blob: 32d32a64049ac0b58df6f876dc61b4bc5ee184c1 [file] [log] [blame]
; REQUIRES: asserts
; RUN: opt -passes=loop-vectorize -force-vector-width=4 -force-vector-interleave=1 -debug-only=loop-vectorize -disable-output -S %s 2>&1 | FileCheck %s
define void @test_chained_first_order_recurrences_1(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_1'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE:%.+]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%for.1.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-from-end vp<[[FOR1_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<22>
; CHECK-NEXT: EMIT vp<[[RESUME_2_P:%.*]]>.1 = resume-phi vp<[[RESUME_2]]>.1, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph)
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add = add i16 %for.1, %for.2
store i16 %add, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
define void @test_chained_first_order_recurrences_3(ptr %ptr) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_3'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<1000> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.1> = phi ir<22>, ir<%for.1.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.2> = phi ir<33>, vp<[[FOR1_SPLICE:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.3> = phi ir<33>, vp<[[FOR2_SPLICE:%.+]]>
; CHECK-NEXT: vp<[[STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep.ptr> = getelementptr inbounds ir<%ptr>, vp<[[STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN ir<%for.1.next> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: EMIT vp<[[FOR1_SPLICE]]> = first-order splice ir<%for.1>, ir<%for.1.next>
; CHECK-NEXT: EMIT vp<[[FOR2_SPLICE]]> = first-order splice ir<%for.2>, vp<[[FOR1_SPLICE]]>
; CHECK-NEXT: EMIT vp<[[FOR3_SPLICE:%.+]]> = first-order splice ir<%for.3>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.1> = add vp<[[FOR1_SPLICE]]>, vp<[[FOR2_SPLICE]]>
; CHECK-NEXT: WIDEN ir<%add.2> = add ir<%add.1>, vp<[[FOR3_SPLICE]]>
; CHECK-NEXT: vp<[[VEC_PTR2:%.+]]> = vector-pointer ir<%gep.ptr>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR2]]>, ir<%add.2>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT:%.+]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[RESUME_1:%.+]]> = extract-from-end ir<%for.1.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_2:%.+]]>.1 = extract-from-end vp<[[FOR1_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[RESUME_3:%.+]]>.2 = extract-from-end vp<[[FOR2_SPLICE]]>, ir<1>
; CHECK-NEXT: EMIT vp<[[CMP:%.+]]> = icmp eq ir<1000>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[CMP]]>
; CHECK-NEXT: Successor(s): ir-bb<exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph
; CHECK-NEXT: EMIT vp<[[RESUME_1_P:%.*]]> = resume-phi vp<[[RESUME_1]]>, ir<22>
; CHECK-NEXT: EMIT vp<[[RESUME_2_P:%.*]]>.1 = resume-phi vp<[[RESUME_2]]>.1, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_3_P:%.*]]>.2 = resume-phi vp<[[RESUME_3]]>.2, ir<33>
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ] (extra operand: vp<[[RESUME_1_P]]> from scalar.ph)
; CHECK-NEXT: IR %for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ] (extra operand: vp<[[RESUME_2_P]]>.1 from scalar.ph)
; CHECK-NEXT: IR %for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ] (extra operand: vp<[[RESUME_3_P]]>.2 from scalar.ph)
; CHECK-NEXT: IR %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK: IR %exitcond.not = icmp eq i64 %iv.next, 1000
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<exit>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%for.1 = phi i16 [ 22, %entry ], [ %for.1.next, %loop ]
%for.2 = phi i16 [ 33, %entry ], [ %for.1, %loop ]
%for.3 = phi i16 [ 33, %entry ], [ %for.2, %loop ]
%iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ]
%iv.next = add nuw nsw i64 %iv, 1
%gep.ptr = getelementptr inbounds i16, ptr %ptr, i64 %iv
%for.1.next = load i16, ptr %gep.ptr, align 2
%add.1 = add i16 %for.1, %for.2
%add.2 = add i16 %add.1, %for.3
store i16 %add.2, ptr %gep.ptr
%exitcond.not = icmp eq i64 %iv.next, 1000
br i1 %exitcond.not, label %exit, label %loop
exit:
ret void
}
; This test has two FORs (for.x and for.y) where incoming value from the previous
; iteration (for.x.prev) of one FOR (for.y) depends on another FOR (for.x).
; Sinking would require moving a recipe with side effects (store). Instead,
; for.x.next can be hoisted.
define i32 @test_chained_first_order_recurrences_4(ptr %base, i64 %x) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_4'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<4098> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%x>, ir<2>
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev>
; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]>
; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next>
; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev>
; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-from-end ir<%for.x.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-from-end ir<%for.x.prev>, ir<1>
; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]>
; CHECK-NEXT: Successor(s): ir-bb<ret>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_X:%.+]]> = resume-phi vp<[[EXT_X]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_Y:%.+]]>.1 = resume-phi vp<[[EXT_Y]]>.1, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph)
; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph)
; CHECK: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<ret>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ]
%for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ]
%iv.next = add i64 %iv, 1
%gep = getelementptr i64, ptr %base, i64 %iv
%for.x.prev = trunc i64 %for.x to i32
%for.y.i64 = sext i32 %for.y to i64
store i64 %for.y.i64, ptr %gep
%for.x.next = mul i64 %x, 2
%icmp = icmp ugt i64 %iv, 4096
br i1 %icmp, label %ret, label %loop
ret:
ret i32 0
}
define i32 @test_chained_first_order_recurrences_5_hoist_to_load(ptr %base) {
; CHECK-LABEL: 'test_chained_first_order_recurrences_5_hoist_to_load'
; CHECK: VPlan 'Initial VPlan for VF={4},UF>=1' {
; CHECK-NEXT: Live-in vp<[[VFxUF:%.+]]> = VF * UF
; CHECK-NEXT: Live-in vp<[[VTC:%.+]]> = vector-trip-count
; CHECK-NEXT: Live-in ir<4098> = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<entry>:
; CHECK-NEXT: Successor(s): vector.ph
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT vp<[[CAN_IV:%.+]]> = CANONICAL-INDUCTION ir<0>, vp<[[CAN_IV_NEXT:%.+]]>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.x> = phi ir<0>, ir<%for.x.next>
; CHECK-NEXT: FIRST-ORDER-RECURRENCE-PHI ir<%for.y> = phi ir<0>, ir<%for.x.prev>
; CHECK-NEXT: vp<[[SCALAR_STEPS:%.+]]> = SCALAR-STEPS vp<[[CAN_IV]]>, ir<1>
; CHECK-NEXT: CLONE ir<%gep> = getelementptr ir<%base>, vp<[[SCALAR_STEPS]]>
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN ir<%l> = load vp<[[VEC_PTR]]>
; CHECK-NEXT: WIDEN ir<%for.x.next> = mul ir<%l>, ir<2>
; CHECK-NEXT: EMIT vp<[[SPLICE_X:%.]]> = first-order splice ir<%for.x>, ir<%for.x.next>
; CHECK-NEXT: WIDEN-CAST ir<%for.x.prev> = trunc vp<[[SPLICE_X]]> to i32
; CHECK-NEXT: EMIT vp<[[SPLICE_Y:%.+]]> = first-order splice ir<%for.y>, ir<%for.x.prev>
; CHECK-NEXT: WIDEN-CAST ir<%for.y.i64> = sext vp<[[SPLICE_Y]]> to i64
; CHECK-NEXT: vp<[[VEC_PTR:%.+]]> = vector-pointer ir<%gep>
; CHECK-NEXT: WIDEN store vp<[[VEC_PTR]]>, ir<%for.y.i64>
; CHECK-NEXT: EMIT vp<[[CAN_IV_NEXT]]> = add nuw vp<[[CAN_IV]]>, vp<[[VFxUF]]>
; CHECK-NEXT: EMIT branch-on-count vp<[[CAN_IV_NEXT]]>, vp<[[VTC]]>
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT vp<[[EXT_X:%.+]]> = extract-from-end ir<%for.x.next>, ir<1>
; CHECK-NEXT: EMIT vp<[[EXT_Y:%.+]]>.1 = extract-from-end ir<%for.x.prev>, ir<1>
; CHECK-NEXT: EMIT vp<[[MIDDLE_C:%.+]]> = icmp eq ir<4098>, vp<[[VTC]]>
; CHECK-NEXT: EMIT branch-on-cond vp<[[MIDDLE_C]]>
; CHECK-NEXT: Successor(s): ir-bb<ret>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: EMIT vp<[[RESUME_IV:%.*]]> = resume-phi vp<[[VTC]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_X:%.+]]> = resume-phi vp<[[EXT_X]]>, ir<0>
; CHECK-NEXT: EMIT vp<[[RESUME_Y:%.+]]>.1 = resume-phi vp<[[EXT_Y]]>.1, ir<0>
; CHECK-NEXT: Successor(s): ir-bb<loop>
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<loop>:
; CHECK-NEXT: IR %iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_IV]]> from scalar.ph)
; CHECK-NEXT: IR %for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_X]]> from scalar.ph)
; CHECK-NEXT: IR %for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ] (extra operand: vp<[[RESUME_Y]]>.1 from scalar.ph)
; CHECK: No successors
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<ret>:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;
entry:
br label %loop
loop:
%iv = phi i64 [ %iv.next, %loop ], [ 0, %entry ]
%for.x = phi i64 [ %for.x.next, %loop ], [ 0, %entry ]
%for.y = phi i32 [ %for.x.prev, %loop ], [ 0, %entry ]
%iv.next = add i64 %iv, 1
%gep = getelementptr i64, ptr %base, i64 %iv
%l = load i64, ptr %gep
%for.x.prev = trunc i64 %for.x to i32
%for.y.i64 = sext i32 %for.y to i64
store i64 %for.y.i64, ptr %gep
%for.x.next = mul i64 %l, 2
%icmp = icmp ugt i64 %iv, 4096
br i1 %icmp, label %ret, label %loop
ret:
ret i32 0
}