blob: 45d94765936ab0e0eaacf77016e0a411e92d51b9 [file] [log] [blame]
//===--- amdgpu/src/rtl.cpp --------------------------------------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RTL for AMD hsa machine
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <assert.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <functional>
#include <libelf.h>
#include <list>
#include <memory>
#include <mutex>
#include <shared_mutex>
#include <unordered_map>
#include <vector>
#include "interop_hsa.h"
#include "impl_runtime.h"
#include "internal.h"
#include "rt.h"
#include "DeviceEnvironment.h"
#include "get_elf_mach_gfx_name.h"
#include "omptargetplugin.h"
#include "print_tracing.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Frontend/OpenMP/OMPGridValues.h"
// hostrpc interface, FIXME: consider moving to its own include these are
// statically linked into amdgpu/plugin if present from hostrpc_services.a,
// linked as --whole-archive to override the weak symbols that are used to
// implement a fallback for toolchains that do not yet have a hostrpc library.
extern "C" {
unsigned long hostrpc_assign_buffer(hsa_agent_t agent, hsa_queue_t *this_Q,
uint32_t device_id);
hsa_status_t hostrpc_init();
hsa_status_t hostrpc_terminate();
__attribute__((weak)) hsa_status_t hostrpc_init() { return HSA_STATUS_SUCCESS; }
__attribute__((weak)) hsa_status_t hostrpc_terminate() {
return HSA_STATUS_SUCCESS;
}
__attribute__((weak)) unsigned long
hostrpc_assign_buffer(hsa_agent_t, hsa_queue_t *, uint32_t device_id) {
DP("Warning: Attempting to assign hostrpc to device %u, but hostrpc library "
"missing\n",
device_id);
return 0;
}
}
// Heuristic parameters used for kernel launch
// Number of teams per CU to allow scheduling flexibility
static const unsigned DefaultTeamsPerCU = 4;
int print_kernel_trace;
#ifdef OMPTARGET_DEBUG
#define check(msg, status) \
if (status != HSA_STATUS_SUCCESS) { \
DP(#msg " failed\n"); \
} else { \
DP(#msg " succeeded\n"); \
}
#else
#define check(msg, status) \
{}
#endif
#include "elf_common.h"
namespace hsa {
template <typename C> hsa_status_t iterate_agents(C cb) {
auto L = [](hsa_agent_t agent, void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(agent);
};
return hsa_iterate_agents(L, static_cast<void *>(&cb));
}
template <typename C>
hsa_status_t amd_agent_iterate_memory_pools(hsa_agent_t Agent, C cb) {
auto L = [](hsa_amd_memory_pool_t MemoryPool, void *data) -> hsa_status_t {
C *unwrapped = static_cast<C *>(data);
return (*unwrapped)(MemoryPool);
};
return hsa_amd_agent_iterate_memory_pools(Agent, L, static_cast<void *>(&cb));
}
} // namespace hsa
/// Keep entries table per device
struct FuncOrGblEntryTy {
__tgt_target_table Table;
std::vector<__tgt_offload_entry> Entries;
};
struct KernelArgPool {
private:
static pthread_mutex_t mutex;
public:
uint32_t kernarg_segment_size;
void *kernarg_region = nullptr;
std::queue<int> free_kernarg_segments;
uint32_t kernarg_size_including_implicit() {
return kernarg_segment_size + sizeof(impl_implicit_args_t);
}
~KernelArgPool() {
if (kernarg_region) {
auto r = hsa_amd_memory_pool_free(kernarg_region);
if (r != HSA_STATUS_SUCCESS) {
DP("hsa_amd_memory_pool_free failed: %s\n", get_error_string(r));
}
}
}
// Can't really copy or move a mutex
KernelArgPool() = default;
KernelArgPool(const KernelArgPool &) = delete;
KernelArgPool(KernelArgPool &&) = delete;
KernelArgPool(uint32_t kernarg_segment_size,
hsa_amd_memory_pool_t &memory_pool)
: kernarg_segment_size(kernarg_segment_size) {
// impl uses one pool per kernel for all gpus, with a fixed upper size
// preserving that exact scheme here, including the queue<int>
hsa_status_t err = hsa_amd_memory_pool_allocate(
memory_pool, kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
&kernarg_region);
if (err != HSA_STATUS_SUCCESS) {
DP("hsa_amd_memory_pool_allocate failed: %s\n", get_error_string(err));
kernarg_region = nullptr; // paranoid
return;
}
err = core::allow_access_to_all_gpu_agents(kernarg_region);
if (err != HSA_STATUS_SUCCESS) {
DP("hsa allow_access_to_all_gpu_agents failed: %s\n",
get_error_string(err));
auto r = hsa_amd_memory_pool_free(kernarg_region);
if (r != HSA_STATUS_SUCCESS) {
// if free failed, can't do anything more to resolve it
DP("hsa memory poll free failed: %s\n", get_error_string(err));
}
kernarg_region = nullptr;
return;
}
for (int i = 0; i < MAX_NUM_KERNELS; i++) {
free_kernarg_segments.push(i);
}
}
void *allocate(uint64_t arg_num) {
assert((arg_num * sizeof(void *)) == kernarg_segment_size);
lock l(&mutex);
void *res = nullptr;
if (!free_kernarg_segments.empty()) {
int free_idx = free_kernarg_segments.front();
res = static_cast<void *>(static_cast<char *>(kernarg_region) +
(free_idx * kernarg_size_including_implicit()));
assert(free_idx == pointer_to_index(res));
free_kernarg_segments.pop();
}
return res;
}
void deallocate(void *ptr) {
lock l(&mutex);
int idx = pointer_to_index(ptr);
free_kernarg_segments.push(idx);
}
private:
int pointer_to_index(void *ptr) {
ptrdiff_t bytes =
static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
assert(bytes >= 0);
assert(bytes % kernarg_size_including_implicit() == 0);
return bytes / kernarg_size_including_implicit();
}
struct lock {
lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
~lock() { pthread_mutex_unlock(m); }
pthread_mutex_t *m;
};
};
pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
KernelArgPoolMap;
/// Use a single entity to encode a kernel and a set of flags
struct KernelTy {
llvm::omp::OMPTgtExecModeFlags ExecutionMode;
int16_t ConstWGSize;
int32_t device_id;
void *CallStackAddr = nullptr;
const char *Name;
KernelTy(llvm::omp::OMPTgtExecModeFlags _ExecutionMode, int16_t _ConstWGSize,
int32_t _device_id, void *_CallStackAddr, const char *_Name,
uint32_t _kernarg_segment_size,
hsa_amd_memory_pool_t &KernArgMemoryPool)
: ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
device_id(_device_id), CallStackAddr(_CallStackAddr), Name(_Name) {
DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
std::string N(_Name);
if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
KernelArgPoolMap.insert(
std::make_pair(N, std::unique_ptr<KernelArgPool>(new KernelArgPool(
_kernarg_segment_size, KernArgMemoryPool))));
}
}
};
/// List that contains all the kernels.
/// FIXME: we may need this to be per device and per library.
std::list<KernelTy> KernelsList;
template <typename Callback> static hsa_status_t FindAgents(Callback CB) {
hsa_status_t err =
hsa::iterate_agents([&](hsa_agent_t agent) -> hsa_status_t {
hsa_device_type_t device_type;
// get_info fails iff HSA runtime not yet initialized
hsa_status_t err =
hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
if (err != HSA_STATUS_SUCCESS) {
if (print_kernel_trace > 0)
DP("rtl.cpp: err %s\n", get_error_string(err));
return err;
}
CB(device_type, agent);
return HSA_STATUS_SUCCESS;
});
// iterate_agents fails iff HSA runtime not yet initialized
if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS) {
DP("rtl.cpp: err %s\n", get_error_string(err));
}
return err;
}
static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
void *data) {
if (status != HSA_STATUS_SUCCESS) {
const char *status_string;
if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
status_string = "unavailable";
}
DP("[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__, __LINE__, source,
status, status_string);
abort();
}
}
namespace core {
namespace {
void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
__atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
}
uint16_t create_header() {
uint16_t header = HSA_PACKET_TYPE_KERNEL_DISPATCH << HSA_PACKET_HEADER_TYPE;
header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE;
header |= HSA_FENCE_SCOPE_SYSTEM << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE;
return header;
}
hsa_status_t isValidMemoryPool(hsa_amd_memory_pool_t MemoryPool) {
bool AllocAllowed = false;
hsa_status_t Err = hsa_amd_memory_pool_get_info(
MemoryPool, HSA_AMD_MEMORY_POOL_INFO_RUNTIME_ALLOC_ALLOWED,
&AllocAllowed);
if (Err != HSA_STATUS_SUCCESS) {
DP("Alloc allowed in memory pool check failed: %s\n",
get_error_string(Err));
return Err;
}
size_t Size = 0;
Err = hsa_amd_memory_pool_get_info(MemoryPool, HSA_AMD_MEMORY_POOL_INFO_SIZE,
&Size);
if (Err != HSA_STATUS_SUCCESS) {
DP("Get memory pool size failed: %s\n", get_error_string(Err));
return Err;
}
return (AllocAllowed && Size > 0) ? HSA_STATUS_SUCCESS : HSA_STATUS_ERROR;
}
hsa_status_t addMemoryPool(hsa_amd_memory_pool_t MemoryPool, void *Data) {
std::vector<hsa_amd_memory_pool_t> *Result =
static_cast<std::vector<hsa_amd_memory_pool_t> *>(Data);
hsa_status_t err;
if ((err = isValidMemoryPool(MemoryPool)) != HSA_STATUS_SUCCESS) {
return err;
}
Result->push_back(MemoryPool);
return HSA_STATUS_SUCCESS;
}
} // namespace
} // namespace core
struct EnvironmentVariables {
int NumTeams;
int TeamLimit;
int TeamThreadLimit;
int MaxTeamsDefault;
};
template <uint32_t wavesize>
static constexpr const llvm::omp::GV &getGridValue() {
return llvm::omp::getAMDGPUGridValues<wavesize>();
}
struct HSALifetime {
// Wrapper around HSA used to ensure it is constructed before other types
// and destructed after, which means said other types can use raii for
// cleanup without risking running outside of the lifetime of HSA
const hsa_status_t S;
bool success() { return S == HSA_STATUS_SUCCESS; }
HSALifetime() : S(hsa_init()) {}
~HSALifetime() {
if (S == HSA_STATUS_SUCCESS) {
hsa_status_t Err = hsa_shut_down();
if (Err != HSA_STATUS_SUCCESS) {
// Can't call into HSA to get a string from the integer
DP("Shutting down HSA failed: %d\n", Err);
}
}
}
};
/// Class containing all the device information
class RTLDeviceInfoTy {
HSALifetime HSA; // First field => constructed first and destructed last
std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
struct QueueDeleter {
void operator()(hsa_queue_t *Q) {
if (Q) {
hsa_status_t Err = hsa_queue_destroy(Q);
if (Err != HSA_STATUS_SUCCESS) {
DP("Error destroying hsa queue: %s\n", get_error_string(Err));
}
}
}
};
public:
bool ConstructionSucceeded = false;
// load binary populates symbol tables and mutates various global state
// run uses those symbol tables
std::shared_timed_mutex load_run_lock;
int NumberOfDevices = 0;
// GPU devices
std::vector<hsa_agent_t> HSAAgents;
std::vector<std::unique_ptr<hsa_queue_t, QueueDeleter>>
HSAQueues; // one per gpu
// CPUs
std::vector<hsa_agent_t> CPUAgents;
// Device properties
std::vector<int> ComputeUnits;
std::vector<int> GroupsPerDevice;
std::vector<int> ThreadsPerGroup;
std::vector<int> WarpSize;
std::vector<std::string> GPUName;
// OpenMP properties
std::vector<int> NumTeams;
std::vector<int> NumThreads;
// OpenMP Environment properties
EnvironmentVariables Env;
// OpenMP Requires Flags
int64_t RequiresFlags;
// Resource pools
SignalPoolT FreeSignalPool;
bool hostcall_required = false;
std::vector<hsa_executable_t> HSAExecutables;
std::vector<std::map<std::string, atl_kernel_info_t>> KernelInfoTable;
std::vector<std::map<std::string, atl_symbol_info_t>> SymbolInfoTable;
hsa_amd_memory_pool_t KernArgPool;
// fine grained memory pool for host allocations
hsa_amd_memory_pool_t HostFineGrainedMemoryPool;
// fine and coarse-grained memory pools per offloading device
std::vector<hsa_amd_memory_pool_t> DeviceFineGrainedMemoryPools;
std::vector<hsa_amd_memory_pool_t> DeviceCoarseGrainedMemoryPools;
struct implFreePtrDeletor {
void operator()(void *p) {
core::Runtime::Memfree(p); // ignore failure to free
}
};
// device_State shared across loaded binaries, error if inconsistent size
std::vector<std::pair<std::unique_ptr<void, implFreePtrDeletor>, uint64_t>>
deviceStateStore;
static const unsigned HardTeamLimit =
(1 << 16) - 1; // 64K needed to fit in uint16
static const int DefaultNumTeams = 128;
// These need to be per-device since different devices can have different
// wave sizes, but are currently the same number for each so that refactor
// can be postponed.
static_assert(getGridValue<32>().GV_Max_Teams ==
getGridValue<64>().GV_Max_Teams,
"");
static const int Max_Teams = getGridValue<64>().GV_Max_Teams;
static_assert(getGridValue<32>().GV_Max_WG_Size ==
getGridValue<64>().GV_Max_WG_Size,
"");
static const int Max_WG_Size = getGridValue<64>().GV_Max_WG_Size;
static_assert(getGridValue<32>().GV_Default_WG_Size ==
getGridValue<64>().GV_Default_WG_Size,
"");
static const int Default_WG_Size = getGridValue<64>().GV_Default_WG_Size;
using MemcpyFunc = hsa_status_t (*)(hsa_signal_t, void *, const void *,
size_t size, hsa_agent_t,
hsa_amd_memory_pool_t);
hsa_status_t freesignalpool_memcpy(void *dest, const void *src, size_t size,
MemcpyFunc Func, int32_t deviceId) {
hsa_agent_t agent = HSAAgents[deviceId];
hsa_signal_t s = FreeSignalPool.pop();
if (s.handle == 0) {
return HSA_STATUS_ERROR;
}
hsa_status_t r = Func(s, dest, src, size, agent, HostFineGrainedMemoryPool);
FreeSignalPool.push(s);
return r;
}
hsa_status_t freesignalpool_memcpy_d2h(void *dest, const void *src,
size_t size, int32_t deviceId) {
return freesignalpool_memcpy(dest, src, size, impl_memcpy_d2h, deviceId);
}
hsa_status_t freesignalpool_memcpy_h2d(void *dest, const void *src,
size_t size, int32_t deviceId) {
return freesignalpool_memcpy(dest, src, size, impl_memcpy_h2d, deviceId);
}
// Record entry point associated with device
void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
E.Entries.push_back(entry);
}
// Return true if the entry is associated with device
bool findOffloadEntry(int32_t device_id, void *addr) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
for (auto &it : E.Entries) {
if (it.addr == addr)
return true;
}
return false;
}
// Return the pointer to the target entries table
__tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
int32_t size = E.Entries.size();
// Table is empty
if (!size)
return 0;
__tgt_offload_entry *begin = &E.Entries[0];
__tgt_offload_entry *end = &E.Entries[size - 1];
// Update table info according to the entries and return the pointer
E.Table.EntriesBegin = begin;
E.Table.EntriesEnd = ++end;
return &E.Table;
}
// Clear entries table for a device
void clearOffloadEntriesTable(int device_id) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncGblEntries[device_id].emplace_back();
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
// KernelArgPoolMap.clear();
E.Entries.clear();
E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
}
hsa_status_t addDeviceMemoryPool(hsa_amd_memory_pool_t MemoryPool,
int DeviceId) {
assert(DeviceId < DeviceFineGrainedMemoryPools.size() && "Error here.");
uint32_t GlobalFlags = 0;
hsa_status_t Err = hsa_amd_memory_pool_get_info(
MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
if (Err != HSA_STATUS_SUCCESS) {
return Err;
}
if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) {
DeviceFineGrainedMemoryPools[DeviceId] = MemoryPool;
} else if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_COARSE_GRAINED) {
DeviceCoarseGrainedMemoryPools[DeviceId] = MemoryPool;
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t setupDevicePools(const std::vector<hsa_agent_t> &Agents) {
for (int DeviceId = 0; DeviceId < Agents.size(); DeviceId++) {
hsa_status_t Err = hsa::amd_agent_iterate_memory_pools(
Agents[DeviceId], [&](hsa_amd_memory_pool_t MemoryPool) {
hsa_status_t ValidStatus = core::isValidMemoryPool(MemoryPool);
if (ValidStatus != HSA_STATUS_SUCCESS) {
DP("Alloc allowed in memory pool check failed: %s\n",
get_error_string(ValidStatus));
return HSA_STATUS_SUCCESS;
}
return addDeviceMemoryPool(MemoryPool, DeviceId);
});
if (Err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Iterate all memory pools", get_error_string(Err));
return Err;
}
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t setupHostMemoryPools(std::vector<hsa_agent_t> &Agents) {
std::vector<hsa_amd_memory_pool_t> HostPools;
// collect all the "valid" pools for all the given agents.
for (const auto &Agent : Agents) {
hsa_status_t Err = hsa_amd_agent_iterate_memory_pools(
Agent, core::addMemoryPool, static_cast<void *>(&HostPools));
if (Err != HSA_STATUS_SUCCESS) {
DP("addMemoryPool returned %s, continuing\n", get_error_string(Err));
}
}
// We need two fine-grained pools.
// 1. One with kernarg flag set for storing kernel arguments
// 2. Second for host allocations
bool FineGrainedMemoryPoolSet = false;
bool KernArgPoolSet = false;
for (const auto &MemoryPool : HostPools) {
hsa_status_t Err = HSA_STATUS_SUCCESS;
uint32_t GlobalFlags = 0;
Err = hsa_amd_memory_pool_get_info(
MemoryPool, HSA_AMD_MEMORY_POOL_INFO_GLOBAL_FLAGS, &GlobalFlags);
if (Err != HSA_STATUS_SUCCESS) {
DP("Get memory pool info failed: %s\n", get_error_string(Err));
return Err;
}
if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_FINE_GRAINED) {
if (GlobalFlags & HSA_AMD_MEMORY_POOL_GLOBAL_FLAG_KERNARG_INIT) {
KernArgPool = MemoryPool;
KernArgPoolSet = true;
}
HostFineGrainedMemoryPool = MemoryPool;
FineGrainedMemoryPoolSet = true;
}
}
if (FineGrainedMemoryPoolSet && KernArgPoolSet)
return HSA_STATUS_SUCCESS;
return HSA_STATUS_ERROR;
}
hsa_amd_memory_pool_t getDeviceMemoryPool(int DeviceId) {
assert(DeviceId >= 0 && DeviceId < DeviceCoarseGrainedMemoryPools.size() &&
"Invalid device Id");
return DeviceCoarseGrainedMemoryPools[DeviceId];
}
hsa_amd_memory_pool_t getHostMemoryPool() {
return HostFineGrainedMemoryPool;
}
static int readEnvElseMinusOne(const char *Env) {
const char *envStr = getenv(Env);
int res = -1;
if (envStr) {
res = std::stoi(envStr);
DP("Parsed %s=%d\n", Env, res);
}
return res;
}
RTLDeviceInfoTy() {
DP("Start initializing " GETNAME(TARGET_NAME) "\n");
// LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
// anytime. You do not need a debug library build.
// 0 => no tracing
// 1 => tracing dispatch only
// >1 => verbosity increase
if (!HSA.success()) {
DP("Error when initializing HSA in " GETNAME(TARGET_NAME) "\n");
return;
}
if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
print_kernel_trace = atoi(envStr);
else
print_kernel_trace = 0;
hsa_status_t err = core::atl_init_gpu_context();
if (err != HSA_STATUS_SUCCESS) {
DP("Error when initializing " GETNAME(TARGET_NAME) "\n");
return;
}
// Init hostcall soon after initializing hsa
hostrpc_init();
err = FindAgents([&](hsa_device_type_t DeviceType, hsa_agent_t Agent) {
if (DeviceType == HSA_DEVICE_TYPE_CPU) {
CPUAgents.push_back(Agent);
} else {
HSAAgents.push_back(Agent);
}
});
if (err != HSA_STATUS_SUCCESS)
return;
NumberOfDevices = (int)HSAAgents.size();
if (NumberOfDevices == 0) {
DP("There are no devices supporting HSA.\n");
return;
} else {
DP("There are %d devices supporting HSA.\n", NumberOfDevices);
}
// Init the device info
HSAQueues.resize(NumberOfDevices);
FuncGblEntries.resize(NumberOfDevices);
ThreadsPerGroup.resize(NumberOfDevices);
ComputeUnits.resize(NumberOfDevices);
GPUName.resize(NumberOfDevices);
GroupsPerDevice.resize(NumberOfDevices);
WarpSize.resize(NumberOfDevices);
NumTeams.resize(NumberOfDevices);
NumThreads.resize(NumberOfDevices);
deviceStateStore.resize(NumberOfDevices);
KernelInfoTable.resize(NumberOfDevices);
SymbolInfoTable.resize(NumberOfDevices);
DeviceCoarseGrainedMemoryPools.resize(NumberOfDevices);
DeviceFineGrainedMemoryPools.resize(NumberOfDevices);
err = setupDevicePools(HSAAgents);
if (err != HSA_STATUS_SUCCESS) {
DP("Setup for Device Memory Pools failed\n");
return;
}
err = setupHostMemoryPools(CPUAgents);
if (err != HSA_STATUS_SUCCESS) {
DP("Setup for Host Memory Pools failed\n");
return;
}
for (int i = 0; i < NumberOfDevices; i++) {
uint32_t queue_size = 0;
{
hsa_status_t err = hsa_agent_get_info(
HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE, &queue_size);
if (err != HSA_STATUS_SUCCESS) {
DP("HSA query QUEUE_MAX_SIZE failed for agent %d\n", i);
return;
}
enum { MaxQueueSize = 4096 };
if (queue_size > MaxQueueSize) {
queue_size = MaxQueueSize;
}
}
{
hsa_queue_t *Q = nullptr;
hsa_status_t rc =
hsa_queue_create(HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI,
callbackQueue, NULL, UINT32_MAX, UINT32_MAX, &Q);
if (rc != HSA_STATUS_SUCCESS) {
DP("Failed to create HSA queue %d\n", i);
return;
}
HSAQueues[i].reset(Q);
}
deviceStateStore[i] = {nullptr, 0};
}
for (int i = 0; i < NumberOfDevices; i++) {
ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
ComputeUnits[i] = 1;
DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
GroupsPerDevice[i], ThreadsPerGroup[i]);
}
// Get environment variables regarding teams
Env.TeamLimit = readEnvElseMinusOne("OMP_TEAM_LIMIT");
Env.NumTeams = readEnvElseMinusOne("OMP_NUM_TEAMS");
Env.MaxTeamsDefault = readEnvElseMinusOne("OMP_MAX_TEAMS_DEFAULT");
Env.TeamThreadLimit = readEnvElseMinusOne("OMP_TEAMS_THREAD_LIMIT");
// Default state.
RequiresFlags = OMP_REQ_UNDEFINED;
ConstructionSucceeded = true;
}
~RTLDeviceInfoTy() {
DP("Finalizing the " GETNAME(TARGET_NAME) " DeviceInfo.\n");
if (!HSA.success()) {
// Then none of these can have been set up and they can't be torn down
return;
}
// Run destructors on types that use HSA before
// impl_finalize removes access to it
deviceStateStore.clear();
KernelArgPoolMap.clear();
// Terminate hostrpc before finalizing hsa
hostrpc_terminate();
hsa_status_t Err;
for (uint32_t I = 0; I < HSAExecutables.size(); I++) {
Err = hsa_executable_destroy(HSAExecutables[I]);
if (Err != HSA_STATUS_SUCCESS) {
DP("[%s:%d] %s failed: %s\n", __FILE__, __LINE__,
"Destroying executable", get_error_string(Err));
}
}
}
};
pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
static RTLDeviceInfoTy DeviceInfo;
namespace {
int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
__tgt_async_info *AsyncInfo) {
assert(AsyncInfo && "AsyncInfo is nullptr");
assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
// Return success if we are not copying back to host from target.
if (!HstPtr)
return OFFLOAD_SUCCESS;
hsa_status_t err;
DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)TgtPtr,
(long long unsigned)(Elf64_Addr)HstPtr);
err = DeviceInfo.freesignalpool_memcpy_d2h(HstPtr, TgtPtr, (size_t)Size,
DeviceId);
if (err != HSA_STATUS_SUCCESS) {
DP("Error when copying data from device to host. Pointers: "
"host = 0x%016lx, device = 0x%016lx, size = %lld\n",
(Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
return OFFLOAD_FAIL;
}
DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)TgtPtr,
(long long unsigned)(Elf64_Addr)HstPtr);
return OFFLOAD_SUCCESS;
}
int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
__tgt_async_info *AsyncInfo) {
assert(AsyncInfo && "AsyncInfo is nullptr");
hsa_status_t err;
assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
// Return success if we are not doing host to target.
if (!HstPtr)
return OFFLOAD_SUCCESS;
DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)HstPtr,
(long long unsigned)(Elf64_Addr)TgtPtr);
err = DeviceInfo.freesignalpool_memcpy_h2d(TgtPtr, HstPtr, (size_t)Size,
DeviceId);
if (err != HSA_STATUS_SUCCESS) {
DP("Error when copying data from host to device. Pointers: "
"host = 0x%016lx, device = 0x%016lx, size = %lld\n",
(Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Async.
// The implementation was written with cuda streams in mind. The semantics of
// that are to execute kernels on a queue in order of insertion. A synchronise
// call then makes writes visible between host and device. This means a series
// of N data_submit_async calls are expected to execute serially. HSA offers
// various options to run the data copies concurrently. This may require changes
// to libomptarget.
// __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
// there are no outstanding kernels that need to be synchronized. Any async call
// may be passed a Queue==0, at which point the cuda implementation will set it
// to non-null (see getStream). The cuda streams are per-device. Upstream may
// change this interface to explicitly initialize the AsyncInfo_pointer, but
// until then hsa lazily initializes it as well.
void initAsyncInfo(__tgt_async_info *AsyncInfo) {
// set non-null while using async calls, return to null to indicate completion
assert(AsyncInfo);
if (!AsyncInfo->Queue) {
AsyncInfo->Queue = reinterpret_cast<void *>(UINT64_MAX);
}
}
void finiAsyncInfo(__tgt_async_info *AsyncInfo) {
assert(AsyncInfo);
assert(AsyncInfo->Queue);
AsyncInfo->Queue = 0;
}
bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
const uint16_t amdgcnMachineID = 224; // EM_AMDGPU may not be in system elf.h
int32_t r = elf_check_machine(image, amdgcnMachineID);
if (!r) {
DP("Supported machine ID not found\n");
}
return r;
}
uint32_t elf_e_flags(__tgt_device_image *image) {
char *img_begin = (char *)image->ImageStart;
size_t img_size = (char *)image->ImageEnd - img_begin;
Elf *e = elf_memory(img_begin, img_size);
if (!e) {
DP("Unable to get ELF handle: %s!\n", elf_errmsg(-1));
return 0;
}
Elf64_Ehdr *eh64 = elf64_getehdr(e);
if (!eh64) {
DP("Unable to get machine ID from ELF file!\n");
elf_end(e);
return 0;
}
uint32_t Flags = eh64->e_flags;
elf_end(e);
DP("ELF Flags: 0x%x\n", Flags);
return Flags;
}
} // namespace
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
return elf_machine_id_is_amdgcn(image);
}
int __tgt_rtl_number_of_devices() {
// If the construction failed, no methods are safe to call
if (DeviceInfo.ConstructionSucceeded) {
return DeviceInfo.NumberOfDevices;
} else {
DP("AMDGPU plugin construction failed. Zero devices available\n");
return 0;
}
}
int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
DP("Init requires flags to %ld\n", RequiresFlags);
DeviceInfo.RequiresFlags = RequiresFlags;
return RequiresFlags;
}
namespace {
template <typename T> bool enforce_upper_bound(T *value, T upper) {
bool changed = *value > upper;
if (changed) {
*value = upper;
}
return changed;
}
} // namespace
int32_t __tgt_rtl_init_device(int device_id) {
hsa_status_t err;
// this is per device id init
DP("Initialize the device id: %d\n", device_id);
hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
// Get number of Compute Unit
uint32_t compute_units = 0;
err = hsa_agent_get_info(
agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
&compute_units);
if (err != HSA_STATUS_SUCCESS) {
DeviceInfo.ComputeUnits[device_id] = 1;
DP("Error getting compute units : settiing to 1\n");
} else {
DeviceInfo.ComputeUnits[device_id] = compute_units;
DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
}
char GetInfoName[64]; // 64 max size returned by get info
err = hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
(void *)GetInfoName);
if (err)
DeviceInfo.GPUName[device_id] = "--unknown gpu--";
else {
DeviceInfo.GPUName[device_id] = GetInfoName;
}
if (print_kernel_trace & STARTUP_DETAILS)
DP("Device#%-2d CU's: %2d %s\n", device_id,
DeviceInfo.ComputeUnits[device_id],
DeviceInfo.GPUName[device_id].c_str());
// Query attributes to determine number of threads/block and blocks/grid.
uint16_t workgroup_max_dim[3];
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
&workgroup_max_dim);
if (err != HSA_STATUS_SUCCESS) {
DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
DP("Error getting grid dims: num groups : %d\n",
RTLDeviceInfoTy::DefaultNumTeams);
} else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
DP("Using %d ROCm blocks per grid\n",
DeviceInfo.GroupsPerDevice[device_id]);
} else {
DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
"at the hard limit\n",
workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
}
// Get thread limit
hsa_dim3_t grid_max_dim;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
if (err == HSA_STATUS_SUCCESS) {
DeviceInfo.ThreadsPerGroup[device_id] =
reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
DeviceInfo.GroupsPerDevice[device_id];
if (DeviceInfo.ThreadsPerGroup[device_id] == 0) {
DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
DP("Default thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
} else if (enforce_upper_bound(&DeviceInfo.ThreadsPerGroup[device_id],
RTLDeviceInfoTy::Max_WG_Size)) {
DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
} else {
DP("Using ROCm Queried thread limit: %d\n",
DeviceInfo.ThreadsPerGroup[device_id]);
}
} else {
DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
DP("Error getting max block dimension, use default:%d \n",
RTLDeviceInfoTy::Max_WG_Size);
}
// Get wavefront size
uint32_t wavefront_size = 0;
err =
hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
if (err == HSA_STATUS_SUCCESS) {
DP("Queried wavefront size: %d\n", wavefront_size);
DeviceInfo.WarpSize[device_id] = wavefront_size;
} else {
// TODO: Burn the wavefront size into the code object
DP("Warning: Unknown wavefront size, assuming 64\n");
DeviceInfo.WarpSize[device_id] = 64;
}
// Adjust teams to the env variables
if (DeviceInfo.Env.TeamLimit > 0 &&
(enforce_upper_bound(&DeviceInfo.GroupsPerDevice[device_id],
DeviceInfo.Env.TeamLimit))) {
DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
DeviceInfo.Env.TeamLimit);
}
// Set default number of teams
if (DeviceInfo.Env.NumTeams > 0) {
DeviceInfo.NumTeams[device_id] = DeviceInfo.Env.NumTeams;
DP("Default number of teams set according to environment %d\n",
DeviceInfo.Env.NumTeams);
} else {
char *TeamsPerCUEnvStr = getenv("OMP_TARGET_TEAMS_PER_PROC");
int TeamsPerCU = DefaultTeamsPerCU;
if (TeamsPerCUEnvStr) {
TeamsPerCU = std::stoi(TeamsPerCUEnvStr);
}
DeviceInfo.NumTeams[device_id] =
TeamsPerCU * DeviceInfo.ComputeUnits[device_id];
DP("Default number of teams = %d * number of compute units %d\n",
TeamsPerCU, DeviceInfo.ComputeUnits[device_id]);
}
if (enforce_upper_bound(&DeviceInfo.NumTeams[device_id],
DeviceInfo.GroupsPerDevice[device_id])) {
DP("Default number of teams exceeds device limit, capping at %d\n",
DeviceInfo.GroupsPerDevice[device_id]);
}
// Adjust threads to the env variables
if (DeviceInfo.Env.TeamThreadLimit > 0 &&
(enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
DeviceInfo.Env.TeamThreadLimit))) {
DP("Capping max number of threads to OMP_TEAMS_THREAD_LIMIT=%d\n",
DeviceInfo.Env.TeamThreadLimit);
}
// Set default number of threads
DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
DP("Default number of threads set according to library's default %d\n",
RTLDeviceInfoTy::Default_WG_Size);
if (enforce_upper_bound(&DeviceInfo.NumThreads[device_id],
DeviceInfo.ThreadsPerGroup[device_id])) {
DP("Default number of threads exceeds device limit, capping at %d\n",
DeviceInfo.ThreadsPerGroup[device_id]);
}
DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
device_id, DeviceInfo.GroupsPerDevice[device_id],
DeviceInfo.ThreadsPerGroup[device_id]);
DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
DeviceInfo.GroupsPerDevice[device_id],
DeviceInfo.GroupsPerDevice[device_id] *
DeviceInfo.ThreadsPerGroup[device_id]);
return OFFLOAD_SUCCESS;
}
namespace {
Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
size_t N;
int rc = elf_getshdrnum(elf, &N);
if (rc != 0) {
return nullptr;
}
Elf64_Shdr *result = nullptr;
for (size_t i = 0; i < N; i++) {
Elf_Scn *scn = elf_getscn(elf, i);
if (scn) {
Elf64_Shdr *shdr = elf64_getshdr(scn);
if (shdr) {
if (shdr->sh_type == SHT_HASH) {
if (result == nullptr) {
result = shdr;
} else {
// multiple SHT_HASH sections not handled
return nullptr;
}
}
}
}
}
return result;
}
const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
const char *symname) {
assert(section_hash);
size_t section_symtab_index = section_hash->sh_link;
Elf64_Shdr *section_symtab =
elf64_getshdr(elf_getscn(elf, section_symtab_index));
size_t section_strtab_index = section_symtab->sh_link;
const Elf64_Sym *symtab =
reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
const uint32_t *hashtab =
reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
// Layout:
// nbucket
// nchain
// bucket[nbucket]
// chain[nchain]
uint32_t nbucket = hashtab[0];
const uint32_t *bucket = &hashtab[2];
const uint32_t *chain = &hashtab[nbucket + 2];
const size_t max = strlen(symname) + 1;
const uint32_t hash = elf_hash(symname);
for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
if (strncmp(symname, n, max) == 0) {
return &symtab[i];
}
}
return nullptr;
}
struct symbol_info {
void *addr = nullptr;
uint32_t size = UINT32_MAX;
uint32_t sh_type = SHT_NULL;
};
int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
symbol_info *res) {
if (elf_kind(elf) != ELF_K_ELF) {
return 1;
}
Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
if (!section_hash) {
return 1;
}
const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
if (!sym) {
return 1;
}
if (sym->st_size > UINT32_MAX) {
return 1;
}
if (sym->st_shndx == SHN_UNDEF) {
return 1;
}
Elf_Scn *section = elf_getscn(elf, sym->st_shndx);
if (!section) {
return 1;
}
Elf64_Shdr *header = elf64_getshdr(section);
if (!header) {
return 1;
}
res->addr = sym->st_value + base;
res->size = static_cast<uint32_t>(sym->st_size);
res->sh_type = header->sh_type;
return 0;
}
int get_symbol_info_without_loading(char *base, size_t img_size,
const char *symname, symbol_info *res) {
Elf *elf = elf_memory(base, img_size);
if (elf) {
int rc = get_symbol_info_without_loading(elf, base, symname, res);
elf_end(elf);
return rc;
}
return 1;
}
hsa_status_t interop_get_symbol_info(char *base, size_t img_size,
const char *symname, void **var_addr,
uint32_t *var_size) {
symbol_info si;
int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
if (rc == 0) {
*var_addr = si.addr;
*var_size = si.size;
return HSA_STATUS_SUCCESS;
} else {
return HSA_STATUS_ERROR;
}
}
template <typename C>
hsa_status_t module_register_from_memory_to_place(
std::map<std::string, atl_kernel_info_t> &KernelInfoTable,
std::map<std::string, atl_symbol_info_t> &SymbolInfoTable,
void *module_bytes, size_t module_size, int DeviceId, C cb,
std::vector<hsa_executable_t> &HSAExecutables) {
auto L = [](void *data, size_t size, void *cb_state) -> hsa_status_t {
C *unwrapped = static_cast<C *>(cb_state);
return (*unwrapped)(data, size);
};
return core::RegisterModuleFromMemory(
KernelInfoTable, SymbolInfoTable, module_bytes, module_size,
DeviceInfo.HSAAgents[DeviceId], L, static_cast<void *>(&cb),
HSAExecutables);
}
} // namespace
static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
uint64_t device_State_bytes = 0;
{
// If this is the deviceRTL, get the state variable size
symbol_info size_si;
int rc = get_symbol_info_without_loading(
ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
if (rc == 0) {
if (size_si.size != sizeof(uint64_t)) {
DP("Found device_State_size variable with wrong size\n");
return 0;
}
// Read number of bytes directly from the elf
memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
}
}
return device_State_bytes;
}
static __tgt_target_table *
__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
static __tgt_target_table *
__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
__tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
__tgt_device_image *image) {
DeviceInfo.load_run_lock.lock();
__tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
DeviceInfo.load_run_lock.unlock();
return res;
}
struct device_environment {
// initialise an DeviceEnvironmentTy in the deviceRTL
// patches around differences in the deviceRTL between trunk, aomp,
// rocmcc. Over time these differences will tend to zero and this class
// simplified.
// Symbol may be in .data or .bss, and may be missing fields, todo:
// review aomp/trunk/rocm and simplify the following
// The symbol may also have been deadstripped because the device side
// accessors were unused.
// If the symbol is in .data (aomp, rocm) it can be written directly.
// If it is in .bss, we must wait for it to be allocated space on the
// gpu (trunk) and initialize after loading.
const char *sym() { return "omptarget_device_environment"; }
DeviceEnvironmentTy host_device_env;
symbol_info si;
bool valid = false;
__tgt_device_image *image;
const size_t img_size;
device_environment(int device_id, int number_devices,
__tgt_device_image *image, const size_t img_size)
: image(image), img_size(img_size) {
host_device_env.NumDevices = number_devices;
host_device_env.DeviceNum = device_id;
host_device_env.DebugKind = 0;
host_device_env.DynamicMemSize = 0;
if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
host_device_env.DebugKind = std::stoi(envStr);
}
int rc = get_symbol_info_without_loading((char *)image->ImageStart,
img_size, sym(), &si);
if (rc != 0) {
DP("Finding global device environment '%s' - symbol missing.\n", sym());
return;
}
if (si.size > sizeof(host_device_env)) {
DP("Symbol '%s' has size %u, expected at most %zu.\n", sym(), si.size,
sizeof(host_device_env));
return;
}
valid = true;
}
bool in_image() { return si.sh_type != SHT_NOBITS; }
hsa_status_t before_loading(void *data, size_t size) {
if (valid) {
if (in_image()) {
DP("Setting global device environment before load (%u bytes)\n",
si.size);
uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
void *pos = (char *)data + offset;
memcpy(pos, &host_device_env, si.size);
}
}
return HSA_STATUS_SUCCESS;
}
hsa_status_t after_loading() {
if (valid) {
if (!in_image()) {
DP("Setting global device environment after load (%u bytes)\n",
si.size);
int device_id = host_device_env.DeviceNum;
auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
void *state_ptr;
uint32_t state_ptr_size;
hsa_status_t err = interop_hsa_get_symbol_info(
SymbolInfo, device_id, sym(), &state_ptr, &state_ptr_size);
if (err != HSA_STATUS_SUCCESS) {
DP("failed to find %s in loaded image\n", sym());
return err;
}
if (state_ptr_size != si.size) {
DP("Symbol had size %u before loading, %u after\n", state_ptr_size,
si.size);
return HSA_STATUS_ERROR;
}
return DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &host_device_env,
state_ptr_size, device_id);
}
}
return HSA_STATUS_SUCCESS;
}
};
static hsa_status_t impl_calloc(void **ret_ptr, size_t size, int DeviceId) {
uint64_t rounded = 4 * ((size + 3) / 4);
void *ptr;
hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(DeviceId);
hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, rounded, 0, &ptr);
if (err != HSA_STATUS_SUCCESS) {
return err;
}
hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, rounded / 4);
if (rc != HSA_STATUS_SUCCESS) {
DP("zero fill device_state failed with %u\n", rc);
core::Runtime::Memfree(ptr);
return HSA_STATUS_ERROR;
}
*ret_ptr = ptr;
return HSA_STATUS_SUCCESS;
}
static bool image_contains_symbol(void *data, size_t size, const char *sym) {
symbol_info si;
int rc = get_symbol_info_without_loading((char *)data, size, sym, &si);
return (rc == 0) && (si.addr != nullptr);
}
__tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
__tgt_device_image *image) {
// This function loads the device image onto gpu[device_id] and does other
// per-image initialization work. Specifically:
//
// - Initialize an DeviceEnvironmentTy instance embedded in the
// image at the symbol "omptarget_device_environment"
// Fields DebugKind, DeviceNum, NumDevices. Used by the deviceRTL.
//
// - Allocate a large array per-gpu (could be moved to init_device)
// - Read a uint64_t at symbol omptarget_nvptx_device_State_size
// - Allocate at least that many bytes of gpu memory
// - Zero initialize it
// - Write the pointer to the symbol omptarget_nvptx_device_State
//
// - Pulls some per-kernel information together from various sources and
// records it in the KernelsList for quicker access later
//
// The initialization can be done before or after loading the image onto the
// gpu. This function presently does a mixture. Using the hsa api to get/set
// the information is simpler to implement, in exchange for more complicated
// runtime behaviour. E.g. launching a kernel or using dma to get eight bytes
// back from the gpu vs a hashtable lookup on the host.
const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
DeviceInfo.clearOffloadEntriesTable(device_id);
// We do not need to set the ELF version because the caller of this function
// had to do that to decide the right runtime to use
if (!elf_machine_id_is_amdgcn(image)) {
return NULL;
}
{
auto env = device_environment(device_id, DeviceInfo.NumberOfDevices, image,
img_size);
auto &KernelInfo = DeviceInfo.KernelInfoTable[device_id];
auto &SymbolInfo = DeviceInfo.SymbolInfoTable[device_id];
hsa_status_t err = module_register_from_memory_to_place(
KernelInfo, SymbolInfo, (void *)image->ImageStart, img_size, device_id,
[&](void *data, size_t size) {
if (image_contains_symbol(data, size, "needs_hostcall_buffer")) {
__atomic_store_n(&DeviceInfo.hostcall_required, true,
__ATOMIC_RELEASE);
}
return env.before_loading(data, size);
},
DeviceInfo.HSAExecutables);
check("Module registering", err);
if (err != HSA_STATUS_SUCCESS) {
const char *DeviceName = DeviceInfo.GPUName[device_id].c_str();
const char *ElfName = get_elf_mach_gfx_name(elf_e_flags(image));
if (strcmp(DeviceName, ElfName) != 0) {
DP("Possible gpu arch mismatch: device:%s, image:%s please check"
" compiler flag: -march=<gpu>\n",
DeviceName, ElfName);
} else {
DP("Error loading image onto GPU: %s\n", get_error_string(err));
}
return NULL;
}
err = env.after_loading();
if (err != HSA_STATUS_SUCCESS) {
return NULL;
}
}
DP("AMDGPU module successfully loaded!\n");
{
// the device_State array is either large value in bss or a void* that
// needs to be assigned to a pointer to an array of size device_state_bytes
// If absent, it has been deadstripped and needs no setup.
void *state_ptr;
uint32_t state_ptr_size;
auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
hsa_status_t err = interop_hsa_get_symbol_info(
SymbolInfoMap, device_id, "omptarget_nvptx_device_State", &state_ptr,
&state_ptr_size);
if (err != HSA_STATUS_SUCCESS) {
DP("No device_state symbol found, skipping initialization\n");
} else {
if (state_ptr_size < sizeof(void *)) {
DP("unexpected size of state_ptr %u != %zu\n", state_ptr_size,
sizeof(void *));
return NULL;
}
// if it's larger than a void*, assume it's a bss array and no further
// initialization is required. Only try to set up a pointer for
// sizeof(void*)
if (state_ptr_size == sizeof(void *)) {
uint64_t device_State_bytes =
get_device_State_bytes((char *)image->ImageStart, img_size);
if (device_State_bytes == 0) {
DP("Can't initialize device_State, missing size information\n");
return NULL;
}
auto &dss = DeviceInfo.deviceStateStore[device_id];
if (dss.first.get() == nullptr) {
assert(dss.second == 0);
void *ptr = NULL;
hsa_status_t err = impl_calloc(&ptr, device_State_bytes, device_id);
if (err != HSA_STATUS_SUCCESS) {
DP("Failed to allocate device_state array\n");
return NULL;
}
dss = {
std::unique_ptr<void, RTLDeviceInfoTy::implFreePtrDeletor>{ptr},
device_State_bytes,
};
}
void *ptr = dss.first.get();
if (device_State_bytes != dss.second) {
DP("Inconsistent sizes of device_State unsupported\n");
return NULL;
}
// write ptr to device memory so it can be used by later kernels
err = DeviceInfo.freesignalpool_memcpy_h2d(state_ptr, &ptr,
sizeof(void *), device_id);
if (err != HSA_STATUS_SUCCESS) {
DP("memcpy install of state_ptr failed\n");
return NULL;
}
}
}
}
// Here, we take advantage of the data that is appended after img_end to get
// the symbols' name we need to load. This data consist of the host entries
// begin and end as well as the target name (see the offloading linker script
// creation in clang compiler).
// Find the symbols in the module by name. The name can be obtain by
// concatenating the host entry name with the target name
__tgt_offload_entry *HostBegin = image->EntriesBegin;
__tgt_offload_entry *HostEnd = image->EntriesEnd;
for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
if (!e->addr) {
// The host should have always something in the address to
// uniquely identify the target region.
DP("Analyzing host entry '<null>' (size = %lld)...\n",
(unsigned long long)e->size);
return NULL;
}
if (e->size) {
__tgt_offload_entry entry = *e;
void *varptr;
uint32_t varsize;
auto &SymbolInfoMap = DeviceInfo.SymbolInfoTable[device_id];
hsa_status_t err = interop_hsa_get_symbol_info(
SymbolInfoMap, device_id, e->name, &varptr, &varsize);
if (err != HSA_STATUS_SUCCESS) {
// Inform the user what symbol prevented offloading
DP("Loading global '%s' (Failed)\n", e->name);
return NULL;
}
if (varsize != e->size) {
DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
varsize, e->size);
return NULL;
}
DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
entry.addr = (void *)varptr;
DeviceInfo.addOffloadEntry(device_id, entry);
if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
e->flags & OMP_DECLARE_TARGET_LINK) {
// If unified memory is present any target link variables
// can access host addresses directly. There is no longer a
// need for device copies.
err = DeviceInfo.freesignalpool_memcpy_h2d(varptr, e->addr,
sizeof(void *), device_id);
if (err != HSA_STATUS_SUCCESS)
DP("Error when copying USM\n");
DP("Copy linked variable host address (" DPxMOD ")"
"to device address (" DPxMOD ")\n",
DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
}
continue;
}
DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
// errors in kernarg_segment_size previously treated as = 0 (or as undef)
uint32_t kernarg_segment_size = 0;
auto &KernelInfoMap = DeviceInfo.KernelInfoTable[device_id];
hsa_status_t err = HSA_STATUS_SUCCESS;
if (!e->name) {
err = HSA_STATUS_ERROR;
} else {
std::string kernelStr = std::string(e->name);
auto It = KernelInfoMap.find(kernelStr);
if (It != KernelInfoMap.end()) {
atl_kernel_info_t info = It->second;
kernarg_segment_size = info.kernel_segment_size;
} else {
err = HSA_STATUS_ERROR;
}
}
// default value GENERIC (in case symbol is missing from cubin file)
llvm::omp::OMPTgtExecModeFlags ExecModeVal =
llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC;
// get flat group size if present, else Default_WG_Size
int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
// get Kernel Descriptor if present.
// Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
struct KernDescValType {
uint16_t Version;
uint16_t TSize;
uint16_t WG_Size;
};
struct KernDescValType KernDescVal;
std::string KernDescNameStr(e->name);
KernDescNameStr += "_kern_desc";
const char *KernDescName = KernDescNameStr.c_str();
void *KernDescPtr;
uint32_t KernDescSize;
void *CallStackAddr = nullptr;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
KernDescName, &KernDescPtr, &KernDescSize);
if (err == HSA_STATUS_SUCCESS) {
if ((size_t)KernDescSize != sizeof(KernDescVal))
DP("Loading global computation properties '%s' - size mismatch (%u != "
"%lu)\n",
KernDescName, KernDescSize, sizeof(KernDescVal));
memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
// Check structure size against recorded size.
if ((size_t)KernDescSize != KernDescVal.TSize)
DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
DP("After loading global for %s KernDesc \n", KernDescName);
DP("KernDesc: Version: %d\n", KernDescVal.Version);
DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
if (KernDescVal.WG_Size == 0) {
KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
}
WGSizeVal = KernDescVal.WG_Size;
DP("WGSizeVal %d\n", WGSizeVal);
check("Loading KernDesc computation property", err);
} else {
DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
// Flat group size
std::string WGSizeNameStr(e->name);
WGSizeNameStr += "_wg_size";
const char *WGSizeName = WGSizeNameStr.c_str();
void *WGSizePtr;
uint32_t WGSize;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
WGSizeName, &WGSizePtr, &WGSize);
if (err == HSA_STATUS_SUCCESS) {
if ((size_t)WGSize != sizeof(int16_t)) {
DP("Loading global computation properties '%s' - size mismatch (%u "
"!= "
"%lu)\n",
WGSizeName, WGSize, sizeof(int16_t));
return NULL;
}
memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
DP("Error wrong WGSize value specified in HSA code object file: "
"%d\n",
WGSizeVal);
WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
}
} else {
DP("Warning: Loading WGSize '%s' - symbol not found, "
"using default value %d\n",
WGSizeName, WGSizeVal);
}
check("Loading WGSize computation property", err);
}
// Read execution mode from global in binary
std::string ExecModeNameStr(e->name);
ExecModeNameStr += "_exec_mode";
const char *ExecModeName = ExecModeNameStr.c_str();
void *ExecModePtr;
uint32_t varsize;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
ExecModeName, &ExecModePtr, &varsize);
if (err == HSA_STATUS_SUCCESS) {
if ((size_t)varsize != sizeof(llvm::omp::OMPTgtExecModeFlags)) {
DP("Loading global computation properties '%s' - size mismatch(%u != "
"%lu)\n",
ExecModeName, varsize, sizeof(llvm::omp::OMPTgtExecModeFlags));
return NULL;
}
memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
DP("After loading global for %s ExecMode = %d\n", ExecModeName,
ExecModeVal);
if (ExecModeVal < 0 ||
ExecModeVal > llvm::omp::OMP_TGT_EXEC_MODE_GENERIC_SPMD) {
DP("Error wrong exec_mode value specified in HSA code object file: "
"%d\n",
ExecModeVal);
return NULL;
}
} else {
DP("Loading global exec_mode '%s' - symbol missing, using default "
"value "
"GENERIC (1)\n",
ExecModeName);
}
check("Loading computation property", err);
KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, device_id,
CallStackAddr, e->name, kernarg_segment_size,
DeviceInfo.KernArgPool));
__tgt_offload_entry entry = *e;
entry.addr = (void *)&KernelsList.back();
DeviceInfo.addOffloadEntry(device_id, entry);
DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
}
return DeviceInfo.getOffloadEntriesTable(device_id);
}
void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *, int32_t kind) {
void *ptr = NULL;
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
if (kind != TARGET_ALLOC_DEFAULT) {
REPORT("Invalid target data allocation kind or requested allocator not "
"implemented yet\n");
return NULL;
}
hsa_amd_memory_pool_t MemoryPool = DeviceInfo.getDeviceMemoryPool(device_id);
hsa_status_t err = hsa_amd_memory_pool_allocate(MemoryPool, size, 0, &ptr);
DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
(long long unsigned)(Elf64_Addr)ptr);
ptr = (err == HSA_STATUS_SUCCESS) ? ptr : NULL;
return ptr;
}
int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
int64_t size) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
__tgt_async_info AsyncInfo;
int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &AsyncInfo);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &AsyncInfo);
}
int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
int64_t size, __tgt_async_info *AsyncInfo) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
if (AsyncInfo) {
initAsyncInfo(AsyncInfo);
return dataSubmit(device_id, tgt_ptr, hst_ptr, size, AsyncInfo);
} else {
return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
}
}
int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
int64_t size) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
__tgt_async_info AsyncInfo;
int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &AsyncInfo);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &AsyncInfo);
}
int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
void *tgt_ptr, int64_t size,
__tgt_async_info *AsyncInfo) {
assert(AsyncInfo && "AsyncInfo is nullptr");
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
initAsyncInfo(AsyncInfo);
return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, AsyncInfo);
}
int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
hsa_status_t err;
DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
err = core::Runtime::Memfree(tgt_ptr);
if (err != HSA_STATUS_SUCCESS) {
DP("Error when freeing CUDA memory\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Determine launch values for kernel.
struct launchVals {
int WorkgroupSize;
int GridSize;
};
launchVals getLaunchVals(int WarpSize, EnvironmentVariables Env,
int ConstWGSize,
llvm::omp::OMPTgtExecModeFlags ExecutionMode,
int num_teams, int thread_limit,
uint64_t loop_tripcount, int DeviceNumTeams) {
int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
int num_groups = 0;
int Max_Teams =
Env.MaxTeamsDefault > 0 ? Env.MaxTeamsDefault : DeviceNumTeams;
if (Max_Teams > RTLDeviceInfoTy::HardTeamLimit)
Max_Teams = RTLDeviceInfoTy::HardTeamLimit;
if (print_kernel_trace & STARTUP_DETAILS) {
DP("RTLDeviceInfoTy::Max_Teams: %d\n", RTLDeviceInfoTy::Max_Teams);
DP("Max_Teams: %d\n", Max_Teams);
DP("RTLDeviceInfoTy::Warp_Size: %d\n", WarpSize);
DP("RTLDeviceInfoTy::Max_WG_Size: %d\n", RTLDeviceInfoTy::Max_WG_Size);
DP("RTLDeviceInfoTy::Default_WG_Size: %d\n",
RTLDeviceInfoTy::Default_WG_Size);
DP("thread_limit: %d\n", thread_limit);
DP("threadsPerGroup: %d\n", threadsPerGroup);
DP("ConstWGSize: %d\n", ConstWGSize);
}
// check for thread_limit() clause
if (thread_limit > 0) {
threadsPerGroup = thread_limit;
DP("Setting threads per block to requested %d\n", thread_limit);
// Add master warp for GENERIC
if (ExecutionMode ==
llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) {
threadsPerGroup += WarpSize;
DP("Adding master wavefront: +%d threads\n", WarpSize);
}
if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
DP("Setting threads per block to maximum %d\n", threadsPerGroup);
}
}
// check flat_max_work_group_size attr here
if (threadsPerGroup > ConstWGSize) {
threadsPerGroup = ConstWGSize;
DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
threadsPerGroup);
}
if (print_kernel_trace & STARTUP_DETAILS)
DP("threadsPerGroup: %d\n", threadsPerGroup);
DP("Preparing %d threads\n", threadsPerGroup);
// Set default num_groups (teams)
if (Env.TeamLimit > 0)
num_groups = (Max_Teams < Env.TeamLimit) ? Max_Teams : Env.TeamLimit;
else
num_groups = Max_Teams;
DP("Set default num of groups %d\n", num_groups);
if (print_kernel_trace & STARTUP_DETAILS) {
DP("num_groups: %d\n", num_groups);
DP("num_teams: %d\n", num_teams);
}
// Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
// This reduction is typical for default case (no thread_limit clause).
// or when user goes crazy with num_teams clause.
// FIXME: We cant distinguish between a constant or variable thread limit.
// So we only handle constant thread_limits.
if (threadsPerGroup >
RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024
// Should we round threadsPerGroup up to nearest WarpSize
// here?
num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
// check for num_teams() clause
if (num_teams > 0) {
num_groups = (num_teams < num_groups) ? num_teams : num_groups;
}
if (print_kernel_trace & STARTUP_DETAILS) {
DP("num_groups: %d\n", num_groups);
DP("Env.NumTeams %d\n", Env.NumTeams);
DP("Env.TeamLimit %d\n", Env.TeamLimit);
}
if (Env.NumTeams > 0) {
num_groups = (Env.NumTeams < num_groups) ? Env.NumTeams : num_groups;
DP("Modifying teams based on Env.NumTeams %d\n", Env.NumTeams);
} else if (Env.TeamLimit > 0) {
num_groups = (Env.TeamLimit < num_groups) ? Env.TeamLimit : num_groups;
DP("Modifying teams based on Env.TeamLimit%d\n", Env.TeamLimit);
} else {
if (num_teams <= 0) {
if (loop_tripcount > 0) {
if (ExecutionMode ==
llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_SPMD) {
// round up to the nearest integer
num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
} else if (ExecutionMode ==
llvm::omp::OMPTgtExecModeFlags::OMP_TGT_EXEC_MODE_GENERIC) {
num_groups = loop_tripcount;
} else /* OMP_TGT_EXEC_MODE_GENERIC_SPMD */ {
// This is a generic kernel that was transformed to use SPMD-mode
// execution but uses Generic-mode semantics for scheduling.
num_groups = loop_tripcount;
}
DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
"threads per block %d\n",
num_groups, loop_tripcount, threadsPerGroup);
}
} else {
num_groups = num_teams;
}
if (num_groups > Max_Teams) {
num_groups = Max_Teams;
if (print_kernel_trace & STARTUP_DETAILS)
DP("Limiting num_groups %d to Max_Teams %d \n", num_groups, Max_Teams);
}
if (num_groups > num_teams && num_teams > 0) {
num_groups = num_teams;
if (print_kernel_trace & STARTUP_DETAILS)
DP("Limiting num_groups %d to clause num_teams %d \n", num_groups,
num_teams);
}
}
// num_teams clause always honored, no matter what, unless DEFAULT is active.
if (num_teams > 0) {
num_groups = num_teams;
// Cap num_groups to EnvMaxTeamsDefault if set.
if (Env.MaxTeamsDefault > 0 && num_groups > Env.MaxTeamsDefault)
num_groups = Env.MaxTeamsDefault;
}
if (print_kernel_trace & STARTUP_DETAILS) {
DP("threadsPerGroup: %d\n", threadsPerGroup);
DP("num_groups: %d\n", num_groups);
DP("loop_tripcount: %ld\n", loop_tripcount);
}
DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
threadsPerGroup);
launchVals res;
res.WorkgroupSize = threadsPerGroup;
res.GridSize = threadsPerGroup * num_groups;
return res;
}
static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
bool full = true;
while (full) {
full =
packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
}
return packet_id;
}
static int32_t __tgt_rtl_run_target_team_region_locked(
int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
int32_t thread_limit, uint64_t loop_tripcount);
int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num, int32_t num_teams,
int32_t thread_limit,
uint64_t loop_tripcount) {
DeviceInfo.load_run_lock.lock_shared();
int32_t res = __tgt_rtl_run_target_team_region_locked(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
thread_limit, loop_tripcount);
DeviceInfo.load_run_lock.unlock_shared();
return res;
}
int32_t __tgt_rtl_run_target_team_region_locked(
int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
int32_t thread_limit, uint64_t loop_tripcount) {
// Set the context we are using
// update thread limit content in gpu memory if un-initialized or specified
// from host
DP("Run target team region thread_limit %d\n", thread_limit);
// All args are references.
std::vector<void *> args(arg_num);
std::vector<void *> ptrs(arg_num);
DP("Arg_num: %d\n", arg_num);
for (int32_t i = 0; i < arg_num; ++i) {
ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
args[i] = &ptrs[i];
DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
}
KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
std::string kernel_name = std::string(KernelInfo->Name);
auto &KernelInfoTable = DeviceInfo.KernelInfoTable;
if (KernelInfoTable[device_id].find(kernel_name) ==
KernelInfoTable[device_id].end()) {
DP("Kernel %s not found\n", kernel_name.c_str());
return OFFLOAD_FAIL;
}
const atl_kernel_info_t KernelInfoEntry =
KernelInfoTable[device_id][kernel_name];
const uint32_t group_segment_size = KernelInfoEntry.group_segment_size;
const uint32_t sgpr_count = KernelInfoEntry.sgpr_count;
const uint32_t vgpr_count = KernelInfoEntry.vgpr_count;
const uint32_t sgpr_spill_count = KernelInfoEntry.sgpr_spill_count;
const uint32_t vgpr_spill_count = KernelInfoEntry.vgpr_spill_count;
assert(arg_num == (int)KernelInfoEntry.explicit_argument_count);
/*
* Set limit based on ThreadsPerGroup and GroupsPerDevice
*/
launchVals LV =
getLaunchVals(DeviceInfo.WarpSize[device_id], DeviceInfo.Env,
KernelInfo->ConstWGSize, KernelInfo->ExecutionMode,
num_teams, // From run_region arg
thread_limit, // From run_region arg
loop_tripcount, // From run_region arg
DeviceInfo.NumTeams[KernelInfo->device_id]);
const int GridSize = LV.GridSize;
const int WorkgroupSize = LV.WorkgroupSize;
if (print_kernel_trace >= LAUNCH) {
int num_groups = GridSize / WorkgroupSize;
// enum modes are SPMD, GENERIC, NONE 0,1,2
// if doing rtl timing, print to stderr, unless stdout requested.
bool traceToStdout = print_kernel_trace & (RTL_TO_STDOUT | RTL_TIMING);
fprintf(traceToStdout ? stdout : stderr,
"DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
"reqd:(%4dX%4d) lds_usage:%uB sgpr_count:%u vgpr_count:%u "
"sgpr_spill_count:%u vgpr_spill_count:%u tripcount:%lu n:%s\n",
device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
arg_num, num_groups, WorkgroupSize, num_teams, thread_limit,
group_segment_size, sgpr_count, vgpr_count, sgpr_spill_count,
vgpr_spill_count, loop_tripcount, KernelInfo->Name);
}
// Run on the device.
{
hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id].get();
if (!queue) {
return OFFLOAD_FAIL;
}
uint64_t packet_id = acquire_available_packet_id(queue);
const uint32_t mask = queue->size - 1; // size is a power of 2
hsa_kernel_dispatch_packet_t *packet =
(hsa_kernel_dispatch_packet_t *)queue->base_address +
(packet_id & mask);
// packet->header is written last
packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
packet->workgroup_size_x = WorkgroupSize;
packet->workgroup_size_y = 1;
packet->workgroup_size_z = 1;
packet->reserved0 = 0;
packet->grid_size_x = GridSize;
packet->grid_size_y = 1;
packet->grid_size_z = 1;
packet->private_segment_size = KernelInfoEntry.private_segment_size;
packet->group_segment_size = KernelInfoEntry.group_segment_size;
packet->kernel_object = KernelInfoEntry.kernel_object;
packet->kernarg_address = 0; // use the block allocator
packet->reserved2 = 0; // impl writes id_ here
packet->completion_signal = {0}; // may want a pool of signals
KernelArgPool *ArgPool = nullptr;
void *kernarg = nullptr;
{
auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
if (it != KernelArgPoolMap.end()) {
ArgPool = (it->second).get();
}
}
if (!ArgPool) {
DP("Warning: No ArgPool for %s on device %d\n", KernelInfo->Name,
device_id);
}
{
if (ArgPool) {
assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
kernarg = ArgPool->allocate(arg_num);
}
if (!kernarg) {
DP("Allocate kernarg failed\n");
return OFFLOAD_FAIL;
}
// Copy explicit arguments
for (int i = 0; i < arg_num; i++) {
memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
}
// Initialize implicit arguments. TODO: Which of these can be dropped
impl_implicit_args_t *impl_args =
reinterpret_cast<impl_implicit_args_t *>(
static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
memset(impl_args, 0,
sizeof(impl_implicit_args_t)); // may not be necessary
impl_args->offset_x = 0;
impl_args->offset_y = 0;
impl_args->offset_z = 0;
// assign a hostcall buffer for the selected Q
if (__atomic_load_n(&DeviceInfo.hostcall_required, __ATOMIC_ACQUIRE)) {
// hostrpc_assign_buffer is not thread safe, and this function is
// under a multiple reader lock, not a writer lock.
static pthread_mutex_t hostcall_init_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&hostcall_init_lock);
unsigned long buffer = hostrpc_assign_buffer(
DeviceInfo.HSAAgents[device_id], queue, device_id);
pthread_mutex_unlock(&hostcall_init_lock);
if (!buffer) {
DP("hostrpc_assign_buffer failed, gpu would dereference null and "
"error\n");
return OFFLOAD_FAIL;
}
if (KernelInfoEntry.implicit_argument_count >= 4) {
// Initialise pointer for implicit_argument_count != 0 ABI
// Guess that the right implicit argument is at offset 24 after
// the explicit arguments. In the future, should be able to read
// the offset from msgpack. Clang is not annotating it at present.
uint64_t Offset =
sizeof(void *) * (KernelInfoEntry.explicit_argument_count + 3);
if ((Offset + 8) > (ArgPool->kernarg_segment_size)) {
DP("Bad offset of hostcall, exceeds kernarg segment size\n");
} else {
memcpy(static_cast<char *>(kernarg) + Offset, &buffer, 8);
}
}
// initialise pointer for implicit_argument_count == 0 ABI
impl_args->hostcall_ptr = buffer;
}
packet->kernarg_address = kernarg;
}
hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
if (s.handle == 0) {
DP("Failed to get signal instance\n");
return OFFLOAD_FAIL;
}
packet->completion_signal = s;
hsa_signal_store_relaxed(packet->completion_signal, 1);
// Publish the packet indicating it is ready to be processed
core::packet_store_release(reinterpret_cast<uint32_t *>(packet),
core::create_header(), packet->setup);
// Since the packet is already published, its contents must not be
// accessed any more
hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
while (hsa_signal_wait_scacquire(s, HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
HSA_WAIT_STATE_BLOCKED) != 0)
;
assert(ArgPool);
ArgPool->deallocate(kernarg);
DeviceInfo.FreeSignalPool.push(s);
}
DP("Kernel completed\n");
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args, ptrdiff_t *tgt_offsets,
int32_t arg_num) {
// use one team and one thread
// fix thread num
int32_t team_num = 1;
int32_t thread_limit = 0; // use default
return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
tgt_offsets, arg_num, team_num,
thread_limit, 0);
}
int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num,
__tgt_async_info *AsyncInfo) {
assert(AsyncInfo && "AsyncInfo is nullptr");
initAsyncInfo(AsyncInfo);
// use one team and one thread
// fix thread num
int32_t team_num = 1;
int32_t thread_limit = 0; // use default
return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
tgt_offsets, arg_num, team_num,
thread_limit, 0);
}
int32_t __tgt_rtl_synchronize(int32_t device_id, __tgt_async_info *AsyncInfo) {
assert(AsyncInfo && "AsyncInfo is nullptr");
// Cuda asserts that AsyncInfo->Queue is non-null, but this invariant
// is not ensured by devices.cpp for amdgcn
// assert(AsyncInfo->Queue && "AsyncInfo->Queue is nullptr");
if (AsyncInfo->Queue) {
finiAsyncInfo(AsyncInfo);
}
return OFFLOAD_SUCCESS;
}
namespace core {
hsa_status_t allow_access_to_all_gpu_agents(void *ptr) {
return hsa_amd_agents_allow_access(DeviceInfo.HSAAgents.size(),
&DeviceInfo.HSAAgents[0], NULL, ptr);
}
} // namespace core