blob: d6cde1f699c2359f6e5ddc3686cee0b1e37dd2da [file] [log] [blame]
/*===--------------------------------------------------------------------------
* ATMI (Asynchronous Task and Memory Interface)
*
* This file is distributed under the MIT License. See LICENSE.txt for details.
*===------------------------------------------------------------------------*/
#include <gelf.h>
#include <libelf.h>
#include <cassert>
#include <cstdarg>
#include <fstream>
#include <iomanip>
#include <iostream>
#include <set>
#include <string>
#include "internal.h"
#include "machine.h"
#include "rt.h"
#include "msgpack.h"
#define msgpackErrorCheck(msg, status) \
if (status != 0) { \
printf("[%s:%d] %s failed\n", __FILE__, __LINE__, #msg); \
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT; \
} else { \
}
typedef unsigned char *address;
/*
* Note descriptors.
*/
typedef struct {
uint32_t n_namesz; /* Length of note's name. */
uint32_t n_descsz; /* Length of note's value. */
uint32_t n_type; /* Type of note. */
// then name
// then padding, optional
// then desc, at 4 byte alignment (not 8, despite being elf64)
} Elf_Note;
// The following include file and following structs/enums
// have been replicated on a per-use basis below. For example,
// llvm::AMDGPU::HSAMD::Kernel::Metadata has several fields,
// but we may care only about kernargSegmentSize_ for now, so
// we just include that field in our KernelMD implementation. We
// chose this approach to replicate in order to avoid forcing
// a dependency on LLVM_INCLUDE_DIR just to compile the runtime.
// #include "llvm/Support/AMDGPUMetadata.h"
// typedef llvm::AMDGPU::HSAMD::Metadata CodeObjectMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Metadata KernelMD;
// typedef llvm::AMDGPU::HSAMD::Kernel::Arg::Metadata KernelArgMD;
// using llvm::AMDGPU::HSAMD::AccessQualifier;
// using llvm::AMDGPU::HSAMD::AddressSpaceQualifier;
// using llvm::AMDGPU::HSAMD::ValueKind;
// using llvm::AMDGPU::HSAMD::ValueType;
class KernelArgMD {
public:
enum class ValueKind {
HiddenGlobalOffsetX,
HiddenGlobalOffsetY,
HiddenGlobalOffsetZ,
HiddenNone,
HiddenPrintfBuffer,
HiddenDefaultQueue,
HiddenCompletionAction,
HiddenMultiGridSyncArg,
HiddenHostcallBuffer,
Unknown
};
KernelArgMD()
: name_(std::string()), typeName_(std::string()), size_(0), offset_(0),
align_(0), valueKind_(ValueKind::Unknown) {}
// fields
std::string name_;
std::string typeName_;
uint32_t size_;
uint32_t offset_;
uint32_t align_;
ValueKind valueKind_;
};
class KernelMD {
public:
KernelMD() : kernargSegmentSize_(0ull) {}
// fields
uint64_t kernargSegmentSize_;
};
static const std::map<std::string, KernelArgMD::ValueKind> ArgValueKind = {
// Including only those fields that are relevant to the runtime.
// {"ByValue", KernelArgMD::ValueKind::ByValue},
// {"GlobalBuffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"DynamicSharedPointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"Sampler", KernelArgMD::ValueKind::Sampler},
// {"Image", KernelArgMD::ValueKind::Image},
// {"Pipe", KernelArgMD::ValueKind::Pipe},
// {"Queue", KernelArgMD::ValueKind::Queue},
{"HiddenGlobalOffsetX", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"HiddenGlobalOffsetY", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"HiddenGlobalOffsetZ", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"HiddenNone", KernelArgMD::ValueKind::HiddenNone},
{"HiddenPrintfBuffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"HiddenDefaultQueue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"HiddenCompletionAction", KernelArgMD::ValueKind::HiddenCompletionAction},
{"HiddenMultiGridSyncArg", KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"HiddenHostcallBuffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
// v3
// {"by_value", KernelArgMD::ValueKind::ByValue},
// {"global_buffer", KernelArgMD::ValueKind::GlobalBuffer},
// {"dynamic_shared_pointer",
// KernelArgMD::ValueKind::DynamicSharedPointer},
// {"sampler", KernelArgMD::ValueKind::Sampler},
// {"image", KernelArgMD::ValueKind::Image},
// {"pipe", KernelArgMD::ValueKind::Pipe},
// {"queue", KernelArgMD::ValueKind::Queue},
{"hidden_global_offset_x", KernelArgMD::ValueKind::HiddenGlobalOffsetX},
{"hidden_global_offset_y", KernelArgMD::ValueKind::HiddenGlobalOffsetY},
{"hidden_global_offset_z", KernelArgMD::ValueKind::HiddenGlobalOffsetZ},
{"hidden_none", KernelArgMD::ValueKind::HiddenNone},
{"hidden_printf_buffer", KernelArgMD::ValueKind::HiddenPrintfBuffer},
{"hidden_default_queue", KernelArgMD::ValueKind::HiddenDefaultQueue},
{"hidden_completion_action",
KernelArgMD::ValueKind::HiddenCompletionAction},
{"hidden_multigrid_sync_arg",
KernelArgMD::ValueKind::HiddenMultiGridSyncArg},
{"hidden_hostcall_buffer", KernelArgMD::ValueKind::HiddenHostcallBuffer},
};
// global variables. TODO: Get rid of these
atmi_machine_t g_atmi_machine;
ATLMachine g_atl_machine;
hsa_region_t atl_gpu_kernarg_region;
std::vector<hsa_amd_memory_pool_t> atl_gpu_kernarg_pools;
hsa_region_t atl_cpu_kernarg_region;
static std::vector<hsa_executable_t> g_executables;
std::map<std::string, std::string> KernelNameMap;
std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
bool g_atmi_initialized = false;
bool g_atmi_hostcall_required = false;
struct timespec context_init_time;
int context_init_time_init = 0;
/*
atlc is all internal global values.
The structure atl_context_t is defined in atl_internal.h
Most references will use the global structure prefix atlc.
However the pointer value atlc_p-> is equivalent to atlc.
*/
atl_context_t atlc = {.struct_initialized = false};
atl_context_t *atlc_p = NULL;
namespace core {
/* Machine Info */
atmi_machine_t *Runtime::GetMachineInfo() {
if (!atlc.g_hsa_initialized)
return NULL;
return &g_atmi_machine;
}
void atl_set_atmi_initialized() {
// FIXME: thread safe? locks?
g_atmi_initialized = true;
}
void atl_reset_atmi_initialized() {
// FIXME: thread safe? locks?
g_atmi_initialized = false;
}
bool atl_is_atmi_initialized() { return g_atmi_initialized; }
void allow_access_to_all_gpu_agents(void *ptr) {
hsa_status_t err;
std::vector<ATLGPUProcessor> &gpu_procs =
g_atl_machine.processors<ATLGPUProcessor>();
std::vector<hsa_agent_t> agents;
for (uint32_t i = 0; i < gpu_procs.size(); i++) {
agents.push_back(gpu_procs[i].agent());
}
err = hsa_amd_agents_allow_access(agents.size(), &agents[0], NULL, ptr);
ErrorCheck(Allow agents ptr access, err);
}
atmi_status_t Runtime::Initialize() {
atmi_devtype_t devtype = ATMI_DEVTYPE_GPU;
if (atl_is_atmi_initialized())
return ATMI_STATUS_SUCCESS;
if (devtype == ATMI_DEVTYPE_ALL || devtype & ATMI_DEVTYPE_GPU) {
ATMIErrorCheck(GPU context init, atl_init_gpu_context());
}
atl_set_atmi_initialized();
return ATMI_STATUS_SUCCESS;
}
atmi_status_t Runtime::Finalize() {
hsa_status_t err;
for (uint32_t i = 0; i < g_executables.size(); i++) {
err = hsa_executable_destroy(g_executables[i]);
ErrorCheck(Destroying executable, err);
}
for (uint32_t i = 0; i < SymbolInfoTable.size(); i++) {
SymbolInfoTable[i].clear();
}
SymbolInfoTable.clear();
for (uint32_t i = 0; i < KernelInfoTable.size(); i++) {
KernelInfoTable[i].clear();
}
KernelInfoTable.clear();
atl_reset_atmi_initialized();
err = hsa_shut_down();
ErrorCheck(Shutting down HSA, err);
return ATMI_STATUS_SUCCESS;
}
void atmi_init_context_structs() {
atlc_p = &atlc;
atlc.struct_initialized = true; /* This only gets called one time */
atlc.g_hsa_initialized = false;
atlc.g_gpu_initialized = false;
atlc.g_tasks_initialized = false;
}
// Implement memory_pool iteration function
static hsa_status_t get_memory_pool_info(hsa_amd_memory_pool_t memory_pool,
void *data) {
ATLProcessor *proc = reinterpret_cast<ATLProcessor *>(data);
hsa_status_t err = HSA_STATUS_SUCCESS;
// Check if the memory_pool is allowed to allocate, i.e. do not return group
// memory
bool alloc_allowed = false;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
&alloc_allowed);
ErrorCheck(Alloc allowed in memory pool check, err);
if (alloc_allowed) {
uint32_t global_flag = 0;
err = hsa_amd_memory_pool_get_info(
memory_pool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &global_flag);
ErrorCheck(Get memory pool info, err);
if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED & global_flag) {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_FINE_GRAINED);
proc->addMemory(new_mem);
if (HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT & global_flag) {
DEBUG_PRINT("GPU kernel args pool handle: %lu\n", memory_pool.handle);
atl_gpu_kernarg_pools.push_back(memory_pool);
}
} else {
ATLMemory new_mem(memory_pool, *proc, ATMI_MEMTYPE_COARSE_GRAINED);
proc->addMemory(new_mem);
}
}
return err;
}
static hsa_status_t get_agent_info(hsa_agent_t agent, void *data) {
hsa_status_t err = HSA_STATUS_SUCCESS;
hsa_device_type_t device_type;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
ErrorCheck(Get device type info, err);
switch (device_type) {
case HSA_DEVICE_TYPE_CPU: {
;
ATLCPUProcessor new_proc(agent);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
ErrorCheck(Iterate all memory pools, err);
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_GPU: {
;
hsa_profile_t profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &profile);
ErrorCheck(Query the agent profile, err);
atmi_devtype_t gpu_type;
gpu_type =
(profile == HSA_PROFILE_FULL) ? ATMI_DEVTYPE_iGPU : ATMI_DEVTYPE_dGPU;
ATLGPUProcessor new_proc(agent, gpu_type);
err = hsa_amd_agent_iterate_memory_pools(agent, get_memory_pool_info,
&new_proc);
ErrorCheck(Iterate all memory pools, err);
g_atl_machine.addProcessor(new_proc);
} break;
case HSA_DEVICE_TYPE_DSP: {
err = HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
} break;
}
return err;
}
hsa_status_t get_fine_grained_region(hsa_region_t region, void *data) {
hsa_region_segment_t segment;
hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
if (segment != HSA_REGION_SEGMENT_GLOBAL) {
return HSA_STATUS_SUCCESS;
}
hsa_region_global_flag_t flags;
hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
if (flags & HSA_REGION_GLOBAL_FLAG_FINE_GRAINED) {
hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
*ret = region;
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
}
/* Determines if a memory region can be used for kernarg allocations. */
static hsa_status_t get_kernarg_memory_region(hsa_region_t region, void *data) {
hsa_region_segment_t segment;
hsa_region_get_info(region, HSA_REGION_INFO_SEGMENT, &segment);
if (HSA_REGION_SEGMENT_GLOBAL != segment) {
return HSA_STATUS_SUCCESS;
}
hsa_region_global_flag_t flags;
hsa_region_get_info(region, HSA_REGION_INFO_GLOBAL_FLAGS, &flags);
if (flags & HSA_REGION_GLOBAL_FLAG_KERNARG) {
hsa_region_t *ret = reinterpret_cast<hsa_region_t *>(data);
*ret = region;
return HSA_STATUS_INFO_BREAK;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t init_compute_and_memory() {
hsa_status_t err;
/* Iterate over the agents and pick the gpu agent */
err = hsa_iterate_agents(get_agent_info, NULL);
if (err == HSA_STATUS_INFO_BREAK) {
err = HSA_STATUS_SUCCESS;
}
ErrorCheck(Getting a gpu agent, err);
if (err != HSA_STATUS_SUCCESS)
return err;
/* Init all devices or individual device types? */
std::vector<ATLCPUProcessor> &cpu_procs =
g_atl_machine.processors<ATLCPUProcessor>();
std::vector<ATLGPUProcessor> &gpu_procs =
g_atl_machine.processors<ATLGPUProcessor>();
/* For CPU memory pools, add other devices that can access them directly
* or indirectly */
for (auto &cpu_proc : cpu_procs) {
for (auto &cpu_mem : cpu_proc.memories()) {
hsa_amd_memory_pool_t pool = cpu_mem.memory();
for (auto &gpu_proc : gpu_procs) {
hsa_agent_t agent = gpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
gpu_proc.addMemory(cpu_mem);
}
}
}
}
/* FIXME: are the below combinations of procs and memory pools needed?
* all to all compare procs with their memory pools and add those memory
* pools that are accessible by the target procs */
for (auto &gpu_proc : gpu_procs) {
for (auto &gpu_mem : gpu_proc.memories()) {
hsa_amd_memory_pool_t pool = gpu_mem.memory();
for (auto &cpu_proc : cpu_procs) {
hsa_agent_t agent = cpu_proc.agent();
hsa_amd_memory_pool_access_t access;
hsa_amd_agent_memory_pool_get_info(
agent, pool, HSA_AMD_AGENT_MEMORY_POOL_INFO_ACCESS, &access);
if (access != 0) {
// this means not NEVER, but could be YES or NO
// add this memory pool to the proc
cpu_proc.addMemory(gpu_mem);
}
}
}
}
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_CPU] = cpu_procs.size();
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_GPU] = gpu_procs.size();
size_t num_procs = cpu_procs.size() + gpu_procs.size();
// g_atmi_machine.devices = (atmi_device_t *)malloc(num_procs *
// sizeof(atmi_device_t));
atmi_device_t *all_devices = reinterpret_cast<atmi_device_t *>(
malloc(num_procs * sizeof(atmi_device_t)));
int num_iGPUs = 0;
int num_dGPUs = 0;
for (uint32_t i = 0; i < gpu_procs.size(); i++) {
if (gpu_procs[i].type() == ATMI_DEVTYPE_iGPU)
num_iGPUs++;
else
num_dGPUs++;
}
assert(num_iGPUs + num_dGPUs == gpu_procs.size() &&
"Number of dGPUs and iGPUs do not add up");
DEBUG_PRINT("CPU Agents: %lu\n", cpu_procs.size());
DEBUG_PRINT("iGPU Agents: %d\n", num_iGPUs);
DEBUG_PRINT("dGPU Agents: %d\n", num_dGPUs);
DEBUG_PRINT("GPU Agents: %lu\n", gpu_procs.size());
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_iGPU] = num_iGPUs;
g_atmi_machine.device_count_by_type[ATMI_DEVTYPE_dGPU] = num_dGPUs;
int cpus_begin = 0;
int cpus_end = cpu_procs.size();
int gpus_begin = cpu_procs.size();
int gpus_end = cpu_procs.size() + gpu_procs.size();
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_CPU] = &all_devices[cpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_GPU] = &all_devices[gpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_iGPU] = &all_devices[gpus_begin];
g_atmi_machine.devices_by_type[ATMI_DEVTYPE_dGPU] = &all_devices[gpus_begin];
int proc_index = 0;
for (int i = cpus_begin; i < cpus_end; i++) {
all_devices[i].type = cpu_procs[proc_index].type();
std::vector<ATLMemory> memories = cpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("CPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
proc_index = 0;
for (int i = gpus_begin; i < gpus_end; i++) {
all_devices[i].type = gpu_procs[proc_index].type();
std::vector<ATLMemory> memories = gpu_procs[proc_index].memories();
int fine_memories_size = 0;
int coarse_memories_size = 0;
DEBUG_PRINT("GPU memory types:\t");
for (auto &memory : memories) {
atmi_memtype_t type = memory.type();
if (type == ATMI_MEMTYPE_FINE_GRAINED) {
fine_memories_size++;
DEBUG_PRINT("Fine\t");
} else {
coarse_memories_size++;
DEBUG_PRINT("Coarse\t");
}
}
DEBUG_PRINT("\nFine Memories : %d", fine_memories_size);
DEBUG_PRINT("\tCoarse Memories : %d\n", coarse_memories_size);
proc_index++;
}
proc_index = 0;
atl_cpu_kernarg_region.handle = (uint64_t)-1;
if (cpu_procs.size() > 0) {
err = hsa_agent_iterate_regions(
cpu_procs[0].agent(), get_fine_grained_region, &atl_cpu_kernarg_region);
if (err == HSA_STATUS_INFO_BREAK) {
err = HSA_STATUS_SUCCESS;
}
err = (atl_cpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
: HSA_STATUS_SUCCESS;
ErrorCheck(Finding a CPU kernarg memory region handle, err);
}
/* Find a memory region that supports kernel arguments. */
atl_gpu_kernarg_region.handle = (uint64_t)-1;
if (gpu_procs.size() > 0) {
hsa_agent_iterate_regions(gpu_procs[0].agent(), get_kernarg_memory_region,
&atl_gpu_kernarg_region);
err = (atl_gpu_kernarg_region.handle == (uint64_t)-1) ? HSA_STATUS_ERROR
: HSA_STATUS_SUCCESS;
ErrorCheck(Finding a kernarg memory region, err);
}
if (num_procs > 0)
return HSA_STATUS_SUCCESS;
else
return HSA_STATUS_ERROR_NOT_INITIALIZED;
}
hsa_status_t init_hsa() {
if (atlc.g_hsa_initialized == false) {
DEBUG_PRINT("Initializing HSA...");
hsa_status_t err = hsa_init();
ErrorCheck(Initializing the hsa runtime, err);
if (err != HSA_STATUS_SUCCESS)
return err;
err = init_compute_and_memory();
if (err != HSA_STATUS_SUCCESS)
return err;
ErrorCheck(After initializing compute and memory, err);
int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
KernelInfoTable.resize(gpu_count);
SymbolInfoTable.resize(gpu_count);
for (uint32_t i = 0; i < SymbolInfoTable.size(); i++)
SymbolInfoTable[i].clear();
for (uint32_t i = 0; i < KernelInfoTable.size(); i++)
KernelInfoTable[i].clear();
atlc.g_hsa_initialized = true;
DEBUG_PRINT("done\n");
}
return HSA_STATUS_SUCCESS;
}
void init_tasks() {
if (atlc.g_tasks_initialized != false)
return;
std::vector<hsa_agent_t> gpu_agents;
int gpu_count = g_atl_machine.processorCount<ATLGPUProcessor>();
for (int gpu = 0; gpu < gpu_count; gpu++) {
atmi_place_t place = ATMI_PLACE_GPU(0, gpu);
ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
gpu_agents.push_back(proc.agent());
}
atlc.g_tasks_initialized = true;
}
hsa_status_t callbackEvent(const hsa_amd_event_t *event, void *data) {
#if (ROCM_VERSION_MAJOR >= 3) || \
(ROCM_VERSION_MAJOR >= 2 && ROCM_VERSION_MINOR >= 3)
if (event->event_type == HSA_AMD_GPU_MEMORY_FAULT_EVENT) {
#else
if (event->event_type == GPU_MEMORY_FAULT_EVENT) {
#endif
hsa_amd_gpu_memory_fault_info_t memory_fault = event->memory_fault;
// memory_fault.agent
// memory_fault.virtual_address
// memory_fault.fault_reason_mask
// fprintf("[GPU Error at %p: Reason is ", memory_fault.virtual_address);
std::stringstream stream;
stream << std::hex << (uintptr_t)memory_fault.virtual_address;
std::string addr("0x" + stream.str());
std::string err_string = "[GPU Memory Error] Addr: " + addr;
err_string += " Reason: ";
if (!(memory_fault.fault_reason_mask & 0x00111111)) {
err_string += "No Idea! ";
} else {
if (memory_fault.fault_reason_mask & 0x00000001)
err_string += "Page not present or supervisor privilege. ";
if (memory_fault.fault_reason_mask & 0x00000010)
err_string += "Write access to a read-only page. ";
if (memory_fault.fault_reason_mask & 0x00000100)
err_string += "Execute access to a page marked NX. ";
if (memory_fault.fault_reason_mask & 0x00001000)
err_string += "Host access only. ";
if (memory_fault.fault_reason_mask & 0x00010000)
err_string += "ECC failure (if supported by HW). ";
if (memory_fault.fault_reason_mask & 0x00100000)
err_string += "Can't determine the exact fault address. ";
}
fprintf(stderr, "%s\n", err_string.c_str());
return HSA_STATUS_ERROR;
}
return HSA_STATUS_SUCCESS;
}
atmi_status_t atl_init_gpu_context() {
if (atlc.struct_initialized == false)
atmi_init_context_structs();
if (atlc.g_gpu_initialized != false)
return ATMI_STATUS_SUCCESS;
hsa_status_t err;
err = init_hsa();
if (err != HSA_STATUS_SUCCESS)
return ATMI_STATUS_ERROR;
if (context_init_time_init == 0) {
clock_gettime(CLOCK_MONOTONIC_RAW, &context_init_time);
context_init_time_init = 1;
}
err = hsa_amd_register_system_event_handler(callbackEvent, NULL);
ErrorCheck(Registering the system for memory faults, err);
init_tasks();
atlc.g_gpu_initialized = true;
return ATMI_STATUS_SUCCESS;
}
bool isImplicit(KernelArgMD::ValueKind value_kind) {
switch (value_kind) {
case KernelArgMD::ValueKind::HiddenGlobalOffsetX:
case KernelArgMD::ValueKind::HiddenGlobalOffsetY:
case KernelArgMD::ValueKind::HiddenGlobalOffsetZ:
case KernelArgMD::ValueKind::HiddenNone:
case KernelArgMD::ValueKind::HiddenPrintfBuffer:
case KernelArgMD::ValueKind::HiddenDefaultQueue:
case KernelArgMD::ValueKind::HiddenCompletionAction:
case KernelArgMD::ValueKind::HiddenMultiGridSyncArg:
case KernelArgMD::ValueKind::HiddenHostcallBuffer:
return true;
default:
return false;
}
}
static std::pair<unsigned char *, unsigned char *>
find_metadata(void *binary, size_t binSize) {
std::pair<unsigned char *, unsigned char *> failure = {nullptr, nullptr};
Elf *e = elf_memory(static_cast<char *>(binary), binSize);
if (elf_kind(e) != ELF_K_ELF) {
return failure;
}
size_t numpHdrs;
if (elf_getphdrnum(e, &numpHdrs) != 0) {
return failure;
}
for (size_t i = 0; i < numpHdrs; ++i) {
GElf_Phdr pHdr;
if (gelf_getphdr(e, i, &pHdr) != &pHdr) {
continue;
}
// Look for the runtime metadata note
if (pHdr.p_type == PT_NOTE && pHdr.p_align >= sizeof(int)) {
// Iterate over the notes in this segment
address ptr = (address)binary + pHdr.p_offset;
address segmentEnd = ptr + pHdr.p_filesz;
while (ptr < segmentEnd) {
Elf_Note *note = reinterpret_cast<Elf_Note *>(ptr);
address name = (address)&note[1];
if (note->n_type == 7 || note->n_type == 8) {
return failure;
} else if (note->n_type == 10 /* NT_AMD_AMDGPU_HSA_METADATA */ &&
note->n_namesz == sizeof "AMD" &&
!memcmp(name, "AMD", note->n_namesz)) {
// code object v2 uses yaml metadata, no longer supported
return failure;
} else if (note->n_type == 32 /* NT_AMDGPU_METADATA */ &&
note->n_namesz == sizeof "AMDGPU" &&
!memcmp(name, "AMDGPU", note->n_namesz)) {
// n_descsz = 485
// value is padded to 4 byte alignment, may want to move end up to
// match
size_t offset = sizeof(uint32_t) * 3 /* fields */
+ sizeof("AMDGPU") /* name */
+ 1 /* padding to 4 byte alignment */;
// Including the trailing padding means both pointers are 4 bytes
// aligned, which may be useful later.
unsigned char *metadata_start = (unsigned char *)ptr + offset;
unsigned char *metadata_end =
metadata_start + core::alignUp(note->n_descsz, 4);
return {metadata_start, metadata_end};
}
ptr += sizeof(*note) + core::alignUp(note->n_namesz, sizeof(int)) +
core::alignUp(note->n_descsz, sizeof(int));
}
}
}
return failure;
}
namespace {
int map_lookup_array(msgpack::byte_range message, const char *needle,
msgpack::byte_range *res, uint64_t *size) {
unsigned count = 0;
struct s : msgpack::functors_defaults<s> {
s(unsigned &count, uint64_t *size) : count(count), size(size) {}
unsigned &count;
uint64_t *size;
const unsigned char *handle_array(uint64_t N, msgpack::byte_range bytes) {
count++;
*size = N;
return bytes.end;
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
// If the message is an array, record number of
// elements in *size
msgpack::handle_msgpack<s>(value, {count, size});
// return the whole array
*res = value;
}
});
// Only claim success if exactly one key/array pair matched
return count != 1;
}
int map_lookup_string(msgpack::byte_range message, const char *needle,
std::string *res) {
unsigned count = 0;
struct s : public msgpack::functors_defaults<s> {
s(unsigned &count, std::string *res) : count(count), res(res) {}
unsigned &count;
std::string *res;
void handle_string(size_t N, const unsigned char *str) {
count++;
*res = std::string(str, str + N);
}
};
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::handle_msgpack<s>(value, {count, res});
}
});
return count != 1;
}
int map_lookup_uint64_t(msgpack::byte_range message, const char *needle,
uint64_t *res) {
unsigned count = 0;
msgpack::foreach_map(message,
[&](msgpack::byte_range key, msgpack::byte_range value) {
if (msgpack::message_is_string(key, needle)) {
msgpack::foronly_unsigned(value, [&](uint64_t x) {
count++;
*res = x;
});
}
});
return count != 1;
}
int array_lookup_element(msgpack::byte_range message, uint64_t elt,
msgpack::byte_range *res) {
int rc = 1;
uint64_t i = 0;
msgpack::foreach_array(message, [&](msgpack::byte_range value) {
if (i == elt) {
*res = value;
rc = 0;
}
i++;
});
return rc;
}
int populate_kernelArgMD(msgpack::byte_range args_element,
KernelArgMD *kernelarg) {
using namespace msgpack;
int error = 0;
foreach_map(args_element, [&](byte_range key, byte_range value) -> void {
if (message_is_string(key, ".name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->name_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".type_name")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
kernelarg->typeName_ = std::string(str, str + N);
});
} else if (message_is_string(key, ".size")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->size_ = x; });
} else if (message_is_string(key, ".offset")) {
foronly_unsigned(value, [&](uint64_t x) { kernelarg->offset_ = x; });
} else if (message_is_string(key, ".value_kind")) {
foronly_string(value, [&](size_t N, const unsigned char *str) {
std::string s = std::string(str, str + N);
auto itValueKind = ArgValueKind.find(s);
if (itValueKind != ArgValueKind.end()) {
kernelarg->valueKind_ = itValueKind->second;
}
});
}
});
return error;
}
} // namespace
static hsa_status_t get_code_object_custom_metadata(void *binary,
size_t binSize, int gpu) {
// parse code object with different keys from v2
// also, the kernel name is not the same as the symbol name -- so a
// symbol->name map is needed
std::pair<unsigned char *, unsigned char *> metadata =
find_metadata(binary, binSize);
if (!metadata.first) {
return HSA_STATUS_ERROR_INVALID_CODE_OBJECT;
}
uint64_t kernelsSize = 0;
int msgpack_errors = 0;
msgpack::byte_range kernel_array;
msgpack_errors =
map_lookup_array({metadata.first, metadata.second}, "amdhsa.kernels",
&kernel_array, &kernelsSize);
msgpackErrorCheck(kernels lookup in program metadata, msgpack_errors);
for (size_t i = 0; i < kernelsSize; i++) {
assert(msgpack_errors == 0);
std::string kernelName;
std::string symbolName;
msgpack::byte_range element;
msgpack_errors += array_lookup_element(kernel_array, i, &element);
msgpackErrorCheck(element lookup in kernel metadata, msgpack_errors);
msgpack_errors += map_lookup_string(element, ".name", &kernelName);
msgpack_errors += map_lookup_string(element, ".symbol", &symbolName);
msgpackErrorCheck(strings lookup in kernel metadata, msgpack_errors);
atl_kernel_info_t info = {0, 0, 0, 0, 0, 0, 0, 0, 0, {}, {}, {}};
uint64_t sgpr_count, vgpr_count, sgpr_spill_count, vgpr_spill_count;
msgpack_errors += map_lookup_uint64_t(element, ".sgpr_count", &sgpr_count);
msgpackErrorCheck(sgpr count metadata lookup in kernel metadata,
msgpack_errors);
info.sgpr_count = sgpr_count;
msgpack_errors += map_lookup_uint64_t(element, ".vgpr_count", &vgpr_count);
msgpackErrorCheck(vgpr count metadata lookup in kernel metadata,
msgpack_errors);
info.vgpr_count = vgpr_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".sgpr_spill_count", &sgpr_spill_count);
msgpackErrorCheck(sgpr spill count metadata lookup in kernel metadata,
msgpack_errors);
info.sgpr_spill_count = sgpr_spill_count;
msgpack_errors +=
map_lookup_uint64_t(element, ".vgpr_spill_count", &vgpr_spill_count);
msgpackErrorCheck(vgpr spill count metadata lookup in kernel metadata,
msgpack_errors);
info.vgpr_spill_count = vgpr_spill_count;
size_t kernel_explicit_args_size = 0;
uint64_t kernel_segment_size;
msgpack_errors += map_lookup_uint64_t(element, ".kernarg_segment_size",
&kernel_segment_size);
msgpackErrorCheck(kernarg segment size metadata lookup in kernel metadata,
msgpack_errors);
// create a map from symbol to name
DEBUG_PRINT("Kernel symbol %s; Name: %s; Size: %lu\n", symbolName.c_str(),
kernelName.c_str(), kernel_segment_size);
KernelNameMap[symbolName] = kernelName;
bool hasHiddenArgs = false;
if (kernel_segment_size > 0) {
uint64_t argsSize;
size_t offset = 0;
msgpack::byte_range args_array;
msgpack_errors +=
map_lookup_array(element, ".args", &args_array, &argsSize);
msgpackErrorCheck(kernel args metadata lookup in kernel metadata,
msgpack_errors);
info.num_args = argsSize;
for (size_t i = 0; i < argsSize; ++i) {
KernelArgMD lcArg;
msgpack::byte_range args_element;
msgpack_errors += array_lookup_element(args_array, i, &args_element);
msgpackErrorCheck(iterate args map in kernel args metadata,
msgpack_errors);
msgpack_errors += populate_kernelArgMD(args_element, &lcArg);
msgpackErrorCheck(iterate args map in kernel args metadata,
msgpack_errors);
// populate info with sizes and offsets
info.arg_sizes.push_back(lcArg.size_);
// v3 has offset field and not align field
size_t new_offset = lcArg.offset_;
size_t padding = new_offset - offset;
offset = new_offset;
info.arg_offsets.push_back(lcArg.offset_);
DEBUG_PRINT("Arg[%lu] \"%s\" (%u, %u)\n", i, lcArg.name_.c_str(),
lcArg.size_, lcArg.offset_);
offset += lcArg.size_;
// check if the arg is a hidden/implicit arg
// this logic assumes that all hidden args are 8-byte aligned
if (!isImplicit(lcArg.valueKind_)) {
kernel_explicit_args_size += lcArg.size_;
} else {
hasHiddenArgs = true;
}
kernel_explicit_args_size += padding;
}
}
// add size of implicit args, e.g.: offset x, y and z and pipe pointer, but
// in ATMI, do not count the compiler set implicit args, but set your own
// implicit args by discounting the compiler set implicit args
info.kernel_segment_size =
(hasHiddenArgs ? kernel_explicit_args_size : kernel_segment_size) +
sizeof(atmi_implicit_args_t);
DEBUG_PRINT("[%s: kernarg seg size] (%lu --> %u)\n", kernelName.c_str(),
kernel_segment_size, info.kernel_segment_size);
// kernel received, now add it to the kernel info table
KernelInfoTable[gpu][kernelName] = info;
}
return HSA_STATUS_SUCCESS;
}
static hsa_status_t populate_InfoTables(hsa_executable_t executable,
hsa_executable_symbol_t symbol,
void *data) {
int gpu = *static_cast<int *>(data);
hsa_symbol_kind_t type;
uint32_t name_length;
hsa_status_t err;
err = hsa_executable_symbol_get_info(symbol, HSA_EXECUTABLE_SYMBOL_INFO_TYPE,
&type);
ErrorCheck(Symbol info extraction, err);
DEBUG_PRINT("Exec Symbol type: %d\n", type);
if (type == HSA_SYMBOL_KIND_KERNEL) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
ErrorCheck(Symbol info extraction, err);
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
ErrorCheck(Symbol info extraction, err);
name[name_length] = 0;
if (KernelNameMap.find(std::string(name)) == KernelNameMap.end()) {
// did not find kernel name in the kernel map; this can happen only
// if the ROCr API for getting symbol info (name) is different from
// the comgr method of getting symbol info
ErrorCheck(Invalid kernel name, HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
}
atl_kernel_info_t info;
std::string kernelName = KernelNameMap[std::string(name)];
// by now, the kernel info table should already have an entry
// because the non-ROCr custom code object parsing is called before
// iterating over the code object symbols using ROCr
if (KernelInfoTable[gpu].find(kernelName) == KernelInfoTable[gpu].end()) {
ErrorCheck(Finding the entry kernel info table,
HSA_STATUS_ERROR_INVALID_CODE_OBJECT);
}
// found, so assign and update
info = KernelInfoTable[gpu][kernelName];
/* Extract dispatch information from the symbol */
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_OBJECT,
&(info.kernel_object));
ErrorCheck(Extracting the symbol from the executable, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_GROUP_SEGMENT_SIZE,
&(info.group_segment_size));
ErrorCheck(Extracting the group segment size from the executable, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_PRIVATE_SEGMENT_SIZE,
&(info.private_segment_size));
ErrorCheck(Extracting the private segment from the executable, err);
DEBUG_PRINT(
"Kernel %s --> %lx symbol %u group segsize %u pvt segsize %u bytes "
"kernarg\n",
kernelName.c_str(), info.kernel_object, info.group_segment_size,
info.private_segment_size, info.kernel_segment_size);
// assign it back to the kernel info table
KernelInfoTable[gpu][kernelName] = info;
free(name);
} else if (type == HSA_SYMBOL_KIND_VARIABLE) {
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_NAME_LENGTH, &name_length);
ErrorCheck(Symbol info extraction, err);
char *name = reinterpret_cast<char *>(malloc(name_length + 1));
err = hsa_executable_symbol_get_info(symbol,
HSA_EXECUTABLE_SYMBOL_INFO_NAME, name);
ErrorCheck(Symbol info extraction, err);
name[name_length] = 0;
atl_symbol_info_t info;
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_ADDRESS, &(info.addr));
ErrorCheck(Symbol info address extraction, err);
err = hsa_executable_symbol_get_info(
symbol, HSA_EXECUTABLE_SYMBOL_INFO_VARIABLE_SIZE, &(info.size));
ErrorCheck(Symbol info size extraction, err);
atmi_mem_place_t place = ATMI_MEM_PLACE(ATMI_DEVTYPE_GPU, gpu, 0);
DEBUG_PRINT("Symbol %s = %p (%u bytes)\n", name, (void *)info.addr,
info.size);
register_allocation(reinterpret_cast<void *>(info.addr), (size_t)info.size,
place);
SymbolInfoTable[gpu][std::string(name)] = info;
if (strcmp(name, "needs_hostcall_buffer") == 0)
g_atmi_hostcall_required = true;
free(name);
} else {
DEBUG_PRINT("Symbol is an indirect function\n");
}
return HSA_STATUS_SUCCESS;
}
atmi_status_t Runtime::RegisterModuleFromMemory(
void *module_bytes, size_t module_size, atmi_place_t place,
atmi_status_t (*on_deserialized_data)(void *data, size_t size,
void *cb_state),
void *cb_state) {
hsa_status_t err;
int gpu = place.device_id;
assert(gpu >= 0);
DEBUG_PRINT("Trying to load module to GPU-%d\n", gpu);
ATLGPUProcessor &proc = get_processor<ATLGPUProcessor>(place);
hsa_agent_t agent = proc.agent();
hsa_executable_t executable = {0};
hsa_profile_t agent_profile;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_PROFILE, &agent_profile);
ErrorCheck(Query the agent profile, err);
// FIXME: Assume that every profile is FULL until we understand how to build
// GCN with base profile
agent_profile = HSA_PROFILE_FULL;
/* Create the empty executable. */
err = hsa_executable_create(agent_profile, HSA_EXECUTABLE_STATE_UNFROZEN, "",
&executable);
ErrorCheck(Create the executable, err);
bool module_load_success = false;
do // Existing control flow used continue, preserve that for this patch
{
{
// Some metadata info is not available through ROCr API, so use custom
// code object metadata parsing to collect such metadata info
err = get_code_object_custom_metadata(module_bytes, module_size, gpu);
ErrorCheckAndContinue(Getting custom code object metadata, err);
// Deserialize code object.
hsa_code_object_t code_object = {0};
err = hsa_code_object_deserialize(module_bytes, module_size, NULL,
&code_object);
ErrorCheckAndContinue(Code Object Deserialization, err);
assert(0 != code_object.handle);
// Mutating the device image here avoids another allocation & memcpy
void *code_object_alloc_data =
reinterpret_cast<void *>(code_object.handle);
atmi_status_t atmi_err =
on_deserialized_data(code_object_alloc_data, module_size, cb_state);
ATMIErrorCheck(Error in deserialized_data callback, atmi_err);
/* Load the code object. */
err =
hsa_executable_load_code_object(executable, agent, code_object, NULL);
ErrorCheckAndContinue(Loading the code object, err);
// cannot iterate over symbols until executable is frozen
}
module_load_success = true;
} while (0);
DEBUG_PRINT("Modules loaded successful? %d\n", module_load_success);
if (module_load_success) {
/* Freeze the executable; it can now be queried for symbols. */
err = hsa_executable_freeze(executable, "");
ErrorCheck(Freeze the executable, err);
err = hsa_executable_iterate_symbols(executable, populate_InfoTables,
static_cast<void *>(&gpu));
ErrorCheck(Iterating over symbols for execuatable, err);
// save the executable and destroy during finalize
g_executables.push_back(executable);
return ATMI_STATUS_SUCCESS;
} else {
return ATMI_STATUS_ERROR;
}
}
} // namespace core