| //===- InstCombineSelect.cpp ----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the visitSelect function. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "InstCombineInternal.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CmpInstAnalysis.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/OverflowInstAnalysis.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/InstCombine/InstCombiner.h" |
| #include <cassert> |
| #include <utility> |
| |
| #define DEBUG_TYPE "instcombine" |
| #include "llvm/Transforms/Utils/InstructionWorklist.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| |
| /// Replace a select operand based on an equality comparison with the identity |
| /// constant of a binop. |
| static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, |
| const TargetLibraryInfo &TLI, |
| InstCombinerImpl &IC) { |
| // The select condition must be an equality compare with a constant operand. |
| Value *X; |
| Constant *C; |
| CmpInst::Predicate Pred; |
| if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) |
| return nullptr; |
| |
| bool IsEq; |
| if (ICmpInst::isEquality(Pred)) |
| IsEq = Pred == ICmpInst::ICMP_EQ; |
| else if (Pred == FCmpInst::FCMP_OEQ) |
| IsEq = true; |
| else if (Pred == FCmpInst::FCMP_UNE) |
| IsEq = false; |
| else |
| return nullptr; |
| |
| // A select operand must be a binop. |
| BinaryOperator *BO; |
| if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) |
| return nullptr; |
| |
| // The compare constant must be the identity constant for that binop. |
| // If this a floating-point compare with 0.0, any zero constant will do. |
| Type *Ty = BO->getType(); |
| Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); |
| if (IdC != C) { |
| if (!IdC || !CmpInst::isFPPredicate(Pred)) |
| return nullptr; |
| if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) |
| return nullptr; |
| } |
| |
| // Last, match the compare variable operand with a binop operand. |
| Value *Y; |
| if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) |
| return nullptr; |
| if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) |
| return nullptr; |
| |
| // +0.0 compares equal to -0.0, and so it does not behave as required for this |
| // transform. Bail out if we can not exclude that possibility. |
| if (isa<FPMathOperator>(BO)) |
| if (!BO->hasNoSignedZeros() && |
| !cannotBeNegativeZero(Y, 0, |
| IC.getSimplifyQuery().getWithInstruction(&Sel))) |
| return nullptr; |
| |
| // BO = binop Y, X |
| // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } |
| // => |
| // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } |
| return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); |
| } |
| |
| /// This folds: |
| /// select (icmp eq (and X, C1)), TC, FC |
| /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. |
| /// To something like: |
| /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC |
| /// Or: |
| /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC |
| /// With some variations depending if FC is larger than TC, or the shift |
| /// isn't needed, or the bit widths don't match. |
| static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, |
| InstCombiner::BuilderTy &Builder) { |
| const APInt *SelTC, *SelFC; |
| if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || |
| !match(Sel.getFalseValue(), m_APInt(SelFC))) |
| return nullptr; |
| |
| // If this is a vector select, we need a vector compare. |
| Type *SelType = Sel.getType(); |
| if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) |
| return nullptr; |
| |
| Value *V; |
| APInt AndMask; |
| bool CreateAnd = false; |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| if (ICmpInst::isEquality(Pred)) { |
| if (!match(Cmp->getOperand(1), m_Zero())) |
| return nullptr; |
| |
| V = Cmp->getOperand(0); |
| const APInt *AndRHS; |
| if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) |
| return nullptr; |
| |
| AndMask = *AndRHS; |
| } else if (auto Res = decomposeBitTestICmp(Cmp->getOperand(0), |
| Cmp->getOperand(1), Pred)) { |
| assert(ICmpInst::isEquality(Res->Pred) && "Not equality test?"); |
| if (!Res->Mask.isPowerOf2()) |
| return nullptr; |
| |
| V = Res->X; |
| AndMask = Res->Mask; |
| Pred = Res->Pred; |
| CreateAnd = true; |
| } else { |
| return nullptr; |
| } |
| if (Pred == ICmpInst::ICMP_NE) |
| std::swap(SelTC, SelFC); |
| |
| // In general, when both constants are non-zero, we would need an offset to |
| // replace the select. This would require more instructions than we started |
| // with. But there's one special-case that we handle here because it can |
| // simplify/reduce the instructions. |
| const APInt &TC = *SelTC; |
| const APInt &FC = *SelFC; |
| if (!TC.isZero() && !FC.isZero()) { |
| if (TC.getBitWidth() != AndMask.getBitWidth()) |
| return nullptr; |
| // If we have to create an 'and', then we must kill the cmp to not |
| // increase the instruction count. |
| if (CreateAnd && !Cmp->hasOneUse()) |
| return nullptr; |
| |
| // (V & AndMaskC) == 0 ? TC : FC --> TC | (V & AndMaskC) |
| // (V & AndMaskC) == 0 ? TC : FC --> TC ^ (V & AndMaskC) |
| // (V & AndMaskC) == 0 ? TC : FC --> TC + (V & AndMaskC) |
| // (V & AndMaskC) == 0 ? TC : FC --> TC - (V & AndMaskC) |
| Constant *TCC = ConstantInt::get(SelType, TC); |
| Constant *FCC = ConstantInt::get(SelType, FC); |
| Constant *MaskC = ConstantInt::get(SelType, AndMask); |
| for (auto Opc : {Instruction::Or, Instruction::Xor, Instruction::Add, |
| Instruction::Sub}) { |
| if (ConstantFoldBinaryOpOperands(Opc, TCC, MaskC, Sel.getDataLayout()) == |
| FCC) { |
| if (CreateAnd) |
| V = Builder.CreateAnd(V, MaskC); |
| return Builder.CreateBinOp(Opc, TCC, V); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // Make sure one of the select arms is a power-of-2. |
| if (!TC.isPowerOf2() && !FC.isPowerOf2()) |
| return nullptr; |
| |
| // Determine which shift is needed to transform result of the 'and' into the |
| // desired result. |
| const APInt &ValC = !TC.isZero() ? TC : FC; |
| unsigned ValZeros = ValC.logBase2(); |
| unsigned AndZeros = AndMask.logBase2(); |
| bool ShouldNotVal = !TC.isZero(); |
| |
| // If we would need to create an 'and' + 'shift' + 'xor' to replace a 'select' |
| // + 'icmp', then this transformation would result in more instructions and |
| // potentially interfere with other folding. |
| if (CreateAnd && ShouldNotVal && ValZeros != AndZeros) |
| return nullptr; |
| |
| // Insert the 'and' instruction on the input to the truncate. |
| if (CreateAnd) |
| V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); |
| |
| // If types don't match, we can still convert the select by introducing a zext |
| // or a trunc of the 'and'. |
| if (ValZeros > AndZeros) { |
| V = Builder.CreateZExtOrTrunc(V, SelType); |
| V = Builder.CreateShl(V, ValZeros - AndZeros); |
| } else if (ValZeros < AndZeros) { |
| V = Builder.CreateLShr(V, AndZeros - ValZeros); |
| V = Builder.CreateZExtOrTrunc(V, SelType); |
| } else { |
| V = Builder.CreateZExtOrTrunc(V, SelType); |
| } |
| |
| // Okay, now we know that everything is set up, we just don't know whether we |
| // have a icmp_ne or icmp_eq and whether the true or false val is the zero. |
| if (ShouldNotVal) |
| V = Builder.CreateXor(V, ValC); |
| |
| return V; |
| } |
| |
| /// We want to turn code that looks like this: |
| /// %C = or %A, %B |
| /// %D = select %cond, %C, %A |
| /// into: |
| /// %C = select %cond, %B, 0 |
| /// %D = or %A, %C |
| /// |
| /// Assuming that the specified instruction is an operand to the select, return |
| /// a bitmask indicating which operands of this instruction are foldable if they |
| /// equal the other incoming value of the select. |
| static unsigned getSelectFoldableOperands(BinaryOperator *I) { |
| switch (I->getOpcode()) { |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| return 3; // Can fold through either operand. |
| case Instruction::Sub: // Can only fold on the amount subtracted. |
| case Instruction::FSub: |
| case Instruction::FDiv: // Can only fold on the divisor amount. |
| case Instruction::Shl: // Can only fold on the shift amount. |
| case Instruction::LShr: |
| case Instruction::AShr: |
| return 1; |
| default: |
| return 0; // Cannot fold |
| } |
| } |
| |
| /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. |
| Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, |
| Instruction *FI) { |
| // Don't break up min/max patterns. The hasOneUse checks below prevent that |
| // for most cases, but vector min/max with bitcasts can be transformed. If the |
| // one-use restrictions are eased for other patterns, we still don't want to |
| // obfuscate min/max. |
| if ((match(&SI, m_SMin(m_Value(), m_Value())) || |
| match(&SI, m_SMax(m_Value(), m_Value())) || |
| match(&SI, m_UMin(m_Value(), m_Value())) || |
| match(&SI, m_UMax(m_Value(), m_Value())))) |
| return nullptr; |
| |
| // If this is a cast from the same type, merge. |
| Value *Cond = SI.getCondition(); |
| Type *CondTy = Cond->getType(); |
| if (TI->getNumOperands() == 1 && TI->isCast()) { |
| Type *FIOpndTy = FI->getOperand(0)->getType(); |
| if (TI->getOperand(0)->getType() != FIOpndTy) |
| return nullptr; |
| |
| // The select condition may be a vector. We may only change the operand |
| // type if the vector width remains the same (and matches the condition). |
| if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { |
| if (!FIOpndTy->isVectorTy() || |
| CondVTy->getElementCount() != |
| cast<VectorType>(FIOpndTy)->getElementCount()) |
| return nullptr; |
| |
| // TODO: If the backend knew how to deal with casts better, we could |
| // remove this limitation. For now, there's too much potential to create |
| // worse codegen by promoting the select ahead of size-altering casts |
| // (PR28160). |
| // |
| // Note that ValueTracking's matchSelectPattern() looks through casts |
| // without checking 'hasOneUse' when it matches min/max patterns, so this |
| // transform may end up happening anyway. |
| if (TI->getOpcode() != Instruction::BitCast && |
| (!TI->hasOneUse() || !FI->hasOneUse())) |
| return nullptr; |
| } else if (!TI->hasOneUse() || !FI->hasOneUse()) { |
| // TODO: The one-use restrictions for a scalar select could be eased if |
| // the fold of a select in visitLoadInst() was enhanced to match a pattern |
| // that includes a cast. |
| return nullptr; |
| } |
| |
| // Fold this by inserting a select from the input values. |
| Value *NewSI = |
| Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), |
| SI.getName() + ".v", &SI); |
| return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, |
| TI->getType()); |
| } |
| |
| Value *OtherOpT, *OtherOpF; |
| bool MatchIsOpZero; |
| auto getCommonOp = [&](Instruction *TI, Instruction *FI, bool Commute, |
| bool Swapped = false) -> Value * { |
| assert(!(Commute && Swapped) && |
| "Commute and Swapped can't set at the same time"); |
| if (!Swapped) { |
| if (TI->getOperand(0) == FI->getOperand(0)) { |
| OtherOpT = TI->getOperand(1); |
| OtherOpF = FI->getOperand(1); |
| MatchIsOpZero = true; |
| return TI->getOperand(0); |
| } else if (TI->getOperand(1) == FI->getOperand(1)) { |
| OtherOpT = TI->getOperand(0); |
| OtherOpF = FI->getOperand(0); |
| MatchIsOpZero = false; |
| return TI->getOperand(1); |
| } |
| } |
| |
| if (!Commute && !Swapped) |
| return nullptr; |
| |
| // If we are allowing commute or swap of operands, then |
| // allow a cross-operand match. In that case, MatchIsOpZero |
| // means that TI's operand 0 (FI's operand 1) is the common op. |
| if (TI->getOperand(0) == FI->getOperand(1)) { |
| OtherOpT = TI->getOperand(1); |
| OtherOpF = FI->getOperand(0); |
| MatchIsOpZero = true; |
| return TI->getOperand(0); |
| } else if (TI->getOperand(1) == FI->getOperand(0)) { |
| OtherOpT = TI->getOperand(0); |
| OtherOpF = FI->getOperand(1); |
| MatchIsOpZero = false; |
| return TI->getOperand(1); |
| } |
| return nullptr; |
| }; |
| |
| if (TI->hasOneUse() || FI->hasOneUse()) { |
| // Cond ? -X : -Y --> -(Cond ? X : Y) |
| Value *X, *Y; |
| if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y)))) { |
| // Intersect FMF from the fneg instructions and union those with the |
| // select. |
| FastMathFlags FMF = TI->getFastMathFlags(); |
| FMF &= FI->getFastMathFlags(); |
| FMF |= SI.getFastMathFlags(); |
| Value *NewSel = |
| Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); |
| if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) |
| NewSelI->setFastMathFlags(FMF); |
| Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); |
| NewFNeg->setFastMathFlags(FMF); |
| return NewFNeg; |
| } |
| |
| // Min/max intrinsic with a common operand can have the common operand |
| // pulled after the select. This is the same transform as below for binops, |
| // but specialized for intrinsic matching and without the restrictive uses |
| // clause. |
| auto *TII = dyn_cast<IntrinsicInst>(TI); |
| auto *FII = dyn_cast<IntrinsicInst>(FI); |
| if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID()) { |
| if (match(TII, m_MaxOrMin(m_Value(), m_Value()))) { |
| if (Value *MatchOp = getCommonOp(TI, FI, true)) { |
| Value *NewSel = |
| Builder.CreateSelect(Cond, OtherOpT, OtherOpF, "minmaxop", &SI); |
| return CallInst::Create(TII->getCalledFunction(), {NewSel, MatchOp}); |
| } |
| } |
| |
| // select c, (ldexp v, e0), (ldexp v, e1) -> ldexp v, (select c, e0, e1) |
| // select c, (ldexp v0, e), (ldexp v1, e) -> ldexp (select c, v0, v1), e |
| // |
| // select c, (ldexp v0, e0), (ldexp v1, e1) -> |
| // ldexp (select c, v0, v1), (select c, e0, e1) |
| if (TII->getIntrinsicID() == Intrinsic::ldexp) { |
| Value *LdexpVal0 = TII->getArgOperand(0); |
| Value *LdexpExp0 = TII->getArgOperand(1); |
| Value *LdexpVal1 = FII->getArgOperand(0); |
| Value *LdexpExp1 = FII->getArgOperand(1); |
| if (LdexpExp0->getType() == LdexpExp1->getType()) { |
| FPMathOperator *SelectFPOp = cast<FPMathOperator>(&SI); |
| FastMathFlags FMF = cast<FPMathOperator>(TII)->getFastMathFlags(); |
| FMF &= cast<FPMathOperator>(FII)->getFastMathFlags(); |
| FMF |= SelectFPOp->getFastMathFlags(); |
| |
| Value *SelectVal = Builder.CreateSelect(Cond, LdexpVal0, LdexpVal1); |
| Value *SelectExp = Builder.CreateSelect(Cond, LdexpExp0, LdexpExp1); |
| |
| CallInst *NewLdexp = Builder.CreateIntrinsic( |
| TII->getType(), Intrinsic::ldexp, {SelectVal, SelectExp}); |
| NewLdexp->setFastMathFlags(FMF); |
| return replaceInstUsesWith(SI, NewLdexp); |
| } |
| } |
| } |
| |
| // icmp with a common operand also can have the common operand |
| // pulled after the select. |
| ICmpInst::Predicate TPred, FPred; |
| if (match(TI, m_ICmp(TPred, m_Value(), m_Value())) && |
| match(FI, m_ICmp(FPred, m_Value(), m_Value()))) { |
| if (TPred == FPred || TPred == CmpInst::getSwappedPredicate(FPred)) { |
| bool Swapped = TPred != FPred; |
| if (Value *MatchOp = |
| getCommonOp(TI, FI, ICmpInst::isEquality(TPred), Swapped)) { |
| Value *NewSel = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, |
| SI.getName() + ".v", &SI); |
| return new ICmpInst( |
| MatchIsOpZero ? TPred : CmpInst::getSwappedPredicate(TPred), |
| MatchOp, NewSel); |
| } |
| } |
| } |
| } |
| |
| // Only handle binary operators (including two-operand getelementptr) with |
| // one-use here. As with the cast case above, it may be possible to relax the |
| // one-use constraint, but that needs be examined carefully since it may not |
| // reduce the total number of instructions. |
| if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || |
| !TI->isSameOperationAs(FI) || |
| (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || |
| !TI->hasOneUse() || !FI->hasOneUse()) |
| return nullptr; |
| |
| // Figure out if the operations have any operands in common. |
| Value *MatchOp = getCommonOp(TI, FI, TI->isCommutative()); |
| if (!MatchOp) |
| return nullptr; |
| |
| // If the select condition is a vector, the operands of the original select's |
| // operands also must be vectors. This may not be the case for getelementptr |
| // for example. |
| if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || |
| !OtherOpF->getType()->isVectorTy())) |
| return nullptr; |
| |
| // If we are sinking div/rem after a select, we may need to freeze the |
| // condition because div/rem may induce immediate UB with a poison operand. |
| // For example, the following transform is not safe if Cond can ever be poison |
| // because we can replace poison with zero and then we have div-by-zero that |
| // didn't exist in the original code: |
| // Cond ? x/y : x/z --> x / (Cond ? y : z) |
| auto *BO = dyn_cast<BinaryOperator>(TI); |
| if (BO && BO->isIntDivRem() && !isGuaranteedNotToBePoison(Cond)) { |
| // A udiv/urem with a common divisor is safe because UB can only occur with |
| // div-by-zero, and that would be present in the original code. |
| if (BO->getOpcode() == Instruction::SDiv || |
| BO->getOpcode() == Instruction::SRem || MatchIsOpZero) |
| Cond = Builder.CreateFreeze(Cond); |
| } |
| |
| // If we reach here, they do have operations in common. |
| Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, |
| SI.getName() + ".v", &SI); |
| Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; |
| Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; |
| if (auto *BO = dyn_cast<BinaryOperator>(TI)) { |
| BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); |
| NewBO->copyIRFlags(TI); |
| NewBO->andIRFlags(FI); |
| return NewBO; |
| } |
| if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { |
| auto *FGEP = cast<GetElementPtrInst>(FI); |
| Type *ElementType = TGEP->getSourceElementType(); |
| return GetElementPtrInst::Create( |
| ElementType, Op0, Op1, TGEP->getNoWrapFlags() & FGEP->getNoWrapFlags()); |
| } |
| llvm_unreachable("Expected BinaryOperator or GEP"); |
| return nullptr; |
| } |
| |
| static bool isSelect01(const APInt &C1I, const APInt &C2I) { |
| if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. |
| return false; |
| return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); |
| } |
| |
| /// Try to fold the select into one of the operands to allow further |
| /// optimization. |
| Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, |
| Value *FalseVal) { |
| // See the comment above getSelectFoldableOperands for a description of the |
| // transformation we are doing here. |
| auto TryFoldSelectIntoOp = [&](SelectInst &SI, Value *TrueVal, |
| Value *FalseVal, |
| bool Swapped) -> Instruction * { |
| auto *TVI = dyn_cast<BinaryOperator>(TrueVal); |
| if (!TVI || !TVI->hasOneUse() || isa<Constant>(FalseVal)) |
| return nullptr; |
| |
| unsigned SFO = getSelectFoldableOperands(TVI); |
| unsigned OpToFold = 0; |
| if ((SFO & 1) && FalseVal == TVI->getOperand(0)) |
| OpToFold = 1; |
| else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) |
| OpToFold = 2; |
| |
| if (!OpToFold) |
| return nullptr; |
| |
| FastMathFlags FMF; |
| if (isa<FPMathOperator>(&SI)) |
| FMF = SI.getFastMathFlags(); |
| Constant *C = ConstantExpr::getBinOpIdentity( |
| TVI->getOpcode(), TVI->getType(), true, FMF.noSignedZeros()); |
| Value *OOp = TVI->getOperand(2 - OpToFold); |
| // Avoid creating select between 2 constants unless it's selecting |
| // between 0, 1 and -1. |
| const APInt *OOpC; |
| bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); |
| if (isa<Constant>(OOp) && |
| (!OOpIsAPInt || !isSelect01(C->getUniqueInteger(), *OOpC))) |
| return nullptr; |
| |
| // If the false value is a NaN then we have that the floating point math |
| // operation in the transformed code may not preserve the exact NaN |
| // bit-pattern -- e.g. `fadd sNaN, 0.0 -> qNaN`. |
| // This makes the transformation incorrect since the original program would |
| // have preserved the exact NaN bit-pattern. |
| // Avoid the folding if the false value might be a NaN. |
| if (isa<FPMathOperator>(&SI) && |
| !computeKnownFPClass(FalseVal, FMF, fcNan, &SI).isKnownNeverNaN()) |
| return nullptr; |
| |
| Value *NewSel = Builder.CreateSelect(SI.getCondition(), Swapped ? C : OOp, |
| Swapped ? OOp : C, "", &SI); |
| if (isa<FPMathOperator>(&SI)) |
| cast<Instruction>(NewSel)->setFastMathFlags(FMF); |
| NewSel->takeName(TVI); |
| BinaryOperator *BO = |
| BinaryOperator::Create(TVI->getOpcode(), FalseVal, NewSel); |
| BO->copyIRFlags(TVI); |
| if (isa<FPMathOperator>(&SI)) { |
| // Merge poison generating flags from the select. |
| BO->setHasNoNaNs(BO->hasNoNaNs() && FMF.noNaNs()); |
| BO->setHasNoInfs(BO->hasNoInfs() && FMF.noInfs()); |
| // Merge no-signed-zeros flag from the select. |
| // Otherwise we may produce zeros with different sign. |
| BO->setHasNoSignedZeros(BO->hasNoSignedZeros() && FMF.noSignedZeros()); |
| } |
| return BO; |
| }; |
| |
| if (Instruction *R = TryFoldSelectIntoOp(SI, TrueVal, FalseVal, false)) |
| return R; |
| |
| if (Instruction *R = TryFoldSelectIntoOp(SI, FalseVal, TrueVal, true)) |
| return R; |
| |
| return nullptr; |
| } |
| |
| /// We want to turn: |
| /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) |
| /// into: |
| /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) |
| /// Note: |
| /// Z may be 0 if lshr is missing. |
| /// Worst-case scenario is that we will replace 5 instructions with 5 different |
| /// instructions, but we got rid of select. |
| static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, |
| Value *TVal, Value *FVal, |
| InstCombiner::BuilderTy &Builder) { |
| if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && |
| Cmp->getPredicate() == ICmpInst::ICMP_EQ && |
| match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) |
| return nullptr; |
| |
| // The TrueVal has general form of: and %B, 1 |
| Value *B; |
| if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) |
| return nullptr; |
| |
| // Where %B may be optionally shifted: lshr %X, %Z. |
| Value *X, *Z; |
| const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); |
| |
| // The shift must be valid. |
| // TODO: This restricts the fold to constant shift amounts. Is there a way to |
| // handle variable shifts safely? PR47012 |
| if (HasShift && |
| !match(Z, m_SpecificInt_ICMP(CmpInst::ICMP_ULT, |
| APInt(SelType->getScalarSizeInBits(), |
| SelType->getScalarSizeInBits())))) |
| return nullptr; |
| |
| if (!HasShift) |
| X = B; |
| |
| Value *Y; |
| if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) |
| return nullptr; |
| |
| // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 |
| // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 |
| Constant *One = ConstantInt::get(SelType, 1); |
| Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; |
| Value *FullMask = Builder.CreateOr(Y, MaskB); |
| Value *MaskedX = Builder.CreateAnd(X, FullMask); |
| Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); |
| return new ZExtInst(ICmpNeZero, SelType); |
| } |
| |
| /// We want to turn: |
| /// (select (icmp eq (and X, C1), 0), 0, (shl [nsw/nuw] X, C2)); |
| /// iff C1 is a mask and the number of its leading zeros is equal to C2 |
| /// into: |
| /// shl X, C2 |
| static Value *foldSelectICmpAndZeroShl(const ICmpInst *Cmp, Value *TVal, |
| Value *FVal, |
| InstCombiner::BuilderTy &Builder) { |
| ICmpInst::Predicate Pred; |
| Value *AndVal; |
| if (!match(Cmp, m_ICmp(Pred, m_Value(AndVal), m_Zero()))) |
| return nullptr; |
| |
| if (Pred == ICmpInst::ICMP_NE) { |
| Pred = ICmpInst::ICMP_EQ; |
| std::swap(TVal, FVal); |
| } |
| |
| Value *X; |
| const APInt *C2, *C1; |
| if (Pred != ICmpInst::ICMP_EQ || |
| !match(AndVal, m_And(m_Value(X), m_APInt(C1))) || |
| !match(TVal, m_Zero()) || !match(FVal, m_Shl(m_Specific(X), m_APInt(C2)))) |
| return nullptr; |
| |
| if (!C1->isMask() || |
| C1->countLeadingZeros() != static_cast<unsigned>(C2->getZExtValue())) |
| return nullptr; |
| |
| auto *FI = dyn_cast<Instruction>(FVal); |
| if (!FI) |
| return nullptr; |
| |
| FI->setHasNoSignedWrap(false); |
| FI->setHasNoUnsignedWrap(false); |
| return FVal; |
| } |
| |
| /// We want to turn: |
| /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 |
| /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 |
| /// into: |
| /// ashr (X, Y) |
| static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, |
| Value *FalseVal, |
| InstCombiner::BuilderTy &Builder) { |
| ICmpInst::Predicate Pred = IC->getPredicate(); |
| Value *CmpLHS = IC->getOperand(0); |
| Value *CmpRHS = IC->getOperand(1); |
| if (!CmpRHS->getType()->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| Value *X, *Y; |
| unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); |
| if ((Pred != ICmpInst::ICMP_SGT || |
| !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, |
| APInt::getAllOnes(Bitwidth)))) && |
| (Pred != ICmpInst::ICMP_SLT || |
| !match(CmpRHS, m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, |
| APInt::getZero(Bitwidth))))) |
| return nullptr; |
| |
| // Canonicalize so that ashr is in FalseVal. |
| if (Pred == ICmpInst::ICMP_SLT) |
| std::swap(TrueVal, FalseVal); |
| |
| if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && |
| match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && |
| match(CmpLHS, m_Specific(X))) { |
| const auto *Ashr = cast<Instruction>(FalseVal); |
| // if lshr is not exact and ashr is, this new ashr must not be exact. |
| bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); |
| return Builder.CreateAShr(X, Y, IC->getName(), IsExact); |
| } |
| |
| return nullptr; |
| } |
| |
| /// We want to turn: |
| /// (select (icmp eq (and X, C1), 0), Y, (BinOp Y, C2)) |
| /// into: |
| /// IF C2 u>= C1 |
| /// (BinOp Y, (shl (and X, C1), C3)) |
| /// ELSE |
| /// (BinOp Y, (lshr (and X, C1), C3)) |
| /// iff: |
| /// 0 on the RHS is the identity value (i.e add, xor, shl, etc...) |
| /// C1 and C2 are both powers of 2 |
| /// where: |
| /// IF C2 u>= C1 |
| /// C3 = Log(C2) - Log(C1) |
| /// ELSE |
| /// C3 = Log(C1) - Log(C2) |
| /// |
| /// This transform handles cases where: |
| /// 1. The icmp predicate is inverted |
| /// 2. The select operands are reversed |
| /// 3. The magnitude of C2 and C1 are flipped |
| static Value *foldSelectICmpAndBinOp(const ICmpInst *IC, Value *TrueVal, |
| Value *FalseVal, |
| InstCombiner::BuilderTy &Builder) { |
| // Only handle integer compares. Also, if this is a vector select, we need a |
| // vector compare. |
| if (!TrueVal->getType()->isIntOrIntVectorTy() || |
| TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) |
| return nullptr; |
| |
| Value *CmpLHS = IC->getOperand(0); |
| Value *CmpRHS = IC->getOperand(1); |
| |
| unsigned C1Log; |
| bool NeedAnd = false; |
| CmpInst::Predicate Pred = IC->getPredicate(); |
| if (IC->isEquality()) { |
| if (!match(CmpRHS, m_Zero())) |
| return nullptr; |
| |
| const APInt *C1; |
| if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) |
| return nullptr; |
| |
| C1Log = C1->logBase2(); |
| } else { |
| auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred); |
| if (!Res || !Res->Mask.isPowerOf2()) |
| return nullptr; |
| |
| CmpLHS = Res->X; |
| Pred = Res->Pred; |
| C1Log = Res->Mask.logBase2(); |
| NeedAnd = true; |
| } |
| |
| Value *Y, *V = CmpLHS; |
| BinaryOperator *BinOp; |
| const APInt *C2; |
| bool NeedXor; |
| if (match(FalseVal, m_BinOp(m_Specific(TrueVal), m_Power2(C2)))) { |
| Y = TrueVal; |
| BinOp = cast<BinaryOperator>(FalseVal); |
| NeedXor = Pred == ICmpInst::ICMP_NE; |
| } else if (match(TrueVal, m_BinOp(m_Specific(FalseVal), m_Power2(C2)))) { |
| Y = FalseVal; |
| BinOp = cast<BinaryOperator>(TrueVal); |
| NeedXor = Pred == ICmpInst::ICMP_EQ; |
| } else { |
| return nullptr; |
| } |
| |
| // Check that 0 on RHS is identity value for this binop. |
| auto *IdentityC = |
| ConstantExpr::getBinOpIdentity(BinOp->getOpcode(), BinOp->getType(), |
| /*AllowRHSConstant*/ true); |
| if (IdentityC == nullptr || !IdentityC->isNullValue()) |
| return nullptr; |
| |
| unsigned C2Log = C2->logBase2(); |
| |
| bool NeedShift = C1Log != C2Log; |
| bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != |
| V->getType()->getScalarSizeInBits(); |
| |
| // Make sure we don't create more instructions than we save. |
| if ((NeedShift + NeedXor + NeedZExtTrunc + NeedAnd) > |
| (IC->hasOneUse() + BinOp->hasOneUse())) |
| return nullptr; |
| |
| if (NeedAnd) { |
| // Insert the AND instruction on the input to the truncate. |
| APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); |
| V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); |
| } |
| |
| if (C2Log > C1Log) { |
| V = Builder.CreateZExtOrTrunc(V, Y->getType()); |
| V = Builder.CreateShl(V, C2Log - C1Log); |
| } else if (C1Log > C2Log) { |
| V = Builder.CreateLShr(V, C1Log - C2Log); |
| V = Builder.CreateZExtOrTrunc(V, Y->getType()); |
| } else |
| V = Builder.CreateZExtOrTrunc(V, Y->getType()); |
| |
| if (NeedXor) |
| V = Builder.CreateXor(V, *C2); |
| |
| return Builder.CreateBinOp(BinOp->getOpcode(), Y, V); |
| } |
| |
| /// Canonicalize a set or clear of a masked set of constant bits to |
| /// select-of-constants form. |
| static Instruction *foldSetClearBits(SelectInst &Sel, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Cond = Sel.getCondition(); |
| Value *T = Sel.getTrueValue(); |
| Value *F = Sel.getFalseValue(); |
| Type *Ty = Sel.getType(); |
| Value *X; |
| const APInt *NotC, *C; |
| |
| // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) |
| if (match(T, m_And(m_Value(X), m_APInt(NotC))) && |
| match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { |
| Constant *Zero = ConstantInt::getNullValue(Ty); |
| Constant *OrC = ConstantInt::get(Ty, *C); |
| Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); |
| return BinaryOperator::CreateOr(T, NewSel); |
| } |
| |
| // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) |
| if (match(F, m_And(m_Value(X), m_APInt(NotC))) && |
| match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { |
| Constant *Zero = ConstantInt::getNullValue(Ty); |
| Constant *OrC = ConstantInt::get(Ty, *C); |
| Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); |
| return BinaryOperator::CreateOr(F, NewSel); |
| } |
| |
| return nullptr; |
| } |
| |
| // select (x == 0), 0, x * y --> freeze(y) * x |
| // select (y == 0), 0, x * y --> freeze(x) * y |
| // select (x == 0), undef, x * y --> freeze(y) * x |
| // select (x == undef), 0, x * y --> freeze(y) * x |
| // Usage of mul instead of 0 will make the result more poisonous, |
| // so the operand that was not checked in the condition should be frozen. |
| // The latter folding is applied only when a constant compared with x is |
| // is a vector consisting of 0 and undefs. If a constant compared with x |
| // is a scalar undefined value or undefined vector then an expression |
| // should be already folded into a constant. |
| static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { |
| auto *CondVal = SI.getCondition(); |
| auto *TrueVal = SI.getTrueValue(); |
| auto *FalseVal = SI.getFalseValue(); |
| Value *X, *Y; |
| ICmpInst::Predicate Predicate; |
| |
| // Assuming that constant compared with zero is not undef (but it may be |
| // a vector with some undef elements). Otherwise (when a constant is undef) |
| // the select expression should be already simplified. |
| if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || |
| !ICmpInst::isEquality(Predicate)) |
| return nullptr; |
| |
| if (Predicate == ICmpInst::ICMP_NE) |
| std::swap(TrueVal, FalseVal); |
| |
| // Check that TrueVal is a constant instead of matching it with m_Zero() |
| // to handle the case when it is a scalar undef value or a vector containing |
| // non-zero elements that are masked by undef elements in the compare |
| // constant. |
| auto *TrueValC = dyn_cast<Constant>(TrueVal); |
| if (TrueValC == nullptr || |
| !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || |
| !isa<Instruction>(FalseVal)) |
| return nullptr; |
| |
| auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); |
| auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); |
| // If X is compared with 0 then TrueVal could be either zero or undef. |
| // m_Zero match vectors containing some undef elements, but for scalars |
| // m_Undef should be used explicitly. |
| if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) |
| return nullptr; |
| |
| auto *FalseValI = cast<Instruction>(FalseVal); |
| auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), |
| FalseValI->getIterator()); |
| IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); |
| return IC.replaceInstUsesWith(SI, FalseValI); |
| } |
| |
| /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). |
| /// There are 8 commuted/swapped variants of this pattern. |
| static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, |
| const Value *TrueVal, |
| const Value *FalseVal, |
| InstCombiner::BuilderTy &Builder) { |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| Value *A = ICI->getOperand(0); |
| Value *B = ICI->getOperand(1); |
| |
| // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 |
| // (a == 0) ? 0 : a - 1 -> (a != 0) ? a - 1 : 0 |
| if (match(TrueVal, m_Zero())) { |
| Pred = ICmpInst::getInversePredicate(Pred); |
| std::swap(TrueVal, FalseVal); |
| } |
| |
| if (!match(FalseVal, m_Zero())) |
| return nullptr; |
| |
| // ugt 0 is canonicalized to ne 0 and requires special handling |
| // (a != 0) ? a + -1 : 0 -> usub.sat(a, 1) |
| if (Pred == ICmpInst::ICMP_NE) { |
| if (match(B, m_Zero()) && match(TrueVal, m_Add(m_Specific(A), m_AllOnes()))) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, |
| ConstantInt::get(A->getType(), 1)); |
| return nullptr; |
| } |
| |
| if (!ICmpInst::isUnsigned(Pred)) |
| return nullptr; |
| |
| if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { |
| // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 |
| std::swap(A, B); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && |
| "Unexpected isUnsigned predicate!"); |
| |
| // Ensure the sub is of the form: |
| // (a > b) ? a - b : 0 -> usub.sat(a, b) |
| // (a > b) ? b - a : 0 -> -usub.sat(a, b) |
| // Checking for both a-b and a+(-b) as a constant. |
| bool IsNegative = false; |
| const APInt *C; |
| if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || |
| (match(A, m_APInt(C)) && |
| match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) |
| IsNegative = true; |
| else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && |
| !(match(B, m_APInt(C)) && |
| match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) |
| return nullptr; |
| |
| // If we are adding a negate and the sub and icmp are used anywhere else, we |
| // would end up with more instructions. |
| if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) |
| return nullptr; |
| |
| // (a > b) ? a - b : 0 -> usub.sat(a, b) |
| // (a > b) ? b - a : 0 -> -usub.sat(a, b) |
| Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); |
| if (IsNegative) |
| Result = Builder.CreateNeg(Result); |
| return Result; |
| } |
| |
| static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, |
| InstCombiner::BuilderTy &Builder) { |
| if (!Cmp->hasOneUse()) |
| return nullptr; |
| |
| // Match unsigned saturated add with constant. |
| Value *Cmp0 = Cmp->getOperand(0); |
| Value *Cmp1 = Cmp->getOperand(1); |
| ICmpInst::Predicate Pred = Cmp->getPredicate(); |
| Value *X; |
| const APInt *C; |
| |
| // Match unsigned saturated add of 2 variables with an unnecessary 'not'. |
| // There are 8 commuted variants. |
| // Canonicalize -1 (saturated result) to true value of the select. |
| if (match(FVal, m_AllOnes())) { |
| std::swap(TVal, FVal); |
| Pred = CmpInst::getInversePredicate(Pred); |
| } |
| if (!match(TVal, m_AllOnes())) |
| return nullptr; |
| |
| // uge -1 is canonicalized to eq -1 and requires special handling |
| // (a == -1) ? -1 : a + 1 -> uadd.sat(a, 1) |
| if (Pred == ICmpInst::ICMP_EQ) { |
| if (match(FVal, m_Add(m_Specific(Cmp0), m_One())) && |
| match(Cmp1, m_AllOnes())) { |
| return Builder.CreateBinaryIntrinsic( |
| Intrinsic::uadd_sat, Cmp0, ConstantInt::get(Cmp0->getType(), 1)); |
| } |
| return nullptr; |
| } |
| |
| if ((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && |
| match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && |
| match(Cmp1, m_SpecificIntAllowPoison(~*C))) { |
| // (X u> ~C) ? -1 : (X + C) --> uadd.sat(X, C) |
| // (X u>= ~C)? -1 : (X + C) --> uadd.sat(X, C) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, |
| ConstantInt::get(Cmp0->getType(), *C)); |
| } |
| |
| // Negative one does not work here because X u> -1 ? -1, X + -1 is not a |
| // saturated add. |
| if (Pred == ICmpInst::ICMP_UGT && |
| match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && |
| match(Cmp1, m_SpecificIntAllowPoison(~*C - 1)) && !C->isAllOnes()) { |
| // (X u> ~C - 1) ? -1 : (X + C) --> uadd.sat(X, C) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, |
| ConstantInt::get(Cmp0->getType(), *C)); |
| } |
| |
| // Zero does not work here because X u>= 0 ? -1 : X -> is always -1, which is |
| // not a saturated add. |
| if (Pred == ICmpInst::ICMP_UGE && |
| match(FVal, m_Add(m_Specific(Cmp0), m_APIntAllowPoison(C))) && |
| match(Cmp1, m_SpecificIntAllowPoison(-*C)) && !C->isZero()) { |
| // (X u >= -C) ? -1 : (X + C) --> uadd.sat(X, C) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp0, |
| ConstantInt::get(Cmp0->getType(), *C)); |
| } |
| |
| // Canonicalize predicate to less-than or less-or-equal-than. |
| if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { |
| std::swap(Cmp0, Cmp1); |
| Pred = CmpInst::getSwappedPredicate(Pred); |
| } |
| if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) |
| return nullptr; |
| |
| // Match unsigned saturated add of 2 variables with an unnecessary 'not'. |
| // Strictness of the comparison is irrelevant. |
| Value *Y; |
| if (match(Cmp0, m_Not(m_Value(X))) && |
| match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { |
| // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) |
| // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); |
| } |
| // The 'not' op may be included in the sum but not the compare. |
| // Strictness of the comparison is irrelevant. |
| X = Cmp0; |
| Y = Cmp1; |
| if (match(FVal, m_c_Add(m_NotForbidPoison(m_Specific(X)), m_Specific(Y)))) { |
| // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) |
| // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) |
| BinaryOperator *BO = cast<BinaryOperator>(FVal); |
| return Builder.CreateBinaryIntrinsic( |
| Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); |
| } |
| // The overflow may be detected via the add wrapping round. |
| // This is only valid for strict comparison! |
| if (Pred == ICmpInst::ICMP_ULT && |
| match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && |
| match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { |
| // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) |
| // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to match patterns with select and subtract as absolute difference. |
| static Value *foldAbsDiff(ICmpInst *Cmp, Value *TVal, Value *FVal, |
| InstCombiner::BuilderTy &Builder) { |
| auto *TI = dyn_cast<Instruction>(TVal); |
| auto *FI = dyn_cast<Instruction>(FVal); |
| if (!TI || !FI) |
| return nullptr; |
| |
| // Normalize predicate to gt/lt rather than ge/le. |
| ICmpInst::Predicate Pred = Cmp->getStrictPredicate(); |
| Value *A = Cmp->getOperand(0); |
| Value *B = Cmp->getOperand(1); |
| |
| // Normalize "A - B" as the true value of the select. |
| if (match(FI, m_Sub(m_Specific(A), m_Specific(B)))) { |
| std::swap(FI, TI); |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // With any pair of no-wrap subtracts: |
| // (A > B) ? (A - B) : (B - A) --> abs(A - B) |
| if (Pred == CmpInst::ICMP_SGT && |
| match(TI, m_Sub(m_Specific(A), m_Specific(B))) && |
| match(FI, m_Sub(m_Specific(B), m_Specific(A))) && |
| (TI->hasNoSignedWrap() || TI->hasNoUnsignedWrap()) && |
| (FI->hasNoSignedWrap() || FI->hasNoUnsignedWrap())) { |
| // The remaining subtract is not "nuw" any more. |
| // If there's one use of the subtract (no other use than the use we are |
| // about to replace), then we know that the sub is "nsw" in this context |
| // even if it was only "nuw" before. If there's another use, then we can't |
| // add "nsw" to the existing instruction because it may not be safe in the |
| // other user's context. |
| TI->setHasNoUnsignedWrap(false); |
| if (!TI->hasNoSignedWrap()) |
| TI->setHasNoSignedWrap(TI->hasOneUse()); |
| return Builder.CreateBinaryIntrinsic(Intrinsic::abs, TI, Builder.getTrue()); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold the following code sequence: |
| /// \code |
| /// int a = ctlz(x & -x); |
| // x ? 31 - a : a; |
| // // or |
| // x ? 31 - a : 32; |
| /// \code |
| /// |
| /// into: |
| /// cttz(x) |
| static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, |
| Value *FalseVal, |
| InstCombiner::BuilderTy &Builder) { |
| unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); |
| if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) |
| return nullptr; |
| |
| if (ICI->getPredicate() == ICmpInst::ICMP_NE) |
| std::swap(TrueVal, FalseVal); |
| |
| Value *Ctlz; |
| if (!match(FalseVal, |
| m_Xor(m_Value(Ctlz), m_SpecificInt(BitWidth - 1)))) |
| return nullptr; |
| |
| if (!match(Ctlz, m_Intrinsic<Intrinsic::ctlz>())) |
| return nullptr; |
| |
| if (TrueVal != Ctlz && !match(TrueVal, m_SpecificInt(BitWidth))) |
| return nullptr; |
| |
| Value *X = ICI->getOperand(0); |
| auto *II = cast<IntrinsicInst>(Ctlz); |
| if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) |
| return nullptr; |
| |
| Function *F = Intrinsic::getOrInsertDeclaration( |
| II->getModule(), Intrinsic::cttz, II->getType()); |
| return CallInst::Create(F, {X, II->getArgOperand(1)}); |
| } |
| |
| /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single |
| /// call to cttz/ctlz with flag 'is_zero_poison' cleared. |
| /// |
| /// For example, we can fold the following code sequence: |
| /// \code |
| /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) |
| /// %1 = icmp ne i32 %x, 0 |
| /// %2 = select i1 %1, i32 %0, i32 32 |
| /// \code |
| /// |
| /// into: |
| /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) |
| static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, |
| InstCombinerImpl &IC) { |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| Value *CmpLHS = ICI->getOperand(0); |
| Value *CmpRHS = ICI->getOperand(1); |
| |
| // Check if the select condition compares a value for equality. |
| if (!ICI->isEquality()) |
| return nullptr; |
| |
| Value *SelectArg = FalseVal; |
| Value *ValueOnZero = TrueVal; |
| if (Pred == ICmpInst::ICMP_NE) |
| std::swap(SelectArg, ValueOnZero); |
| |
| // Skip zero extend/truncate. |
| Value *Count = nullptr; |
| if (!match(SelectArg, m_ZExt(m_Value(Count))) && |
| !match(SelectArg, m_Trunc(m_Value(Count)))) |
| Count = SelectArg; |
| |
| // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the |
| // input to the cttz/ctlz is used as LHS for the compare instruction. |
| Value *X; |
| if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Value(X))) && |
| !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Value(X)))) |
| return nullptr; |
| |
| // (X == 0) ? BitWidth : ctz(X) |
| // (X == -1) ? BitWidth : ctz(~X) |
| if ((X != CmpLHS || !match(CmpRHS, m_Zero())) && |
| (!match(X, m_Not(m_Specific(CmpLHS))) || !match(CmpRHS, m_AllOnes()))) |
| return nullptr; |
| |
| IntrinsicInst *II = cast<IntrinsicInst>(Count); |
| |
| // Check if the value propagated on zero is a constant number equal to the |
| // sizeof in bits of 'Count'. |
| unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); |
| if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { |
| // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from |
| // true to false on this flag, so we can replace it for all users. |
| II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); |
| // A range annotation on the intrinsic may no longer be valid. |
| II->dropPoisonGeneratingAnnotations(); |
| IC.addToWorklist(II); |
| return SelectArg; |
| } |
| |
| // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional |
| // zext/trunc) have one use (ending at the select), the cttz/ctlz result will |
| // not be used if the input is zero. Relax to 'zero is poison' for that case. |
| if (II->hasOneUse() && SelectArg->hasOneUse() && |
| !match(II->getArgOperand(1), m_One())) |
| II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); |
| |
| return nullptr; |
| } |
| |
| static Value *canonicalizeSPF(ICmpInst &Cmp, Value *TrueVal, Value *FalseVal, |
| InstCombinerImpl &IC) { |
| Value *LHS, *RHS; |
| // TODO: What to do with pointer min/max patterns? |
| if (!TrueVal->getType()->isIntOrIntVectorTy()) |
| return nullptr; |
| |
| SelectPatternFlavor SPF = |
| matchDecomposedSelectPattern(&Cmp, TrueVal, FalseVal, LHS, RHS).Flavor; |
| if (SPF == SelectPatternFlavor::SPF_ABS || |
| SPF == SelectPatternFlavor::SPF_NABS) { |
| if (!Cmp.hasOneUse() && !RHS->hasOneUse()) |
| return nullptr; // TODO: Relax this restriction. |
| |
| // Note that NSW flag can only be propagated for normal, non-negated abs! |
| bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && |
| match(RHS, m_NSWNeg(m_Specific(LHS))); |
| Constant *IntMinIsPoisonC = |
| ConstantInt::get(Type::getInt1Ty(Cmp.getContext()), IntMinIsPoison); |
| Value *Abs = |
| IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); |
| |
| if (SPF == SelectPatternFlavor::SPF_NABS) |
| return IC.Builder.CreateNeg(Abs); // Always without NSW flag! |
| return Abs; |
| } |
| |
| if (SelectPatternResult::isMinOrMax(SPF)) { |
| Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF); |
| return IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS); |
| } |
| |
| return nullptr; |
| } |
| |
| bool InstCombinerImpl::replaceInInstruction(Value *V, Value *Old, Value *New, |
| unsigned Depth) { |
| // Conservatively limit replacement to two instructions upwards. |
| if (Depth == 2) |
| return false; |
| |
| assert(!isa<Constant>(Old) && "Only replace non-constant values"); |
| |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I || !I->hasOneUse() || |
| !isSafeToSpeculativelyExecuteWithVariableReplaced(I)) |
| return false; |
| |
| // Forbid potentially lane-crossing instructions. |
| if (Old->getType()->isVectorTy() && !isNotCrossLaneOperation(I)) |
| return false; |
| |
| bool Changed = false; |
| for (Use &U : I->operands()) { |
| if (U == Old) { |
| replaceUse(U, New); |
| Worklist.add(I); |
| Changed = true; |
| } else { |
| Changed |= replaceInInstruction(U, Old, New, Depth + 1); |
| } |
| } |
| return Changed; |
| } |
| |
| /// If we have a select with an equality comparison, then we know the value in |
| /// one of the arms of the select. See if substituting this value into an arm |
| /// and simplifying the result yields the same value as the other arm. |
| /// |
| /// To make this transform safe, we must drop poison-generating flags |
| /// (nsw, etc) if we simplified to a binop because the select may be guarding |
| /// that poison from propagating. If the existing binop already had no |
| /// poison-generating flags, then this transform can be done by instsimplify. |
| /// |
| /// Consider: |
| /// %cmp = icmp eq i32 %x, 2147483647 |
| /// %add = add nsw i32 %x, 1 |
| /// %sel = select i1 %cmp, i32 -2147483648, i32 %add |
| /// |
| /// We can't replace %sel with %add unless we strip away the flags. |
| /// TODO: Wrapping flags could be preserved in some cases with better analysis. |
| Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, |
| CmpInst &Cmp) { |
| // Canonicalize the pattern to an equivalence on the predicate by swapping the |
| // select operands. |
| Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); |
| bool Swapped = false; |
| if (Cmp.isEquivalence(/*Invert=*/true)) { |
| std::swap(TrueVal, FalseVal); |
| Swapped = true; |
| } else if (!Cmp.isEquivalence()) { |
| return nullptr; |
| } |
| |
| Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); |
| auto ReplaceOldOpWithNewOp = [&](Value *OldOp, |
| Value *NewOp) -> Instruction * { |
| // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. |
| // Take care to avoid replacing X == Y ? X : Z with X == Y ? Y : Z, as that |
| // would lead to an infinite replacement cycle. |
| // If we will be able to evaluate f(Y) to a constant, we can allow undef, |
| // otherwise Y cannot be undef as we might pick different values for undef |
| // in the cmp and in f(Y). |
| if (TrueVal == OldOp && (isa<Constant>(OldOp) || !isa<Constant>(NewOp))) |
| return nullptr; |
| |
| if (Value *V = simplifyWithOpReplaced(TrueVal, OldOp, NewOp, SQ, |
| /* AllowRefinement=*/true)) { |
| // Need some guarantees about the new simplified op to ensure we don't inf |
| // loop. |
| // If we simplify to a constant, replace if we aren't creating new undef. |
| if (match(V, m_ImmConstant()) && |
| isGuaranteedNotToBeUndef(V, SQ.AC, &Sel, &DT)) |
| return replaceOperand(Sel, Swapped ? 2 : 1, V); |
| |
| // If NewOp is a constant and OldOp is not replace iff NewOp doesn't |
| // contain and undef elements. |
| if (match(NewOp, m_ImmConstant()) || NewOp == V) { |
| if (isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) |
| return replaceOperand(Sel, Swapped ? 2 : 1, V); |
| return nullptr; |
| } |
| } |
| |
| // Even if TrueVal does not simplify, we can directly replace a use of |
| // CmpLHS with CmpRHS, as long as the instruction is not used anywhere |
| // else and is safe to speculatively execute (we may end up executing it |
| // with different operands, which should not cause side-effects or trigger |
| // undefined behavior). Only do this if CmpRHS is a constant, as |
| // profitability is not clear for other cases. |
| if (OldOp == CmpLHS && match(NewOp, m_ImmConstant()) && |
| !match(OldOp, m_Constant()) && |
| isGuaranteedNotToBeUndef(NewOp, SQ.AC, &Sel, &DT)) |
| if (replaceInInstruction(TrueVal, OldOp, NewOp)) |
| return &Sel; |
| return nullptr; |
| }; |
| |
| if (Instruction *R = ReplaceOldOpWithNewOp(CmpLHS, CmpRHS)) |
| return R; |
| if (Instruction *R = ReplaceOldOpWithNewOp(CmpRHS, CmpLHS)) |
| return R; |
| |
| auto *FalseInst = dyn_cast<Instruction>(FalseVal); |
| if (!FalseInst) |
| return nullptr; |
| |
| // InstSimplify already performed this fold if it was possible subject to |
| // current poison-generating flags. Check whether dropping poison-generating |
| // flags enables the transform. |
| |
| // Try each equivalence substitution possibility. |
| // We have an 'EQ' comparison, so the select's false value will propagate. |
| // Example: |
| // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 |
| SmallVector<Instruction *> DropFlags; |
| if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, |
| /* AllowRefinement */ false, |
| &DropFlags) == TrueVal || |
| simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, |
| /* AllowRefinement */ false, |
| &DropFlags) == TrueVal) { |
| for (Instruction *I : DropFlags) { |
| I->dropPoisonGeneratingAnnotations(); |
| Worklist.add(I); |
| } |
| |
| return replaceInstUsesWith(Sel, FalseVal); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold the following code sequence: |
| /// \code |
| /// %XeqZ = icmp eq i64 %X, %Z |
| /// %YeqZ = icmp eq i64 %Y, %Z |
| /// %XeqY = icmp eq i64 %X, %Y |
| /// %not.YeqZ = xor i1 %YeqZ, true |
| /// %and = select i1 %not.YeqZ, i1 %XeqY, i1 false |
| /// %equal = select i1 %XeqZ, i1 %YeqZ, i1 %and |
| /// \code |
| /// |
| /// into: |
| /// %equal = icmp eq i64 %X, %Y |
| Instruction *InstCombinerImpl::foldSelectEqualityTest(SelectInst &Sel) { |
| Value *X, *Y, *Z; |
| Value *XeqY, *XeqZ = Sel.getCondition(), *YeqZ = Sel.getTrueValue(); |
| |
| if (!match(XeqZ, m_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(X), m_Value(Z)))) |
| return nullptr; |
| |
| if (!match(YeqZ, |
| m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z)))) |
| std::swap(X, Z); |
| |
| if (!match(YeqZ, |
| m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Value(Y), m_Specific(Z)))) |
| return nullptr; |
| |
| if (!match(Sel.getFalseValue(), |
| m_c_LogicalAnd(m_Not(m_Specific(YeqZ)), m_Value(XeqY)))) |
| return nullptr; |
| |
| if (!match(XeqY, |
| m_c_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(X), m_Specific(Y)))) |
| return nullptr; |
| |
| cast<ICmpInst>(XeqY)->setSameSign(false); |
| return replaceInstUsesWith(Sel, XeqY); |
| } |
| |
| // See if this is a pattern like: |
| // %old_cmp1 = icmp slt i32 %x, C2 |
| // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high |
| // %old_x_offseted = add i32 %x, C1 |
| // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 |
| // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement |
| // This can be rewritten as more canonical pattern: |
| // %new_cmp1 = icmp slt i32 %x, -C1 |
| // %new_cmp2 = icmp sge i32 %x, C0-C1 |
| // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x |
| // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low |
| // Iff -C1 s<= C2 s<= C0-C1 |
| // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) |
| // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) |
| static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, |
| InstCombiner::BuilderTy &Builder, |
| InstCombiner &IC) { |
| Value *X = Sel0.getTrueValue(); |
| Value *Sel1 = Sel0.getFalseValue(); |
| |
| // First match the condition of the outermost select. |
| // Said condition must be one-use. |
| if (!Cmp0.hasOneUse()) |
| return nullptr; |
| ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); |
| Value *Cmp00 = Cmp0.getOperand(0); |
| Constant *C0; |
| if (!match(Cmp0.getOperand(1), |
| m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) |
| return nullptr; |
| |
| if (!isa<SelectInst>(Sel1)) { |
| Pred0 = ICmpInst::getInversePredicate(Pred0); |
| std::swap(X, Sel1); |
| } |
| |
| // Canonicalize Cmp0 into ult or uge. |
| // FIXME: we shouldn't care about lanes that are 'undef' in the end? |
| switch (Pred0) { |
| case ICmpInst::Predicate::ICMP_ULT: |
| case ICmpInst::Predicate::ICMP_UGE: |
| // Although icmp ult %x, 0 is an unusual thing to try and should generally |
| // have been simplified, it does not verify with undef inputs so ensure we |
| // are not in a strange state. |
| if (!match(C0, m_SpecificInt_ICMP( |
| ICmpInst::Predicate::ICMP_NE, |
| APInt::getZero(C0->getType()->getScalarSizeInBits())))) |
| return nullptr; |
| break; // Great! |
| case ICmpInst::Predicate::ICMP_ULE: |
| case ICmpInst::Predicate::ICMP_UGT: |
| // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment |
| // C0, which again means it must not have any all-ones elements. |
| if (!match(C0, |
| m_SpecificInt_ICMP( |
| ICmpInst::Predicate::ICMP_NE, |
| APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) |
| return nullptr; // Can't do, have all-ones element[s]. |
| Pred0 = ICmpInst::getFlippedStrictnessPredicate(Pred0); |
| C0 = InstCombiner::AddOne(C0); |
| break; |
| default: |
| return nullptr; // Unknown predicate. |
| } |
| |
| // Now that we've canonicalized the ICmp, we know the X we expect; |
| // the select in other hand should be one-use. |
| if (!Sel1->hasOneUse()) |
| return nullptr; |
| |
| // If the types do not match, look through any truncs to the underlying |
| // instruction. |
| if (Cmp00->getType() != X->getType() && X->hasOneUse()) |
| match(X, m_TruncOrSelf(m_Value(X))); |
| |
| // We now can finish matching the condition of the outermost select: |
| // it should either be the X itself, or an addition of some constant to X. |
| Constant *C1; |
| if (Cmp00 == X) |
| C1 = ConstantInt::getNullValue(X->getType()); |
| else if (!match(Cmp00, |
| m_Add(m_Specific(X), |
| m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) |
| return nullptr; |
| |
| Value *Cmp1; |
| ICmpInst::Predicate Pred1; |
| Constant *C2; |
| Value *ReplacementLow, *ReplacementHigh; |
| if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), |
| m_Value(ReplacementHigh))) || |
| !match(Cmp1, |
| m_ICmp(Pred1, m_Specific(X), |
| m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) |
| return nullptr; |
| |
| if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) |
| return nullptr; // Not enough one-use instructions for the fold. |
| // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of |
| // two comparisons we'll need to build. |
| |
| // Canonicalize Cmp1 into the form we expect. |
| // FIXME: we shouldn't care about lanes that are 'undef' in the end? |
| switch (Pred1) { |
| case ICmpInst::Predicate::ICMP_SLT: |
| break; |
| case ICmpInst::Predicate::ICMP_SLE: |
| // We'd have to increment C2 by one, and for that it must not have signed |
| // max element, but then it would have been canonicalized to 'slt' before |
| // we get here. So we can't do anything useful with 'sle'. |
| return nullptr; |
| case ICmpInst::Predicate::ICMP_SGT: |
| // We want to canonicalize it to 'slt', so we'll need to increment C2, |
| // which again means it must not have any signed max elements. |
| if (!match(C2, |
| m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, |
| APInt::getSignedMaxValue( |
| C2->getType()->getScalarSizeInBits())))) |
| return nullptr; // Can't do, have signed max element[s]. |
| C2 = InstCombiner::AddOne(C2); |
| [[fallthrough]]; |
| case ICmpInst::Predicate::ICMP_SGE: |
| // Also non-canonical, but here we don't need to change C2, |
| // so we don't have any restrictions on C2, so we can just handle it. |
| Pred1 = ICmpInst::Predicate::ICMP_SLT; |
| std::swap(ReplacementLow, ReplacementHigh); |
| break; |
| default: |
| return nullptr; // Unknown predicate. |
| } |
| assert(Pred1 == ICmpInst::Predicate::ICMP_SLT && |
| "Unexpected predicate type."); |
| |
| // The thresholds of this clamp-like pattern. |
| auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); |
| auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); |
| |
| assert((Pred0 == ICmpInst::Predicate::ICMP_ULT || |
| Pred0 == ICmpInst::Predicate::ICMP_UGE) && |
| "Unexpected predicate type."); |
| if (Pred0 == ICmpInst::Predicate::ICMP_UGE) |
| std::swap(ThresholdLowIncl, ThresholdHighExcl); |
| |
| // The fold has a precondition 1: C2 s>= ThresholdLow |
| auto *Precond1 = ConstantFoldCompareInstOperands( |
| ICmpInst::Predicate::ICMP_SGE, C2, ThresholdLowIncl, IC.getDataLayout()); |
| if (!Precond1 || !match(Precond1, m_One())) |
| return nullptr; |
| // The fold has a precondition 2: C2 s<= ThresholdHigh |
| auto *Precond2 = ConstantFoldCompareInstOperands( |
| ICmpInst::Predicate::ICMP_SLE, C2, ThresholdHighExcl, IC.getDataLayout()); |
| if (!Precond2 || !match(Precond2, m_One())) |
| return nullptr; |
| |
| // If we are matching from a truncated input, we need to sext the |
| // ReplacementLow and ReplacementHigh values. Only do the transform if they |
| // are free to extend due to being constants. |
| if (X->getType() != Sel0.getType()) { |
| Constant *LowC, *HighC; |
| if (!match(ReplacementLow, m_ImmConstant(LowC)) || |
| !match(ReplacementHigh, m_ImmConstant(HighC))) |
| return nullptr; |
| const DataLayout &DL = Sel0.getDataLayout(); |
| ReplacementLow = |
| ConstantFoldCastOperand(Instruction::SExt, LowC, X->getType(), DL); |
| ReplacementHigh = |
| ConstantFoldCastOperand(Instruction::SExt, HighC, X->getType(), DL); |
| assert(ReplacementLow && ReplacementHigh && |
| "Constant folding of ImmConstant cannot fail"); |
| } |
| |
| // All good, finally emit the new pattern. |
| Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); |
| Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); |
| Value *MaybeReplacedLow = |
| Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); |
| |
| // Create the final select. If we looked through a truncate above, we will |
| // need to retruncate the result. |
| Value *MaybeReplacedHigh = Builder.CreateSelect( |
| ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); |
| return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); |
| } |
| |
| // If we have |
| // %cmp = icmp [canonical predicate] i32 %x, C0 |
| // %r = select i1 %cmp, i32 %y, i32 C1 |
| // Where C0 != C1 and %x may be different from %y, see if the constant that we |
| // will have if we flip the strictness of the predicate (i.e. without changing |
| // the result) is identical to the C1 in select. If it matches we can change |
| // original comparison to one with swapped predicate, reuse the constant, |
| // and swap the hands of select. |
| static Instruction * |
| tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, |
| InstCombinerImpl &IC) { |
| ICmpInst::Predicate Pred; |
| Value *X; |
| Constant *C0; |
| if (!match(&Cmp, m_OneUse(m_ICmp( |
| Pred, m_Value(X), |
| m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) |
| return nullptr; |
| |
| // If comparison predicate is non-relational, we won't be able to do anything. |
| if (ICmpInst::isEquality(Pred)) |
| return nullptr; |
| |
| // If comparison predicate is non-canonical, then we certainly won't be able |
| // to make it canonical; canonicalizeCmpWithConstant() already tried. |
| if (!InstCombiner::isCanonicalPredicate(Pred)) |
| return nullptr; |
| |
| // If the [input] type of comparison and select type are different, lets abort |
| // for now. We could try to compare constants with trunc/[zs]ext though. |
| if (C0->getType() != Sel.getType()) |
| return nullptr; |
| |
| // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). |
| // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? |
| // Or should we just abandon this transform entirely? |
| if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) |
| return nullptr; |
| |
| |
| Value *SelVal0, *SelVal1; // We do not care which one is from where. |
| match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); |
| // At least one of these values we are selecting between must be a constant |
| // else we'll never succeed. |
| if (!match(SelVal0, m_AnyIntegralConstant()) && |
| !match(SelVal1, m_AnyIntegralConstant())) |
| return nullptr; |
| |
| // Does this constant C match any of the `select` values? |
| auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { |
| return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); |
| }; |
| |
| // If C0 *already* matches true/false value of select, we are done. |
| if (MatchesSelectValue(C0)) |
| return nullptr; |
| |
| // Check the constant we'd have with flipped-strictness predicate. |
| auto FlippedStrictness = |
| InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); |
| if (!FlippedStrictness) |
| return nullptr; |
| |
| // If said constant doesn't match either, then there is no hope, |
| if (!MatchesSelectValue(FlippedStrictness->second)) |
| return nullptr; |
| |
| // It matched! Lets insert the new comparison just before select. |
| InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); |
| IC.Builder.SetInsertPoint(&Sel); |
| |
| Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. |
| Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, |
| Cmp.getName() + ".inv"); |
| IC.replaceOperand(Sel, 0, NewCmp); |
| Sel.swapValues(); |
| Sel.swapProfMetadata(); |
| |
| return &Sel; |
| } |
| |
| static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal, |
| Value *FVal, |
| InstCombiner::BuilderTy &Builder) { |
| if (!Cmp->hasOneUse()) |
| return nullptr; |
| |
| const APInt *CmpC; |
| if (!match(Cmp->getOperand(1), m_APIntAllowPoison(CmpC))) |
| return nullptr; |
| |
| // (X u< 2) ? -X : -1 --> sext (X != 0) |
| Value *X = Cmp->getOperand(0); |
| if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 && |
| match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes())) |
| return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); |
| |
| // (X u> 1) ? -1 : -X --> sext (X != 0) |
| if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 && |
| match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes())) |
| return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType()); |
| |
| return nullptr; |
| } |
| |
| static Value *foldSelectInstWithICmpConst(SelectInst &SI, ICmpInst *ICI, |
| InstCombiner::BuilderTy &Builder) { |
| const APInt *CmpC; |
| Value *V; |
| CmpInst::Predicate Pred; |
| if (!match(ICI, m_ICmp(Pred, m_Value(V), m_APInt(CmpC)))) |
| return nullptr; |
| |
| // Match clamp away from min/max value as a max/min operation. |
| Value *TVal = SI.getTrueValue(); |
| Value *FVal = SI.getFalseValue(); |
| if (Pred == ICmpInst::ICMP_EQ && V == FVal) { |
| // (V == UMIN) ? UMIN+1 : V --> umax(V, UMIN+1) |
| if (CmpC->isMinValue() && match(TVal, m_SpecificInt(*CmpC + 1))) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::umax, V, TVal); |
| // (V == UMAX) ? UMAX-1 : V --> umin(V, UMAX-1) |
| if (CmpC->isMaxValue() && match(TVal, m_SpecificInt(*CmpC - 1))) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::umin, V, TVal); |
| // (V == SMIN) ? SMIN+1 : V --> smax(V, SMIN+1) |
| if (CmpC->isMinSignedValue() && match(TVal, m_SpecificInt(*CmpC + 1))) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::smax, V, TVal); |
| // (V == SMAX) ? SMAX-1 : V --> smin(V, SMAX-1) |
| if (CmpC->isMaxSignedValue() && match(TVal, m_SpecificInt(*CmpC - 1))) |
| return Builder.CreateBinaryIntrinsic(Intrinsic::smin, V, TVal); |
| } |
| |
| BinaryOperator *BO; |
| const APInt *C; |
| CmpInst::Predicate CPred; |
| if (match(&SI, m_Select(m_Specific(ICI), m_APInt(C), m_BinOp(BO)))) |
| CPred = ICI->getPredicate(); |
| else if (match(&SI, m_Select(m_Specific(ICI), m_BinOp(BO), m_APInt(C)))) |
| CPred = ICI->getInversePredicate(); |
| else |
| return nullptr; |
| |
| const APInt *BinOpC; |
| if (!match(BO, m_BinOp(m_Specific(V), m_APInt(BinOpC)))) |
| return nullptr; |
| |
| ConstantRange R = ConstantRange::makeExactICmpRegion(CPred, *CmpC) |
| .binaryOp(BO->getOpcode(), *BinOpC); |
| if (R == *C) { |
| BO->dropPoisonGeneratingFlags(); |
| return BO; |
| } |
| return nullptr; |
| } |
| |
| static Instruction *foldSelectICmpEq(SelectInst &SI, ICmpInst *ICI, |
| InstCombinerImpl &IC) { |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| if (!ICmpInst::isEquality(Pred)) |
| return nullptr; |
| |
| Value *TrueVal = SI.getTrueValue(); |
| Value *FalseVal = SI.getFalseValue(); |
| Value *CmpLHS = ICI->getOperand(0); |
| Value *CmpRHS = ICI->getOperand(1); |
| |
| if (Pred == ICmpInst::ICMP_NE) |
| std::swap(TrueVal, FalseVal); |
| |
| // Transform (X == C) ? X : Y -> (X == C) ? C : Y |
| // specific handling for Bitwise operation. |
| // x&y -> (x|y) ^ (x^y) or (x|y) & ~(x^y) |
| // x|y -> (x&y) | (x^y) or (x&y) ^ (x^y) |
| // x^y -> (x|y) ^ (x&y) or (x|y) & ~(x&y) |
| Value *X, *Y; |
| if (!match(CmpLHS, m_BitwiseLogic(m_Value(X), m_Value(Y))) || |
| !match(TrueVal, m_c_BitwiseLogic(m_Specific(X), m_Specific(Y)))) |
| return nullptr; |
| |
| const unsigned AndOps = Instruction::And, OrOps = Instruction::Or, |
| XorOps = Instruction::Xor, NoOps = 0; |
| enum NotMask { None = 0, NotInner, NotRHS }; |
| |
| auto matchFalseVal = [&](unsigned OuterOpc, unsigned InnerOpc, |
| unsigned NotMask) { |
| auto matchInner = m_c_BinOp(InnerOpc, m_Specific(X), m_Specific(Y)); |
| if (OuterOpc == NoOps) |
| return match(CmpRHS, m_Zero()) && match(FalseVal, matchInner); |
| |
| if (NotMask == NotInner) { |
| return match(FalseVal, m_c_BinOp(OuterOpc, m_NotForbidPoison(matchInner), |
| m_Specific(CmpRHS))); |
| } else if (NotMask == NotRHS) { |
| return match(FalseVal, m_c_BinOp(OuterOpc, matchInner, |
| m_NotForbidPoison(m_Specific(CmpRHS)))); |
| } else { |
| return match(FalseVal, |
| m_c_BinOp(OuterOpc, matchInner, m_Specific(CmpRHS))); |
| } |
| }; |
| |
| // (X&Y)==C ? X|Y : X^Y -> (X^Y)|C : X^Y or (X^Y)^ C : X^Y |
| // (X&Y)==C ? X^Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y |
| if (match(CmpLHS, m_And(m_Value(X), m_Value(Y)))) { |
| if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { |
| // (X&Y)==C ? X|Y : (X^Y)|C -> (X^Y)|C : (X^Y)|C -> (X^Y)|C |
| // (X&Y)==C ? X|Y : (X^Y)^C -> (X^Y)^C : (X^Y)^C -> (X^Y)^C |
| if (matchFalseVal(OrOps, XorOps, None) || |
| matchFalseVal(XorOps, XorOps, None)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { |
| // (X&Y)==C ? X^Y : (X|Y)^ C -> (X|Y)^ C : (X|Y)^ C -> (X|Y)^ C |
| // (X&Y)==C ? X^Y : (X|Y)&~C -> (X|Y)&~C : (X|Y)&~C -> (X|Y)&~C |
| if (matchFalseVal(XorOps, OrOps, None) || |
| matchFalseVal(AndOps, OrOps, NotRHS)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } |
| } |
| |
| // (X|Y)==C ? X&Y : X^Y -> (X^Y)^C : X^Y or ~(X^Y)&C : X^Y |
| // (X|Y)==C ? X^Y : X&Y -> (X&Y)^C : X&Y or ~(X&Y)&C : X&Y |
| if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y)))) { |
| if (match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y)))) { |
| // (X|Y)==C ? X&Y: (X^Y)^C -> (X^Y)^C: (X^Y)^C -> (X^Y)^C |
| // (X|Y)==C ? X&Y:~(X^Y)&C ->~(X^Y)&C:~(X^Y)&C -> ~(X^Y)&C |
| if (matchFalseVal(XorOps, XorOps, None) || |
| matchFalseVal(AndOps, XorOps, NotInner)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } else if (match(TrueVal, m_c_Xor(m_Specific(X), m_Specific(Y)))) { |
| // (X|Y)==C ? X^Y : (X&Y)^C -> (X&Y)^C : (X&Y)^C -> (X&Y)^C |
| // (X|Y)==C ? X^Y :~(X&Y)&C -> ~(X&Y)&C :~(X&Y)&C -> ~(X&Y)&C |
| if (matchFalseVal(XorOps, AndOps, None) || |
| matchFalseVal(AndOps, AndOps, NotInner)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } |
| } |
| |
| // (X^Y)==C ? X&Y : X|Y -> (X|Y)^C : X|Y or (X|Y)&~C : X|Y |
| // (X^Y)==C ? X|Y : X&Y -> (X&Y)|C : X&Y or (X&Y)^ C : X&Y |
| if (match(CmpLHS, m_Xor(m_Value(X), m_Value(Y)))) { |
| if ((match(TrueVal, m_c_And(m_Specific(X), m_Specific(Y))))) { |
| // (X^Y)==C ? X&Y : (X|Y)^C -> (X|Y)^C |
| // (X^Y)==C ? X&Y : (X|Y)&~C -> (X|Y)&~C |
| if (matchFalseVal(XorOps, OrOps, None) || |
| matchFalseVal(AndOps, OrOps, NotRHS)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } else if (match(TrueVal, m_c_Or(m_Specific(X), m_Specific(Y)))) { |
| // (X^Y)==C ? (X|Y) : (X&Y)|C -> (X&Y)|C |
| // (X^Y)==C ? (X|Y) : (X&Y)^C -> (X&Y)^C |
| if (matchFalseVal(OrOps, AndOps, None) || |
| matchFalseVal(XorOps, AndOps, None)) |
| return IC.replaceInstUsesWith(SI, FalseVal); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| /// Fold `X Pred C1 ? X BOp C2 : C1 BOp C2` to `min/max(X, C1) BOp C2`. |
| /// This allows for better canonicalization. |
| static Value *foldSelectWithConstOpToBinOp(ICmpInst *Cmp, Value *TrueVal, |
| Value *FalseVal, |
| IRBuilderBase &Builder) { |
| BinaryOperator *BOp; |
| Constant *C1, *C2, *C3; |
| Value *X; |
| ICmpInst::Predicate Predicate; |
| |
| if (!match(Cmp, m_ICmp(Predicate, m_Value(X), m_Constant(C1)))) |
| return nullptr; |
| |
| if (!ICmpInst::isRelational(Predicate)) |
| return nullptr; |
| |
| if (match(TrueVal, m_Constant())) { |
| std::swap(FalseVal, TrueVal); |
| Predicate = ICmpInst::getInversePredicate(Predicate); |
| } |
| |
| if (!match(TrueVal, m_BinOp(BOp)) || !match(FalseVal, m_Constant(C3))) |
| return nullptr; |
| |
| unsigned Opcode = BOp->getOpcode(); |
| |
| // This fold causes some regressions and is primarily intended for |
| // add and sub. So we early exit for div and rem to minimize the |
| // regressions. |
| if (Instruction::isIntDivRem(Opcode)) |
| return nullptr; |
| |
| if (!match(BOp, m_OneUse(m_BinOp(m_Specific(X), m_Constant(C2))))) |
| return nullptr; |
| |
| Value *RHS; |
| SelectPatternFlavor SPF; |
| const DataLayout &DL = BOp->getDataLayout(); |
| auto Flipped = |
| InstCombiner::getFlippedStrictnessPredicateAndConstant(Predicate, C1); |
| |
| if (C3 == ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL)) { |
| SPF = getSelectPattern(Predicate).Flavor; |
| RHS = C1; |
| } else if (Flipped && C3 == ConstantFoldBinaryOpOperands( |
| Opcode, Flipped->second, C2, DL)) { |
| SPF = getSelectPattern(Flipped->first).Flavor; |
| RHS = Flipped->second; |
| } else { |
| return nullptr; |
| } |
| |
| Intrinsic::ID IntrinsicID = getMinMaxIntrinsic(SPF); |
| Value *Intrinsic = Builder.CreateBinaryIntrinsic(IntrinsicID, X, RHS); |
| return Builder.CreateBinOp(BOp->getOpcode(), Intrinsic, C2); |
| } |
| |
| /// Visit a SelectInst that has an ICmpInst as its first operand. |
| Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, |
| ICmpInst *ICI) { |
| if (Value *V = |
| canonicalizeSPF(*ICI, SI.getTrueValue(), SI.getFalseValue(), *this)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = foldSelectInstWithICmpConst(SI, ICI, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = canonicalizeClampLike(SI, *ICI, Builder, *this)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Instruction *NewSel = |
| tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) |
| return NewSel; |
| |
| if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| // NOTE: if we wanted to, this is where to detect integer MIN/MAX |
| bool Changed = false; |
| Value *TrueVal = SI.getTrueValue(); |
| Value *FalseVal = SI.getFalseValue(); |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| Value *CmpLHS = ICI->getOperand(0); |
| Value *CmpRHS = ICI->getOperand(1); |
| |
| if (Instruction *NewSel = foldSelectICmpEq(SI, ICI, *this)) |
| return NewSel; |
| |
| // Canonicalize a signbit condition to use zero constant by swapping: |
| // (CmpLHS > -1) ? TV : FV --> (CmpLHS < 0) ? FV : TV |
| // To avoid conflicts (infinite loops) with other canonicalizations, this is |
| // not applied with any constant select arm. |
| if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes()) && |
| !match(TrueVal, m_Constant()) && !match(FalseVal, m_Constant()) && |
| ICI->hasOneUse()) { |
| InstCombiner::BuilderTy::InsertPointGuard Guard(Builder); |
| Builder.SetInsertPoint(&SI); |
| Value *IsNeg = Builder.CreateIsNeg(CmpLHS, ICI->getName()); |
| replaceOperand(SI, 0, IsNeg); |
| SI.swapValues(); |
| SI.swapProfMetadata(); |
| return &SI; |
| } |
| |
| if (Instruction *V = |
| foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) |
| return V; |
| |
| if (Value *V = foldSelectICmpAndZeroShl(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) |
| return V; |
| |
| if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder)) |
| return V; |
| |
| if (Value *V = foldSelectICmpAndBinOp(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, *this)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = foldAbsDiff(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| if (Value *V = foldSelectWithConstOpToBinOp(ICI, TrueVal, FalseVal, Builder)) |
| return replaceInstUsesWith(SI, V); |
| |
| return Changed ? &SI : nullptr; |
| } |
| |
| /// We have an SPF (e.g. a min or max) of an SPF of the form: |
| /// SPF2(SPF1(A, B), C) |
| Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, |
| SelectPatternFlavor SPF1, Value *A, |
| Value *B, Instruction &Outer, |
| SelectPatternFlavor SPF2, |
| Value *C) { |
| if (Outer.getType() != Inner->getType()) |
| return nullptr; |
| |
| if (C == A || C == B) { |
| // MAX(MAX(A, B), B) -> MAX(A, B) |
| // MIN(MIN(a, b), a) -> MIN(a, b) |
| // TODO: This could be done in instsimplify. |
| if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) |
| return replaceInstUsesWith(Outer, Inner); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). |
| /// This is even legal for FP. |
| static Instruction *foldAddSubSelect(SelectInst &SI, |
| InstCombiner::BuilderTy &Builder) { |
| Value *CondVal = SI.getCondition(); |
| Value *TrueVal = SI.getTrueValue(); |
| Value *FalseVal = SI.getFalseValue(); |
| auto *TI = dyn_cast<Instruction>(TrueVal); |
| auto *FI = dyn_cast<Instruction>(FalseVal); |
| if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) |
| return nullptr; |
| |
| Instruction *AddOp = nullptr, *SubOp = nullptr; |
| if ((TI->getOpcode() == Instruction::Sub && |
| FI->getOpcode() == Instruction::Add) || |
| (TI->getOpcode() == Instruction::FSub && |
| FI->getOpcode() == Instruction::FAdd)) { |
| AddOp = FI; |
| SubOp = TI; |
| } else if ((FI->getOpcode() == Instruction::Sub && |
| TI->getOpcode() == Instruction::Add) || |
| (FI->getOpcode() == Instruction::FSub && |
| TI->getOpcode() == Instruction::FAdd)) { |
| AddOp = TI; |
| SubOp = FI; |
| } |
| |
| if (AddOp) { |
| Value *OtherAddOp = nullptr; |
| if (SubOp->getOperand(0) == AddOp->getOperand(0)) { |
| OtherAddOp = AddOp->getOperand(1); |
| } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { |
| OtherAddOp = AddOp->getOperand(0); |
| } |
| |
| if (OtherAddOp) { |
| // So at this point we know we have (Y -> OtherAddOp): |
| // select C, (add X, Y), (sub X, Z) |
| Value *NegVal; // Compute -Z |
| if (SI.getType()->isFPOrFPVectorTy()) { |
| NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); |
| if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { |
| FastMathFlags Flags = AddOp->getFastMathFlags(); |
| Flags &= SubOp->getFastMathFlags(); |
| NegInst->setFastMathFlags(Flags); |
| } |
| } else { |
| NegVal = Builder.CreateNeg(SubOp->getOperand(1)); |
| } |
| |
| Value *NewTrueOp = OtherAddOp; |
| Value *NewFalseOp = NegVal; |
| if (AddOp != TI) |
| std::swap(NewTrueOp, NewFalseOp); |
| Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, |
| SI.getName() + ".p", &SI); |
| |
| if (SI.getType()->isFPOrFPVectorTy()) { |
| Instruction *RI = |
| BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); |
| |
| FastMathFlags Flags = AddOp->getFastMathFlags(); |
| Flags &= SubOp->getFastMathFlags(); |
| RI->setFastMathFlags(Flags); |
| return RI; |
| } else |
| return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); |
| } |
| } |
| return nullptr; |
| } |
| |
| /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y |
| /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y |
| /// Along with a number of patterns similar to: |
| /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| static Instruction * |
| foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { |
| Value *CondVal = SI.getCondition(); |
| Value *TrueVal = SI.getTrueValue(); |
| Value *FalseVal = SI.getFalseValue(); |
| |
| WithOverflowInst *II; |
| if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || |
| !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) |
| return nullptr; |
| |
| Value *X = II->getLHS(); |
| Value *Y = II->getRHS(); |
| |
| auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { |
| Type *Ty = Limit->getType(); |
| |
| ICmpInst::Predicate Pred; |
| Value *TrueVal, *FalseVal, *Op; |
| const APInt *C; |
| if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), |
| m_Value(TrueVal), m_Value(FalseVal)))) |
| return false; |
| |
| auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; |
| auto IsMinMax = [&](Value *Min, Value *Max) { |
| APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); |
| APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); |
| return match(Min, m_SpecificInt(MinVal)) && |
| match(Max, m_SpecificInt(MaxVal)); |
| }; |
| |
| if (Op != X && Op != Y) |
| return false; |
| |
| if (IsAdd) { |
| // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && |
| IsMinMax(TrueVal, FalseVal)) |
| return true; |
| // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && |
| IsMinMax(FalseVal, TrueVal)) |
| return true; |
| } else { |
| // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && |
| IsMinMax(TrueVal, FalseVal)) |
| return true; |
| // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && |
| IsMinMax(FalseVal, TrueVal)) |
| return true; |
| // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && |
| IsMinMax(FalseVal, TrueVal)) |
| return true; |
| // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && |
| IsMinMax(TrueVal, FalseVal)) |
| return true; |
| } |
| |
| return false; |
| }; |
| |
| Intrinsic::ID NewIntrinsicID; |
| if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && |
| match(TrueVal, m_AllOnes())) |
| // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y |
| NewIntrinsicID = Intrinsic::uadd_sat; |
| else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && |
| match(TrueVal, m_Zero())) |
| // X - Y overflows ? 0 : X - Y -> usub_sat X, Y |
| NewIntrinsicID = Intrinsic::usub_sat; |
| else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && |
| IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) |
| // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y |
| NewIntrinsicID = Intrinsic::sadd_sat; |
| else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && |
| IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) |
| // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y |
| NewIntrinsicID = Intrinsic::ssub_sat; |
| else |
| return nullptr; |
| |
| Function *F = Intrinsic::getOrInsertDeclaration(SI.getModule(), |
| NewIntrinsicID, SI.getType()); |
| return CallInst::Create(F, {X, Y}); |
| } |
| |
| Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { |
| Constant *C; |
| if (!match(Sel.getTrueValue(), m_Constant(C)) && |
| !match(Sel.getFalseValue(), m_Constant(C))) |
| return nullptr; |
| |
| Instruction *ExtInst; |
| if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && |
| !match(Sel.getFalseValue(), m_Instruction(ExtInst))) |
| return nullptr; |
| |
| auto ExtOpcode = ExtInst->getOpcode(); |
| if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) |
| return nullptr; |
| |
| // If we are extending from a boolean type or if we can create a select that |
| // has the same size operands as its condition, try to narrow the select. |
| Value *X = ExtInst->getOperand(0); |
| Type *SmallType = X->getType(); |
| Value *Cond = Sel.getCondition(); |
| auto *Cmp = dyn_cast<CmpInst>(Cond); |
| if (!SmallType->isIntOrIntVectorTy(1) && |
| (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) |
| return nullptr; |
| |
| // If the constant is the same after truncation to the smaller type and |
| // extension to the original type, we can narrow the select. |
| Type *SelType = Sel.getType(); |
| Constant *TruncC = getLosslessTrunc(C, SmallType, ExtOpcode); |
| if (TruncC && ExtInst->hasOneUse()) { |
| Value *TruncCVal = cast<Value>(TruncC); |
| if (ExtInst == Sel.getFalseValue()) |
| std::swap(X, TruncCVal); |
| |
| // select Cond, (ext X), C --> ext(select Cond, X, C') |
| // select Cond, C, (ext X) --> ext(select Cond, C', X) |
| Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); |
| return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); |
| } |
| |
| return nullptr; |
| } |
| |
| /// Try to transform a vector select with a constant condition vector into a |
| /// shuffle for easier combining with other shuffles and insert/extract. |
| static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { |
| Value *CondVal = SI.getCondition(); |
| Constant *CondC; |
| auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); |
| if (!CondValTy || !match(CondVal, m_Constant(CondC))) |
| return nullptr; |
| |
| unsigned NumElts = CondValTy->getNumElements(); |
| SmallVector<int, 16> Mask; |
| Mask.reserve(NumElts); |
| for (unsigned i = 0; i != NumElts; ++i) { |
| Constant *Elt = CondC->getAggregateElement(i); |
| if (!Elt) |
| return nullptr; |
| |
| if (Elt->isOneValue()) { |
| // If the select condition element is true, choose from the 1st vector. |
| Mask.push_back(i); |
| } else if (Elt->isNullValue()) { |
| // If the select condition element is false, choose from the 2nd vector. |
| Mask.push_back(i + NumElts); |
| } else if (isa<UndefValue>(Elt)) { |
| // Undef in a select condition (choose one of the operands) does not mean |
| // the same thing as undef in a shuffle mask (any value is acceptable), so |
| // give up. |
| return nullptr; |
| } else { |
| // Bail out on a constant expression. |
| return nullptr; |
| } |
| } |
| |
| return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); |
| } |
| |
| /// If we have a select of vectors with a scalar condition, try to convert that |
| /// to a vector select by splatting the condition. A splat may get folded with |
| /// other operations in IR and having all operands of a select be vector types |
| /// is likely better for vector codegen. |
| static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, |
| InstCombinerImpl &IC) { |
| auto *Ty = dyn_cast<VectorType>(Sel.getType()); |
| if (!Ty) |
| return nullptr; |
| |
| // We can replace a single-use extract with constant index. |
| Value *Cond = Sel.getCondition(); |
| if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) |
| return nullptr; |
| |
| // select (extelt V, Index), T, F --> select (splat V, Index), T, F |
| // Splatting the extracted condition reduces code (we could directly create a |
| // splat shuffle of the source vector to eliminate the intermediate step). |
| return IC.replaceOperand( |
| Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); |
| } |
| |
| /// Reuse bitcasted operands between a compare and select: |
| /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> |
| /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) |
| static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Cond = Sel.getCondition(); |
| Value *TVal = Sel.getTrueValue(); |
| Value *FVal = Sel.getFalseValue(); |
| |
| CmpInst::Predicate Pred; |
| Value *A, *B; |
| if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) |
| return nullptr; |
| |
| // The select condition is a compare instruction. If the select's true/false |
| // values are already the same as the compare operands, there's nothing to do. |
| if (TVal == A || TVal == B || FVal == A || FVal == B) |
| return nullptr; |
| |
| Value *C, *D; |
| if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) |
| return nullptr; |
| |
| // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) |
| Value *TSrc, *FSrc; |
| if (!match(TVal, m_BitCast(m_Value(TSrc))) || |
| !match(FVal, m_BitCast(m_Value(FSrc)))) |
| return nullptr; |
| |
| // If the select true/false values are *different bitcasts* of the same source |
| // operands, make the select operands the same as the compare operands and |
| // cast the result. This is the canonical select form for min/max. |
| Value *NewSel; |
| if (TSrc == C && FSrc == D) { |
| // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> |
| // bitcast (select (cmp A, B), A, B) |
| NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); |
| } else if (TSrc == D && FSrc == C) { |
| // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> |
| // bitcast (select (cmp A, B), B, A) |
| NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); |
| } else { |
| return nullptr; |
| } |
| return new BitCastInst(NewSel, Sel.getType()); |
| } |
| |
| /// Try to eliminate select instructions that test the returned flag of cmpxchg |
| /// instructions. |
| /// |
| /// If a select instruction tests the returned flag of a cmpxchg instruction and |
| /// selects between the returned value of the cmpxchg instruction its compare |
| /// operand, the result of the select will always be equal to its false value. |
| /// For example: |
| /// |
| /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst |
| /// %val = extractvalue { i64, i1 } %cmpxchg, 0 |
| /// %success = extractvalue { i64, i1 } %cmpxchg, 1 |
| /// %sel = select i1 %success, i64 %compare, i64 %val |
| /// ret i64 %sel |
| /// |
| /// The returned value of the cmpxchg instruction (%val) is the original value |
| /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %val |
| /// must have been equal to %compare. Thus, the result of the select is always |
| /// equal to %val, and the code can be simplified to: |
| /// |
| /// %cmpxchg = cmpxchg ptr %ptr, i64 %compare, i64 %new_value seq_cst seq_cst |
| /// %val = extractvalue { i64, i1 } %cmpxchg, 0 |
| /// ret i64 %val |
| /// |
| static Value *foldSelectCmpXchg(SelectInst &SI) { |
| // A helper that determines if V is an extractvalue instruction whose |
| // aggregate operand is a cmpxchg instruction and whose single index is equal |
| // to I. If such conditions are true, the helper returns the cmpxchg |
| // instruction; otherwise, a nullptr is returned. |
| auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { |
| auto *Extract = dyn_cast<ExtractValueInst>(V); |
| if (!Extract) |
| return nullptr; |
| if (Extract->getIndices()[0] != I) |
| return nullptr; |
| return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); |
| }; |
| |
| // If the select has a single user, and this user is a select instruction that |
| // we can simplify, skip the cmpxchg simplification for now. |
| if (SI.hasOneUse()) |
| if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) |
| if (Select->getCondition() == SI.getCondition()) |
| if (Select->getFalseValue() == SI.getTrueValue() || |
| Select->getTrueValue() == SI.getFalseValue()) |
| return nullptr; |
| |
| // Ensure the select condition is the returned flag of a cmpxchg instruction. |
| auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); |
| if (!CmpXchg) |
| return nullptr; |
| |
| // Check the true value case: The true value of the select is the returned |
| // value of the same cmpxchg used by the condition, and the false value is the |
| // cmpxchg instruction's compare operand. |
| if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) |
| if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) |
| return SI.getFalseValue(); |
| |
| // Check the false value case: The false value of the select is the returned |
| // value of the same cmpxchg used by the condition, and the true value is the |
| // cmpxchg instruction's compare operand. |
| if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) |
| if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) |
| return SI.getFalseValue(); |
| |
| return nullptr; |
| } |
| |
| /// Try to reduce a funnel/rotate pattern that includes a compare and select |
| /// into a funnel shift intrinsic. Example: |
| /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) |
| /// --> call llvm.fshl.i32(a, a, b) |
| /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) |
| /// --> call llvm.fshl.i32(a, b, c) |
| /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) |
| /// --> call llvm.fshr.i32(a, b, c) |
| static Instruction *foldSelectFunnelShift(SelectInst &Sel, |
| InstCombiner::BuilderTy &Builder) { |
| // This must be a power-of-2 type for a bitmasking transform to be valid. |
| unsigned Width = Sel.getType()->getScalarSizeInBits(); |
| if (!isPowerOf2_32(Width)) |
| return nullptr; |
| |
| BinaryOperator *Or0, *Or1; |
| if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) |
| return nullptr; |
| |
| Value *SV0, *SV1, *SA0, *SA1; |
| if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), |
| m_ZExtOrSelf(m_Value(SA0))))) || |
| !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), |
| m_ZExtOrSelf(m_Value(SA1))))) || |
| Or0->getOpcode() == Or1->getOpcode()) |
| return nullptr; |
| |
| // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). |
| if (Or0->getOpcode() == BinaryOperator::LShr) { |
| std::swap(Or0, Or1); |
| std::swap(SV0, SV1); |
| std::swap(SA0, SA1); |
| } |
| assert(Or0->getOpcode() == BinaryOperator::Shl && |
| Or1->getOpcode() == BinaryOperator::LShr && |
| "Illegal or(shift,shift) pair"); |
| |
| // Check the shift amounts to see if they are an opposite pair. |
| Value *ShAmt; |
| if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) |
| ShAmt = SA0; |
| else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) |
| ShAmt = SA1; |
| else |
| return nullptr; |
| |
| // We should now have this pattern: |
| // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) |
| // The false value of the select must be a funnel-shift of the true value: |
| // IsFShl -> TVal must be SV0 else TVal must be SV1. |
| bool IsFshl = (ShAmt == SA0); |
| Value *TVal = Sel.getTrueValue(); |
| if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) |
| return nullptr; |
| |
| // Finally, see if the select is filtering out a shift-by-zero. |
| Value *Cond = Sel.getCondition(); |
| if (!match(Cond, m_OneUse(m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(ShAmt), |
| m_ZeroInt())))) |
| return nullptr; |
| |
| // If this is not a rotate then the select was blocking poison from the |
| // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. |
| if (SV0 != SV1) { |
| if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) |
| SV1 = Builder.CreateFreeze(SV1); |
| else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) |
| SV0 = Builder.CreateFreeze(SV0); |
| } |
| |
| // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. |
| // Convert to funnel shift intrinsic. |
| Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; |
| Function *F = |
| Intrinsic::getOrInsertDeclaration(Sel.getModule(), IID, Sel.getType()); |
| ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); |
| return CallInst::Create(F, { SV0, SV1, ShAmt }); |
| } |
| |
| static Instruction *foldSelectToCopysign(SelectInst &Sel, |
| InstCombiner::BuilderTy &Builder) { |
| Value *Cond = Sel.getCondition(); |
| Value *TVal = Sel.getTrueValue(); |
| Value *FVal = Sel.getFalseValue(); |
| Type *SelType = Sel.getType(); |
| |
| // Match select ?, TC, FC where the constants are equal but negated. |
| // TODO: Generalize to handle a negated variable operand? |
| const APFloat *TC, *FC; |
| if (!match(TVal, m_APFloatAllowPoison(TC)) || |
| !match(FVal, m_APFloatAllowPoison(FC)) || |
| !abs(*TC).bitwiseIsEqual(abs(*FC))) |
| return nullptr; |
| |
| assert(TC != FC && "Expected equal select arms to simplify"); |
| |
| Value *X; |
| const APInt *C; |
| bool IsTrueIfSignSet; |
| ICmpInst::Predicate Pred; |
| if (!match(Cond, m_OneUse(m_ICmp(Pred, m_ElementWiseBitCast(m_Value(X)), |
| m_APInt(C)))) || |
| !isSignBitCheck(Pred, *C, IsTrueIfSignSet) || X->getType() != SelType) |
| return nullptr; |
| |
| // If needed, negate the value that will be the sign argument of the copysign: |
| // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) |
| // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) |
| // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) |
| // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) |
| // Note: FMF from the select can not be propagated to the new instructions. |
| if (IsTrueIfSignSet ^ TC->isNegative()) |
| X = Builder.CreateFNeg(X); |
| |
| // Canonicalize the magnitude argument as the positive constant since we do |
| // not care about its sign. |
| Value *MagArg = ConstantFP::get(SelType, abs(*TC)); |
| Function *F = Intrinsic::getOrInsertDeclaration( |
| Sel.getModule(), Intrinsic::copysign, Sel.getType()); |
| return CallInst::Create(F, { MagArg, X }); |
| } |
| |
| Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { |
| if (!isa<VectorType |