { \
zip->i_ptr = i_ptr; \
zip->i_end = i_end; \
zip->bit_buffer = bit_buffer; \
zip->bits_left = bits_left; \
} while (0)
#define MSZIP_RESTORE_BITS do { \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
bit_buffer = zip->bit_buffer; \
bits_left = zip->bits_left; \
} while (0)
#define MSZIP_ENSURE_BITS(nbits) do { \
while (bits_left < (nbits)) { \
if (i_ptr >= i_end) { \
if (mszip_read_input(zip)) return zip->error; \
i_ptr = zip->i_ptr; \
i_end = zip->i_end; \
} \
bit_buffer |= *i_ptr++ << bits_left; bits_left += 8; \
} \
} while (0)
#define MSZIP_PEEK_BITS(nbits) (bit_buffer & ((1<<(nbits))-1))
#define MSZIP_PEEK_BITS_T(nbits) (bit_buffer & mszip_bit_mask_tab[(nbits)])
#define MSZIP_REMOVE_BITS(nbits) ((bit_buffer >>= (nbits)), (bits_left -= (nbits)))
#define MSZIP_READ_BITS(val, nbits) do { \
MSZIP_ENSURE_BITS(nbits); (val) = MSZIP_PEEK_BITS(nbits); MSZIP_REMOVE_BITS(nbits); \
} while (0)
#define MSZIP_READ_BITS_T(val, nbits) do { \
MSZIP_ENSURE_BITS(nbits); (val) = MSZIP_PEEK_BITS_T(nbits); MSZIP_REMOVE_BITS(nbits); \
} while (0)
static int mszip_read_input(struct mszip_stream *zip) {
int read = zip->read ? zip->read(zip->file, zip->inbuf, (int)zip->inbuf_size) : cli_readn(zip->fd, zip->inbuf, (int)zip->inbuf_size);
if (read < 0) return zip->error = CL_EIO;
if (read == 0) {
if (zip->input_end) {
cli_dbgmsg("mszip_read_input: out of input bytes\n");
return zip->error = CL_EIO;
}
else {
read = 1;
zip->inbuf[0] = 0;
zip->input_end = 1;
}
}
zip->i_ptr = &zip->inbuf[0];
zip->i_end = &zip->inbuf[read];
return CL_SUCCESS;
}
/* inflate() error codes */
#define INF_ERR_BLOCKTYPE (-1) /* unknown block type */
#define INF_ERR_COMPLEMENT (-2) /* block size complement mismatch */
#define INF_ERR_FLUSH (-3) /* error from flush_window() callback */
#define INF_ERR_BITBUF (-4) /* too many bits in bit buffer */
#define INF_ERR_SYMLENS (-5) /* too many symbols in blocktype 2 header */
#define INF_ERR_BITLENTBL (-6) /* failed to build bitlens huffman table */
#define INF_ERR_LITERALTBL (-7) /* failed to build literals huffman table */
#define INF_ERR_DISTANCETBL (-8) /* failed to build distance huffman table */
#define INF_ERR_BITOVERRUN (-9) /* bitlen RLE code goes over table size */
#define INF_ERR_BADBITLEN (-10) /* invalid bit-length code */
#define INF_ERR_LITCODE (-11) /* out-of-range literal code */
#define INF_ERR_DISTCODE (-12) /* out-of-range distance code */
#define INF_ERR_DISTANCE (-13) /* somehow, distance is beyond 32k */
#define INF_ERR_HUFFSYM (-14) /* out of bits decoding huffman symbol */
/* mszip_make_decode_table(nsyms, nbits, length[], table[])
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table out of just a canonical huffman code lengths table.
*
* NOTE: this is NOT identical to the mszip_make_decode_table() in lzxd.c. This
* one reverses the quick-lookup bit pattern. Bits are read MSB to LSB in LZX,
* but LSB to MSB in MSZIP.
*
* nsyms = total number of symbols in this huffman tree.
* nbits = any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length = A table to get code lengths from [0 to nsyms-1]
* table = The table to fill up with decoded symbols and pointers.
*
* Returns 0 for OK or 1 for error
*/
static int mszip_make_decode_table(unsigned int nsyms, unsigned int nbits,
unsigned char *length, unsigned short *table)
{
register unsigned int leaf, reverse, fill;
register unsigned short sym, next_sym;
register unsigned char bit_num;
unsigned int pos = 0; /* the current position in the decode table */
unsigned int table_mask = 1 << nbits;
unsigned int mszip_bit_mask = table_mask >> 1; /* don't do 0 length codes */
/* fill entries for codes short enough for a direct mapping */
for (bit_num = 1; bit_num <= nbits; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* reverse the significant bits */
fill = length[sym]; reverse = pos >> (nbits - fill); leaf = 0;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
if((pos += mszip_bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
fill = mszip_bit_mask; next_sym = 1 << bit_num;
do { table[leaf] = sym; leaf += next_sym; } while (--fill);
}
mszip_bit_mask >>= 1;
}
/* exit with success if table is now complete */
if (pos == table_mask) return 0;
/* mark all remaining table entries as unused */
for (sym = pos; sym < table_mask; sym++) {
reverse = sym; leaf = 0; fill = nbits;
do { leaf <<= 1; leaf |= reverse & 1; reverse >>= 1; } while (--fill);
table[leaf] = 0xFFFF;
}
/* where should the longer codes be allocated from? */
next_sym = ((table_mask >> 1) < nsyms) ? nsyms : (table_mask >> 1);
/* give ourselves room for codes to grow by up to 16 more bits.
* codes now start at bit nbits+16 and end at (nbits+16-codelength) */
pos <<= 16;
table_mask <<= 16;
mszip_bit_mask = 1 << 15;
for (bit_num = nbits+1; bit_num <= MSZIP_MAX_HUFFBITS; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
/* leaf = the first nbits of the code, reversed */
reverse = pos >> 16; leaf = 0; fill = nbits;
do {leaf <<= 1; leaf |= reverse & 1; reverse >>= 1;} while (--fill);
for (fill = 0; fill < (bit_num - nbits); fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0xFFFF) {
table[(next_sym << 1) ] = 0xFFFF;
table[(next_sym << 1) + 1 ] = 0xFFFF;
table[leaf] = next_sym++;
}
/* follow the path and select either left or right for next bit */
leaf = (table[leaf] << 1) | ((pos >> (15 - fill)) & 1);
}
table[leaf] = sym;
if ((pos += mszip_bit_mask) > table_mask) return 1; /* table overflow */
}
mszip_bit_mask >>= 1;
}
/* full table? */
return (pos != table_mask) ? 1 : 0;
}
/* MSZIP_READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define MSZIP_READ_HUFFSYM(tbl, var) do { \
/* huffman symbols can be up to 16 bits long */ \
MSZIP_ENSURE_BITS(MSZIP_MAX_HUFFBITS); \
/* immediate table lookup of [tablebits] bits of the code */ \
sym = zip->tbl##_table[MSZIP_PEEK_BITS(MSZIP_##tbl##_TABLEBITS)]; \
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
if (sym >= MSZIP_##tbl##_MAXSYMBOLS) { \
/* decode remaining bits by tree traversal */ \
i = MSZIP_##tbl##_TABLEBITS - 1; \
do { \
/* check next bit. error if we run out of bits before decode */ \
if (i++ > MSZIP_MAX_HUFFBITS) { \
cli_dbgmsg("zip_inflate: out of bits in huffman decode\n"); \
return INF_ERR_HUFFSYM; \
} \
sym = (sym << 1) | ((bit_buffer >> i) & 1); \
if(sym >= MSZIP_##tbl##_TABLESIZE) { \
cli_dbgmsg("zip_inflate: index out of table\n"); \
return INF_ERR_HUFFSYM; \
} \
/* double node index and add 0 (left branch) or 1 (right) */ \
sym = zip->tbl##_table[sym]; \
/* while we are still in node indicies, not decoded symbols */ \
} while (sym >= MSZIP_##tbl##_MAXSYMBOLS); \
} \
/* result */ \
(var) = sym; \
/* look up the code length of that symbol and discard those bits */ \
i = zip->tbl##_len[sym]; \
MSZIP_REMOVE_BITS(i); \
} while (0)
static int mszip_read_lens(struct mszip_stream *zip) {
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
/* bitlen Huffman codes -- immediate lookup, 7 bit max code length */
unsigned short bl_table[(1 << 7)];
unsigned char bl_len[19];
unsigned char lens[MSZIP_LITERAL_MAXSYMBOLS + MSZIP_DISTANCE_MAXSYMBOLS];
unsigned int lit_codes, dist_codes, code, last_code=0, bitlen_codes, i, run;
MSZIP_RESTORE_BITS;
/* read the number of codes */
MSZIP_READ_BITS(lit_codes, 5); lit_codes += 257;
MSZIP_READ_BITS(dist_codes, 5); dist_codes += 1;
MSZIP_READ_BITS(bitlen_codes, 4); bitlen_codes += 4;
if (lit_codes > MSZIP_LITERAL_MAXSYMBOLS) return INF_ERR_SYMLENS;
if (dist_codes > MSZIP_DISTANCE_MAXSYMBOLS) return INF_ERR_SYMLENS;
/* read in the bit lengths in their unusual order */
for (i = 0; i < bitlen_codes; i++) MSZIP_READ_BITS(bl_len[mszip_bitlen_order[i]], 3);
while (i < 19) bl_len[mszip_bitlen_order[i++]] = 0;
/* create decoding table with an immediate lookup */
if (mszip_make_decode_table(19, 7, &bl_len[0], &bl_table[0])) {
return INF_ERR_BITLENTBL;
}
/* read literal / distance code lengths */
for (i = 0; i < (lit_codes + dist_codes); i++) {
/* single-level huffman lookup */
MSZIP_ENSURE_BITS(7);
code = bl_table[MSZIP_PEEK_BITS(7)];
MSZIP_REMOVE_BITS(bl_len[code]);
if (code < 16) lens[i] = last_code = code;
else {
switch (code) {
case 16: MSZIP_READ_BITS(run, 2); run += 3; code = last_code; break;
case 17: MSZIP_READ_BITS(run, 3); run += 3; code = 0; break;
case 18: MSZIP_READ_BITS(run, 7); run += 11; code = 0; break;
default: cli_dbgmsg("zip_read_lens: bad code!: %u\n", code); return INF_ERR_BADBITLEN;
}
if ((i + run) > (lit_codes + dist_codes)) return INF_ERR_BITOVERRUN;
while (run--) lens[i++] = code;
i--;
}
}
/* copy LITERAL code lengths and clear any remaining */
i = lit_codes;
memcpy(&zip->LITERAL_len[0], &lens[0], i);
while (i < MSZIP_LITERAL_MAXSYMBOLS) zip->LITERAL_len[i++] = 0;
i = dist_codes;
memcpy(&zip->DISTANCE_len[0], &lens[lit_codes], i);
while (i < MSZIP_DISTANCE_MAXSYMBOLS) zip->DISTANCE_len[i++] = 0;
MSZIP_STORE_BITS;
return 0;
}
/* a clean implementation of RFC 1951 / inflate */
static int mszip_inflate(struct mszip_stream *zip) {
unsigned int last_block, block_type, distance, length, this_run, i;
/* for the bit buffer and huffman decoding */
register unsigned int bit_buffer;
register int bits_left;
register unsigned short sym;
unsigned char *i_ptr, *i_end;
MSZIP_RESTORE_BITS;
do {
/* read in last block bit */
MSZIP_READ_BITS(last_block, 1);
/* read in block type */
MSZIP_READ_BITS(block_type, 2);
if (block_type == 0) {
/* uncompressed block */
unsigned char lens_buf[4];
/* go to byte boundary */
i = bits_left & 7; MSZIP_REMOVE_BITS(i);
/* read 4 bytes of data, emptying the bit-buffer if necessary */
for (i = 0; (bits_left >= 8); i++) {
if (i == 4) return INF_ERR_BITBUF;
lens_buf[i] = MSZIP_PEEK_BITS(8);
MSZIP_REMOVE_BITS(8);
}
if (bits_left != 0) return INF_ERR_BITBUF;
while (i < 4) {
if (i_ptr >= i_end) {
if (mszip_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
lens_buf[i++] = *i_ptr++;
}
/* get the length and its complement */
length = lens_buf[0] | (lens_buf[1] << 8);
i = lens_buf[2] | (lens_buf[3] << 8);
if (length != (~i & 0xFFFF)) return INF_ERR_COMPLEMENT;
/* read and copy the uncompressed data into the window */
while (length > 0) {
if (i_ptr >= i_end) {
if (mszip_read_input(zip)) return zip->error;
i_ptr = zip->i_ptr;
i_end = zip->i_end;
}
this_run = length;
if (this_run > (unsigned int)(i_end - i_ptr)) this_run = i_end - i_ptr;
if (this_run > (MSZIP_FRAME_SIZE - zip->window_posn))
this_run = MSZIP_FRAME_SIZE - zip->window_posn;
memcpy(&zip->window[zip->window_posn], i_ptr, this_run);
zip->window_posn += this_run;
i_ptr += this_run;
length -= this_run;
if (zip->window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
zip->window_posn = 0;
}
}
}
else if ((block_type == 1) || (block_type == 2)) {
/* Huffman-compressed LZ77 block */
unsigned int window_posn, match_posn, code;
if (block_type == 1) {
/* block with fixed Huffman codes */
i = 0;
while (i < 144) zip->LITERAL_len[i++] = 8;
while (i < 256) zip->LITERAL_len[i++] = 9;
while (i < 280) zip->LITERAL_len[i++] = 7;
while (i < 288) zip->LITERAL_len[i++] = 8;
for (i = 0; i < 32; i++) zip->DISTANCE_len[i] = 5;
}
else {
/* block with dynamic Huffman codes */
MSZIP_STORE_BITS;
if ((i = mszip_read_lens(zip))) return i;
MSZIP_RESTORE_BITS;
}
/* now huffman lengths are read for either kind of block,
* create huffman decoding tables */
if (mszip_make_decode_table(MSZIP_LITERAL_MAXSYMBOLS, MSZIP_LITERAL_TABLEBITS,
&zip->LITERAL_len[0], &zip->LITERAL_table[0]))
{
return INF_ERR_LITERALTBL;
}
if (mszip_make_decode_table(MSZIP_DISTANCE_MAXSYMBOLS,MSZIP_DISTANCE_TABLEBITS,
&zip->DISTANCE_len[0], &zip->DISTANCE_table[0]))
{
return INF_ERR_DISTANCETBL;
}
/* decode forever until end of block code */
window_posn = zip->window_posn;
while (1) {
MSZIP_READ_HUFFSYM(LITERAL, code);
if (code < 256) {
zip->window[window_posn++] = (unsigned char) code;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE)) return INF_ERR_FLUSH;
window_posn = 0;
}
}
else if (code == 256) {
/* END OF BLOCK CODE: loop break point */
break;
}
else {
code -= 257;
if (code > 29) return INF_ERR_LITCODE;
MSZIP_READ_BITS_T(length, mszip_lit_extrabits[code]);
length += mszip_lit_lengths[code];
MSZIP_READ_HUFFSYM(DISTANCE, code);
if (code > 30) return INF_ERR_DISTCODE;
MSZIP_READ_BITS_T(distance, mszip_dist_extrabits[code]);
distance += mszip_dist_offsets[code];
/* match position is window position minus distance. If distance
* is more than window position numerically, it must 'wrap
* around' the frame size. */
match_posn = ((distance > window_posn) ? MSZIP_FRAME_SIZE : 0)
+ window_posn - distance;
/* copy match */
if (length < 12) {
/* short match, use slower loop but no loop setup code */
while (length--) {
zip->window[window_posn++] = zip->window[match_posn++];
match_posn &= MSZIP_FRAME_SIZE - 1;
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
}
}
else {
/* longer match, use faster loop but with setup expense */
unsigned char *runsrc, *rundest;
do {
this_run = length;
if ((match_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - match_posn;
if ((window_posn + this_run) > MSZIP_FRAME_SIZE)
this_run = MSZIP_FRAME_SIZE - window_posn;
rundest = &zip->window[window_posn]; window_posn += this_run;
runsrc = &zip->window[match_posn]; match_posn += this_run;
length -= this_run;
while (this_run--) *rundest++ = *runsrc++;
/* flush if necessary */
if (window_posn == MSZIP_FRAME_SIZE) {
if (zip->flush_window(zip, MSZIP_FRAME_SIZE))
return INF_ERR_FLUSH;
window_posn = 0;
}
if (match_posn == MSZIP_FRAME_SIZE) match_posn = 0;
} while (length > 0);
}
} /* else (code >= 257) */
} /* while (forever) -- break point at 'code == 256' */
zip->window_posn = window_posn;
}
else {
/* block_type == 3 -- bad block type */
return INF_ERR_BLOCKTYPE;
}
} while (!last_block);
/* flush the remaining data */
if (zip->window_posn) {
if (zip->flush_window(zip, zip->window_posn)) return INF_ERR_FLUSH;
}
MSZIP_STORE_BITS;
/* return success */
return 0;
}
/* inflate() calls this whenever the window should be flushed. As
* MSZIP only expands to the size of the window, the implementation used
* simply keeps track of the amount of data flushed, and if more than 32k
* is flushed, an error is raised.
*/
static int mszip_flush_window(struct mszip_stream *zip,
unsigned int data_flushed)
{
zip->bytes_output += data_flushed;
if (zip->bytes_output > MSZIP_FRAME_SIZE) {
cli_dbgmsg("mszip_flush_window: overflow: %u bytes flushed, total is now %u\n", data_flushed, zip->bytes_output);
return 1;
}
return 0;
}
struct mszip_stream *mszip_init(int fd,
int ofd,
int input_buffer_size,
int repair_mode,
struct cab_file *file,
int (*read)(struct cab_file *, unsigned char *, int))
{
struct mszip_stream *zip;
input_buffer_size = (input_buffer_size + 1) & -2;
if (!input_buffer_size) return NULL;
/* allocate decompression state */
if (!(zip = cli_malloc(sizeof(struct mszip_stream)))) {
return NULL;
}
/* allocate input buffer */
zip->inbuf = cli_malloc((size_t) input_buffer_size);
if (!zip->inbuf) {
free(zip);
return NULL;
}
/* initialise decompression state */
zip->fd = fd;
zip->ofd = ofd;
zip->wflag = 1;
zip->inbuf_size = input_buffer_size;
zip->error = CL_SUCCESS;
zip->repair_mode = repair_mode;
zip->flush_window = &mszip_flush_window;
zip->input_end = 0;
zip->i_ptr = zip->i_end = &zip->inbuf[0];
zip->o_ptr = zip->o_end = NULL;
zip->bit_buffer = 0; zip->bits_left = 0;
zip->file = file;
zip->read = read;
return zip;
}
int mszip_decompress(struct mszip_stream *zip, off_t out_bytes) {
/* for the bit buffer */
register unsigned int bit_buffer;
register int bits_left;
unsigned char *i_ptr, *i_end;
int i, state, error;
/* easy answers */
if (!zip || (out_bytes < 0)) return CL_ENULLARG;
if (zip->error) return zip->error;
/* flush out any stored-up bytes before we begin */
i = zip->o_end - zip->o_ptr;
if ((off_t) i > out_bytes) i = (int) out_bytes;
if (i) {
if (zip->wflag && cli_writen(zip->ofd, zip->o_ptr, i) != i) {
return zip->error = CL_EIO;
}
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes == 0) return CL_SUCCESS;
while (out_bytes > 0) {
/* unpack another block */
MSZIP_RESTORE_BITS;
/* skip to next read 'CK' header */
i = bits_left & 7; MSZIP_REMOVE_BITS(i); /* align to bytestream */
state = 0;
do {
MSZIP_READ_BITS(i, 8);
if (i == 'C') state = 1;
else if ((state == 1) && (i == 'K')) state = 2;
else state = 0;
} while (state != 2);
/* inflate a block, repair and realign if necessary */
zip->window_posn = 0;
zip->bytes_output = 0;
MSZIP_STORE_BITS;
if ((error = mszip_inflate(zip))) {
cli_dbgmsg("mszip_decompress: inflate error %d\n", error);
if (zip->repair_mode) {
cli_dbgmsg("mszip_decompress: MSZIP error, %u bytes of data lost\n",
MSZIP_FRAME_SIZE - zip->bytes_output);
for (i = zip->bytes_output; i < MSZIP_FRAME_SIZE; i++) {
zip->window[i] = '\0';
}
zip->bytes_output = MSZIP_FRAME_SIZE;
}
else {
return zip->error = (error > 0) ? error : CL_EFORMAT;
}
}
zip->o_ptr = &zip->window[0];
zip->o_end = &zip->o_ptr[zip->bytes_output];
/* write a frame */
i = (out_bytes < (off_t)zip->bytes_output) ?
(int)out_bytes : zip->bytes_output;
if (zip->wflag && cli_writen(zip->ofd, zip->o_ptr, i) != i) {
return zip->error = CL_EIO;
}
/* mspack errors (i.e. read errors) are fatal and can't be recovered */
if ((error > 0) && zip->repair_mode) return error;
zip->o_ptr += i;
out_bytes -= i;
}
if (out_bytes) {
cli_dbgmsg("mszip_decompress: bytes left to output\n");
return zip->error = CL_EFORMAT;
}
return CL_SUCCESS;
}
void mszip_free(struct mszip_stream *zip) {
if (zip) {
free(zip->inbuf);
free(zip);
}
}
/***************************************************************************
* LZX decompression implementation
***************************************************************************
* The LZX method was created by Jonathan Forbes and Tomi Poutanen, adapted
* by Microsoft Corporation.
*
*/
/* LZX decompressor input macros
*
* LZX_STORE_BITS stores bitstream state in lzx_stream structure
* LZX_RESTORE_BITS restores bitstream state from lzx_stream structure
* LZX_READ_BITS(var,n) takes N bits from the buffer and puts them in var
* LZX_ENSURE_BITS(n) ensures there are at least N bits in the bit buffer.
* LZX_PEEK_BITS(n) extracts without removing N bits from the bit buffer
* LZX_REMOVE_BITS(n) removes N bits from the bit buffer
*
*/
#define LZX_BITBUF_WIDTH (sizeof(bit_buffer) * CHAR_BIT)
#define LZX_STORE_BITS do { \
lzx->i_ptr = i_ptr; \
lzx->i_end = i_end; \
lzx->bit_buffer = bit_buffer; \
lzx->bits_left = bits_left; \
} while (0)
#define LZX_RESTORE_BITS do { \
i_ptr = lzx->i_ptr; \
i_end = lzx->i_end; \
bit_buffer = lzx->bit_buffer; \
bits_left = lzx->bits_left; \
} while (0)
#define LZX_ENSURE_BITS(nbits) \
while (bits_left < (nbits)) { \
if (i_ptr + 1 >= i_end) { \
if (lzx_read_input(lzx)) return lzx->error; \
i_ptr = lzx->i_ptr; \
i_end = lzx->i_end; \
} \
bit_buffer |= ((i_ptr[1] << 8) | i_ptr[0]) \
<< (LZX_BITBUF_WIDTH - 16 - bits_left); \
bits_left += 16; \
i_ptr += 2; \
}
#define LZX_PEEK_BITS(nbits) (bit_buffer >> (LZX_BITBUF_WIDTH - (nbits)))
#define LZX_REMOVE_BITS(nbits) ((bit_buffer <<= (nbits)), (bits_left -= (nbits)))
#define LZX_READ_BITS(val, nbits) do { \
LZX_ENSURE_BITS(nbits); \
(val) = LZX_PEEK_BITS(nbits); \
LZX_REMOVE_BITS(nbits); \
} while (0)
static int lzx_read_input(struct lzx_stream *lzx) {
int bread = lzx->read ? lzx->read(lzx->file, &lzx->inbuf[0], (int)lzx->inbuf_size) : cli_readn(lzx->fd, &lzx->inbuf[0], (int)lzx->inbuf_size);
if (bread < 0) return lzx->error = CL_EIO;
/* huff decode's ENSURE_BYTES(16) might overrun the input stream, even
* if those bits aren't used, so fake 2 more bytes */
if (bread == 0) {
if (lzx->input_end) {
cli_dbgmsg("lzx_read_input: out of input bytes\n");
return lzx->error = CL_EIO;
}
else {
bread = 2;
lzx->inbuf[0] = lzx->inbuf[1] = 0;
lzx->input_end = 1;
}
}
lzx->i_ptr = &lzx->inbuf[0];
lzx->i_end = &lzx->inbuf[bread];
return CL_SUCCESS;
}
/* Huffman decoding macros */
/* LZX_READ_HUFFSYM(tablename, var) decodes one huffman symbol from the
* bitstream using the stated table and puts it in var.
*/
#define LZX_READ_HUFFSYM(tbl, var) do { \
/* huffman symbols can be up to 16 bits long */ \
LZX_ENSURE_BITS(16); \
/* immediate table lookup of [tablebits] bits of the code */ \
sym = lzx->tbl##_table[LZX_PEEK_BITS(LZX_##tbl##_TABLEBITS)]; \
/* is the symbol is longer than [tablebits] bits? (i=node index) */ \
if (sym >= LZX_##tbl##_MAXSYMBOLS) { \
/* decode remaining bits by tree traversal */ \
i = 1 << (LZX_BITBUF_WIDTH - LZX_##tbl##_TABLEBITS); \
do { \
/* one less bit. error if we run out of bits before decode */ \
i >>= 1; \
if (i == 0) { \
cli_dbgmsg("lzx: out of bits in huffman decode\n"); \
return lzx->error = CL_EFORMAT; \
} \
/* double node index and add 0 (left branch) or 1 (right) */ \
sym <<= 1; sym |= (bit_buffer & i) ? 1 : 0; \
/* hop to next node index / decoded symbol */ \
if(sym >= (1 << LZX_##tbl##_TABLEBITS) + (LZX_##tbl##_MAXSYMBOLS * 2)) { \
cli_dbgmsg("lzx: index out of table\n"); \
return lzx->error = CL_EFORMAT; \
} \
sym = lzx->tbl##_table[sym]; \
/* while we are still in node indicies, not decoded symbols */ \
} while (sym >= LZX_##tbl##_MAXSYMBOLS); \
} \
/* result */ \
(var) = sym; \
/* look up the code length of that symbol and discard those bits */ \
i = lzx->tbl##_len[sym]; \
LZX_REMOVE_BITS(i); \
} while (0)
/* LZX_BUILD_TABLE(tbl) builds a huffman lookup table from code lengths */
#define LZX_BUILD_TABLE(tbl) \
if (lzx_make_decode_table(LZX_##tbl##_MAXSYMBOLS, LZX_##tbl##_TABLEBITS, \
&lzx->tbl##_len[0], &lzx->tbl##_table[0])) \
{ \
cli_dbgmsg("lzx: failed to build %s table\n", #tbl); \
return lzx->error = CL_EFORMAT; \
}
/* lzx_make_decode_table(nsyms, nbits, length[], table[])
*
* This function was coded by David Tritscher. It builds a fast huffman
* decoding table from a canonical huffman code lengths table.
*
* nsyms = total number of symbols in this huffman tree.
* nbits = any symbols with a code length of nbits or less can be decoded
* in one lookup of the table.
* length = A table to get code lengths from [0 to syms-1]
* table = The table to fill up with decoded symbols and pointers.
*
* Returns 0 for OK or 1 for error
*/
static int lzx_make_decode_table(unsigned int nsyms, unsigned int nbits,
unsigned char *length, unsigned short *table)
{
register unsigned short sym;
register unsigned int leaf, fill;
register unsigned char bit_num;
unsigned int pos = 0; /* the current position in the decode table */
unsigned int table_mask = 1 << nbits;
unsigned int bit_mask = table_mask >> 1; /* don't do 0 length codes */
unsigned int next_symbol = bit_mask; /* base of allocation for long codes */
/* fill entries for codes short enough for a direct mapping */
for (bit_num = 1; bit_num <= nbits; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
leaf = pos;
if((pos += bit_mask) > table_mask) return 1; /* table overrun */
/* fill all possible lookups of this symbol with the symbol itself */
for (fill = bit_mask; fill-- > 0;) table[leaf++] = sym;
}
bit_mask >>= 1;
}
/* full table already? */
if (pos == table_mask) return 0;
/* clear the remainder of the table */
for (sym = pos; sym < table_mask; sym++) table[sym] = 0xFFFF;
/* allow codes to be up to nbits+16 long, instead of nbits */
pos <<= 16;
table_mask <<= 16;
bit_mask = 1 << 15;
for (bit_num = nbits+1; bit_num <= 16; bit_num++) {
for (sym = 0; sym < nsyms; sym++) {
if (length[sym] != bit_num) continue;
leaf = pos >> 16;
for (fill = 0; fill < bit_num - nbits; fill++) {
/* if this path hasn't been taken yet, 'allocate' two entries */
if (table[leaf] == 0xFFFF) {
table[(next_symbol << 1)] = 0xFFFF;
table[(next_symbol << 1) + 1] = 0xFFFF;
table[leaf] = next_symbol++;
}
/* follow the path and select either left or right for next bit */
leaf = table[leaf] << 1;
if ((pos >> (15-fill)) & 1) leaf++;
}
table[leaf] = sym;
if ((pos += bit_mask) > table_mask) return 1; /* table overflow */
}
bit_mask >>= 1;
}
/* full table? */
if (pos == table_mask) return 0;
/* either erroneous table, or all elements are 0 - let's find out. */
for (sym = 0; sym < nsyms; sym++) if (length[sym]) return 1;
return 0;
}
/* LZX_READ_LENGTHS(tablename, first, last) reads in code lengths for symbols
* first to last in the given table. The code lengths are stored in their
* own special LZX way.
*/
#define LZX_READ_LENGTHS(tbl, first, last) do { \
LZX_STORE_BITS; \
if (lzx_read_lens(lzx, &lzx->tbl##_len[0], (first), \
(unsigned int)(last))) return lzx->error; \
LZX_RESTORE_BITS; \
} while (0)
static int lzx_read_lens(struct lzx_stream *lzx, unsigned char *lens,
unsigned int first, unsigned int last)
{
/* bit buffer and huffman symbol decode variables */
register unsigned int bit_buffer;
register int bits_left, i;
register unsigned short sym;
unsigned char *i_ptr, *i_end;
unsigned int x, y;
int z;
LZX_RESTORE_BITS;
/* read lengths for pretree (20 symbols, lengths stored in fixed 4 bits) */
for (x = 0; x < 20; x++) {
LZX_READ_BITS(y, 4);
lzx->PRETREE_len[x] = y;
}
LZX_BUILD_TABLE(PRETREE);
for (x = first; x < last; ) {
LZX_READ_HUFFSYM(PRETREE, z);
if (z == 17) {
/* code = 17, run of ([read 4 bits]+4) zeros */
LZX_READ_BITS(y, 4); y += 4;
while (y--) lens[x++] = 0;
}
else if (z == 18) {
/* code = 18, run of ([read 5 bits]+20) zeros */
LZX_READ_BITS(y, 5); y += 20;
while (y--) lens[x++] = 0;
}
else if (z == 19) {
/* code = 19, run of ([read 1 bit]+4) [read huffman symbol] */
LZX_READ_BITS(y, 1); y += 4;
LZX_READ_HUFFSYM(PRETREE, z);
z = lens[x] - z; if (z < 0) z += 17;
while (y--) lens[x++] = z;
}
else {
/* code = 0 to 16, delta current length entry */
z = lens[x] - z; if (z < 0) z += 17;
lens[x++] = z;
}
}
LZX_STORE_BITS;
return CL_SUCCESS;
}
static void lzx_reset_state(struct lzx_stream *lzx) {
int i;
lzx->R0 = 1;
lzx->R1 = 1;
lzx->R2 = 1;
lzx->header_read = 0;
lzx->block_remaining = 0;
lzx->block_type = LZX_BLOCKTYPE_INVALID;
/* initialise tables to 0 (because deltas will be applied to them) */
for (i = 0; i < LZX_MAINTREE_MAXSYMBOLS; i++) lzx->MAINTREE_len[i] = 0;
for (i = 0; i < LZX_LENGTH_MAXSYMBOLS; i++) lzx->LENGTH_len[i] = 0;
}
/*-------- main LZX code --------*/
struct lzx_stream *lzx_init(int fd,
int ofd,
int window_bits,
int reset_interval,
int input_buffer_size,
off_t output_length,
struct cab_file *file,
int (*read)(struct cab_file *, unsigned char *, int))
{
unsigned int window_size = 1 << window_bits;
struct lzx_stream *lzx;
int i, j;
/* LZX supports window sizes of 2^15 (32Kb) through 2^21 (2Mb) */
if (window_bits < 15 || window_bits > 21) return NULL;
input_buffer_size = (input_buffer_size + 1) & -2;
if (!input_buffer_size) return NULL;
/* allocate decompression state */
if (!(lzx = cli_calloc(1, sizeof(struct lzx_stream)))) {
return NULL;
}
for (i = 0, j = 0; i < 51; i += 2) {
lzx->extra_bits[i] = j; /* 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7... */
if(i < 50)
lzx->extra_bits[i+1] = j;
if ((i != 0) && (j < 17)) j++; /* 0,0,1,2,3,4...15,16,17,17,17,17... */
}
for (i = 0, j = 0; i < 51; i++) {
lzx->position_base[i] = j; /* 0,1,2,3,4,6,8,12,16,24,32,... */
j += 1 << lzx->extra_bits[i]; /* 1,1,1,1,2,2,4,4,8,8,16,16,32,32,... */
}
/* allocate decompression window and input buffer */
lzx->window = cli_calloc(1, (size_t) window_size);
if(!lzx->window) {
free(lzx);
return NULL;
}
lzx->inbuf = cli_calloc(1, (size_t) input_buffer_size);
if (!lzx->inbuf) {
free(lzx->window);
free(lzx);
return NULL;
}
/* initialise decompression state */
lzx->fd = fd;
lzx->ofd = ofd;
lzx->wflag = 1;
lzx->offset = 0;
lzx->length = output_length;
lzx->file = file;
lzx->read = read;
lzx->inbuf_size = input_buffer_size;
lzx->window_size = 1 << window_bits;
lzx->window_posn = 0;
lzx->frame_posn = 0;
lzx->frame = 0;
lzx->reset_interval = reset_interval;
lzx->intel_filesize = 0;
lzx->intel_curpos = 0;
/* window bits: 15 16 17 18 19 20 21
* position slots: 30 32 34 36 38 42 50 */
lzx->posn_slots = ((window_bits == 21) ? 50 :
((window_bits == 20) ? 42 : (window_bits << 1)));
lzx->intel_started = 0;
lzx->input_end = 0;
lzx->error = CL_SUCCESS;
lzx->i_ptr = lzx->i_end = &lzx->inbuf[0];
lzx->o_ptr = lzx->o_end = &lzx->e8_buf[0];
lzx->bit_buffer = lzx->bits_left = 0;
lzx_reset_state(lzx);
return lzx;
}
void lzx_set_output_length(struct lzx_stream *lzx, off_t out_bytes) {
if (lzx) lzx->length = out_bytes;
}
int lzx_decompress(struct lzx_stream *lzx, off_t out_bytes) {
/* bitstream reading and huffman variables */
register unsigned int bit_buffer;
register int bits_left, i=0;
register unsigned short sym;
unsigned char *i_ptr, *i_end;
int match_length, length_footer, extra, verbatim_bits, bytes_todo;
int this_run, main_element, aligned_bits, j;
unsigned char *window, *runsrc, *rundest, buf[12];
unsigned int frame_size=0, end_frame, match_offset, window_posn;
unsigned int R0, R1, R2;
/* easy answers */
if (!lzx || (out_bytes < 0)) return CL_ENULLARG;
if (lzx->error) return lzx->error;
/* flush out any stored-up bytes before we begin */
i = lzx->o_end - lzx->o_ptr;
if ((off_t) i > out_bytes) i = (int) out_bytes;
if (i) {
if (lzx->wflag && cli_writen(lzx->ofd, lzx->o_ptr, i) != i) {
return lzx->error = CL_EIO;
}
lzx->o_ptr += i;
lzx->offset += i;
out_bytes -= i;
}
if (out_bytes == 0) return CL_SUCCESS;
/* restore local state */
LZX_RESTORE_BITS;
window = lzx->window;
window_posn = lzx->window_posn;
R0 = lzx->R0;
R1 = lzx->R1;
R2 = lzx->R2;
end_frame = (unsigned int)((lzx->offset + out_bytes) / LZX_FRAME_SIZE) + 1;
while (lzx->frame < end_frame) {
/* have we reached the reset interval? (if there is one?) */
if (lzx->reset_interval && ((lzx->frame % lzx->reset_interval) == 0)) {
if (lzx->block_remaining) {
cli_dbgmsg("lzx_decompress: %d bytes remaining at reset interval\n", lzx->block_remaining);
return lzx->error = CL_EFORMAT;
}
/* re-read the intel header and reset the huffman lengths */
lzx_reset_state(lzx);
}
/* read header if necessary */
if (!lzx->header_read) {
/* read 1 bit. if bit=0, intel filesize = 0.
* if bit=1, read intel filesize (32 bits) */
j = 0; LZX_READ_BITS(i, 1); if (i) { LZX_READ_BITS(i, 16); LZX_READ_BITS(j, 16); }
lzx->intel_filesize = (i << 16) | j;
lzx->header_read = 1;
}
/* calculate size of frame: all frames are 32k except the final frame
* which is 32kb or less. this can only be calculated when lzx->length
* has been filled in. */
frame_size = LZX_FRAME_SIZE;
if (lzx->length && (lzx->length - lzx->offset) < (off_t)frame_size) {
frame_size = lzx->length - lzx->offset;
}
/* decode until one more frame is available */
bytes_todo = lzx->frame_posn + frame_size - window_posn;
while (bytes_todo > 0) {
/* initialise new block, if one is needed */
if (lzx->block_remaining == 0) {
/* realign if previous block was an odd-sized UNCOMPRESSED block */
if ((lzx->block_type == LZX_BLOCKTYPE_UNCOMPRESSED) &&
(lzx->block_length & 1))
{
if (i_ptr == i_end) {
if (lzx_read_input(lzx)) return lzx->error;
i_ptr = lzx->i_ptr;
i_end = lzx->i_end;
}
i_ptr++;
}
/* read block type (3 bits) and block length (24 bits) */
LZX_READ_BITS(lzx->block_type, 3);
LZX_READ_BITS(i, 16); LZX_READ_BITS(j, 8);
lzx->block_remaining = lzx->block_length = (i << 8) | j;
/* read individual block headers */
switch (lzx->block_type) {
case LZX_BLOCKTYPE_ALIGNED:
/* read lengths of and build aligned huffman decoding tree */
for (i = 0; i < 8; i++) { LZX_READ_BITS(j, 3); lzx->ALIGNED_len[i] = j; }
LZX_BUILD_TABLE(ALIGNED);
/* no break -- rest of aligned header is same as verbatim */
case LZX_BLOCKTYPE_VERBATIM:
/* read lengths of and build main huffman decoding tree */
LZX_READ_LENGTHS(MAINTREE, 0, 256);
LZX_READ_LENGTHS(MAINTREE, 256, LZX_NUM_CHARS + (lzx->posn_slots << 3));
LZX_BUILD_TABLE(MAINTREE);
/* if the literal 0xE8 is anywhere in the block... */
if (lzx->MAINTREE_len[0xE8] != 0) lzx->intel_started = 1;
/* read lengths of and build lengths huffman decoding tree */
LZX_READ_LENGTHS(LENGTH, 0, LZX_NUM_SECONDARY_LENGTHS);
LZX_BUILD_TABLE(LENGTH);
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
/* because we can't assume otherwise */
lzx->intel_started = 1;
/* read 1-16 (not 0-15) bits to align to bytes */
LZX_ENSURE_BITS(16);
if (bits_left > 16) i_ptr -= 2;
bits_left = 0; bit_buffer = 0;
/* read 12 bytes of stored R0 / R1 / R2 values */
for (rundest = &buf[0], i = 0; i < 12; i++) {
if (i_ptr == i_end) {
if (lzx_read_input(lzx)) return lzx->error;
i_ptr = lzx->i_ptr;
i_end = lzx->i_end;
}
*rundest++ = *i_ptr++;
}
R0 = buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24);
R1 = buf[4] | (buf[5] << 8) | (buf[6] << 16) | (buf[7] << 24);
R2 = buf[8] | (buf[9] << 8) | (buf[10] << 16) | (buf[11] << 24);
break;
default:
cli_dbgmsg("lzx_decompress: bad block type (0x%x)\n", lzx->block_type);
return lzx->error = CL_EFORMAT;
}
}
/* decode more of the block:
* run = min(what's available, what's needed) */
this_run = lzx->block_remaining;
if (this_run > bytes_todo) this_run = bytes_todo;
/* assume we decode exactly this_run bytes, for now */
bytes_todo -= this_run;
lzx->block_remaining -= this_run;
/* decode at least this_run bytes */
switch (lzx->block_type) {
case LZX_BLOCKTYPE_VERBATIM:
while (this_run > 0) {
LZX_READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
/* get match length */
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
LZX_READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
/* get match offset */
switch ((match_offset = (main_element >> 3))) {
case 0: match_offset = R0; break;
case 1: match_offset = R1; R1=R0; R0 = match_offset; break;
case 2: match_offset = R2; R2=R0; R0 = match_offset; break;
case 3: match_offset = 1; R2=R1; R1=R0; R0 = match_offset; break;
default:
extra = lzx->extra_bits[match_offset];
LZX_READ_BITS(verbatim_bits, extra);
match_offset = lzx->position_base[match_offset] - 2 + verbatim_bits;
R2 = R1; R1 = R0; R0 = match_offset;
}
if ((window_posn + match_length) > lzx->window_size) {
cli_dbgmsg("lzx_decompress: match ran over window wrap\n");
return lzx->error = CL_EFORMAT;
}
/* copy match */
rundest = &window[window_posn];
i = match_length;
/* does match offset wrap the window? */
if (match_offset > window_posn) {
/* j = length from match offset to end of window */
j = match_offset - window_posn;
if (j > (int) lzx->window_size) {
cli_dbgmsg("lzx_decompress: match offset beyond window boundaries\n");
return lzx->error = CL_EFORMAT;
}
runsrc = &window[lzx->window_size - j];
if (j < i) {
/* if match goes over the window edge, do two copy runs */
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
while (i-- > 0) *rundest++ = *runsrc++;
}
else {
runsrc = rundest - match_offset;
while (i-- > 0) *rundest++ = *runsrc++;
}
this_run -= match_length;
window_posn += match_length;
}
} /* while (this_run > 0) */
break;
case LZX_BLOCKTYPE_ALIGNED:
while (this_run > 0) {
LZX_READ_HUFFSYM(MAINTREE, main_element);
if (main_element < LZX_NUM_CHARS) {
/* literal: 0 to LZX_NUM_CHARS-1 */
window[window_posn++] = main_element;
this_run--;
}
else {
/* match: LZX_NUM_CHARS + ((slot<<3) | length_header (3 bits)) */
main_element -= LZX_NUM_CHARS;
/* get match length */
match_length = main_element & LZX_NUM_PRIMARY_LENGTHS;
if (match_length == LZX_NUM_PRIMARY_LENGTHS) {
LZX_READ_HUFFSYM(LENGTH, length_footer);
match_length += length_footer;
}
match_length += LZX_MIN_MATCH;
/* get match offset */
switch ((match_offset = (main_element >> 3))) {
case 0: match_offset = R0; break;
case 1: match_offset = R1; R1 = R0; R0 = match_offset; break;
case 2: match_offset = R2; R2 = R0; R0 = match_offset; break;
default:
extra = lzx->extra_bits[match_offset];
match_offset = lzx->position_base[match_offset] - 2;
if (extra > 3) {
/* verbatim and aligned bits */
extra -= 3;
LZX_READ_BITS(verbatim_bits, extra);
match_offset += (verbatim_bits << 3);
LZX_READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra == 3) {
/* aligned bits only */
LZX_READ_HUFFSYM(ALIGNED, aligned_bits);
match_offset += aligned_bits;
}
else if (extra > 0) { /* extra==1, extra==2 */
/* verbatim bits only */
LZX_READ_BITS(verbatim_bits, extra);
match_offset += verbatim_bits;
}
else /* extra == 0 */ {
/* ??? not defined in LZX specification! */
match_offset = 1;
}
/* update repeated offset LRU queue */
R2 = R1; R1 = R0; R0 = match_offset;
}
if ((window_posn + match_length) > lzx->window_size) {
cli_dbgmsg("lzx_decompress: match ran over window wrap\n");
return lzx->error = CL_EFORMAT;
}
/* copy match */
rundest = &window[window_posn];
i = match_length;
/* does match offset wrap the window? */
if (match_offset > window_posn) {
/* j = length from match offset to end of window */
j = match_offset - window_posn;
if (j > (int) lzx->window_size) {
cli_dbgmsg("lzx_decompress: match offset beyond window boundaries\n");
return lzx->error = CL_EFORMAT;
}
runsrc = &window[lzx->window_size - j];
if (j < i) {
/* if match goes over the window edge, do two copy runs */
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
while (i-- > 0) *rundest++ = *runsrc++;
}
else {
runsrc = rundest - match_offset;
while (i-- > 0) *rundest++ = *runsrc++;
}
this_run -= match_length;
window_posn += match_length;
}
} /* while (this_run > 0) */
break;
case LZX_BLOCKTYPE_UNCOMPRESSED:
/* as this_run is limited not to wrap a frame, this also means it
* won't wrap the window (as the window is a multiple of 32k) */
rundest = &window[window_posn];
window_posn += this_run;
while (this_run > 0) {
if ((i = i_end - i_ptr)) {
if (i > this_run) i = this_run;
memcpy(rundest, i_ptr, (size_t) i);
rundest += i;
i_ptr += i;
this_run -= i;
}
else {
if (lzx_read_input(lzx)) return lzx->error;
i_ptr = lzx->i_ptr;
i_end = lzx->i_end;
}
}
break;
default:
return lzx->error = CL_EFORMAT; /* might as well */
}
/* did the final match overrun our desired this_run length? */
if (this_run < 0) {
if ((unsigned int)(-this_run) > lzx->block_remaining) {
cli_dbgmsg("lzx_decompress: overrun went past end of block by %d (%d remaining)\n", -this_run, lzx->block_remaining);
return lzx->error = CL_EFORMAT;
}
lzx->block_remaining -= -this_run;
}
} /* while (bytes_todo > 0) */
/* streams don't extend over frame boundaries */
if ((window_posn - lzx->frame_posn) != frame_size) {
cli_dbgmsg("lzx_decompress: decode beyond output frame limits! %d != %d\n", window_posn - lzx->frame_posn, frame_size);
return lzx->error = CL_EFORMAT;
}
/* re-align input bitstream */
if (bits_left > 0) LZX_ENSURE_BITS(16);
if (bits_left & 15) LZX_REMOVE_BITS(bits_left & 15);
/* check that we've used all of the previous frame first */
if (lzx->o_ptr != lzx->o_end) {
cli_dbgmsg("lzx_decompress: %d avail bytes, new %d frame\n", lzx->o_end-lzx->o_ptr, frame_size);
return lzx->error = CL_EFORMAT;
}
/* does this intel block _really_ need decoding? */
if (lzx->intel_started && lzx->intel_filesize &&
(lzx->frame <= 32768) && (frame_size > 10))
{
unsigned char *data = &lzx->e8_buf[0];
unsigned char *dataend = &lzx->e8_buf[frame_size - 10];
signed int curpos = lzx->intel_curpos;
signed int filesize = lzx->intel_filesize;
signed int abs_off, rel_off;
/* copy e8 block to the e8 buffer and tweak if needed */
lzx->o_ptr = data;
memcpy(data, &lzx->window[lzx->frame_posn], frame_size);
while (data < dataend) {
if (*data++ != 0xE8) { curpos++; continue; }
abs_off = data[0] | (data[1]<<8) | (data[2]<<16) | (data[3]<<24);
if ((abs_off >= -curpos) && (abs_off < filesize)) {
rel_off = (abs_off >= 0) ? abs_off - curpos : abs_off + filesize;
data[0] = (unsigned char) rel_off;
data[1] = (unsigned char) (rel_off >> 8);
data[2] = (unsigned char) (rel_off >> 16);
data[3] = (unsigned char) (rel_off >> 24);
}
data += 4;
curpos += 5;
}
lzx->intel_curpos += frame_size;
}
else {
lzx->o_ptr = &lzx->window[lzx->frame_posn];
if (lzx->intel_filesize) lzx->intel_curpos += frame_size;
}
lzx->o_end = &lzx->o_ptr[frame_size];
/* write a frame */
i = (out_bytes < (off_t)frame_size) ? (unsigned int)out_bytes : frame_size;
if (lzx->wflag && cli_writen(lzx->ofd, lzx->o_ptr, i) != i) {
return lzx->error = CL_EIO;
}
lzx->o_ptr += i;
lzx->offset += i;
out_bytes -= i;
/* advance frame start position */
lzx->frame_posn += frame_size;
lzx->frame++;
/* wrap window / frame position pointers */
if (window_posn == lzx->window_size) window_posn = 0;
if (lzx->frame_posn == lzx->window_size) lzx->frame_posn = 0;
} /* while (lzx->frame < end_frame) */
if (out_bytes) {
cli_dbgmsg("lzx_decompress: bytes left to output\n");
return lzx->error = CL_EFORMAT;
}
/* store local state */
LZX_STORE_BITS;
lzx->window_posn = window_posn;
lzx->R0 = R0;
lzx->R1 = R1;
lzx->R2 = R2;
return CL_SUCCESS;
}
void lzx_free(struct lzx_stream *lzx) {
if (lzx) {
free(lzx->inbuf);
free(lzx->window);
free(lzx);
}
}
/***************************************************************************
* Quantum decompression implementation
***************************************************************************
* The Quantum method was created by David Stafford, adapted by Microsoft
* Corporation.
*
* This decompressor is based on an implementation by Matthew Russotto, used
* with permission.
*
* This decompressor was researched and implemented by Matthew Russotto. It
* has since been tidied up by Stuart Caie. More information can be found at
* http://www.speakeasy.org/~russotto/quantumcomp.html
*/
/* Quantum decompressor bitstream reading macros
*
* QTM_STORE_BITS stores bitstream state in qtm_stream structure
* QTM_RESTORE_BITS restores bitstream state from qtm_stream structure
* QTM_READ_BITS(var,n) takes N bits from the buffer and puts them in var
* QTM_FILL_BUFFER if there is room for another 16 bits, reads another
* 16 bits from the input stream.
* QTM_PEEK_BITS(n) extracts without removing N bits from the bit buffer
* QTM_REMOVE_BITS(n) removes N bits from the bit buffer
*
* These bit access routines work by using the area beyond the MSB and the
* LSB as a free source of zeroes. This avoids having to mask any bits.
* So we have to know the bit width of the bitbuffer variable.
*/
#define QTM_BITBUF_WIDTH (sizeof(unsigned int) * CHAR_BIT)
#define QTM_STORE_BITS do { \
qtm->i_ptr = i_ptr; \
qtm->i_end = i_end; \
qtm->bit_buffer = bit_buffer; \
qtm->bits_left = bits_left; \
} while (0)
#define QTM_RESTORE_BITS do { \
i_ptr = qtm->i_ptr; \
i_end = qtm->i_end; \
bit_buffer = qtm->bit_buffer; \
bits_left = qtm->bits_left; \
} while (0)
/* adds 16 bits to bit buffer, if there's space for the new bits */
#define QTM_FILL_BUFFER do { \
if (bits_left <= (QTM_BITBUF_WIDTH - 16)) { \
if (i_ptr >= i_end) { \
if (qtm_read_input(qtm)) return qtm->error; \
i_ptr = qtm->i_ptr; \
i_end = qtm->i_end; \
} \
bit_buffer |= ((i_ptr[0] << 8) | i_ptr[1]) \
<< (QTM_BITBUF_WIDTH - 16 - bits_left); \
bits_left += 16; \
i_ptr += 2; \
} \
} while (0)
#define QTM_PEEK_BITS(n) (bit_buffer >> (QTM_BITBUF_WIDTH - (n)))
#define QTM_REMOVE_BITS(n) ((bit_buffer <<= (n)), (bits_left -= (n)))
#define QTM_READ_BITS(val, bits) do { \
(val) = 0; \
for (bits_needed = (bits); bits_needed > 0; bits_needed -= bit_run) { \
QTM_FILL_BUFFER; \
bit_run = (bits_left < bits_needed) ? bits_left : bits_needed; \
(val) = ((val) << bit_run) | QTM_PEEK_BITS(bit_run); \
QTM_REMOVE_BITS(bit_run); \
} \
} while (0)
static int qtm_read_input(struct qtm_stream *qtm) {
int read = qtm->read ? qtm->read(qtm->file, &qtm->inbuf[0], (int)qtm->inbuf_size) : cli_readn(qtm->fd, &qtm->inbuf[0], (int)qtm->inbuf_size);
if (read < 0) return qtm->error = CL_EIO;
qtm->i_ptr = &qtm->inbuf[0];
qtm->i_end = &qtm->inbuf[read];
return CL_SUCCESS;
}
/* Arithmetic decoder:
*
* QTM_GET_SYMBOL(model, var) fetches the next symbol from the stated model
* and puts it in var.
*
* If necessary, qtm_update_model() is called.
*/
#define QTM_GET_SYMBOL(model, var) do { \
range = ((H - L) & 0xFFFF) + 1; \
symf = ((((C - L + 1) * model.syms[0].cumfreq)-1) / range) & 0xFFFF; \
\
for (i = 1; i < model.entries; i++) { \
if (model.syms[i].cumfreq <= symf) break; \
} \
(var) = model.syms[i-1].sym; \
\
range = (H - L) + 1; \
symf = model.syms[0].cumfreq; \
H = L + ((model.syms[i-1].cumfreq * range) / symf) - 1; \
L = L + ((model.syms[i].cumfreq * range) / symf); \
\
do { model.syms[--i].cumfreq += 8; } while (i > 0); \
if (model.syms[0].cumfreq > 3800) qtm_update_model(&model); \
\
while (1) { \
if ((L & 0x8000) != (H & 0x8000)) { \
if ((L & 0x4000) && !(H & 0x4000)) { \
/* underflow case */ \
C ^= 0x4000; L &= 0x3FFF; H |= 0x4000; \
} \
else break; \
} \
L <<= 1; H = (H << 1) | 1; \
QTM_FILL_BUFFER; \
C = (C << 1) | QTM_PEEK_BITS(1); \
QTM_REMOVE_BITS(1); \
} \
} while (0)
static void qtm_update_model(struct qtm_model *model) {
struct qtm_modelsym tmp;
int i, j;
if (--model->shiftsleft) {
for (i = model->entries - 1; i >= 0; i--) {
/* -1, not -2; the 0 entry saves this */
model->syms[i].cumfreq >>= 1;
if (model->syms[i].cumfreq <= model->syms[i+1].cumfreq) {
model->syms[i].cumfreq = model->syms[i+1].cumfreq + 1;
}
}
}
else {
model->shiftsleft = 50;
for (i = 0; i < model->entries; i++) {
/* no -1, want to include the 0 entry */
/* this converts cumfreqs into frequencies, then shifts right */
model->syms[i].cumfreq -= model->syms[i+1].cumfreq;
model->syms[i].cumfreq++; /* avoid losing things entirely */
model->syms[i].cumfreq >>= 1;
}
/* now sort by frequencies, decreasing order -- this must be an
* inplace selection sort, or a sort with the same (in)stability
* characteristics */
for (i = 0; i < model->entries - 1; i++) {
for (j = i + 1; j < model->entries; j++) {
if (model->syms[i].cumfreq < model->syms[j].cumfreq) {
tmp = model->syms[i];
model->syms[i] = model->syms[j];
model->syms[j] = tmp;
}
}
}
/* then convert frequencies back to cumfreq */
for (i = model->entries - 1; i >= 0; i--) {
model->syms[i].cumfreq += model->syms[i+1].cumfreq;
}
}
}
/* Initialises a model to decode symbols from [start] to [start]+[len]-1 */
static void qtm_init_model(struct qtm_model *model,
struct qtm_modelsym *syms, int start, int len)
{
int i;
model->shiftsleft = 4;
model->entries = len;
model->syms = syms;
for (i = 0; i <= len; i++) {
syms[i].sym = start + i; /* actual symbol */
syms[i].cumfreq = len - i; /* current frequency of that symbol */
}
}
/*-------- main Quantum code --------*/
struct qtm_stream *qtm_init(int fd, int ofd,
int window_bits, int input_buffer_size,
struct cab_file *file,
int (*read)(struct cab_file *, unsigned char *, int))
{
unsigned int window_size = 1 << window_bits;
struct qtm_stream *qtm;
unsigned offset;
int i;
/* Quantum supports window sizes of 2^10 (1Kb) through 2^21 (2Mb) */
/* tk: temporary fix: only process 32KB+ window sizes */
if (window_bits < 15 || window_bits > 21) return NULL;
input_buffer_size = (input_buffer_size + 1) & -2;
if (input_buffer_size < 2) return NULL;
/* allocate decompression state */
if (!(qtm = cli_malloc(sizeof(struct qtm_stream)))) {
return NULL;
}
for (i = 0, offset = 0; i < 42; i++) {
qtm->position_base[i] = offset;
qtm->extra_bits[i] = ((i < 2) ? 0 : (i - 2)) >> 1;
offset += 1 << qtm->extra_bits[i];
}
for (i = 0, offset = 0; i < 26; i++) {
qtm->length_base[i] = offset;
qtm->length_extra[i] = (i < 2 ? 0 : i - 2) >> 2;
offset += 1 << qtm->length_extra[i];
}
qtm->length_base[26] = 254; qtm->length_extra[26] = 0;
/* allocate decompression window and input buffer */
qtm->window = cli_malloc((size_t) window_size);
if (!qtm->window) {
free(qtm);
return NULL;
}
qtm->inbuf = cli_malloc((size_t) input_buffer_size);
if (!qtm->inbuf) {
free(qtm->window);
free(qtm);
return NULL;
}
/* initialise decompression state */
qtm->fd = fd;
qtm->ofd = ofd;
qtm->wflag = 1;
qtm->inbuf_size = input_buffer_size;
qtm->window_size = window_size;
qtm->window_posn = 0;
qtm->frame_start = 0;
qtm->header_read = 0;
qtm->error = CL_SUCCESS;
qtm->i_ptr = qtm->i_end = &qtm->inbuf[0];
qtm->o_ptr = qtm->o_end = &qtm->window[0];
qtm->bits_left = 0;
qtm->bit_buffer = 0;
/* initialise arithmetic coding models
* - model 4 depends on window size, ranges from 20 to 24
* - model 5 depends on window size, ranges from 20 to 36
* - model 6pos depends on window size, ranges from 20 to 42
*/
i = window_bits * 2;
qtm_init_model(&qtm->model0, &qtm->m0sym[0], 0, 64);
qtm_init_model(&qtm->model1, &qtm->m1sym[0], 64, 64);
qtm_init_model(&qtm->model2, &qtm->m2sym[0], 128, 64);
qtm_init_model(&qtm->model3, &qtm->m3sym[0], 192, 64);
qtm_init_model(&qtm->model4, &qtm->m4sym[0], 0, (i > 24) ? 24 : i);
qtm_init_model(&qtm->model5, &qtm->m5sym[0], 0, (i > 36) ? 36 : i);
qtm_init_model(&qtm->model6, &qtm->m6sym[0], 0, i);
qtm_init_model(&qtm->model6len, &qtm->m6lsym[0], 0, 27);
qtm_init_model(&qtm->model7, &qtm->m7sym[0], 0, 7);
qtm->file = file;
qtm->read = read;
/* all ok */
return qtm;
}
int qtm_decompress(struct qtm_stream *qtm, off_t out_bytes) {
unsigned int frame_start, frame_end, window_posn, match_offset, range;
unsigned char *window, *i_ptr, *i_end, *runsrc, *rundest;
int i, j, selector, extra, sym, match_length;
unsigned short H, L, C, symf;
register unsigned int bit_buffer;
register unsigned char bits_left;
unsigned char bits_needed, bit_run;
/* easy answers */
if (!qtm || (out_bytes < 0)) return CL_ENULLARG;
if (qtm->error) return qtm->error;
/* flush out any stored-up bytes before we begin */
i = qtm->o_end - qtm->o_ptr;
if ((off_t) i > out_bytes) i = (int) out_bytes;
if (i) {
if (qtm->wflag && cli_writen(qtm->ofd, qtm->o_ptr, i) != i) {
return qtm->error = CL_EIO;
}
qtm->o_ptr += i;
out_bytes -= i;
}
if (out_bytes == 0) return CL_SUCCESS;
/* restore local state */
QTM_RESTORE_BITS;
window = qtm->window;
window_posn = qtm->window_posn;
frame_start = qtm->frame_start;
H = qtm->H;
L = qtm->L;
C = qtm->C;
/* while we do not have enough decoded bytes in reserve: */
while ((qtm->o_end - qtm->o_ptr) < out_bytes) {
/* read header if necessary. Initialises H, L and C */
if (!qtm->header_read) {
H = 0xFFFF; L = 0; QTM_READ_BITS(C, 16);
qtm->header_read = 1;
}
/* decode more, at most up to to frame boundary */
frame_end = window_posn + (out_bytes - (qtm->o_end - qtm->o_ptr));
if ((frame_start + QTM_FRAME_SIZE) < frame_end) {
frame_end = frame_start + QTM_FRAME_SIZE;
}
while (window_posn < frame_end) {
QTM_GET_SYMBOL(qtm->model7, selector);
if (selector < 4) {
struct qtm_model *mdl = (selector == 0) ? &qtm->model0 :
((selector == 1) ? &qtm->model1 :
((selector == 2) ? &qtm->model2 :
&qtm->model3));
QTM_GET_SYMBOL((*mdl), sym);
window[window_posn++] = sym;
}
else {
switch (selector) {
case 4: /* selector 4 = fixed length match (3 bytes) */
QTM_GET_SYMBOL(qtm->model4, sym);
QTM_READ_BITS(extra, qtm->extra_bits[sym]);
match_offset = qtm->position_base[sym] + extra + 1;
match_length = 3;
break;
case 5: /* selector 5 = fixed length match (4 bytes) */
QTM_GET_SYMBOL(qtm->model5, sym);
QTM_READ_BITS(extra, qtm->extra_bits[sym]);
match_offset = qtm->position_base[sym] + extra + 1;
match_length = 4;
break;
case 6: /* selector 6 = variable length match */
QTM_GET_SYMBOL(qtm->model6len, sym);
QTM_READ_BITS(extra, qtm->length_extra[sym]);
match_length = qtm->length_base[sym] + extra + 5;
QTM_GET_SYMBOL(qtm->model6, sym);
QTM_READ_BITS(extra, qtm->extra_bits[sym]);
match_offset = qtm->position_base[sym] + extra + 1;
break;
default:
/* should be impossible, model7 can only return 0-6 */
return qtm->error = CL_EFORMAT;
}
rundest = &window[window_posn];
i = match_length;
/* does match offset wrap the window? */
if (match_offset > window_posn) {
/* j = length from match offset to end of window */
j = match_offset - window_posn;
if (j > (int) qtm->window_size) {
cli_dbgmsg("qtm_decompress: match offset beyond window boundaries\n");
return qtm->error = CL_EFORMAT;
}
runsrc = &window[qtm->window_size - j];
if (j < i) {
/* if match goes over the window edge, do two copy runs */
i -= j; while (j-- > 0) *rundest++ = *runsrc++;
runsrc = window;
}
while (i-- > 0) *rundest++ = *runsrc++;
}
else {
runsrc = rundest - match_offset;
while (i-- > 0) *rundest++ = *runsrc++;
}
window_posn += match_length;
}
} /* while (window_posn < frame_end) */
qtm->o_end = &window[window_posn];
/* another frame completed? */
if ((window_posn - frame_start) >= QTM_FRAME_SIZE) {
if ((window_posn - frame_start) != QTM_FRAME_SIZE) {
cli_dbgmsg("qtm_decompress: overshot frame alignment\n");
return qtm->error = CL_EFORMAT;
}
/* re-align input */
if (bits_left & 7) QTM_REMOVE_BITS(bits_left & 7);
do { QTM_READ_BITS(i, 8); } while (i != 0xFF);
qtm->header_read = 0;
/* window wrap? */
if (window_posn == qtm->window_size) {
/* flush all currently stored data */
i = (qtm->o_end - qtm->o_ptr);
if (qtm->wflag && cli_writen(qtm->ofd, qtm->o_ptr, i) != i) {
return qtm->error = CL_EIO;
}
out_bytes -= i;
qtm->o_ptr = &window[0];
qtm->o_end = &window[0];
window_posn = 0;
}
frame_start = window_posn;
}
} /* while (more bytes needed) */
if (out_bytes) {
i = (int) out_bytes;
if (qtm->wflag && cli_writen(qtm->ofd, qtm->o_ptr, i) != i) {
return qtm->error = CL_EIO;
}
qtm->o_ptr += i;
}
/* store local state */
QTM_STORE_BITS;
qtm->window_posn = window_posn;
qtm->frame_start = frame_start;
qtm->H = H;
qtm->L = L;
qtm->C = C;
return CL_SUCCESS;
}
void qtm_free(struct qtm_stream *qtm) {
if (qtm) {
free(qtm->window);
free(qtm->inbuf);
free(qtm);
}
}