blob: 688618e23be0aa5c9b3e89daa3212ce3eab4d939 [file] [log] [blame]
//===- IslNodeBuilder.cpp - Translate an isl AST into a LLVM-IR AST -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the IslNodeBuilder, a class to translate an isl AST into
// a LLVM-IR AST.
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/IslNodeBuilder.h"
#include "polly/CodeGen/BlockGenerators.h"
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/CodeGen/LoopGeneratorsGOMP.h"
#include "polly/CodeGen/LoopGeneratorsKMP.h"
#include "polly/CodeGen/RuntimeDebugBuilder.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/ISLTools.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "isl/aff.h"
#include "isl/aff_type.h"
#include "isl/ast.h"
#include "isl/ast_build.h"
#include "isl/isl-noexceptions.h"
#include "isl/map.h"
#include "isl/set.h"
#include "isl/union_map.h"
#include "isl/union_set.h"
#include "isl/val.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-codegen"
STATISTIC(VersionedScops, "Number of SCoPs that required versioning.");
STATISTIC(SequentialLoops, "Number of generated sequential for-loops");
STATISTIC(ParallelLoops, "Number of generated parallel for-loops");
STATISTIC(VectorLoops, "Number of generated vector for-loops");
STATISTIC(IfConditions, "Number of generated if-conditions");
/// OpenMP backend options
enum class OpenMPBackend { GNU, LLVM };
static cl::opt<bool> PollyGenerateRTCPrint(
"polly-codegen-emit-rtc-print",
cl::desc("Emit code that prints the runtime check result dynamically."),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
// If this option is set we always use the isl AST generator to regenerate
// memory accesses. Without this option set we regenerate expressions using the
// original SCEV expressions and only generate new expressions in case the
// access relation has been changed and consequently must be regenerated.
static cl::opt<bool> PollyGenerateExpressions(
"polly-codegen-generate-expressions",
cl::desc("Generate AST expressions for unmodified and modified accesses"),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<int> PollyTargetFirstLevelCacheLineSize(
"polly-target-first-level-cache-line-size",
cl::desc("The size of the first level cache line size specified in bytes."),
cl::Hidden, cl::init(64), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<OpenMPBackend> PollyOmpBackend(
"polly-omp-backend", cl::desc("Choose the OpenMP library to use:"),
cl::values(clEnumValN(OpenMPBackend::GNU, "GNU", "GNU OpenMP"),
clEnumValN(OpenMPBackend::LLVM, "LLVM", "LLVM OpenMP")),
cl::Hidden, cl::init(OpenMPBackend::GNU), cl::cat(PollyCategory));
isl::ast_expr IslNodeBuilder::getUpperBound(isl::ast_node For,
ICmpInst::Predicate &Predicate) {
isl::ast_expr Cond = For.for_get_cond();
isl::ast_expr Iterator = For.for_get_iterator();
assert(isl_ast_expr_get_type(Cond.get()) == isl_ast_expr_op &&
"conditional expression is not an atomic upper bound");
isl_ast_op_type OpType = isl_ast_expr_get_op_type(Cond.get());
switch (OpType) {
case isl_ast_op_le:
Predicate = ICmpInst::ICMP_SLE;
break;
case isl_ast_op_lt:
Predicate = ICmpInst::ICMP_SLT;
break;
default:
llvm_unreachable("Unexpected comparison type in loop condition");
}
isl::ast_expr Arg0 = Cond.get_op_arg(0);
assert(isl_ast_expr_get_type(Arg0.get()) == isl_ast_expr_id &&
"conditional expression is not an atomic upper bound");
isl::id UBID = Arg0.get_id();
assert(isl_ast_expr_get_type(Iterator.get()) == isl_ast_expr_id &&
"Could not get the iterator");
isl::id IteratorID = Iterator.get_id();
assert(UBID.get() == IteratorID.get() &&
"conditional expression is not an atomic upper bound");
return Cond.get_op_arg(1);
}
/// Return true if a return value of Predicate is true for the value represented
/// by passed isl_ast_expr_int.
static bool checkIslAstExprInt(__isl_take isl_ast_expr *Expr,
isl_bool (*Predicate)(__isl_keep isl_val *)) {
if (isl_ast_expr_get_type(Expr) != isl_ast_expr_int) {
isl_ast_expr_free(Expr);
return false;
}
auto ExprVal = isl_ast_expr_get_val(Expr);
isl_ast_expr_free(Expr);
if (Predicate(ExprVal) != isl_bool_true) {
isl_val_free(ExprVal);
return false;
}
isl_val_free(ExprVal);
return true;
}
int IslNodeBuilder::getNumberOfIterations(isl::ast_node For) {
assert(isl_ast_node_get_type(For.get()) == isl_ast_node_for);
isl::ast_node Body = For.for_get_body();
// First, check if we can actually handle this code.
switch (isl_ast_node_get_type(Body.get())) {
case isl_ast_node_user:
break;
case isl_ast_node_block: {
isl::ast_node_list List = Body.block_get_children();
for (isl::ast_node Node : List) {
isl_ast_node_type NodeType = isl_ast_node_get_type(Node.get());
if (NodeType != isl_ast_node_user)
return -1;
}
break;
}
default:
return -1;
}
isl::ast_expr Init = For.for_get_init();
if (!checkIslAstExprInt(Init.release(), isl_val_is_zero))
return -1;
isl::ast_expr Inc = For.for_get_inc();
if (!checkIslAstExprInt(Inc.release(), isl_val_is_one))
return -1;
CmpInst::Predicate Predicate;
isl::ast_expr UB = getUpperBound(For, Predicate);
if (isl_ast_expr_get_type(UB.get()) != isl_ast_expr_int)
return -1;
isl::val UpVal = UB.get_val();
int NumberIterations = UpVal.get_num_si();
if (NumberIterations < 0)
return -1;
if (Predicate == CmpInst::ICMP_SLT)
return NumberIterations;
else
return NumberIterations + 1;
}
/// Extract the values and SCEVs needed to generate code for a block.
static int findReferencesInBlock(struct SubtreeReferences &References,
const ScopStmt *Stmt, BasicBlock *BB) {
for (Instruction &Inst : *BB) {
// Include invariant loads
if (isa<LoadInst>(Inst))
if (Value *InvariantLoad = References.GlobalMap.lookup(&Inst))
References.Values.insert(InvariantLoad);
for (Value *SrcVal : Inst.operands()) {
auto *Scope = References.LI.getLoopFor(BB);
if (canSynthesize(SrcVal, References.S, &References.SE, Scope)) {
References.SCEVs.insert(References.SE.getSCEVAtScope(SrcVal, Scope));
continue;
} else if (Value *NewVal = References.GlobalMap.lookup(SrcVal))
References.Values.insert(NewVal);
}
}
return 0;
}
void polly::addReferencesFromStmt(const ScopStmt *Stmt, void *UserPtr,
bool CreateScalarRefs) {
auto &References = *static_cast<struct SubtreeReferences *>(UserPtr);
if (Stmt->isBlockStmt())
findReferencesInBlock(References, Stmt, Stmt->getBasicBlock());
else if (Stmt->isRegionStmt()) {
for (BasicBlock *BB : Stmt->getRegion()->blocks())
findReferencesInBlock(References, Stmt, BB);
} else {
assert(Stmt->isCopyStmt());
// Copy Stmts have no instructions that we need to consider.
}
for (auto &Access : *Stmt) {
if (References.ParamSpace) {
isl::space ParamSpace = Access->getLatestAccessRelation().get_space();
(*References.ParamSpace) =
References.ParamSpace->align_params(ParamSpace);
}
if (Access->isLatestArrayKind()) {
auto *BasePtr = Access->getLatestScopArrayInfo()->getBasePtr();
if (Instruction *OpInst = dyn_cast<Instruction>(BasePtr))
if (Stmt->getParent()->contains(OpInst))
continue;
References.Values.insert(BasePtr);
continue;
}
if (CreateScalarRefs)
References.Values.insert(References.BlockGen.getOrCreateAlloca(*Access));
}
}
/// Extract the out-of-scop values and SCEVs referenced from a set describing
/// a ScopStmt.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param Set A set which references the ScopStmt we are interested in.
/// @param UserPtr A void pointer that can be casted to a SubtreeReferences
/// structure.
static void addReferencesFromStmtSet(isl::set Set,
struct SubtreeReferences *UserPtr) {
isl::id Id = Set.get_tuple_id();
auto *Stmt = static_cast<const ScopStmt *>(Id.get_user());
return addReferencesFromStmt(Stmt, UserPtr);
}
/// Extract the out-of-scop values and SCEVs referenced from a union set
/// referencing multiple ScopStmts.
///
/// This includes the SCEVUnknowns referenced by the SCEVs used in the
/// statement and the base pointers of the memory accesses. For scalar
/// statements we force the generation of alloca memory locations and list
/// these locations in the set of out-of-scop values as well.
///
/// @param USet A union set referencing the ScopStmts we are interested
/// in.
/// @param References The SubtreeReferences data structure through which
/// results are returned and further information is
/// provided.
static void
addReferencesFromStmtUnionSet(isl::union_set USet,
struct SubtreeReferences &References) {
for (isl::set Set : USet.get_set_list())
addReferencesFromStmtSet(Set, &References);
}
__isl_give isl_union_map *
IslNodeBuilder::getScheduleForAstNode(__isl_keep isl_ast_node *For) {
return IslAstInfo::getSchedule(For);
}
void IslNodeBuilder::getReferencesInSubtree(__isl_keep isl_ast_node *For,
SetVector<Value *> &Values,
SetVector<const Loop *> &Loops) {
SetVector<const SCEV *> SCEVs;
struct SubtreeReferences References = {
LI, SE, S, ValueMap, Values, SCEVs, getBlockGenerator(), nullptr};
for (const auto &I : IDToValue)
Values.insert(I.second);
// NOTE: this is populated in IslNodeBuilder::addParameters
for (const auto &I : OutsideLoopIterations)
Values.insert(cast<SCEVUnknown>(I.second)->getValue());
isl::union_set Schedule =
isl::manage(isl_union_map_domain(getScheduleForAstNode(For)));
addReferencesFromStmtUnionSet(Schedule, References);
for (const SCEV *Expr : SCEVs) {
findValues(Expr, SE, Values);
findLoops(Expr, Loops);
}
Values.remove_if([](const Value *V) { return isa<GlobalValue>(V); });
/// Note: Code generation of induction variables of loops outside Scops
///
/// Remove loops that contain the scop or that are part of the scop, as they
/// are considered local. This leaves only loops that are before the scop, but
/// do not contain the scop itself.
/// We ignore loops perfectly contained in the Scop because these are already
/// generated at `IslNodeBuilder::addParameters`. These `Loops` are loops
/// whose induction variables are referred to by the Scop, but the Scop is not
/// fully contained in these Loops. Since there can be many of these,
/// we choose to codegen these on-demand.
/// @see IslNodeBuilder::materializeNonScopLoopInductionVariable.
Loops.remove_if([this](const Loop *L) {
return S.contains(L) || L->contains(S.getEntry());
});
// Contains Values that may need to be replaced with other values
// due to replacements from the ValueMap. We should make sure
// that we return correctly remapped values.
// NOTE: this code path is tested by:
// 1. test/Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
// 2. test/Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
SetVector<Value *> ReplacedValues;
for (Value *V : Values) {
ReplacedValues.insert(getLatestValue(V));
}
Values = ReplacedValues;
}
void IslNodeBuilder::updateValues(ValueMapT &NewValues) {
SmallPtrSet<Value *, 5> Inserted;
for (const auto &I : IDToValue) {
IDToValue[I.first] = NewValues[I.second];
Inserted.insert(I.second);
}
for (const auto &I : NewValues) {
if (Inserted.count(I.first))
continue;
ValueMap[I.first] = I.second;
}
}
Value *IslNodeBuilder::getLatestValue(Value *Original) const {
auto It = ValueMap.find(Original);
if (It == ValueMap.end())
return Original;
return It->second;
}
void IslNodeBuilder::createUserVector(__isl_take isl_ast_node *User,
std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID,
__isl_take isl_union_map *Schedule) {
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
isl_id *Id = isl_ast_expr_get_id(StmtExpr);
isl_ast_expr_free(StmtExpr);
ScopStmt *Stmt = (ScopStmt *)isl_id_get_user(Id);
std::vector<LoopToScevMapT> VLTS(IVS.size());
isl_union_set *Domain = isl_union_set_from_set(Stmt->getDomain().release());
Schedule = isl_union_map_intersect_domain(Schedule, Domain);
isl_map *S = isl_map_from_union_map(Schedule);
auto *NewAccesses = createNewAccesses(Stmt, User);
createSubstitutionsVector(Expr, Stmt, VLTS, IVS, IteratorID);
VectorBlockGenerator::generate(BlockGen, *Stmt, VLTS, S, NewAccesses);
isl_id_to_ast_expr_free(NewAccesses);
isl_map_free(S);
isl_id_free(Id);
isl_ast_node_free(User);
}
void IslNodeBuilder::createMark(__isl_take isl_ast_node *Node) {
auto *Id = isl_ast_node_mark_get_id(Node);
auto Child = isl_ast_node_mark_get_node(Node);
isl_ast_node_free(Node);
// If a child node of a 'SIMD mark' is a loop that has a single iteration,
// it will be optimized away and we should skip it.
if (strcmp(isl_id_get_name(Id), "SIMD") == 0 &&
isl_ast_node_get_type(Child) == isl_ast_node_for) {
bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
int VectorWidth = getNumberOfIterations(isl::manage_copy(Child));
if (Vector && 1 < VectorWidth && VectorWidth <= 16)
createForVector(Child, VectorWidth);
else
createForSequential(isl::manage(Child), true);
isl_id_free(Id);
return;
}
if (strcmp(isl_id_get_name(Id), "Inter iteration alias-free") == 0) {
auto *BasePtr = static_cast<Value *>(isl_id_get_user(Id));
Annotator.addInterIterationAliasFreeBasePtr(BasePtr);
}
create(Child);
isl_id_free(Id);
}
void IslNodeBuilder::createForVector(__isl_take isl_ast_node *For,
int VectorWidth) {
isl_ast_node *Body = isl_ast_node_for_get_body(For);
isl_ast_expr *Init = isl_ast_node_for_get_init(For);
isl_ast_expr *Inc = isl_ast_node_for_get_inc(For);
isl_ast_expr *Iterator = isl_ast_node_for_get_iterator(For);
isl_id *IteratorID = isl_ast_expr_get_id(Iterator);
Value *ValueLB = ExprBuilder.create(Init);
Value *ValueInc = ExprBuilder.create(Inc);
Type *MaxType = ExprBuilder.getType(Iterator);
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
std::vector<Value *> IVS(VectorWidth);
IVS[0] = ValueLB;
for (int i = 1; i < VectorWidth; i++)
IVS[i] = Builder.CreateAdd(IVS[i - 1], ValueInc, "p_vector_iv");
isl_union_map *Schedule = getScheduleForAstNode(For);
assert(Schedule && "For statement annotation does not contain its schedule");
IDToValue[IteratorID] = ValueLB;
switch (isl_ast_node_get_type(Body)) {
case isl_ast_node_user:
createUserVector(Body, IVS, isl_id_copy(IteratorID),
isl_union_map_copy(Schedule));
break;
case isl_ast_node_block: {
isl_ast_node_list *List = isl_ast_node_block_get_children(Body);
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
createUserVector(isl_ast_node_list_get_ast_node(List, i), IVS,
isl_id_copy(IteratorID), isl_union_map_copy(Schedule));
isl_ast_node_free(Body);
isl_ast_node_list_free(List);
break;
}
default:
isl_ast_node_dump(Body);
llvm_unreachable("Unhandled isl_ast_node in vectorizer");
}
IDToValue.erase(IDToValue.find(IteratorID));
isl_id_free(IteratorID);
isl_union_map_free(Schedule);
isl_ast_node_free(For);
isl_ast_expr_free(Iterator);
VectorLoops++;
}
/// Restore the initial ordering of dimensions of the band node
///
/// In case the band node represents all the dimensions of the iteration
/// domain, recreate the band node to restore the initial ordering of the
/// dimensions.
///
/// @param Node The band node to be modified.
/// @return The modified schedule node.
static bool IsLoopVectorizerDisabled(isl::ast_node Node) {
assert(isl_ast_node_get_type(Node.get()) == isl_ast_node_for);
auto Body = Node.for_get_body();
if (isl_ast_node_get_type(Body.get()) != isl_ast_node_mark)
return false;
auto Id = Body.mark_get_id();
if (strcmp(Id.get_name().c_str(), "Loop Vectorizer Disabled") == 0)
return true;
return false;
}
void IslNodeBuilder::createForSequential(isl::ast_node For, bool MarkParallel) {
Value *ValueLB, *ValueUB, *ValueInc;
Type *MaxType;
BasicBlock *ExitBlock;
Value *IV;
CmpInst::Predicate Predicate;
bool LoopVectorizerDisabled = IsLoopVectorizerDisabled(For);
isl::ast_node Body = For.for_get_body();
// isl_ast_node_for_is_degenerate(For)
//
// TODO: For degenerated loops we could generate a plain assignment.
// However, for now we just reuse the logic for normal loops, which will
// create a loop with a single iteration.
isl::ast_expr Init = For.for_get_init();
isl::ast_expr Inc = For.for_get_inc();
isl::ast_expr Iterator = For.for_get_iterator();
isl::id IteratorID = Iterator.get_id();
isl::ast_expr UB = getUpperBound(For, Predicate);
ValueLB = ExprBuilder.create(Init.release());
ValueUB = ExprBuilder.create(UB.release());
ValueInc = ExprBuilder.create(Inc.release());
MaxType = ExprBuilder.getType(Iterator.get());
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueUB->getType())
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
// If we can show that LB <Predicate> UB holds at least once, we can
// omit the GuardBB in front of the loop.
bool UseGuardBB =
!SE.isKnownPredicate(Predicate, SE.getSCEV(ValueLB), SE.getSCEV(ValueUB));
IV = createLoop(ValueLB, ValueUB, ValueInc, Builder, LI, DT, ExitBlock,
Predicate, &Annotator, MarkParallel, UseGuardBB,
LoopVectorizerDisabled);
IDToValue[IteratorID.get()] = IV;
create(Body.release());
Annotator.popLoop(MarkParallel);
IDToValue.erase(IDToValue.find(IteratorID.get()));
Builder.SetInsertPoint(&ExitBlock->front());
SequentialLoops++;
}
/// Remove the BBs contained in a (sub)function from the dominator tree.
///
/// This function removes the basic blocks that are part of a subfunction from
/// the dominator tree. Specifically, when generating code it may happen that at
/// some point the code generation continues in a new sub-function (e.g., when
/// generating OpenMP code). The basic blocks that are created in this
/// sub-function are then still part of the dominator tree of the original
/// function, such that the dominator tree reaches over function boundaries.
/// This is not only incorrect, but also causes crashes. This function now
/// removes from the dominator tree all basic blocks that are dominated (and
/// consequently reachable) from the entry block of this (sub)function.
///
/// FIXME: A LLVM (function or region) pass should not touch anything outside of
/// the function/region it runs on. Hence, the pure need for this function shows
/// that we do not comply to this rule. At the moment, this does not cause any
/// issues, but we should be aware that such issues may appear. Unfortunately
/// the current LLVM pass infrastructure does not allow to make Polly a module
/// or call-graph pass to solve this issue, as such a pass would not have access
/// to the per-function analyses passes needed by Polly. A future pass manager
/// infrastructure is supposed to enable such kind of access possibly allowing
/// us to create a cleaner solution here.
///
/// FIXME: Instead of adding the dominance information and then dropping it
/// later on, we should try to just not add it in the first place. This requires
/// some careful testing to make sure this does not break in interaction with
/// the SCEVBuilder and SplitBlock which may rely on the dominator tree or
/// which may try to update it.
///
/// @param F The function which contains the BBs to removed.
/// @param DT The dominator tree from which to remove the BBs.
static void removeSubFuncFromDomTree(Function *F, DominatorTree &DT) {
DomTreeNode *N = DT.getNode(&F->getEntryBlock());
std::vector<BasicBlock *> Nodes;
// We can only remove an element from the dominator tree, if all its children
// have been removed. To ensure this we obtain the list of nodes to remove
// using a post-order tree traversal.
for (po_iterator<DomTreeNode *> I = po_begin(N), E = po_end(N); I != E; ++I)
Nodes.push_back(I->getBlock());
for (BasicBlock *BB : Nodes)
DT.eraseNode(BB);
}
void IslNodeBuilder::createForParallel(__isl_take isl_ast_node *For) {
isl_ast_node *Body;
isl_ast_expr *Init, *Inc, *Iterator, *UB;
isl_id *IteratorID;
Value *ValueLB, *ValueUB, *ValueInc;
Type *MaxType;
Value *IV;
CmpInst::Predicate Predicate;
// The preamble of parallel code interacts different than normal code with
// e.g., scalar initialization. Therefore, we ensure the parallel code is
// separated from the last basic block.
BasicBlock *ParBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
ParBB->setName("polly.parallel.for");
Builder.SetInsertPoint(&ParBB->front());
Body = isl_ast_node_for_get_body(For);
Init = isl_ast_node_for_get_init(For);
Inc = isl_ast_node_for_get_inc(For);
Iterator = isl_ast_node_for_get_iterator(For);
IteratorID = isl_ast_expr_get_id(Iterator);
UB = getUpperBound(isl::manage_copy(For), Predicate).release();
ValueLB = ExprBuilder.create(Init);
ValueUB = ExprBuilder.create(UB);
ValueInc = ExprBuilder.create(Inc);
// OpenMP always uses SLE. In case the isl generated AST uses a SLT
// expression, we need to adjust the loop bound by one.
if (Predicate == CmpInst::ICMP_SLT)
ValueUB = Builder.CreateAdd(
ValueUB, Builder.CreateSExt(Builder.getTrue(), ValueUB->getType()));
MaxType = ExprBuilder.getType(Iterator);
MaxType = ExprBuilder.getWidestType(MaxType, ValueLB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueUB->getType());
MaxType = ExprBuilder.getWidestType(MaxType, ValueInc->getType());
if (MaxType != ValueLB->getType())
ValueLB = Builder.CreateSExt(ValueLB, MaxType);
if (MaxType != ValueUB->getType())
ValueUB = Builder.CreateSExt(ValueUB, MaxType);
if (MaxType != ValueInc->getType())
ValueInc = Builder.CreateSExt(ValueInc, MaxType);
BasicBlock::iterator LoopBody;
SetVector<Value *> SubtreeValues;
SetVector<const Loop *> Loops;
getReferencesInSubtree(For, SubtreeValues, Loops);
// Create for all loops we depend on values that contain the current loop
// iteration. These values are necessary to generate code for SCEVs that
// depend on such loops. As a result we need to pass them to the subfunction.
// See [Code generation of induction variables of loops outside Scops]
for (const Loop *L : Loops) {
Value *LoopInductionVar = materializeNonScopLoopInductionVariable(L);
SubtreeValues.insert(LoopInductionVar);
}
ValueMapT NewValues;
std::unique_ptr<ParallelLoopGenerator> ParallelLoopGenPtr;
switch (PollyOmpBackend) {
case OpenMPBackend::GNU:
ParallelLoopGenPtr.reset(
new ParallelLoopGeneratorGOMP(Builder, LI, DT, DL));
break;
case OpenMPBackend::LLVM:
ParallelLoopGenPtr.reset(new ParallelLoopGeneratorKMP(Builder, LI, DT, DL));
break;
}
IV = ParallelLoopGenPtr->createParallelLoop(
ValueLB, ValueUB, ValueInc, SubtreeValues, NewValues, &LoopBody);
BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
Builder.SetInsertPoint(&*LoopBody);
// Remember the parallel subfunction
ParallelSubfunctions.push_back(LoopBody->getFunction());
// Save the current values.
auto ValueMapCopy = ValueMap;
IslExprBuilder::IDToValueTy IDToValueCopy = IDToValue;
updateValues(NewValues);
IDToValue[IteratorID] = IV;
ValueMapT NewValuesReverse;
for (auto P : NewValues)
NewValuesReverse[P.second] = P.first;
Annotator.addAlternativeAliasBases(NewValuesReverse);
create(Body);
Annotator.resetAlternativeAliasBases();
// Restore the original values.
ValueMap = ValueMapCopy;
IDToValue = IDToValueCopy;
Builder.SetInsertPoint(&*AfterLoop);
removeSubFuncFromDomTree((*LoopBody).getParent()->getParent(), DT);
for (const Loop *L : Loops)
OutsideLoopIterations.erase(L);
isl_ast_node_free(For);
isl_ast_expr_free(Iterator);
isl_id_free(IteratorID);
ParallelLoops++;
}
/// Return whether any of @p Node's statements contain partial accesses.
///
/// Partial accesses are not supported by Polly's vector code generator.
static bool hasPartialAccesses(__isl_take isl_ast_node *Node) {
return isl_ast_node_foreach_descendant_top_down(
Node,
[](isl_ast_node *Node, void *User) -> isl_bool {
if (isl_ast_node_get_type(Node) != isl_ast_node_user)
return isl_bool_true;
isl::ast_expr Expr =
isl::manage(isl_ast_node_user_get_expr(Node));
isl::ast_expr StmtExpr = Expr.get_op_arg(0);
isl::id Id = StmtExpr.get_id();
ScopStmt *Stmt =
static_cast<ScopStmt *>(isl_id_get_user(Id.get()));
isl::set StmtDom = Stmt->getDomain();
for (auto *MA : *Stmt) {
if (MA->isLatestPartialAccess())
return isl_bool_error;
}
return isl_bool_true;
},
nullptr) == isl_stat_error;
}
void IslNodeBuilder::createFor(__isl_take isl_ast_node *For) {
bool Vector = PollyVectorizerChoice == VECTORIZER_POLLY;
if (Vector && IslAstInfo::isInnermostParallel(For) &&
!IslAstInfo::isReductionParallel(For)) {
int VectorWidth = getNumberOfIterations(isl::manage_copy(For));
if (1 < VectorWidth && VectorWidth <= 16 && !hasPartialAccesses(For)) {
createForVector(For, VectorWidth);
return;
}
}
if (IslAstInfo::isExecutedInParallel(For)) {
createForParallel(For);
return;
}
bool Parallel =
(IslAstInfo::isParallel(For) && !IslAstInfo::isReductionParallel(For));
createForSequential(isl::manage(For), Parallel);
}
void IslNodeBuilder::createIf(__isl_take isl_ast_node *If) {
isl_ast_expr *Cond = isl_ast_node_if_get_cond(If);
Function *F = Builder.GetInsertBlock()->getParent();
LLVMContext &Context = F->getContext();
BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
CondBB->setName("polly.cond");
BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
MergeBB->setName("polly.merge");
BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F);
BasicBlock *ElseBB = BasicBlock::Create(Context, "polly.else", F);
DT.addNewBlock(ThenBB, CondBB);
DT.addNewBlock(ElseBB, CondBB);
DT.changeImmediateDominator(MergeBB, CondBB);
Loop *L = LI.getLoopFor(CondBB);
if (L) {
L->addBasicBlockToLoop(ThenBB, LI);
L->addBasicBlockToLoop(ElseBB, LI);
}
CondBB->getTerminator()->eraseFromParent();
Builder.SetInsertPoint(CondBB);
Value *Predicate = ExprBuilder.create(Cond);
Builder.CreateCondBr(Predicate, ThenBB, ElseBB);
Builder.SetInsertPoint(ThenBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ElseBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(&ThenBB->front());
create(isl_ast_node_if_get_then(If));
Builder.SetInsertPoint(&ElseBB->front());
if (isl_ast_node_if_has_else(If))
create(isl_ast_node_if_get_else(If));
Builder.SetInsertPoint(&MergeBB->front());
isl_ast_node_free(If);
IfConditions++;
}
__isl_give isl_id_to_ast_expr *
IslNodeBuilder::createNewAccesses(ScopStmt *Stmt,
__isl_keep isl_ast_node *Node) {
isl_id_to_ast_expr *NewAccesses =
isl_id_to_ast_expr_alloc(Stmt->getParent()->getIslCtx().get(), 0);
auto *Build = IslAstInfo::getBuild(Node);
assert(Build && "Could not obtain isl_ast_build from user node");
Stmt->setAstBuild(isl::manage_copy(Build));
for (auto *MA : *Stmt) {
if (!MA->hasNewAccessRelation()) {
if (PollyGenerateExpressions) {
if (!MA->isAffine())
continue;
if (MA->getLatestScopArrayInfo()->getBasePtrOriginSAI())
continue;
auto *BasePtr =
dyn_cast<Instruction>(MA->getLatestScopArrayInfo()->getBasePtr());
if (BasePtr && Stmt->getParent()->getRegion().contains(BasePtr))
continue;
} else {
continue;
}
}
assert(MA->isAffine() &&
"Only affine memory accesses can be code generated");
auto Schedule = isl_ast_build_get_schedule(Build);
#ifndef NDEBUG
if (MA->isRead()) {
auto Dom = Stmt->getDomain().release();
auto SchedDom = isl_set_from_union_set(
isl_union_map_domain(isl_union_map_copy(Schedule)));
auto AccDom = isl_map_domain(MA->getAccessRelation().release());
Dom = isl_set_intersect_params(Dom,
Stmt->getParent()->getContext().release());
SchedDom = isl_set_intersect_params(
SchedDom, Stmt->getParent()->getContext().release());
assert(isl_set_is_subset(SchedDom, AccDom) &&
"Access relation not defined on full schedule domain");
assert(isl_set_is_subset(Dom, AccDom) &&
"Access relation not defined on full domain");
isl_set_free(AccDom);
isl_set_free(SchedDom);
isl_set_free(Dom);
}
#endif
auto PWAccRel =
MA->applyScheduleToAccessRelation(isl::manage(Schedule)).release();
// isl cannot generate an index expression for access-nothing accesses.
isl::set AccDomain =
isl::manage(isl_pw_multi_aff_domain(isl_pw_multi_aff_copy(PWAccRel)));
isl::set Context = S.getContext();
AccDomain = AccDomain.intersect_params(Context);
if (AccDomain.is_empty()) {
isl_pw_multi_aff_free(PWAccRel);
continue;
}
auto AccessExpr = isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
NewAccesses =
isl_id_to_ast_expr_set(NewAccesses, MA->getId().release(), AccessExpr);
}
return NewAccesses;
}
void IslNodeBuilder::createSubstitutions(__isl_take isl_ast_expr *Expr,
ScopStmt *Stmt, LoopToScevMapT &LTS) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expression of type 'op' expected");
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_call &&
"Operation of type 'call' expected");
for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr) - 1; ++i) {
isl_ast_expr *SubExpr;
Value *V;
SubExpr = isl_ast_expr_get_op_arg(Expr, i + 1);
V = ExprBuilder.create(SubExpr);
ScalarEvolution *SE = Stmt->getParent()->getSE();
LTS[Stmt->getLoopForDimension(i)] = SE->getUnknown(V);
}
isl_ast_expr_free(Expr);
}
void IslNodeBuilder::createSubstitutionsVector(
__isl_take isl_ast_expr *Expr, ScopStmt *Stmt,
std::vector<LoopToScevMapT> &VLTS, std::vector<Value *> &IVS,
__isl_take isl_id *IteratorID) {
int i = 0;
Value *OldValue = IDToValue[IteratorID];
for (Value *IV : IVS) {
IDToValue[IteratorID] = IV;
createSubstitutions(isl_ast_expr_copy(Expr), Stmt, VLTS[i]);
i++;
}
IDToValue[IteratorID] = OldValue;
isl_id_free(IteratorID);
isl_ast_expr_free(Expr);
}
void IslNodeBuilder::generateCopyStmt(
ScopStmt *Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
assert(Stmt->size() == 2);
auto ReadAccess = Stmt->begin();
auto WriteAccess = ReadAccess++;
assert((*ReadAccess)->isRead() && (*WriteAccess)->isMustWrite());
assert((*ReadAccess)->getElementType() == (*WriteAccess)->getElementType() &&
"Accesses use the same data type");
assert((*ReadAccess)->isArrayKind() && (*WriteAccess)->isArrayKind());
auto *AccessExpr =
isl_id_to_ast_expr_get(NewAccesses, (*ReadAccess)->getId().release());
auto *LoadValue = ExprBuilder.create(AccessExpr);
AccessExpr =
isl_id_to_ast_expr_get(NewAccesses, (*WriteAccess)->getId().release());
auto *StoreAddr = ExprBuilder.createAccessAddress(AccessExpr);
Builder.CreateStore(LoadValue, StoreAddr);
}
Value *IslNodeBuilder::materializeNonScopLoopInductionVariable(const Loop *L) {
assert(OutsideLoopIterations.find(L) == OutsideLoopIterations.end() &&
"trying to materialize loop induction variable twice");
const SCEV *OuterLIV = SE.getAddRecExpr(SE.getUnknown(Builder.getInt64(0)),
SE.getUnknown(Builder.getInt64(1)), L,
SCEV::FlagAnyWrap);
Value *V = generateSCEV(OuterLIV);
OutsideLoopIterations[L] = SE.getUnknown(V);
return V;
}
void IslNodeBuilder::createUser(__isl_take isl_ast_node *User) {
LoopToScevMapT LTS;
isl_id *Id;
ScopStmt *Stmt;
isl_ast_expr *Expr = isl_ast_node_user_get_expr(User);
isl_ast_expr *StmtExpr = isl_ast_expr_get_op_arg(Expr, 0);
Id = isl_ast_expr_get_id(StmtExpr);
isl_ast_expr_free(StmtExpr);
LTS.insert(OutsideLoopIterations.begin(), OutsideLoopIterations.end());
Stmt = (ScopStmt *)isl_id_get_user(Id);
auto *NewAccesses = createNewAccesses(Stmt, User);
if (Stmt->isCopyStmt()) {
generateCopyStmt(Stmt, NewAccesses);
isl_ast_expr_free(Expr);
} else {
createSubstitutions(Expr, Stmt, LTS);
if (Stmt->isBlockStmt())
BlockGen.copyStmt(*Stmt, LTS, NewAccesses);
else
RegionGen.copyStmt(*Stmt, LTS, NewAccesses);
}
isl_id_to_ast_expr_free(NewAccesses);
isl_ast_node_free(User);
isl_id_free(Id);
}
void IslNodeBuilder::createBlock(__isl_take isl_ast_node *Block) {
isl_ast_node_list *List = isl_ast_node_block_get_children(Block);
for (int i = 0; i < isl_ast_node_list_n_ast_node(List); ++i)
create(isl_ast_node_list_get_ast_node(List, i));
isl_ast_node_free(Block);
isl_ast_node_list_free(List);
}
void IslNodeBuilder::create(__isl_take isl_ast_node *Node) {
switch (isl_ast_node_get_type(Node)) {
case isl_ast_node_error:
llvm_unreachable("code generation error");
case isl_ast_node_mark:
createMark(Node);
return;
case isl_ast_node_for:
createFor(Node);
return;
case isl_ast_node_if:
createIf(Node);
return;
case isl_ast_node_user:
createUser(Node);
return;
case isl_ast_node_block:
createBlock(Node);
return;
}
llvm_unreachable("Unknown isl_ast_node type");
}
bool IslNodeBuilder::materializeValue(isl_id *Id) {
// If the Id is already mapped, skip it.
if (!IDToValue.count(Id)) {
auto *ParamSCEV = (const SCEV *)isl_id_get_user(Id);
Value *V = nullptr;
// Parameters could refer to invariant loads that need to be
// preloaded before we can generate code for the parameter. Thus,
// check if any value referred to in ParamSCEV is an invariant load
// and if so make sure its equivalence class is preloaded.
SetVector<Value *> Values;
findValues(ParamSCEV, SE, Values);
for (auto *Val : Values) {
// Check if the value is an instruction in a dead block within the SCoP
// and if so do not code generate it.
if (auto *Inst = dyn_cast<Instruction>(Val)) {
if (S.contains(Inst)) {
bool IsDead = true;
// Check for "undef" loads first, then if there is a statement for
// the parent of Inst and lastly if the parent of Inst has an empty
// domain. In the first and last case the instruction is dead but if
// there is a statement or the domain is not empty Inst is not dead.
auto MemInst = MemAccInst::dyn_cast(Inst);
auto Address = MemInst ? MemInst.getPointerOperand() : nullptr;
if (Address && SE.getUnknown(UndefValue::get(Address->getType())) ==
SE.getPointerBase(SE.getSCEV(Address))) {
} else if (S.getStmtFor(Inst)) {
IsDead = false;
} else {
auto *Domain = S.getDomainConditions(Inst->getParent()).release();
IsDead = isl_set_is_empty(Domain);
isl_set_free(Domain);
}
if (IsDead) {
V = UndefValue::get(ParamSCEV->getType());
break;
}
}
}
if (auto *IAClass = S.lookupInvariantEquivClass(Val)) {
// Check if this invariant access class is empty, hence if we never
// actually added a loads instruction to it. In that case it has no
// (meaningful) users and we should not try to code generate it.
if (IAClass->InvariantAccesses.empty())
V = UndefValue::get(ParamSCEV->getType());
if (!preloadInvariantEquivClass(*IAClass)) {
isl_id_free(Id);
return false;
}
}
}
V = V ? V : generateSCEV(ParamSCEV);
IDToValue[Id] = V;
}
isl_id_free(Id);
return true;
}
bool IslNodeBuilder::materializeParameters(isl_set *Set) {
for (unsigned i = 0, e = isl_set_dim(Set, isl_dim_param); i < e; ++i) {
if (!isl_set_involves_dims(Set, isl_dim_param, i, 1))
continue;
isl_id *Id = isl_set_get_dim_id(Set, isl_dim_param, i);
if (!materializeValue(Id))
return false;
}
return true;
}
bool IslNodeBuilder::materializeParameters() {
for (const SCEV *Param : S.parameters()) {
isl_id *Id = S.getIdForParam(Param).release();
if (!materializeValue(Id))
return false;
}
return true;
}
/// Generate the computation of the size of the outermost dimension from the
/// Fortran array descriptor (in this case, `@g_arr`). The final `%size`
/// contains the size of the array.
///
/// %arrty = type { i8*, i64, i64, [3 x %desc.dimensionty] }
/// %desc.dimensionty = type { i64, i64, i64 }
/// @g_arr = global %arrty zeroinitializer, align 32
/// ...
/// %0 = load i64, i64* getelementptr inbounds
/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 2)
/// %1 = load i64, i64* getelementptr inbounds
/// (%arrty, %arrty* @g_arr, i64 0, i32 3, i64 0, i32 1)
/// %2 = sub nsw i64 %0, %1
/// %size = add nsw i64 %2, 1
static Value *buildFADOutermostDimensionLoad(Value *GlobalDescriptor,
PollyIRBuilder &Builder,
std::string ArrayName) {
assert(GlobalDescriptor && "invalid global descriptor given");
Value *endIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
Builder.getInt64(0), Builder.getInt32(2)};
Value *endPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, endIdx,
ArrayName + "_end_ptr");
Value *end = Builder.CreateLoad(endPtr, ArrayName + "_end");
Value *beginIdx[4] = {Builder.getInt64(0), Builder.getInt32(3),
Builder.getInt64(0), Builder.getInt32(1)};
Value *beginPtr = Builder.CreateInBoundsGEP(GlobalDescriptor, beginIdx,
ArrayName + "_begin_ptr");
Value *begin = Builder.CreateLoad(beginPtr, ArrayName + "_begin");
Value *size =
Builder.CreateNSWSub(end, begin, ArrayName + "_end_begin_delta");
Type *endType = dyn_cast<IntegerType>(end->getType());
assert(endType && "expected type of end to be integral");
size = Builder.CreateNSWAdd(end,
ConstantInt::get(endType, 1, /* signed = */ true),
ArrayName + "_size");
return size;
}
bool IslNodeBuilder::materializeFortranArrayOutermostDimension() {
for (ScopArrayInfo *Array : S.arrays()) {
if (Array->getNumberOfDimensions() == 0)
continue;
Value *FAD = Array->getFortranArrayDescriptor();
if (!FAD)
continue;
isl_pw_aff *ParametricPwAff = Array->getDimensionSizePw(0).release();
assert(ParametricPwAff && "parametric pw_aff corresponding "
"to outermost dimension does not "
"exist");
isl_id *Id = isl_pw_aff_get_dim_id(ParametricPwAff, isl_dim_param, 0);
isl_pw_aff_free(ParametricPwAff);
assert(Id && "pw_aff is not parametric");
if (IDToValue.count(Id)) {
isl_id_free(Id);
continue;
}
Value *FinalValue =
buildFADOutermostDimensionLoad(FAD, Builder, Array->getName());
assert(FinalValue && "unable to build Fortran array "
"descriptor load of outermost dimension");
IDToValue[Id] = FinalValue;
isl_id_free(Id);
}
return true;
}
Value *IslNodeBuilder::preloadUnconditionally(isl_set *AccessRange,
isl_ast_build *Build,
Instruction *AccInst) {
isl_pw_multi_aff *PWAccRel = isl_pw_multi_aff_from_set(AccessRange);
isl_ast_expr *Access =
isl_ast_build_access_from_pw_multi_aff(Build, PWAccRel);
auto *Address = isl_ast_expr_address_of(Access);
auto *AddressValue = ExprBuilder.create(Address);
Value *PreloadVal;
// Correct the type as the SAI might have a different type than the user
// expects, especially if the base pointer is a struct.
Type *Ty = AccInst->getType();
auto *Ptr = AddressValue;
auto Name = Ptr->getName();
auto AS = Ptr->getType()->getPointerAddressSpace();
Ptr = Builder.CreatePointerCast(Ptr, Ty->getPointerTo(AS), Name + ".cast");
PreloadVal = Builder.CreateLoad(Ptr, Name + ".load");
if (LoadInst *PreloadInst = dyn_cast<LoadInst>(PreloadVal))
PreloadInst->setAlignment(cast<LoadInst>(AccInst)->getAlign());
// TODO: This is only a hot fix for SCoP sequences that use the same load
// instruction contained and hoisted by one of the SCoPs.
if (SE.isSCEVable(Ty))
SE.forgetValue(AccInst);
return PreloadVal;
}
Value *IslNodeBuilder::preloadInvariantLoad(const MemoryAccess &MA,
isl_set *Domain) {
isl_set *AccessRange = isl_map_range(MA.getAddressFunction().release());
AccessRange = isl_set_gist_params(AccessRange, S.getContext().release());
if (!materializeParameters(AccessRange)) {
isl_set_free(AccessRange);
isl_set_free(Domain);
return nullptr;
}
auto *Build =
isl_ast_build_from_context(isl_set_universe(S.getParamSpace().release()));
isl_set *Universe = isl_set_universe(isl_set_get_space(Domain));
bool AlwaysExecuted = isl_set_is_equal(Domain, Universe);
isl_set_free(Universe);
Instruction *AccInst = MA.getAccessInstruction();
Type *AccInstTy = AccInst->getType();
Value *PreloadVal = nullptr;
if (AlwaysExecuted) {
PreloadVal = preloadUnconditionally(AccessRange, Build, AccInst);
isl_ast_build_free(Build);
isl_set_free(Domain);
return PreloadVal;
}
if (!materializeParameters(Domain)) {
isl_ast_build_free(Build);
isl_set_free(AccessRange);
isl_set_free(Domain);
return nullptr;
}
isl_ast_expr *DomainCond = isl_ast_build_expr_from_set(Build, Domain);
Domain = nullptr;
ExprBuilder.setTrackOverflow(true);
Value *Cond = ExprBuilder.create(DomainCond);
Value *OverflowHappened = Builder.CreateNot(ExprBuilder.getOverflowState(),
"polly.preload.cond.overflown");
Cond = Builder.CreateAnd(Cond, OverflowHappened, "polly.preload.cond.result");
ExprBuilder.setTrackOverflow(false);
if (!Cond->getType()->isIntegerTy(1))
Cond = Builder.CreateIsNotNull(Cond);
BasicBlock *CondBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
CondBB->setName("polly.preload.cond");
BasicBlock *MergeBB = SplitBlock(CondBB, &CondBB->front(), &DT, &LI);
MergeBB->setName("polly.preload.merge");
Function *F = Builder.GetInsertBlock()->getParent();
LLVMContext &Context = F->getContext();
BasicBlock *ExecBB = BasicBlock::Create(Context, "polly.preload.exec", F);
DT.addNewBlock(ExecBB, CondBB);
if (Loop *L = LI.getLoopFor(CondBB))
L->addBasicBlockToLoop(ExecBB, LI);
auto *CondBBTerminator = CondBB->getTerminator();
Builder.SetInsertPoint(CondBBTerminator);
Builder.CreateCondBr(Cond, ExecBB, MergeBB);
CondBBTerminator->eraseFromParent();
Builder.SetInsertPoint(ExecBB);
Builder.CreateBr(MergeBB);
Builder.SetInsertPoint(ExecBB->getTerminator());
Value *PreAccInst = preloadUnconditionally(AccessRange, Build, AccInst);
Builder.SetInsertPoint(MergeBB->getTerminator());
auto *MergePHI = Builder.CreatePHI(
AccInstTy, 2, "polly.preload." + AccInst->getName() + ".merge");
PreloadVal = MergePHI;
if (!PreAccInst) {
PreloadVal = nullptr;
PreAccInst = UndefValue::get(AccInstTy);
}
MergePHI->addIncoming(PreAccInst, ExecBB);
MergePHI->addIncoming(Constant::getNullValue(AccInstTy), CondBB);
isl_ast_build_free(Build);
return PreloadVal;
}
bool IslNodeBuilder::preloadInvariantEquivClass(
InvariantEquivClassTy &IAClass) {
// For an equivalence class of invariant loads we pre-load the representing
// element with the unified execution context. However, we have to map all
// elements of the class to the one preloaded load as they are referenced
// during the code generation and therefor need to be mapped.
const MemoryAccessList &MAs = IAClass.InvariantAccesses;
if (MAs.empty())
return true;
MemoryAccess *MA = MAs.front();
assert(MA->isArrayKind() && MA->isRead());
// If the access function was already mapped, the preload of this equivalence
// class was triggered earlier already and doesn't need to be done again.
if (ValueMap.count(MA->getAccessInstruction()))
return true;
// Check for recursion which can be caused by additional constraints, e.g.,
// non-finite loop constraints. In such a case we have to bail out and insert
// a "false" runtime check that will cause the original code to be executed.
auto PtrId = std::make_pair(IAClass.IdentifyingPointer, IAClass.AccessType);
if (!PreloadedPtrs.insert(PtrId).second)
return false;
// The execution context of the IAClass.
isl::set &ExecutionCtx = IAClass.ExecutionContext;
// If the base pointer of this class is dependent on another one we have to
// make sure it was preloaded already.
auto *SAI = MA->getScopArrayInfo();
if (auto *BaseIAClass = S.lookupInvariantEquivClass(SAI->getBasePtr())) {
if (!preloadInvariantEquivClass(*BaseIAClass))
return false;
// After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx and
// we need to refine the ExecutionCtx.
isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
}
// If the size of a dimension is dependent on another class, make sure it is
// preloaded.
for (unsigned i = 1, e = SAI->getNumberOfDimensions(); i < e; ++i) {
const SCEV *Dim = SAI->getDimensionSize(i);
SetVector<Value *> Values;
findValues(Dim, SE, Values);
for (auto *Val : Values) {
if (auto *BaseIAClass = S.lookupInvariantEquivClass(Val)) {
if (!preloadInvariantEquivClass(*BaseIAClass))
return false;
// After we preloaded the BaseIAClass we adjusted the BaseExecutionCtx
// and we need to refine the ExecutionCtx.
isl::set BaseExecutionCtx = BaseIAClass->ExecutionContext;
ExecutionCtx = ExecutionCtx.intersect(BaseExecutionCtx);
}
}
}
Instruction *AccInst = MA->getAccessInstruction();
Type *AccInstTy = AccInst->getType();
Value *PreloadVal = preloadInvariantLoad(*MA, ExecutionCtx.copy());
if (!PreloadVal)
return false;
for (const MemoryAccess *MA : MAs) {
Instruction *MAAccInst = MA->getAccessInstruction();
assert(PreloadVal->getType() == MAAccInst->getType());
ValueMap[MAAccInst] = PreloadVal;
}
if (SE.isSCEVable(AccInstTy)) {
isl_id *ParamId = S.getIdForParam(SE.getSCEV(AccInst)).release();
if (ParamId)
IDToValue[ParamId] = PreloadVal;
isl_id_free(ParamId);
}
BasicBlock *EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
auto *Alloca = new AllocaInst(AccInstTy, DL.getAllocaAddrSpace(),
AccInst->getName() + ".preload.s2a",
&*EntryBB->getFirstInsertionPt());
Builder.CreateStore(PreloadVal, Alloca);
ValueMapT PreloadedPointer;
PreloadedPointer[PreloadVal] = AccInst;
Annotator.addAlternativeAliasBases(PreloadedPointer);
for (auto *DerivedSAI : SAI->getDerivedSAIs()) {
Value *BasePtr = DerivedSAI->getBasePtr();
for (const MemoryAccess *MA : MAs) {
// As the derived SAI information is quite coarse, any load from the
// current SAI could be the base pointer of the derived SAI, however we
// should only change the base pointer of the derived SAI if we actually
// preloaded it.
if (BasePtr == MA->getOriginalBaseAddr()) {
assert(BasePtr->getType() == PreloadVal->getType());
DerivedSAI->setBasePtr(PreloadVal);
}
// For scalar derived SAIs we remap the alloca used for the derived value.
if (BasePtr == MA->getAccessInstruction())
ScalarMap[DerivedSAI] = Alloca;
}
}
for (const MemoryAccess *MA : MAs) {
Instruction *MAAccInst = MA->getAccessInstruction();
// Use the escape system to get the correct value to users outside the SCoP.
BlockGenerator::EscapeUserVectorTy EscapeUsers;
for (auto *U : MAAccInst->users())
if (Instruction *UI = dyn_cast<Instruction>(U))
if (!S.contains(UI))
EscapeUsers.push_back(UI);
if (EscapeUsers.empty())
continue;
EscapeMap[MA->getAccessInstruction()] =
std::make_pair(Alloca, std::move(EscapeUsers));
}
return true;
}
void IslNodeBuilder::allocateNewArrays(BBPair StartExitBlocks) {
for (auto &SAI : S.arrays()) {
if (SAI->getBasePtr())
continue;
assert(SAI->getNumberOfDimensions() > 0 && SAI->getDimensionSize(0) &&
"The size of the outermost dimension is used to declare newly "
"created arrays that require memory allocation.");
Type *NewArrayType = nullptr;
// Get the size of the array = size(dim_1)*...*size(dim_n)
uint64_t ArraySizeInt = 1;
for (int i = SAI->getNumberOfDimensions() - 1; i >= 0; i--) {
auto *DimSize = SAI->getDimensionSize(i);
unsigned UnsignedDimSize = static_cast<const SCEVConstant *>(DimSize)
->getAPInt()
.getLimitedValue();
if (!NewArrayType)
NewArrayType = SAI->getElementType();
NewArrayType = ArrayType::get(NewArrayType, UnsignedDimSize);
ArraySizeInt *= UnsignedDimSize;
}
if (SAI->isOnHeap()) {
LLVMContext &Ctx = NewArrayType->getContext();
// Get the IntPtrTy from the Datalayout
auto IntPtrTy = DL.getIntPtrType(Ctx);
// Get the size of the element type in bits
unsigned Size = SAI->getElemSizeInBytes();
// Insert the malloc call at polly.start
auto InstIt = std::get<0>(StartExitBlocks)->getTerminator();
auto *CreatedArray = CallInst::CreateMalloc(
&*InstIt, IntPtrTy, SAI->getElementType(),
ConstantInt::get(Type::getInt64Ty(Ctx), Size),
ConstantInt::get(Type::getInt64Ty(Ctx), ArraySizeInt), nullptr,
SAI->getName());
SAI->setBasePtr(CreatedArray);
// Insert the free call at polly.exiting
CallInst::CreateFree(CreatedArray,
std::get<1>(StartExitBlocks)->getTerminator());
} else {
auto InstIt = Builder.GetInsertBlock()
->getParent()
->getEntryBlock()
.getTerminator();
auto *CreatedArray = new AllocaInst(NewArrayType, DL.getAllocaAddrSpace(),
SAI->getName(), &*InstIt);
if (PollyTargetFirstLevelCacheLineSize)
CreatedArray->setAlignment(Align(PollyTargetFirstLevelCacheLineSize));
SAI->setBasePtr(CreatedArray);
}
}
}
bool IslNodeBuilder::preloadInvariantLoads() {
auto &InvariantEquivClasses = S.getInvariantAccesses();
if (InvariantEquivClasses.empty())
return true;
BasicBlock *PreLoadBB = SplitBlock(Builder.GetInsertBlock(),
&*Builder.GetInsertPoint(), &DT, &LI);
PreLoadBB->setName("polly.preload.begin");
Builder.SetInsertPoint(&PreLoadBB->front());
for (auto &IAClass : InvariantEquivClasses)
if (!preloadInvariantEquivClass(IAClass))
return false;
return true;
}
void IslNodeBuilder::addParameters(__isl_take isl_set *Context) {
// Materialize values for the parameters of the SCoP.
materializeParameters();
// materialize the outermost dimension parameters for a Fortran array.
// NOTE: materializeParameters() does not work since it looks through
// the SCEVs. We don't have a corresponding SCEV for the array size
// parameter
materializeFortranArrayOutermostDimension();
// Generate values for the current loop iteration for all surrounding loops.
//
// We may also reference loops outside of the scop which do not contain the
// scop itself, but as the number of such scops may be arbitrarily large we do
// not generate code for them here, but only at the point of code generation
// where these values are needed.
Loop *L = LI.getLoopFor(S.getEntry());
while (L != nullptr && S.contains(L))
L = L->getParentLoop();
while (L != nullptr) {
materializeNonScopLoopInductionVariable(L);
L = L->getParentLoop();
}
isl_set_free(Context);
}
Value *IslNodeBuilder::generateSCEV(const SCEV *Expr) {
/// We pass the insert location of our Builder, as Polly ensures during IR
/// generation that there is always a valid CFG into which instructions are
/// inserted. As a result, the insertpoint is known to be always followed by a
/// terminator instruction. This means the insert point may be specified by a
/// terminator instruction, but it can never point to an ->end() iterator
/// which does not have a corresponding instruction. Hence, dereferencing
/// the insertpoint to obtain an instruction is known to be save.
///
/// We also do not need to update the Builder here, as new instructions are
/// always inserted _before_ the given InsertLocation. As a result, the
/// insert location remains valid.
assert(Builder.GetInsertBlock()->end() != Builder.GetInsertPoint() &&
"Insert location points after last valid instruction");
Instruction *InsertLocation = &*Builder.GetInsertPoint();
return expandCodeFor(S, SE, DL, "polly", Expr, Expr->getType(),
InsertLocation, &ValueMap,
StartBlock->getSinglePredecessor());
}
/// The AST expression we generate to perform the run-time check assumes
/// computations on integer types of infinite size. As we only use 64-bit
/// arithmetic we check for overflows, in case of which we set the result
/// of this run-time check to false to be conservatively correct,
Value *IslNodeBuilder::createRTC(isl_ast_expr *Condition) {
auto ExprBuilder = getExprBuilder();
// In case the AST expression has integers larger than 64 bit, bail out. The
// resulting LLVM-IR will contain operations on types that use more than 64
// bits. These are -- in case wrapping intrinsics are used -- translated to
// runtime library calls that are not available on all systems (e.g., Android)
// and consequently will result in linker errors.
if (ExprBuilder.hasLargeInts(isl::manage_copy(Condition))) {
isl_ast_expr_free(Condition);
return Builder.getFalse();
}
ExprBuilder.setTrackOverflow(true);
Value *RTC = ExprBuilder.create(Condition);
if (!RTC->getType()->isIntegerTy(1))
RTC = Builder.CreateIsNotNull(RTC);
Value *OverflowHappened =
Builder.CreateNot(ExprBuilder.getOverflowState(), "polly.rtc.overflown");
if (PollyGenerateRTCPrint) {
auto *F = Builder.GetInsertBlock()->getParent();
RuntimeDebugBuilder::createCPUPrinter(
Builder,
"F: " + F->getName().str() + " R: " + S.getRegion().getNameStr() +
"RTC: ",
RTC, " Overflow: ", OverflowHappened,
"\n"
" (0 failed, -1 succeeded)\n"
" (if one or both are 0 falling back to original code, if both are -1 "
"executing Polly code)\n");
}
RTC = Builder.CreateAnd(RTC, OverflowHappened, "polly.rtc.result");
ExprBuilder.setTrackOverflow(false);
if (!isa<ConstantInt>(RTC))
VersionedScops++;
return RTC;
}