| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt < %s -passes=instsimplify -S | FileCheck %s |
| |
| define i32 @zero_dividend(i32 %A) { |
| ; CHECK-LABEL: @zero_dividend( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %B = sdiv i32 0, %A |
| ret i32 %B |
| } |
| |
| define <2 x i32> @zero_dividend_vector(<2 x i32> %A) { |
| ; CHECK-LABEL: @zero_dividend_vector( |
| ; CHECK-NEXT: ret <2 x i32> zeroinitializer |
| ; |
| %B = udiv <2 x i32> zeroinitializer, %A |
| ret <2 x i32> %B |
| } |
| |
| define <2 x i32> @zero_dividend_vector_undef_elt(<2 x i32> %A) { |
| ; CHECK-LABEL: @zero_dividend_vector_undef_elt( |
| ; CHECK-NEXT: ret <2 x i32> zeroinitializer |
| ; |
| %B = sdiv <2 x i32> <i32 0, i32 undef>, %A |
| ret <2 x i32> %B |
| } |
| |
| ; Division-by-zero is poison. UB in any vector lane means the whole op is poison. |
| |
| define <2 x i8> @sdiv_zero_elt_vec_constfold(<2 x i8> %x) { |
| ; CHECK-LABEL: @sdiv_zero_elt_vec_constfold( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = sdiv <2 x i8> <i8 1, i8 2>, <i8 0, i8 -42> |
| ret <2 x i8> %div |
| } |
| |
| define <2 x i8> @udiv_zero_elt_vec_constfold(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_zero_elt_vec_constfold( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = udiv <2 x i8> <i8 1, i8 2>, <i8 42, i8 0> |
| ret <2 x i8> %div |
| } |
| |
| define <2 x i8> @sdiv_zero_elt_vec(<2 x i8> %x) { |
| ; CHECK-LABEL: @sdiv_zero_elt_vec( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = sdiv <2 x i8> %x, <i8 -42, i8 0> |
| ret <2 x i8> %div |
| } |
| |
| define <2 x i8> @udiv_zero_elt_vec(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_zero_elt_vec( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = udiv <2 x i8> %x, <i8 0, i8 42> |
| ret <2 x i8> %div |
| } |
| |
| define <2 x i8> @sdiv_undef_elt_vec(<2 x i8> %x) { |
| ; CHECK-LABEL: @sdiv_undef_elt_vec( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = sdiv <2 x i8> %x, <i8 -42, i8 undef> |
| ret <2 x i8> %div |
| } |
| |
| define <2 x i8> @udiv_undef_elt_vec(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_undef_elt_vec( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %div = udiv <2 x i8> %x, <i8 undef, i8 42> |
| ret <2 x i8> %div |
| } |
| |
| ; Division-by-zero is undef. UB in any vector lane means the whole op is undef. |
| ; Thus, we can simplify this: if any element of 'y' is 0, we can do anything. |
| ; Therefore, assume that all elements of 'y' must be 1. |
| |
| define <2 x i1> @sdiv_bool_vec(<2 x i1> %x, <2 x i1> %y) { |
| ; CHECK-LABEL: @sdiv_bool_vec( |
| ; CHECK-NEXT: ret <2 x i1> [[X:%.*]] |
| ; |
| %div = sdiv <2 x i1> %x, %y |
| ret <2 x i1> %div |
| } |
| |
| define <2 x i1> @udiv_bool_vec(<2 x i1> %x, <2 x i1> %y) { |
| ; CHECK-LABEL: @udiv_bool_vec( |
| ; CHECK-NEXT: ret <2 x i1> [[X:%.*]] |
| ; |
| %div = udiv <2 x i1> %x, %y |
| ret <2 x i1> %div |
| } |
| |
| define i32 @zext_bool_udiv_divisor(i1 %x, i32 %y) { |
| ; CHECK-LABEL: @zext_bool_udiv_divisor( |
| ; CHECK-NEXT: ret i32 [[Y:%.*]] |
| ; |
| %ext = zext i1 %x to i32 |
| %r = udiv i32 %y, %ext |
| ret i32 %r |
| } |
| |
| define <2 x i32> @zext_bool_sdiv_divisor_vec(<2 x i1> %x, <2 x i32> %y) { |
| ; CHECK-LABEL: @zext_bool_sdiv_divisor_vec( |
| ; CHECK-NEXT: ret <2 x i32> [[Y:%.*]] |
| ; |
| %ext = zext <2 x i1> %x to <2 x i32> |
| %r = sdiv <2 x i32> %y, %ext |
| ret <2 x i32> %r |
| } |
| |
| define i32 @udiv_dividend_known_smaller_than_constant_divisor(i32 %x) { |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %and = and i32 %x, 250 |
| %div = udiv i32 %and, 251 |
| ret i32 %div |
| } |
| |
| define i32 @not_udiv_dividend_known_smaller_than_constant_divisor(i32 %x) { |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor( |
| ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 |
| ; CHECK-NEXT: [[DIV:%.*]] = udiv i32 [[AND]], 251 |
| ; CHECK-NEXT: ret i32 [[DIV]] |
| ; |
| %and = and i32 %x, 251 |
| %div = udiv i32 %and, 251 |
| ret i32 %div |
| } |
| |
| define i32 @udiv_constant_dividend_known_smaller_than_divisor(i32 %x) { |
| ; CHECK-LABEL: @udiv_constant_dividend_known_smaller_than_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %or = or i32 %x, 251 |
| %div = udiv i32 250, %or |
| ret i32 %div |
| } |
| |
| define i32 @not_udiv_constant_dividend_known_smaller_than_divisor(i32 %x) { |
| ; CHECK-LABEL: @not_udiv_constant_dividend_known_smaller_than_divisor( |
| ; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], 251 |
| ; CHECK-NEXT: [[DIV:%.*]] = udiv i32 251, [[OR]] |
| ; CHECK-NEXT: ret i32 [[DIV]] |
| ; |
| %or = or i32 %x, 251 |
| %div = udiv i32 251, %or |
| ret i32 %div |
| } |
| |
| define i8 @udiv_dividend_known_smaller_than_constant_divisor2(i1 %b) { |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_constant_divisor2( |
| ; CHECK-NEXT: ret i8 0 |
| ; |
| %t0 = zext i1 %b to i8 |
| %xor = xor i8 %t0, 12 |
| %r = udiv i8 %xor, 14 |
| ret i8 %r |
| } |
| |
| ; negative test - dividend can equal 13 |
| |
| define i8 @not_udiv_dividend_known_smaller_than_constant_divisor2(i1 %b) { |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_constant_divisor2( |
| ; CHECK-NEXT: [[T0:%.*]] = zext i1 [[B:%.*]] to i8 |
| ; CHECK-NEXT: [[XOR:%.*]] = xor i8 [[T0]], 12 |
| ; CHECK-NEXT: [[R:%.*]] = udiv i8 [[XOR]], 13 |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %t0 = zext i1 %b to i8 |
| %xor = xor i8 %t0, 12 |
| %r = udiv i8 %xor, 13 |
| ret i8 %r |
| } |
| |
| ; This would require computing known bits on both x and y. Is it worth doing? |
| |
| define i32 @udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @udiv_dividend_known_smaller_than_divisor( |
| ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 250 |
| ; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 |
| ; CHECK-NEXT: [[DIV:%.*]] = udiv i32 [[AND]], [[OR]] |
| ; CHECK-NEXT: ret i32 [[DIV]] |
| ; |
| %and = and i32 %x, 250 |
| %or = or i32 %y, 251 |
| %div = udiv i32 %and, %or |
| ret i32 %div |
| } |
| |
| define i32 @not_udiv_dividend_known_smaller_than_divisor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @not_udiv_dividend_known_smaller_than_divisor( |
| ; CHECK-NEXT: [[AND:%.*]] = and i32 [[X:%.*]], 251 |
| ; CHECK-NEXT: [[OR:%.*]] = or i32 [[Y:%.*]], 251 |
| ; CHECK-NEXT: [[DIV:%.*]] = udiv i32 [[AND]], [[OR]] |
| ; CHECK-NEXT: ret i32 [[DIV]] |
| ; |
| %and = and i32 %x, 251 |
| %or = or i32 %y, 251 |
| %div = udiv i32 %and, %or |
| ret i32 %div |
| } |
| |
| declare i32 @external() |
| |
| define i32 @div1() { |
| ; CHECK-LABEL: @div1( |
| ; CHECK-NEXT: [[CALL:%.*]] = call i32 @external(), !range [[RNG0:![0-9]+]] |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %call = call i32 @external(), !range !0 |
| %urem = udiv i32 %call, 3 |
| ret i32 %urem |
| } |
| |
| define i8 @sdiv_minusone_divisor() { |
| ; CHECK-LABEL: @sdiv_minusone_divisor( |
| ; CHECK-NEXT: ret i8 poison |
| ; |
| %v = sdiv i8 -128, -1 |
| ret i8 %v |
| } |
| |
| @g = external global i64 |
| @g2 = external global i64 |
| |
| define i64 @const_sdiv_one() { |
| ; CHECK-LABEL: @const_sdiv_one( |
| ; CHECK-NEXT: ret i64 ptrtoint (ptr @g to i64) |
| ; |
| %div = sdiv i64 ptrtoint (ptr @g to i64), 1 |
| ret i64 %div |
| } |
| |
| define i64 @const_srem_one() { |
| ; CHECK-LABEL: @const_srem_one( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %rem = srem i64 ptrtoint (ptr @g to i64), 1 |
| ret i64 %rem |
| } |
| |
| define i64 @const_udiv_one() { |
| ; CHECK-LABEL: @const_udiv_one( |
| ; CHECK-NEXT: ret i64 ptrtoint (ptr @g to i64) |
| ; |
| %div = udiv i64 ptrtoint (ptr @g to i64), 1 |
| ret i64 %div |
| } |
| |
| define i64 @const_urem_one() { |
| ; CHECK-LABEL: @const_urem_one( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %rem = urem i64 ptrtoint (ptr @g to i64), 1 |
| ret i64 %rem |
| } |
| |
| define i64 @const_sdiv_zero() { |
| ; CHECK-LABEL: @const_sdiv_zero( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %div = sdiv i64 0, ptrtoint (ptr @g to i64) |
| ret i64 %div |
| } |
| |
| define i64 @const_srem_zero() { |
| ; CHECK-LABEL: @const_srem_zero( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %rem = srem i64 0, ptrtoint (ptr @g to i64) |
| ret i64 %rem |
| } |
| |
| define i64 @const_udiv_zero() { |
| ; CHECK-LABEL: @const_udiv_zero( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %div = udiv i64 0, ptrtoint (ptr @g to i64) |
| ret i64 %div |
| } |
| |
| define i64 @const_urem_zero() { |
| ; CHECK-LABEL: @const_urem_zero( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %rem = urem i64 0, ptrtoint (ptr @g to i64) |
| ret i64 %rem |
| } |
| |
| define i64 @const_sdiv_zero_negone() { |
| ; CHECK-LABEL: @const_sdiv_zero_negone( |
| ; CHECK-NEXT: ret i64 0 |
| ; |
| %div = sdiv i64 0, -1 |
| ret i64 %div |
| } |
| |
| define i1 @const_sdiv_i1() { |
| ; CHECK-LABEL: @const_sdiv_i1( |
| ; CHECK-NEXT: ret i1 ptrtoint (ptr @g to i1) |
| ; |
| %div = sdiv i1 ptrtoint (ptr @g to i1), ptrtoint (ptr @g2 to i1) |
| ret i1 %div |
| } |
| |
| define i1 @const_srem_1() { |
| ; CHECK-LABEL: @const_srem_1( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %rem = srem i1 ptrtoint (ptr @g to i1), ptrtoint (ptr @g2 to i1) |
| ret i1 %rem |
| } |
| |
| define i1 @const_udiv_i1() { |
| ; CHECK-LABEL: @const_udiv_i1( |
| ; CHECK-NEXT: ret i1 ptrtoint (ptr @g to i1) |
| ; |
| %div = udiv i1 ptrtoint (ptr @g to i1), ptrtoint (ptr @g2 to i1) |
| ret i1 %div |
| } |
| |
| define i1 @const_urem_1() { |
| ; CHECK-LABEL: @const_urem_1( |
| ; CHECK-NEXT: ret i1 false |
| ; |
| %rem = urem i1 ptrtoint (ptr @g to i1), ptrtoint (ptr @g2 to i1) |
| ret i1 %rem |
| } |
| |
| ; Can't divide evenly, so create poison. |
| |
| define i8 @sdiv_exact_trailing_zeros(i8 %x) { |
| ; CHECK-LABEL: @sdiv_exact_trailing_zeros( |
| ; CHECK-NEXT: ret i8 poison |
| ; |
| %o = or i8 %x, 1 ; odd number |
| %r = sdiv exact i8 %o, -42 ; can't divide exactly |
| ret i8 %r |
| } |
| |
| ; Negative test - could divide evenly. |
| |
| define i8 @sdiv_exact_trailing_zeros_eq(i8 %x) { |
| ; CHECK-LABEL: @sdiv_exact_trailing_zeros_eq( |
| ; CHECK-NEXT: [[O:%.*]] = or i8 [[X:%.*]], 2 |
| ; CHECK-NEXT: [[R:%.*]] = sdiv exact i8 [[O]], -42 |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %o = or i8 %x, 2 |
| %r = sdiv exact i8 %o, -42 |
| ret i8 %r |
| } |
| |
| ; Negative test - must be exact div. |
| |
| define i8 @sdiv_trailing_zeros(i8 %x) { |
| ; CHECK-LABEL: @sdiv_trailing_zeros( |
| ; CHECK-NEXT: [[O:%.*]] = or i8 [[X:%.*]], 1 |
| ; CHECK-NEXT: [[R:%.*]] = sdiv i8 [[O]], -12 |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %o = or i8 %x, 1 |
| %r = sdiv i8 %o, -12 |
| ret i8 %r |
| } |
| |
| ; TODO: Match non-splat vector constants. |
| |
| define <2 x i8> @sdiv_exact_trailing_zeros_nonuniform_vector(<2 x i8> %x) { |
| ; CHECK-LABEL: @sdiv_exact_trailing_zeros_nonuniform_vector( |
| ; CHECK-NEXT: [[O:%.*]] = or <2 x i8> [[X:%.*]], <i8 3, i8 1> |
| ; CHECK-NEXT: [[R:%.*]] = sdiv exact <2 x i8> [[O]], <i8 12, i8 2> |
| ; CHECK-NEXT: ret <2 x i8> [[R]] |
| ; |
| %o = or <2 x i8> %x, <i8 3, i8 1> |
| %r = sdiv exact <2 x i8> %o, <i8 12, i8 2> |
| ret <2 x i8> %r |
| } |
| |
| ; Can't divide evenly, so create poison. |
| |
| define <2 x i8> @udiv_exact_trailing_zeros(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_exact_trailing_zeros( |
| ; CHECK-NEXT: ret <2 x i8> poison |
| ; |
| %o = or <2 x i8> %x, <i8 3, i8 3> |
| %r = udiv exact <2 x i8> %o, <i8 12, i8 12> ; can't divide exactly |
| ret <2 x i8> %r |
| } |
| |
| ; Negative test - could divide evenly. |
| |
| define <2 x i8> @udiv_exact_trailing_zeros_eq(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_exact_trailing_zeros_eq( |
| ; CHECK-NEXT: [[O:%.*]] = or <2 x i8> [[X:%.*]], <i8 28, i8 28> |
| ; CHECK-NEXT: [[R:%.*]] = udiv exact <2 x i8> [[O]], <i8 12, i8 12> |
| ; CHECK-NEXT: ret <2 x i8> [[R]] |
| ; |
| %o = or <2 x i8> %x, <i8 28, i8 28> |
| %r = udiv exact <2 x i8> %o, <i8 12, i8 12> |
| ret <2 x i8> %r |
| } |
| |
| ; Negative test - must be exact div. |
| |
| define i8 @udiv_trailing_zeros(i8 %x) { |
| ; CHECK-LABEL: @udiv_trailing_zeros( |
| ; CHECK-NEXT: [[O:%.*]] = or i8 [[X:%.*]], 1 |
| ; CHECK-NEXT: [[R:%.*]] = udiv i8 [[O]], 12 |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %o = or i8 %x, 1 |
| %r = udiv i8 %o, 12 |
| ret i8 %r |
| } |
| |
| ; Negative test - only the first element is poison |
| |
| define <2 x i8> @udiv_exact_trailing_zeros_nonuniform_vector(<2 x i8> %x) { |
| ; CHECK-LABEL: @udiv_exact_trailing_zeros_nonuniform_vector( |
| ; CHECK-NEXT: [[O:%.*]] = or <2 x i8> [[X:%.*]], <i8 3, i8 3> |
| ; CHECK-NEXT: [[R:%.*]] = udiv exact <2 x i8> [[O]], <i8 12, i8 1> |
| ; CHECK-NEXT: ret <2 x i8> [[R]] |
| ; |
| %o = or <2 x i8> %x, <i8 3, i8 3> |
| %r = udiv exact <2 x i8> %o, <i8 12, i8 1> |
| ret <2 x i8> %r |
| } |
| |
| !0 = !{i32 0, i32 3} |
| |
| define i32 @sdiv_one_srem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @sdiv_one_srem_divisor( |
| ; CHECK-NEXT: ret i32 [[A:%.*]] |
| ; |
| %srem = srem i32 1, %b |
| %sdiv = sdiv i32 %a, %srem |
| ret i32 %sdiv |
| } |
| |
| define i32 @sdiv_one_urem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @sdiv_one_urem_divisor( |
| ; CHECK-NEXT: ret i32 [[A:%.*]] |
| ; |
| %urem = urem i32 1, %b |
| %sdiv = sdiv i32 %a, %urem |
| ret i32 %sdiv |
| } |
| |
| define i32 @udiv_one_srem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @udiv_one_srem_divisor( |
| ; CHECK-NEXT: ret i32 [[A:%.*]] |
| ; |
| %srem = srem i32 1, %b |
| %udiv = udiv i32 %a, %srem |
| ret i32 %udiv |
| } |
| |
| define i32 @udiv_one_urem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @udiv_one_urem_divisor( |
| ; CHECK-NEXT: ret i32 [[A:%.*]] |
| ; |
| %urem = urem i32 1, %b |
| %udiv = udiv i32 %a, %urem |
| ret i32 %udiv |
| } |
| |
| define i32 @srem_one_srem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @srem_one_srem_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %srem = srem i32 1, %b |
| %srem1 = srem i32 %a, %srem |
| ret i32 %srem1 |
| } |
| |
| define i32 @urem_one_srem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @urem_one_srem_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %srem = srem i32 1, %b |
| %urem = urem i32 %a, %srem |
| ret i32 %urem |
| } |
| |
| define i32 @srem_one_urem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @srem_one_urem_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %urem = urem i32 1, %b |
| %srem = srem i32 %a, %urem |
| ret i32 %srem |
| } |
| |
| define i32 @urem_one_urem_divisor(i32 %a, i32 %b) { |
| ; CHECK-LABEL: @urem_one_urem_divisor( |
| ; CHECK-NEXT: ret i32 0 |
| ; |
| %urem = urem i32 1, %b |
| %urem1 = urem i32 %a, %urem |
| ret i32 %urem1 |
| } |
| |
| define <2 x i8> @sdiv_one_vec_srem_divisor(<2 x i8> %a, <2 x i8> %b) { |
| ; CHECK-LABEL: @sdiv_one_vec_srem_divisor( |
| ; CHECK-NEXT: ret <2 x i8> [[A:%.*]] |
| ; |
| %srem = srem <2 x i8> <i8 1, i8 1>, %b |
| %sdiv = sdiv <2 x i8> %a, %srem |
| ret <2 x i8> %sdiv |
| } |
| |
| define i32 @sdiv_and_one_divisor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sdiv_and_one_divisor( |
| ; CHECK-NEXT: ret i32 [[Y:%.*]] |
| ; |
| %and = and i32 %x, 1 |
| %res = sdiv i32 %y, %and |
| ret i32 %res |
| } |
| |
| define <2 x i8> @sdiv_and_one_vec_divisor(<2 x i8> %x, <2 x i8> %y) { |
| ; CHECK-LABEL: @sdiv_and_one_vec_divisor( |
| ; CHECK-NEXT: ret <2 x i8> [[Y:%.*]] |
| ; |
| %and = and <2 x i8> %x, <i8 1, i8 1> |
| %res = sdiv <2 x i8> %y, %and |
| ret <2 x i8> %res |
| } |
| |
| define i32 @sdiv_neg_or_divisor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sdiv_neg_or_divisor( |
| ; CHECK-NEXT: ret i32 [[Y:%.*]] |
| ; |
| %or = or i32 %x, -2 |
| %neg = xor i32 %or, -1 |
| %res = sdiv i32 %y, %neg |
| ret i32 %res |
| } |
| |
| define i32 @sdiv_neg_or_multi_one_bit_divisor(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @sdiv_neg_or_multi_one_bit_divisor( |
| ; CHECK-NEXT: [[OR:%.*]] = or i32 [[X:%.*]], -3 |
| ; CHECK-NEXT: [[NEG:%.*]] = xor i32 [[OR]], -1 |
| ; CHECK-NEXT: [[RES:%.*]] = sdiv i32 [[Y:%.*]], [[NEG]] |
| ; CHECK-NEXT: ret i32 [[RES]] |
| ; |
| %or = or i32 %x, -3 |
| %neg = xor i32 %or, -1 |
| %res = sdiv i32 %y, %neg |
| ret i32 %res |
| } |
| |
| define <2 x i8> @sdiv_vec_multi_one_bit_divisor(<2 x i8> %x, <2 x i8> %y) { |
| ; CHECK-LABEL: @sdiv_vec_multi_one_bit_divisor( |
| ; CHECK-NEXT: [[AND:%.*]] = and <2 x i8> [[X:%.*]], <i8 1, i8 3> |
| ; CHECK-NEXT: [[RES:%.*]] = sdiv <2 x i8> [[Y:%.*]], [[AND]] |
| ; CHECK-NEXT: ret <2 x i8> [[RES]] |
| ; |
| %and = and <2 x i8> %x, <i8 1, i8 3> |
| %res = sdiv <2 x i8> %y, %and |
| ret <2 x i8> %res |
| } |