blob: ea2d1dc8440bce4c0990c99b08dcefb8f34d5598 [file] [log] [blame]
//===- Metadata.cpp - Implement Metadata classes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Metadata classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Metadata.h"
#include "LLVMContextImpl.h"
#include "MetadataImpl.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DebugProgramInstruction.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/IR/TrackingMDRef.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#include <utility>
#include <vector>
using namespace llvm;
MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
: Value(Ty, MetadataAsValueVal), MD(MD) {
track();
}
MetadataAsValue::~MetadataAsValue() {
getType()->getContext().pImpl->MetadataAsValues.erase(MD);
untrack();
}
/// Canonicalize metadata arguments to intrinsics.
///
/// To support bitcode upgrades (and assembly semantic sugar) for \a
/// MetadataAsValue, we need to canonicalize certain metadata.
///
/// - nullptr is replaced by an empty MDNode.
/// - An MDNode with a single null operand is replaced by an empty MDNode.
/// - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
///
/// This maintains readability of bitcode from when metadata was a type of
/// value, and these bridges were unnecessary.
static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
Metadata *MD) {
if (!MD)
// !{}
return MDNode::get(Context, {});
// Return early if this isn't a single-operand MDNode.
auto *N = dyn_cast<MDNode>(MD);
if (!N || N->getNumOperands() != 1)
return MD;
if (!N->getOperand(0))
// !{}
return MDNode::get(Context, {});
if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
// Look through the MDNode.
return C;
return MD;
}
MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
MD = canonicalizeMetadataForValue(Context, MD);
auto *&Entry = Context.pImpl->MetadataAsValues[MD];
if (!Entry)
Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
return Entry;
}
MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
Metadata *MD) {
MD = canonicalizeMetadataForValue(Context, MD);
auto &Store = Context.pImpl->MetadataAsValues;
return Store.lookup(MD);
}
void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
LLVMContext &Context = getContext();
MD = canonicalizeMetadataForValue(Context, MD);
auto &Store = Context.pImpl->MetadataAsValues;
// Stop tracking the old metadata.
Store.erase(this->MD);
untrack();
this->MD = nullptr;
// Start tracking MD, or RAUW if necessary.
auto *&Entry = Store[MD];
if (Entry) {
replaceAllUsesWith(Entry);
delete this;
return;
}
this->MD = MD;
track();
Entry = this;
}
void MetadataAsValue::track() {
if (MD)
MetadataTracking::track(&MD, *MD, *this);
}
void MetadataAsValue::untrack() {
if (MD)
MetadataTracking::untrack(MD);
}
DbgVariableRecord *DebugValueUser::getUser() {
return static_cast<DbgVariableRecord *>(this);
}
const DbgVariableRecord *DebugValueUser::getUser() const {
return static_cast<const DbgVariableRecord *>(this);
}
void DebugValueUser::handleChangedValue(void *Old, Metadata *New) {
// NOTE: We could inform the "owner" that a value has changed through
// getOwner, if needed.
auto OldMD = static_cast<Metadata **>(Old);
ptrdiff_t Idx = std::distance(&*DebugValues.begin(), OldMD);
// If replacing a ValueAsMetadata with a nullptr, replace it with a
// PoisonValue instead.
if (OldMD && isa<ValueAsMetadata>(*OldMD) && !New) {
auto *OldVAM = cast<ValueAsMetadata>(*OldMD);
New = ValueAsMetadata::get(PoisonValue::get(OldVAM->getValue()->getType()));
}
resetDebugValue(Idx, New);
}
void DebugValueUser::trackDebugValue(size_t Idx) {
assert(Idx < 3 && "Invalid debug value index.");
Metadata *&MD = DebugValues[Idx];
if (MD)
MetadataTracking::track(&MD, *MD, *this);
}
void DebugValueUser::trackDebugValues() {
for (Metadata *&MD : DebugValues)
if (MD)
MetadataTracking::track(&MD, *MD, *this);
}
void DebugValueUser::untrackDebugValue(size_t Idx) {
assert(Idx < 3 && "Invalid debug value index.");
Metadata *&MD = DebugValues[Idx];
if (MD)
MetadataTracking::untrack(MD);
}
void DebugValueUser::untrackDebugValues() {
for (Metadata *&MD : DebugValues)
if (MD)
MetadataTracking::untrack(MD);
}
void DebugValueUser::retrackDebugValues(DebugValueUser &X) {
assert(DebugValueUser::operator==(X) && "Expected values to match");
for (const auto &[MD, XMD] : zip(DebugValues, X.DebugValues))
if (XMD)
MetadataTracking::retrack(XMD, MD);
X.DebugValues.fill(nullptr);
}
bool MetadataTracking::track(void *Ref, Metadata &MD, OwnerTy Owner) {
assert(Ref && "Expected live reference");
assert((Owner || *static_cast<Metadata **>(Ref) == &MD) &&
"Reference without owner must be direct");
if (auto *R = ReplaceableMetadataImpl::getOrCreate(MD)) {
R->addRef(Ref, Owner);
return true;
}
if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD)) {
assert(!PH->Use && "Placeholders can only be used once");
assert(!Owner && "Unexpected callback to owner");
PH->Use = static_cast<Metadata **>(Ref);
return true;
}
return false;
}
void MetadataTracking::untrack(void *Ref, Metadata &MD) {
assert(Ref && "Expected live reference");
if (auto *R = ReplaceableMetadataImpl::getIfExists(MD))
R->dropRef(Ref);
else if (auto *PH = dyn_cast<DistinctMDOperandPlaceholder>(&MD))
PH->Use = nullptr;
}
bool MetadataTracking::retrack(void *Ref, Metadata &MD, void *New) {
assert(Ref && "Expected live reference");
assert(New && "Expected live reference");
assert(Ref != New && "Expected change");
if (auto *R = ReplaceableMetadataImpl::getIfExists(MD)) {
R->moveRef(Ref, New, MD);
return true;
}
assert(!isa<DistinctMDOperandPlaceholder>(MD) &&
"Unexpected move of an MDOperand");
assert(!isReplaceable(MD) &&
"Expected un-replaceable metadata, since we didn't move a reference");
return false;
}
bool MetadataTracking::isReplaceable(const Metadata &MD) {
return ReplaceableMetadataImpl::isReplaceable(MD);
}
SmallVector<Metadata *> ReplaceableMetadataImpl::getAllArgListUsers() {
SmallVector<std::pair<OwnerTy, uint64_t> *> MDUsersWithID;
for (auto Pair : UseMap) {
OwnerTy Owner = Pair.second.first;
if (Owner.isNull())
continue;
if (!isa<Metadata *>(Owner))
continue;
Metadata *OwnerMD = cast<Metadata *>(Owner);
if (OwnerMD->getMetadataID() == Metadata::DIArgListKind)
MDUsersWithID.push_back(&UseMap[Pair.first]);
}
llvm::sort(MDUsersWithID, [](auto UserA, auto UserB) {
return UserA->second < UserB->second;
});
SmallVector<Metadata *> MDUsers;
for (auto *UserWithID : MDUsersWithID)
MDUsers.push_back(cast<Metadata *>(UserWithID->first));
return MDUsers;
}
SmallVector<DbgVariableRecord *>
ReplaceableMetadataImpl::getAllDbgVariableRecordUsers() {
SmallVector<std::pair<OwnerTy, uint64_t> *> DVRUsersWithID;
for (auto Pair : UseMap) {
OwnerTy Owner = Pair.second.first;
if (Owner.isNull())
continue;
if (!Owner.is<DebugValueUser *>())
continue;
DVRUsersWithID.push_back(&UseMap[Pair.first]);
}
// Order DbgVariableRecord users in reverse-creation order. Normal dbg.value
// users of MetadataAsValues are ordered by their UseList, i.e. reverse order
// of when they were added: we need to replicate that here. The structure of
// debug-info output depends on the ordering of intrinsics, thus we need
// to keep them consistent for comparisons sake.
llvm::sort(DVRUsersWithID, [](auto UserA, auto UserB) {
return UserA->second > UserB->second;
});
SmallVector<DbgVariableRecord *> DVRUsers;
for (auto UserWithID : DVRUsersWithID)
DVRUsers.push_back(UserWithID->first.get<DebugValueUser *>()->getUser());
return DVRUsers;
}
void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
bool WasInserted =
UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
.second;
(void)WasInserted;
assert(WasInserted && "Expected to add a reference");
++NextIndex;
assert(NextIndex != 0 && "Unexpected overflow");
}
void ReplaceableMetadataImpl::dropRef(void *Ref) {
bool WasErased = UseMap.erase(Ref);
(void)WasErased;
assert(WasErased && "Expected to drop a reference");
}
void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
const Metadata &MD) {
auto I = UseMap.find(Ref);
assert(I != UseMap.end() && "Expected to move a reference");
auto OwnerAndIndex = I->second;
UseMap.erase(I);
bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
(void)WasInserted;
assert(WasInserted && "Expected to add a reference");
// Check that the references are direct if there's no owner.
(void)MD;
assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
"Reference without owner must be direct");
assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
"Reference without owner must be direct");
}
void ReplaceableMetadataImpl::SalvageDebugInfo(const Constant &C) {
if (!C.isUsedByMetadata()) {
return;
}
LLVMContext &Context = C.getType()->getContext();
auto &Store = Context.pImpl->ValuesAsMetadata;
auto I = Store.find(&C);
ValueAsMetadata *MD = I->second;
using UseTy =
std::pair<void *, std::pair<MetadataTracking::OwnerTy, uint64_t>>;
// Copy out uses and update value of Constant used by debug info metadata with undef below
SmallVector<UseTy, 8> Uses(MD->UseMap.begin(), MD->UseMap.end());
for (const auto &Pair : Uses) {
MetadataTracking::OwnerTy Owner = Pair.second.first;
if (!Owner)
continue;
// Check for MetadataAsValue.
if (isa<MetadataAsValue *>(Owner)) {
cast<MetadataAsValue *>(Owner)->handleChangedMetadata(
ValueAsMetadata::get(UndefValue::get(C.getType())));
continue;
}
if (!isa<Metadata *>(Owner))
continue;
auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
if (!OwnerMD)
continue;
if (isa<DINode>(OwnerMD)) {
OwnerMD->handleChangedOperand(
Pair.first, ValueAsMetadata::get(UndefValue::get(C.getType())));
}
}
}
void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
if (UseMap.empty())
return;
// Copy out uses since UseMap will get touched below.
using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
return L.second.second < R.second.second;
});
for (const auto &Pair : Uses) {
// Check that this Ref hasn't disappeared after RAUW (when updating a
// previous Ref).
if (!UseMap.count(Pair.first))
continue;
OwnerTy Owner = Pair.second.first;
if (!Owner) {
// Update unowned tracking references directly.
Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
Ref = MD;
if (MD)
MetadataTracking::track(Ref);
UseMap.erase(Pair.first);
continue;
}
// Check for MetadataAsValue.
if (isa<MetadataAsValue *>(Owner)) {
cast<MetadataAsValue *>(Owner)->handleChangedMetadata(MD);
continue;
}
if (Owner.is<DebugValueUser *>()) {
Owner.get<DebugValueUser *>()->handleChangedValue(Pair.first, MD);
continue;
}
// There's a Metadata owner -- dispatch.
Metadata *OwnerMD = cast<Metadata *>(Owner);
switch (OwnerMD->getMetadataID()) {
#define HANDLE_METADATA_LEAF(CLASS) \
case Metadata::CLASS##Kind: \
cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD); \
continue;
#include "llvm/IR/Metadata.def"
default:
llvm_unreachable("Invalid metadata subclass");
}
}
assert(UseMap.empty() && "Expected all uses to be replaced");
}
void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
if (UseMap.empty())
return;
if (!ResolveUsers) {
UseMap.clear();
return;
}
// Copy out uses since UseMap could get touched below.
using UseTy = std::pair<void *, std::pair<OwnerTy, uint64_t>>;
SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
llvm::sort(Uses, [](const UseTy &L, const UseTy &R) {
return L.second.second < R.second.second;
});
UseMap.clear();
for (const auto &Pair : Uses) {
auto Owner = Pair.second.first;
if (!Owner)
continue;
if (!Owner.is<Metadata *>())
continue;
// Resolve MDNodes that point at this.
auto *OwnerMD = dyn_cast_if_present<MDNode>(cast<Metadata *>(Owner));
if (!OwnerMD)
continue;
if (OwnerMD->isResolved())
continue;
OwnerMD->decrementUnresolvedOperandCount();
}
}
// Special handing of DIArgList is required in the RemoveDIs project, see
// commentry in DIArgList::handleChangedOperand for details. Hidden behind
// conditional compilation to avoid a compile time regression.
ReplaceableMetadataImpl *ReplaceableMetadataImpl::getOrCreate(Metadata &MD) {
if (auto *N = dyn_cast<MDNode>(&MD)) {
return !N->isResolved() || N->isAlwaysReplaceable()
? N->Context.getOrCreateReplaceableUses()
: nullptr;
}
if (auto ArgList = dyn_cast<DIArgList>(&MD))
return ArgList;
return dyn_cast<ValueAsMetadata>(&MD);
}
ReplaceableMetadataImpl *ReplaceableMetadataImpl::getIfExists(Metadata &MD) {
if (auto *N = dyn_cast<MDNode>(&MD)) {
return !N->isResolved() || N->isAlwaysReplaceable()
? N->Context.getReplaceableUses()
: nullptr;
}
if (auto ArgList = dyn_cast<DIArgList>(&MD))
return ArgList;
return dyn_cast<ValueAsMetadata>(&MD);
}
bool ReplaceableMetadataImpl::isReplaceable(const Metadata &MD) {
if (auto *N = dyn_cast<MDNode>(&MD))
return !N->isResolved() || N->isAlwaysReplaceable();
return isa<ValueAsMetadata>(&MD) || isa<DIArgList>(&MD);
}
static DISubprogram *getLocalFunctionMetadata(Value *V) {
assert(V && "Expected value");
if (auto *A = dyn_cast<Argument>(V)) {
if (auto *Fn = A->getParent())
return Fn->getSubprogram();
return nullptr;
}
if (BasicBlock *BB = cast<Instruction>(V)->getParent()) {
if (auto *Fn = BB->getParent())
return Fn->getSubprogram();
return nullptr;
}
return nullptr;
}
ValueAsMetadata *ValueAsMetadata::get(Value *V) {
assert(V && "Unexpected null Value");
auto &Context = V->getContext();
auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
if (!Entry) {
assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
"Expected constant or function-local value");
assert(!V->IsUsedByMD && "Expected this to be the only metadata use");
V->IsUsedByMD = true;
if (auto *C = dyn_cast<Constant>(V))
Entry = new ConstantAsMetadata(C);
else
Entry = new LocalAsMetadata(V);
}
return Entry;
}
ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
assert(V && "Unexpected null Value");
return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
}
void ValueAsMetadata::handleDeletion(Value *V) {
assert(V && "Expected valid value");
auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
auto I = Store.find(V);
if (I == Store.end())
return;
// Remove old entry from the map.
ValueAsMetadata *MD = I->second;
assert(MD && "Expected valid metadata");
assert(MD->getValue() == V && "Expected valid mapping");
Store.erase(I);
// Delete the metadata.
MD->replaceAllUsesWith(nullptr);
delete MD;
}
void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
assert(From && "Expected valid value");
assert(To && "Expected valid value");
assert(From != To && "Expected changed value");
assert(&From->getContext() == &To->getContext() && "Expected same context");
LLVMContext &Context = From->getType()->getContext();
auto &Store = Context.pImpl->ValuesAsMetadata;
auto I = Store.find(From);
if (I == Store.end()) {
assert(!From->IsUsedByMD && "Expected From not to be used by metadata");
return;
}
// Remove old entry from the map.
assert(From->IsUsedByMD && "Expected From to be used by metadata");
From->IsUsedByMD = false;
ValueAsMetadata *MD = I->second;
assert(MD && "Expected valid metadata");
assert(MD->getValue() == From && "Expected valid mapping");
Store.erase(I);
if (isa<LocalAsMetadata>(MD)) {
if (auto *C = dyn_cast<Constant>(To)) {
// Local became a constant.
MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
delete MD;
return;
}
if (getLocalFunctionMetadata(From) && getLocalFunctionMetadata(To) &&
getLocalFunctionMetadata(From) != getLocalFunctionMetadata(To)) {
// DISubprogram changed.
MD->replaceAllUsesWith(nullptr);
delete MD;
return;
}
} else if (!isa<Constant>(To)) {
// Changed to function-local value.
MD->replaceAllUsesWith(nullptr);
delete MD;
return;
}
auto *&Entry = Store[To];
if (Entry) {
// The target already exists.
MD->replaceAllUsesWith(Entry);
delete MD;
return;
}
// Update MD in place (and update the map entry).
assert(!To->IsUsedByMD && "Expected this to be the only metadata use");
To->IsUsedByMD = true;
MD->V = To;
Entry = MD;
}
//===----------------------------------------------------------------------===//
// MDString implementation.
//
MDString *MDString::get(LLVMContext &Context, StringRef Str) {
auto &Store = Context.pImpl->MDStringCache;
auto I = Store.try_emplace(Str);
auto &MapEntry = I.first->getValue();
if (!I.second)
return &MapEntry;
MapEntry.Entry = &*I.first;
return &MapEntry;
}
StringRef MDString::getString() const {
assert(Entry && "Expected to find string map entry");
return Entry->first();
}
//===----------------------------------------------------------------------===//
// MDNode implementation.
//
// Assert that the MDNode types will not be unaligned by the objects
// prepended to them.
#define HANDLE_MDNODE_LEAF(CLASS) \
static_assert( \
alignof(uint64_t) >= alignof(CLASS), \
"Alignment is insufficient after objects prepended to " #CLASS);
#include "llvm/IR/Metadata.def"
void *MDNode::operator new(size_t Size, size_t NumOps, StorageType Storage) {
// uint64_t is the most aligned type we need support (ensured by static_assert
// above)
size_t AllocSize =
alignTo(Header::getAllocSize(Storage, NumOps), alignof(uint64_t));
char *Mem = reinterpret_cast<char *>(::operator new(AllocSize + Size));
Header *H = new (Mem + AllocSize - sizeof(Header)) Header(NumOps, Storage);
return reinterpret_cast<void *>(H + 1);
}
void MDNode::operator delete(void *N) {
Header *H = reinterpret_cast<Header *>(N) - 1;
void *Mem = H->getAllocation();
H->~Header();
::operator delete(Mem);
}
MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
: Metadata(ID, Storage), Context(Context) {
unsigned Op = 0;
for (Metadata *MD : Ops1)
setOperand(Op++, MD);
for (Metadata *MD : Ops2)
setOperand(Op++, MD);
if (!isUniqued())
return;
// Count the unresolved operands. If there are any, RAUW support will be
// added lazily on first reference.
countUnresolvedOperands();
}
TempMDNode MDNode::clone() const {
switch (getMetadataID()) {
default:
llvm_unreachable("Invalid MDNode subclass");
#define HANDLE_MDNODE_LEAF(CLASS) \
case CLASS##Kind: \
return cast<CLASS>(this)->cloneImpl();
#include "llvm/IR/Metadata.def"
}
}
MDNode::Header::Header(size_t NumOps, StorageType Storage) {
IsLarge = isLarge(NumOps);
IsResizable = isResizable(Storage);
SmallSize = getSmallSize(NumOps, IsResizable, IsLarge);
if (IsLarge) {
SmallNumOps = 0;
new (getLargePtr()) LargeStorageVector();
getLarge().resize(NumOps);
return;
}
SmallNumOps = NumOps;
MDOperand *O = reinterpret_cast<MDOperand *>(this) - SmallSize;
for (MDOperand *E = O + SmallSize; O != E;)
(void)new (O++) MDOperand();
}
MDNode::Header::~Header() {
if (IsLarge) {
getLarge().~LargeStorageVector();
return;
}
MDOperand *O = reinterpret_cast<MDOperand *>(this);
for (MDOperand *E = O - SmallSize; O != E; --O)
(void)(O - 1)->~MDOperand();
}
void *MDNode::Header::getSmallPtr() {
static_assert(alignof(MDOperand) <= alignof(Header),
"MDOperand too strongly aligned");
return reinterpret_cast<char *>(const_cast<Header *>(this)) -
sizeof(MDOperand) * SmallSize;
}
void MDNode::Header::resize(size_t NumOps) {
assert(IsResizable && "Node is not resizable");
if (operands().size() == NumOps)
return;
if (IsLarge)
getLarge().resize(NumOps);
else if (NumOps <= SmallSize)
resizeSmall(NumOps);
else
resizeSmallToLarge(NumOps);
}
void MDNode::Header::resizeSmall(size_t NumOps) {
assert(!IsLarge && "Expected a small MDNode");
assert(NumOps <= SmallSize && "NumOps too large for small resize");
MutableArrayRef<MDOperand> ExistingOps = operands();
assert(NumOps != ExistingOps.size() && "Expected a different size");
int NumNew = (int)NumOps - (int)ExistingOps.size();
MDOperand *O = ExistingOps.end();
for (int I = 0, E = NumNew; I < E; ++I)
(O++)->reset();
for (int I = 0, E = NumNew; I > E; --I)
(--O)->reset();
SmallNumOps = NumOps;
assert(O == operands().end() && "Operands not (un)initialized until the end");
}
void MDNode::Header::resizeSmallToLarge(size_t NumOps) {
assert(!IsLarge && "Expected a small MDNode");
assert(NumOps > SmallSize && "Expected NumOps to be larger than allocation");
LargeStorageVector NewOps;
NewOps.resize(NumOps);
llvm::move(operands(), NewOps.begin());
resizeSmall(0);
new (getLargePtr()) LargeStorageVector(std::move(NewOps));
IsLarge = true;
}
static bool isOperandUnresolved(Metadata *Op) {
if (auto *N = dyn_cast_or_null<MDNode>(Op))
return !N->isResolved();
return false;
}
void MDNode::countUnresolvedOperands() {
assert(getNumUnresolved() == 0 && "Expected unresolved ops to be uncounted");
assert(isUniqued() && "Expected this to be uniqued");
setNumUnresolved(count_if(operands(), isOperandUnresolved));
}
void MDNode::makeUniqued() {
assert(isTemporary() && "Expected this to be temporary");
assert(!isResolved() && "Expected this to be unresolved");
// Enable uniquing callbacks.
for (auto &Op : mutable_operands())
Op.reset(Op.get(), this);
// Make this 'uniqued'.
Storage = Uniqued;
countUnresolvedOperands();
if (!getNumUnresolved()) {
dropReplaceableUses();
assert(isResolved() && "Expected this to be resolved");
}
assert(isUniqued() && "Expected this to be uniqued");
}
void MDNode::makeDistinct() {
assert(isTemporary() && "Expected this to be temporary");
assert(!isResolved() && "Expected this to be unresolved");
// Drop RAUW support and store as a distinct node.
dropReplaceableUses();
storeDistinctInContext();
assert(isDistinct() && "Expected this to be distinct");
assert(isResolved() && "Expected this to be resolved");
}
void MDNode::resolve() {
assert(isUniqued() && "Expected this to be uniqued");
assert(!isResolved() && "Expected this to be unresolved");
setNumUnresolved(0);
dropReplaceableUses();
assert(isResolved() && "Expected this to be resolved");
}
void MDNode::dropReplaceableUses() {
assert(!getNumUnresolved() && "Unexpected unresolved operand");
// Drop any RAUW support.
if (Context.hasReplaceableUses())
Context.takeReplaceableUses()->resolveAllUses();
}
void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
assert(isUniqued() && "Expected this to be uniqued");
assert(getNumUnresolved() != 0 && "Expected unresolved operands");
// Check if an operand was resolved.
if (!isOperandUnresolved(Old)) {
if (isOperandUnresolved(New))
// An operand was un-resolved!
setNumUnresolved(getNumUnresolved() + 1);
} else if (!isOperandUnresolved(New))
decrementUnresolvedOperandCount();
}
void MDNode::decrementUnresolvedOperandCount() {
assert(!isResolved() && "Expected this to be unresolved");
if (isTemporary())
return;
assert(isUniqued() && "Expected this to be uniqued");
setNumUnresolved(getNumUnresolved() - 1);
if (getNumUnresolved())
return;
// Last unresolved operand has just been resolved.
dropReplaceableUses();
assert(isResolved() && "Expected this to become resolved");
}
void MDNode::resolveCycles() {
if (isResolved())
return;
// Resolve this node immediately.
resolve();
// Resolve all operands.
for (const auto &Op : operands()) {
auto *N = dyn_cast_or_null<MDNode>(Op);
if (!N)
continue;
assert(!N->isTemporary() &&
"Expected all forward declarations to be resolved");
if (!N->isResolved())
N->resolveCycles();
}
}
static bool hasSelfReference(MDNode *N) {
return llvm::is_contained(N->operands(), N);
}
MDNode *MDNode::replaceWithPermanentImpl() {
switch (getMetadataID()) {
default:
// If this type isn't uniquable, replace with a distinct node.
return replaceWithDistinctImpl();
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
case CLASS##Kind: \
break;
#include "llvm/IR/Metadata.def"
}
// Even if this type is uniquable, self-references have to be distinct.
if (hasSelfReference(this))
return replaceWithDistinctImpl();
return replaceWithUniquedImpl();
}
MDNode *MDNode::replaceWithUniquedImpl() {
// Try to uniquify in place.
MDNode *UniquedNode = uniquify();
if (UniquedNode == this) {
makeUniqued();
return this;
}
// Collision, so RAUW instead.
replaceAllUsesWith(UniquedNode);
deleteAsSubclass();
return UniquedNode;
}
MDNode *MDNode::replaceWithDistinctImpl() {
makeDistinct();
return this;
}
void MDTuple::recalculateHash() {
setHash(MDTupleInfo::KeyTy::calculateHash(this));
}
void MDNode::dropAllReferences() {
for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
setOperand(I, nullptr);
if (Context.hasReplaceableUses()) {
Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
(void)Context.takeReplaceableUses();
}
}
void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
assert(Op < getNumOperands() && "Expected valid operand");
if (!isUniqued()) {
// This node is not uniqued. Just set the operand and be done with it.
setOperand(Op, New);
return;
}
// This node is uniqued.
eraseFromStore();
Metadata *Old = getOperand(Op);
setOperand(Op, New);
// Drop uniquing for self-reference cycles and deleted constants.
if (New == this || (!New && Old && isa<ConstantAsMetadata>(Old))) {
if (!isResolved())
resolve();
storeDistinctInContext();
return;
}
// Re-unique the node.
auto *Uniqued = uniquify();
if (Uniqued == this) {
if (!isResolved())
resolveAfterOperandChange(Old, New);
return;
}
// Collision.
if (!isResolved()) {
// Still unresolved, so RAUW.
//
// First, clear out all operands to prevent any recursion (similar to
// dropAllReferences(), but we still need the use-list).
for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
setOperand(O, nullptr);
if (Context.hasReplaceableUses())
Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
deleteAsSubclass();
return;
}
// Store in non-uniqued form if RAUW isn't possible.
storeDistinctInContext();
}
void MDNode::deleteAsSubclass() {
switch (getMetadataID()) {
default:
llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case CLASS##Kind: \
delete cast<CLASS>(this); \
break;
#include "llvm/IR/Metadata.def"
}
}
template <class T, class InfoT>
static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
if (T *U = getUniqued(Store, N))
return U;
Store.insert(N);
return N;
}
template <class NodeTy> struct MDNode::HasCachedHash {
using Yes = char[1];
using No = char[2];
template <class U, U Val> struct SFINAE {};
template <class U>
static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
template <class U> static No &check(...);
static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
};
MDNode *MDNode::uniquify() {
assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
// Try to insert into uniquing store.
switch (getMetadataID()) {
default:
llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
case CLASS##Kind: { \
CLASS *SubclassThis = cast<CLASS>(this); \
std::integral_constant<bool, HasCachedHash<CLASS>::value> \
ShouldRecalculateHash; \
dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash); \
return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s); \
}
#include "llvm/IR/Metadata.def"
}
}
void MDNode::eraseFromStore() {
switch (getMetadataID()) {
default:
llvm_unreachable("Invalid or non-uniquable subclass of MDNode");
#define HANDLE_MDNODE_LEAF_UNIQUABLE(CLASS) \
case CLASS##Kind: \
getContext().pImpl->CLASS##s.erase(cast<CLASS>(this)); \
break;
#include "llvm/IR/Metadata.def"
}
}
MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
StorageType Storage, bool ShouldCreate) {
unsigned Hash = 0;
if (Storage == Uniqued) {
MDTupleInfo::KeyTy Key(MDs);
if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
return N;
if (!ShouldCreate)
return nullptr;
Hash = Key.getHash();
} else {
assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
}
return storeImpl(new (MDs.size(), Storage)
MDTuple(Context, Storage, Hash, MDs),
Storage, Context.pImpl->MDTuples);
}
void MDNode::deleteTemporary(MDNode *N) {
assert(N->isTemporary() && "Expected temporary node");
N->replaceAllUsesWith(nullptr);
N->deleteAsSubclass();
}
void MDNode::storeDistinctInContext() {
assert(!Context.hasReplaceableUses() && "Unexpected replaceable uses");
assert(!getNumUnresolved() && "Unexpected unresolved nodes");
Storage = Distinct;
assert(isResolved() && "Expected this to be resolved");
// Reset the hash.
switch (getMetadataID()) {
default:
llvm_unreachable("Invalid subclass of MDNode");
#define HANDLE_MDNODE_LEAF(CLASS) \
case CLASS##Kind: { \
std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
dispatchResetHash(cast<CLASS>(this), ShouldResetHash); \
break; \
}
#include "llvm/IR/Metadata.def"
}
getContext().pImpl->DistinctMDNodes.push_back(this);
}
void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
if (getOperand(I) == New)
return;
if (!isUniqued()) {
setOperand(I, New);
return;
}
handleChangedOperand(mutable_begin() + I, New);
}
void MDNode::setOperand(unsigned I, Metadata *New) {
assert(I < getNumOperands());
mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
}
/// Get a node or a self-reference that looks like it.
///
/// Special handling for finding self-references, for use by \a
/// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
/// when self-referencing nodes were still uniqued. If the first operand has
/// the same operands as \c Ops, return the first operand instead.
static MDNode *getOrSelfReference(LLVMContext &Context,
ArrayRef<Metadata *> Ops) {
if (!Ops.empty())
if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
for (unsigned I = 1, E = Ops.size(); I != E; ++I)
if (Ops[I] != N->getOperand(I))
return MDNode::get(Context, Ops);
return N;
}
return MDNode::get(Context, Ops);
}
MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
if (!A)
return B;
if (!B)
return A;
SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
MDs.insert(B->op_begin(), B->op_end());
// FIXME: This preserves long-standing behaviour, but is it really the right
// behaviour? Or was that an unintended side-effect of node uniquing?
return getOrSelfReference(A->getContext(), MDs.getArrayRef());
}
MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
SmallSetVector<Metadata *, 4> MDs(A->op_begin(), A->op_end());
SmallPtrSet<Metadata *, 4> BSet(B->op_begin(), B->op_end());
MDs.remove_if([&](Metadata *MD) { return !BSet.count(MD); });
// FIXME: This preserves long-standing behaviour, but is it really the right
// behaviour? Or was that an unintended side-effect of node uniquing?
return getOrSelfReference(A->getContext(), MDs.getArrayRef());
}
MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
// Take the intersection of domains then union the scopes
// within those domains
SmallPtrSet<const MDNode *, 16> ADomains;
SmallPtrSet<const MDNode *, 16> IntersectDomains;
SmallSetVector<Metadata *, 4> MDs;
for (const MDOperand &MDOp : A->operands())
if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
ADomains.insert(Domain);
for (const MDOperand &MDOp : B->operands())
if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
if (ADomains.contains(Domain)) {
IntersectDomains.insert(Domain);
MDs.insert(MDOp);
}
for (const MDOperand &MDOp : A->operands())
if (const MDNode *NAMD = dyn_cast<MDNode>(MDOp))
if (const MDNode *Domain = AliasScopeNode(NAMD).getDomain())
if (IntersectDomains.contains(Domain))
MDs.insert(MDOp);
return MDs.empty() ? nullptr
: getOrSelfReference(A->getContext(), MDs.getArrayRef());
}
MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
if (AVal < BVal)
return A;
return B;
}
// Call instructions with branch weights are only used in SamplePGO as
// documented in
/// https://llvm.org/docs/BranchWeightMetadata.html#callinst).
MDNode *MDNode::mergeDirectCallProfMetadata(MDNode *A, MDNode *B,
const Instruction *AInstr,
const Instruction *BInstr) {
assert(A && B && AInstr && BInstr && "Caller should guarantee");
auto &Ctx = AInstr->getContext();
MDBuilder MDHelper(Ctx);
// LLVM IR verifier verifies !prof metadata has at least 2 operands.
assert(A->getNumOperands() >= 2 && B->getNumOperands() >= 2 &&
"!prof annotations should have no less than 2 operands");
MDString *AMDS = dyn_cast<MDString>(A->getOperand(0));
MDString *BMDS = dyn_cast<MDString>(B->getOperand(0));
// LLVM IR verfier verifies first operand is MDString.
assert(AMDS != nullptr && BMDS != nullptr &&
"first operand should be a non-null MDString");
StringRef AProfName = AMDS->getString();
StringRef BProfName = BMDS->getString();
if (AProfName == "branch_weights" && BProfName == "branch_weights") {
ConstantInt *AInstrWeight = mdconst::dyn_extract<ConstantInt>(
A->getOperand(getBranchWeightOffset(A)));
ConstantInt *BInstrWeight = mdconst::dyn_extract<ConstantInt>(
B->getOperand(getBranchWeightOffset(B)));
assert(AInstrWeight && BInstrWeight && "verified by LLVM verifier");
return MDNode::get(Ctx,
{MDHelper.createString("branch_weights"),
MDHelper.createConstant(ConstantInt::get(
Type::getInt64Ty(Ctx),
SaturatingAdd(AInstrWeight->getZExtValue(),
BInstrWeight->getZExtValue())))});
}
return nullptr;
}
// Pass in both instructions and nodes. Instruction information (e.g.,
// instruction type) helps interpret profiles and make implementation clearer.
MDNode *MDNode::getMergedProfMetadata(MDNode *A, MDNode *B,
const Instruction *AInstr,
const Instruction *BInstr) {
if (!(A && B)) {
return A ? A : B;
}
assert(AInstr->getMetadata(LLVMContext::MD_prof) == A &&
"Caller should guarantee");
assert(BInstr->getMetadata(LLVMContext::MD_prof) == B &&
"Caller should guarantee");
const CallInst *ACall = dyn_cast<CallInst>(AInstr);
const CallInst *BCall = dyn_cast<CallInst>(BInstr);
// Both ACall and BCall are direct callsites.
if (ACall && BCall && ACall->getCalledFunction() &&
BCall->getCalledFunction())
return mergeDirectCallProfMetadata(A, B, AInstr, BInstr);
// The rest of the cases are not implemented but could be added
// when there are use cases.
return nullptr;
}
static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
}
static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
}
static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
ConstantInt *Low, ConstantInt *High) {
ConstantRange NewRange(Low->getValue(), High->getValue());
unsigned Size = EndPoints.size();
const APInt &LB = EndPoints[Size - 2]->getValue();
const APInt &LE = EndPoints[Size - 1]->getValue();
ConstantRange LastRange(LB, LE);
if (canBeMerged(NewRange, LastRange)) {
ConstantRange Union = LastRange.unionWith(NewRange);
Type *Ty = High->getType();
EndPoints[Size - 2] =
cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
EndPoints[Size - 1] =
cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
return true;
}
return false;
}
static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
ConstantInt *Low, ConstantInt *High) {
if (!EndPoints.empty())
if (tryMergeRange(EndPoints, Low, High))
return;
EndPoints.push_back(Low);
EndPoints.push_back(High);
}
MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
// Given two ranges, we want to compute the union of the ranges. This
// is slightly complicated by having to combine the intervals and merge
// the ones that overlap.
if (!A || !B)
return nullptr;
if (A == B)
return A;
// First, walk both lists in order of the lower boundary of each interval.
// At each step, try to merge the new interval to the last one we added.
SmallVector<ConstantInt *, 4> EndPoints;
unsigned AI = 0;
unsigned BI = 0;
unsigned AN = A->getNumOperands() / 2;
unsigned BN = B->getNumOperands() / 2;
while (AI < AN && BI < BN) {
ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
if (ALow->getValue().slt(BLow->getValue())) {
addRange(EndPoints, ALow,
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
} else {
addRange(EndPoints, BLow,
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
}
while (AI < AN) {
addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
++AI;
}
while (BI < BN) {
addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
++BI;
}
// We haven't handled wrap in the previous merge,
// if we have at least 2 ranges (4 endpoints) we have to try to merge
// the last and first ones.
unsigned Size = EndPoints.size();
if (Size > 2) {
ConstantInt *FB = EndPoints[0];
ConstantInt *FE = EndPoints[1];
if (tryMergeRange(EndPoints, FB, FE)) {
for (unsigned i = 0; i < Size - 2; ++i) {
EndPoints[i] = EndPoints[i + 2];
}
EndPoints.resize(Size - 2);
}
}
// If in the end we have a single range, it is possible that it is now the
// full range. Just drop the metadata in that case.
if (EndPoints.size() == 2) {
ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
if (Range.isFullSet())
return nullptr;
}
SmallVector<Metadata *, 4> MDs;
MDs.reserve(EndPoints.size());
for (auto *I : EndPoints)
MDs.push_back(ConstantAsMetadata::get(I));
return MDNode::get(A->getContext(), MDs);
}
MDNode *MDNode::getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B) {
if (!A || !B)
return nullptr;
ConstantInt *AVal = mdconst::extract<ConstantInt>(A->getOperand(0));
ConstantInt *BVal = mdconst::extract<ConstantInt>(B->getOperand(0));
if (AVal->getZExtValue() < BVal->getZExtValue())
return A;
return B;
}
//===----------------------------------------------------------------------===//
// NamedMDNode implementation.
//
static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
return *(SmallVector<TrackingMDRef, 4> *)Operands;
}
NamedMDNode::NamedMDNode(const Twine &N)
: Name(N.str()), Operands(new SmallVector<TrackingMDRef, 4>()) {}
NamedMDNode::~NamedMDNode() {
dropAllReferences();
delete &getNMDOps(Operands);
}
unsigned NamedMDNode::getNumOperands() const {
return (unsigned)getNMDOps(Operands).size();
}
MDNode *NamedMDNode::getOperand(unsigned i) const {
assert(i < getNumOperands() && "Invalid Operand number!");
auto *N = getNMDOps(Operands)[i].get();
return cast_or_null<MDNode>(N);
}
void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
void NamedMDNode::setOperand(unsigned I, MDNode *New) {
assert(I < getNumOperands() && "Invalid operand number");
getNMDOps(Operands)[I].reset(New);
}
void NamedMDNode::eraseFromParent() { getParent()->eraseNamedMetadata(this); }
void NamedMDNode::clearOperands() { getNMDOps(Operands).clear(); }
StringRef NamedMDNode::getName() const { return StringRef(Name); }
//===----------------------------------------------------------------------===//
// Instruction Metadata method implementations.
//
MDNode *MDAttachments::lookup(unsigned ID) const {
for (const auto &A : Attachments)
if (A.MDKind == ID)
return A.Node;
return nullptr;
}
void MDAttachments::get(unsigned ID, SmallVectorImpl<MDNode *> &Result) const {
for (const auto &A : Attachments)
if (A.MDKind == ID)
Result.push_back(A.Node);
}
void MDAttachments::getAll(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
for (const auto &A : Attachments)
Result.emplace_back(A.MDKind, A.Node);
// Sort the resulting array so it is stable with respect to metadata IDs. We
// need to preserve the original insertion order though.
if (Result.size() > 1)
llvm::stable_sort(Result, less_first());
}
void MDAttachments::set(unsigned ID, MDNode *MD) {
erase(ID);
if (MD)
insert(ID, *MD);
}
void MDAttachments::insert(unsigned ID, MDNode &MD) {
Attachments.push_back({ID, TrackingMDNodeRef(&MD)});
}
bool MDAttachments::erase(unsigned ID) {
if (empty())
return false;
// Common case is one value.
if (Attachments.size() == 1 && Attachments.back().MDKind == ID) {
Attachments.pop_back();
return true;
}
auto OldSize = Attachments.size();
llvm::erase_if(Attachments,
[ID](const Attachment &A) { return A.MDKind == ID; });
return OldSize != Attachments.size();
}
MDNode *Value::getMetadata(StringRef Kind) const {
if (!hasMetadata())
return nullptr;
unsigned KindID = getContext().getMDKindID(Kind);
return getMetadataImpl(KindID);
}
MDNode *Value::getMetadataImpl(unsigned KindID) const {
const LLVMContext &Ctx = getContext();
const MDAttachments &Attachements = Ctx.pImpl->ValueMetadata.at(this);
return Attachements.lookup(KindID);
}
void Value::getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const {
if (hasMetadata())
getContext().pImpl->ValueMetadata.at(this).get(KindID, MDs);
}
void Value::getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const {
if (hasMetadata())
getMetadata(getContext().getMDKindID(Kind), MDs);
}
void Value::getAllMetadata(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
if (hasMetadata()) {
assert(getContext().pImpl->ValueMetadata.count(this) &&
"bit out of sync with hash table");
const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
Info.getAll(MDs);
}
}
void Value::setMetadata(unsigned KindID, MDNode *Node) {
assert(isa<Instruction>(this) || isa<GlobalObject>(this));
// Handle the case when we're adding/updating metadata on a value.
if (Node) {
MDAttachments &Info = getContext().pImpl->ValueMetadata[this];
assert(!Info.empty() == HasMetadata && "bit out of sync with hash table");
if (Info.empty())
HasMetadata = true;
Info.set(KindID, Node);
return;
}
// Otherwise, we're removing metadata from an instruction.
assert((HasMetadata == (getContext().pImpl->ValueMetadata.count(this) > 0)) &&
"bit out of sync with hash table");
if (!HasMetadata)
return; // Nothing to remove!
MDAttachments &Info = getContext().pImpl->ValueMetadata.find(this)->second;
// Handle removal of an existing value.
Info.erase(KindID);
if (!Info.empty())
return;
getContext().pImpl->ValueMetadata.erase(this);
HasMetadata = false;
}
void Value::setMetadata(StringRef Kind, MDNode *Node) {
if (!Node && !HasMetadata)
return;
setMetadata(getContext().getMDKindID(Kind), Node);
}
void Value::addMetadata(unsigned KindID, MDNode &MD) {
assert(isa<Instruction>(this) || isa<GlobalObject>(this));
if (!HasMetadata)
HasMetadata = true;
getContext().pImpl->ValueMetadata[this].insert(KindID, MD);
}
void Value::addMetadata(StringRef Kind, MDNode &MD) {
addMetadata(getContext().getMDKindID(Kind), MD);
}
bool Value::eraseMetadata(unsigned KindID) {
// Nothing to unset.
if (!HasMetadata)
return false;
MDAttachments &Store = getContext().pImpl->ValueMetadata.find(this)->second;
bool Changed = Store.erase(KindID);
if (Store.empty())
clearMetadata();
return Changed;
}
void Value::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
if (!HasMetadata)
return;
auto &MetadataStore = getContext().pImpl->ValueMetadata;
MDAttachments &Info = MetadataStore.find(this)->second;
assert(!Info.empty() && "bit out of sync with hash table");
Info.remove_if([Pred](const MDAttachments::Attachment &I) {
return Pred(I.MDKind, I.Node);
});
if (Info.empty())
clearMetadata();
}
void Value::clearMetadata() {
if (!HasMetadata)
return;
assert(getContext().pImpl->ValueMetadata.count(this) &&
"bit out of sync with hash table");
getContext().pImpl->ValueMetadata.erase(this);
HasMetadata = false;
}
void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
if (!Node && !hasMetadata())
return;
setMetadata(getContext().getMDKindID(Kind), Node);
}
MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
const LLVMContext &Ctx = getContext();
unsigned KindID = Ctx.getMDKindID(Kind);
if (KindID == LLVMContext::MD_dbg)
return DbgLoc.getAsMDNode();
return Value::getMetadata(KindID);
}
void Instruction::eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred) {
if (DbgLoc && Pred(LLVMContext::MD_dbg, DbgLoc.getAsMDNode()))
DbgLoc = {};
Value::eraseMetadataIf(Pred);
}
void Instruction::dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs) {
if (!Value::hasMetadata())
return; // Nothing to remove!
SmallSet<unsigned, 32> KnownSet;
KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
// A DIAssignID attachment is debug metadata, don't drop it.
KnownSet.insert(LLVMContext::MD_DIAssignID);
Value::eraseMetadataIf([&KnownSet](unsigned MDKind, MDNode *Node) {
return !KnownSet.count(MDKind);
});
}
void Instruction::updateDIAssignIDMapping(DIAssignID *ID) {
auto &IDToInstrs = getContext().pImpl->AssignmentIDToInstrs;
if (const DIAssignID *CurrentID =
cast_or_null<DIAssignID>(getMetadata(LLVMContext::MD_DIAssignID))) {
// Nothing to do if the ID isn't changing.
if (ID == CurrentID)
return;
// Unmap this instruction from its current ID.
auto InstrsIt = IDToInstrs.find(CurrentID);
assert(InstrsIt != IDToInstrs.end() &&
"Expect existing attachment to be mapped");
auto &InstVec = InstrsIt->second;
auto *InstIt = llvm::find(InstVec, this);
assert(InstIt != InstVec.end() &&
"Expect instruction to be mapped to attachment");
// The vector contains a ptr to this. If this is the only element in the
// vector, remove the ID:vector entry, otherwise just remove the
// instruction from the vector.
if (InstVec.size() == 1)
IDToInstrs.erase(InstrsIt);
else
InstVec.erase(InstIt);
}
// Map this instruction to the new ID.
if (ID)
IDToInstrs[ID].push_back(this);
}
void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
if (!Node && !hasMetadata())
return;
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (KindID == LLVMContext::MD_dbg) {
DbgLoc = DebugLoc(Node);
return;
}
// Update DIAssignID to Instruction(s) mapping.
if (KindID == LLVMContext::MD_DIAssignID) {
// The DIAssignID tracking infrastructure doesn't support RAUWing temporary
// nodes with DIAssignIDs. The cast_or_null below would also catch this, but
// having a dedicated assert helps make this obvious.
assert((!Node || !Node->isTemporary()) &&
"Temporary DIAssignIDs are invalid");
updateDIAssignIDMapping(cast_or_null<DIAssignID>(Node));
}
Value::setMetadata(KindID, Node);
}
void Instruction::addAnnotationMetadata(SmallVector<StringRef> Annotations) {
SmallVector<Metadata *, 4> Names;
if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
SmallSetVector<StringRef, 2> AnnotationsSet(Annotations.begin(),
Annotations.end());
auto *Tuple = cast<MDTuple>(Existing);
for (auto &N : Tuple->operands()) {
if (isa<MDString>(N.get())) {
Names.push_back(N);
continue;
}
auto *MDAnnotationTuple = cast<MDTuple>(N);
if (any_of(MDAnnotationTuple->operands(), [&AnnotationsSet](auto &Op) {
return AnnotationsSet.contains(cast<MDString>(Op)->getString());
}))
return;
Names.push_back(N);
}
}
MDBuilder MDB(getContext());
SmallVector<Metadata *> MDAnnotationStrings;
for (StringRef Annotation : Annotations)
MDAnnotationStrings.push_back(MDB.createString(Annotation));
MDNode *InfoTuple = MDTuple::get(getContext(), MDAnnotationStrings);
Names.push_back(InfoTuple);
MDNode *MD = MDTuple::get(getContext(), Names);
setMetadata(LLVMContext::MD_annotation, MD);
}
void Instruction::addAnnotationMetadata(StringRef Name) {
SmallVector<Metadata *, 4> Names;
if (auto *Existing = getMetadata(LLVMContext::MD_annotation)) {
auto *Tuple = cast<MDTuple>(Existing);
for (auto &N : Tuple->operands()) {
if (isa<MDString>(N.get()) &&
cast<MDString>(N.get())->getString() == Name)
return;
Names.push_back(N.get());
}
}
MDBuilder MDB(getContext());
Names.push_back(MDB.createString(Name));
MDNode *MD = MDTuple::get(getContext(), Names);
setMetadata(LLVMContext::MD_annotation, MD);
}
AAMDNodes Instruction::getAAMetadata() const {
AAMDNodes Result;
// Not using Instruction::hasMetadata() because we're not interested in
// DebugInfoMetadata.
if (Value::hasMetadata()) {
const MDAttachments &Info = getContext().pImpl->ValueMetadata.at(this);
Result.TBAA = Info.lookup(LLVMContext::MD_tbaa);
Result.TBAAStruct = Info.lookup(LLVMContext::MD_tbaa_struct);
Result.Scope = Info.lookup(LLVMContext::MD_alias_scope);
Result.NoAlias = Info.lookup(LLVMContext::MD_noalias);
}
return Result;
}
void Instruction::setAAMetadata(const AAMDNodes &N) {
setMetadata(LLVMContext::MD_tbaa, N.TBAA);
setMetadata(LLVMContext::MD_tbaa_struct, N.TBAAStruct);
setMetadata(LLVMContext::MD_alias_scope, N.Scope);
setMetadata(LLVMContext::MD_noalias, N.NoAlias);
}
void Instruction::setNoSanitizeMetadata() {
setMetadata(llvm::LLVMContext::MD_nosanitize,
llvm::MDNode::get(getContext(), {}));
}
void Instruction::getAllMetadataImpl(
SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
Result.clear();
// Handle 'dbg' as a special case since it is not stored in the hash table.
if (DbgLoc) {
Result.push_back(
std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
}
Value::getAllMetadata(Result);
}
bool Instruction::extractProfTotalWeight(uint64_t &TotalVal) const {
assert(
(getOpcode() == Instruction::Br || getOpcode() == Instruction::Select ||
getOpcode() == Instruction::Call || getOpcode() == Instruction::Invoke ||
getOpcode() == Instruction::IndirectBr ||
getOpcode() == Instruction::Switch) &&
"Looking for branch weights on something besides branch");
return ::extractProfTotalWeight(*this, TotalVal);
}
void GlobalObject::copyMetadata(const GlobalObject *Other, unsigned Offset) {
SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
Other->getAllMetadata(MDs);
for (auto &MD : MDs) {
// We need to adjust the type metadata offset.
if (Offset != 0 && MD.first == LLVMContext::MD_type) {
auto *OffsetConst = cast<ConstantInt>(
cast<ConstantAsMetadata>(MD.second->getOperand(0))->getValue());
Metadata *TypeId = MD.second->getOperand(1);
auto *NewOffsetMD = ConstantAsMetadata::get(ConstantInt::get(
OffsetConst->getType(), OffsetConst->getValue() + Offset));
addMetadata(LLVMContext::MD_type,
*MDNode::get(getContext(), {NewOffsetMD, TypeId}));
continue;
}
// If an offset adjustment was specified we need to modify the DIExpression
// to prepend the adjustment:
// !DIExpression(DW_OP_plus, Offset, [original expr])
auto *Attachment = MD.second;
if (Offset != 0 && MD.first == LLVMContext::MD_dbg) {
DIGlobalVariable *GV = dyn_cast<DIGlobalVariable>(Attachment);
DIExpression *E = nullptr;
if (!GV) {
auto *GVE = cast<DIGlobalVariableExpression>(Attachment);
GV = GVE->getVariable();
E = GVE->getExpression();
}
ArrayRef<uint64_t> OrigElements;
if (E)
OrigElements = E->getElements();
std::vector<uint64_t> Elements(OrigElements.size() + 2);
Elements[0] = dwarf::DW_OP_plus_uconst;
Elements[1] = Offset;
llvm::copy(OrigElements, Elements.begin() + 2);
E = DIExpression::get(getContext(), Elements);
Attachment = DIGlobalVariableExpression::get(getContext(), GV, E);
}
addMetadata(MD.first, *Attachment);
}
}
void GlobalObject::addTypeMetadata(unsigned Offset, Metadata *TypeID) {
addMetadata(
LLVMContext::MD_type,
*MDTuple::get(getContext(),
{ConstantAsMetadata::get(ConstantInt::get(
Type::getInt64Ty(getContext()), Offset)),
TypeID}));
}
void GlobalObject::setVCallVisibilityMetadata(VCallVisibility Visibility) {
// Remove any existing vcall visibility metadata first in case we are
// updating.
eraseMetadata(LLVMContext::MD_vcall_visibility);
addMetadata(LLVMContext::MD_vcall_visibility,
*MDNode::get(getContext(),
{ConstantAsMetadata::get(ConstantInt::get(
Type::getInt64Ty(getContext()), Visibility))}));
}
GlobalObject::VCallVisibility GlobalObject::getVCallVisibility() const {
if (MDNode *MD = getMetadata(LLVMContext::MD_vcall_visibility)) {
uint64_t Val = cast<ConstantInt>(
cast<ConstantAsMetadata>(MD->getOperand(0))->getValue())
->getZExtValue();
assert(Val <= 2 && "unknown vcall visibility!");
return (VCallVisibility)Val;
}
return VCallVisibility::VCallVisibilityPublic;
}
void Function::setSubprogram(DISubprogram *SP) {
setMetadata(LLVMContext::MD_dbg, SP);
}
DISubprogram *Function::getSubprogram() const {
return cast_or_null<DISubprogram>(getMetadata(LLVMContext::MD_dbg));
}
bool Function::shouldEmitDebugInfoForProfiling() const {
if (DISubprogram *SP = getSubprogram()) {
if (DICompileUnit *CU = SP->getUnit()) {
return CU->getDebugInfoForProfiling();
}
}
return false;
}
void GlobalVariable::addDebugInfo(DIGlobalVariableExpression *GV) {
addMetadata(LLVMContext::MD_dbg, *GV);
}
void GlobalVariable::getDebugInfo(
SmallVectorImpl<DIGlobalVariableExpression *> &GVs) const {
SmallVector<MDNode *, 1> MDs;
getMetadata(LLVMContext::MD_dbg, MDs);
for (MDNode *MD : MDs)
GVs.push_back(cast<DIGlobalVariableExpression>(MD));
}