| //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This program is a utility that works like binutils "objdump", that is, it |
| // dumps out a plethora of information about an object file depending on the |
| // flags. |
| // |
| // The flags and output of this program should be near identical to those of |
| // binutils objdump. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm-objdump.h" |
| #include "COFFDump.h" |
| #include "ELFDump.h" |
| #include "MachODump.h" |
| #include "ObjdumpOptID.h" |
| #include "OffloadDump.h" |
| #include "SourcePrinter.h" |
| #include "WasmDump.h" |
| #include "XCOFFDump.h" |
| #include "llvm/ADT/IndexedMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/StringSet.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/DebugInfo/BTF/BTFParser.h" |
| #include "llvm/DebugInfo/DWARF/DWARFContext.h" |
| #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h" |
| #include "llvm/DebugInfo/Symbolize/Symbolize.h" |
| #include "llvm/Debuginfod/BuildIDFetcher.h" |
| #include "llvm/Debuginfod/Debuginfod.h" |
| #include "llvm/Debuginfod/HTTPClient.h" |
| #include "llvm/Demangle/Demangle.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDisassembler/MCDisassembler.h" |
| #include "llvm/MC/MCDisassembler/MCRelocationInfo.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCInstPrinter.h" |
| #include "llvm/MC/MCInstrAnalysis.h" |
| #include "llvm/MC/MCInstrInfo.h" |
| #include "llvm/MC/MCObjectFileInfo.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/TargetRegistry.h" |
| #include "llvm/Object/Archive.h" |
| #include "llvm/Object/BuildID.h" |
| #include "llvm/Object/COFF.h" |
| #include "llvm/Object/COFFImportFile.h" |
| #include "llvm/Object/ELFObjectFile.h" |
| #include "llvm/Object/ELFTypes.h" |
| #include "llvm/Object/FaultMapParser.h" |
| #include "llvm/Object/MachO.h" |
| #include "llvm/Object/MachOUniversal.h" |
| #include "llvm/Object/ObjectFile.h" |
| #include "llvm/Object/OffloadBinary.h" |
| #include "llvm/Object/Wasm.h" |
| #include "llvm/Option/Arg.h" |
| #include "llvm/Option/ArgList.h" |
| #include "llvm/Option/Option.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/Errc.h" |
| #include "llvm/Support/FileSystem.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/FormatVariadic.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/InitLLVM.h" |
| #include "llvm/Support/LLVMDriver.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include "llvm/Support/SourceMgr.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/TargetSelect.h" |
| #include "llvm/Support/WithColor.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/TargetParser/Host.h" |
| #include "llvm/TargetParser/Triple.h" |
| #include <algorithm> |
| #include <cctype> |
| #include <cstring> |
| #include <optional> |
| #include <system_error> |
| #include <unordered_map> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::object; |
| using namespace llvm::objdump; |
| using namespace llvm::opt; |
| |
| namespace { |
| |
| class CommonOptTable : public opt::GenericOptTable { |
| public: |
| CommonOptTable(ArrayRef<Info> OptionInfos, const char *Usage, |
| const char *Description) |
| : opt::GenericOptTable(OptionInfos), Usage(Usage), |
| Description(Description) { |
| setGroupedShortOptions(true); |
| } |
| |
| void printHelp(StringRef Argv0, bool ShowHidden = false) const { |
| Argv0 = sys::path::filename(Argv0); |
| opt::GenericOptTable::printHelp(outs(), (Argv0 + Usage).str().c_str(), |
| Description, ShowHidden, ShowHidden); |
| // TODO Replace this with OptTable API once it adds extrahelp support. |
| outs() << "\nPass @FILE as argument to read options from FILE.\n"; |
| } |
| |
| private: |
| const char *Usage; |
| const char *Description; |
| }; |
| |
| // ObjdumpOptID is in ObjdumpOptID.h |
| namespace objdump_opt { |
| #define PREFIX(NAME, VALUE) \ |
| static constexpr StringLiteral NAME##_init[] = VALUE; \ |
| static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ |
| std::size(NAME##_init) - 1); |
| #include "ObjdumpOpts.inc" |
| #undef PREFIX |
| |
| static constexpr opt::OptTable::Info ObjdumpInfoTable[] = { |
| #define OPTION(...) \ |
| LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__), |
| #include "ObjdumpOpts.inc" |
| #undef OPTION |
| }; |
| } // namespace objdump_opt |
| |
| class ObjdumpOptTable : public CommonOptTable { |
| public: |
| ObjdumpOptTable() |
| : CommonOptTable(objdump_opt::ObjdumpInfoTable, |
| " [options] <input object files>", |
| "llvm object file dumper") {} |
| }; |
| |
| enum OtoolOptID { |
| OTOOL_INVALID = 0, // This is not an option ID. |
| #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), |
| #include "OtoolOpts.inc" |
| #undef OPTION |
| }; |
| |
| namespace otool { |
| #define PREFIX(NAME, VALUE) \ |
| static constexpr StringLiteral NAME##_init[] = VALUE; \ |
| static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \ |
| std::size(NAME##_init) - 1); |
| #include "OtoolOpts.inc" |
| #undef PREFIX |
| |
| static constexpr opt::OptTable::Info OtoolInfoTable[] = { |
| #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__), |
| #include "OtoolOpts.inc" |
| #undef OPTION |
| }; |
| } // namespace otool |
| |
| class OtoolOptTable : public CommonOptTable { |
| public: |
| OtoolOptTable() |
| : CommonOptTable(otool::OtoolInfoTable, " [option...] [file...]", |
| "Mach-O object file displaying tool") {} |
| }; |
| |
| } // namespace |
| |
| #define DEBUG_TYPE "objdump" |
| |
| enum class ColorOutput { |
| Auto, |
| Enable, |
| Disable, |
| Invalid, |
| }; |
| |
| static uint64_t AdjustVMA; |
| static bool AllHeaders; |
| static std::string ArchName; |
| bool objdump::ArchiveHeaders; |
| bool objdump::Demangle; |
| bool objdump::Disassemble; |
| bool objdump::DisassembleAll; |
| bool objdump::SymbolDescription; |
| bool objdump::TracebackTable; |
| static std::vector<std::string> DisassembleSymbols; |
| static bool DisassembleZeroes; |
| static std::vector<std::string> DisassemblerOptions; |
| static ColorOutput DisassemblyColor; |
| DIDumpType objdump::DwarfDumpType; |
| static bool DynamicRelocations; |
| static bool FaultMapSection; |
| static bool FileHeaders; |
| bool objdump::SectionContents; |
| static std::vector<std::string> InputFilenames; |
| bool objdump::PrintLines; |
| static bool MachOOpt; |
| std::string objdump::MCPU; |
| std::vector<std::string> objdump::MAttrs; |
| bool objdump::ShowRawInsn; |
| bool objdump::LeadingAddr; |
| static bool Offloading; |
| static bool RawClangAST; |
| bool objdump::Relocations; |
| bool objdump::PrintImmHex; |
| bool objdump::PrivateHeaders; |
| std::vector<std::string> objdump::FilterSections; |
| bool objdump::SectionHeaders; |
| static bool ShowAllSymbols; |
| static bool ShowLMA; |
| bool objdump::PrintSource; |
| |
| static uint64_t StartAddress; |
| static bool HasStartAddressFlag; |
| static uint64_t StopAddress = UINT64_MAX; |
| static bool HasStopAddressFlag; |
| |
| bool objdump::SymbolTable; |
| static bool SymbolizeOperands; |
| static bool DynamicSymbolTable; |
| std::string objdump::TripleName; |
| bool objdump::UnwindInfo; |
| static bool Wide; |
| std::string objdump::Prefix; |
| uint32_t objdump::PrefixStrip; |
| |
| DebugVarsFormat objdump::DbgVariables = DVDisabled; |
| |
| int objdump::DbgIndent = 52; |
| |
| static StringSet<> DisasmSymbolSet; |
| StringSet<> objdump::FoundSectionSet; |
| static StringRef ToolName; |
| |
| std::unique_ptr<BuildIDFetcher> BIDFetcher; |
| |
| Dumper::Dumper(const object::ObjectFile &O) : O(O) { |
| WarningHandler = [this](const Twine &Msg) { |
| if (Warnings.insert(Msg.str()).second) |
| reportWarning(Msg, this->O.getFileName()); |
| return Error::success(); |
| }; |
| } |
| |
| void Dumper::reportUniqueWarning(Error Err) { |
| reportUniqueWarning(toString(std::move(Err))); |
| } |
| |
| void Dumper::reportUniqueWarning(const Twine &Msg) { |
| cantFail(WarningHandler(Msg)); |
| } |
| |
| static Expected<std::unique_ptr<Dumper>> createDumper(const ObjectFile &Obj) { |
| if (const auto *O = dyn_cast<COFFObjectFile>(&Obj)) |
| return createCOFFDumper(*O); |
| if (const auto *O = dyn_cast<ELFObjectFileBase>(&Obj)) |
| return createELFDumper(*O); |
| if (const auto *O = dyn_cast<MachOObjectFile>(&Obj)) |
| return createMachODumper(*O); |
| if (const auto *O = dyn_cast<WasmObjectFile>(&Obj)) |
| return createWasmDumper(*O); |
| if (const auto *O = dyn_cast<XCOFFObjectFile>(&Obj)) |
| return createXCOFFDumper(*O); |
| |
| return createStringError(errc::invalid_argument, |
| "unsupported object file format"); |
| } |
| |
| namespace { |
| struct FilterResult { |
| // True if the section should not be skipped. |
| bool Keep; |
| |
| // True if the index counter should be incremented, even if the section should |
| // be skipped. For example, sections may be skipped if they are not included |
| // in the --section flag, but we still want those to count toward the section |
| // count. |
| bool IncrementIndex; |
| }; |
| } // namespace |
| |
| static FilterResult checkSectionFilter(object::SectionRef S) { |
| if (FilterSections.empty()) |
| return {/*Keep=*/true, /*IncrementIndex=*/true}; |
| |
| Expected<StringRef> SecNameOrErr = S.getName(); |
| if (!SecNameOrErr) { |
| consumeError(SecNameOrErr.takeError()); |
| return {/*Keep=*/false, /*IncrementIndex=*/false}; |
| } |
| StringRef SecName = *SecNameOrErr; |
| |
| // StringSet does not allow empty key so avoid adding sections with |
| // no name (such as the section with index 0) here. |
| if (!SecName.empty()) |
| FoundSectionSet.insert(SecName); |
| |
| // Only show the section if it's in the FilterSections list, but always |
| // increment so the indexing is stable. |
| return {/*Keep=*/is_contained(FilterSections, SecName), |
| /*IncrementIndex=*/true}; |
| } |
| |
| SectionFilter objdump::ToolSectionFilter(object::ObjectFile const &O, |
| uint64_t *Idx) { |
| // Start at UINT64_MAX so that the first index returned after an increment is |
| // zero (after the unsigned wrap). |
| if (Idx) |
| *Idx = UINT64_MAX; |
| return SectionFilter( |
| [Idx](object::SectionRef S) { |
| FilterResult Result = checkSectionFilter(S); |
| if (Idx != nullptr && Result.IncrementIndex) |
| *Idx += 1; |
| return Result.Keep; |
| }, |
| O); |
| } |
| |
| std::string objdump::getFileNameForError(const object::Archive::Child &C, |
| unsigned Index) { |
| Expected<StringRef> NameOrErr = C.getName(); |
| if (NameOrErr) |
| return std::string(NameOrErr.get()); |
| // If we have an error getting the name then we print the index of the archive |
| // member. Since we are already in an error state, we just ignore this error. |
| consumeError(NameOrErr.takeError()); |
| return "<file index: " + std::to_string(Index) + ">"; |
| } |
| |
| void objdump::reportWarning(const Twine &Message, StringRef File) { |
| // Output order between errs() and outs() matters especially for archive |
| // files where the output is per member object. |
| outs().flush(); |
| WithColor::warning(errs(), ToolName) |
| << "'" << File << "': " << Message << "\n"; |
| } |
| |
| [[noreturn]] void objdump::reportError(StringRef File, const Twine &Message) { |
| outs().flush(); |
| WithColor::error(errs(), ToolName) << "'" << File << "': " << Message << "\n"; |
| exit(1); |
| } |
| |
| [[noreturn]] void objdump::reportError(Error E, StringRef FileName, |
| StringRef ArchiveName, |
| StringRef ArchitectureName) { |
| assert(E); |
| outs().flush(); |
| WithColor::error(errs(), ToolName); |
| if (ArchiveName != "") |
| errs() << ArchiveName << "(" << FileName << ")"; |
| else |
| errs() << "'" << FileName << "'"; |
| if (!ArchitectureName.empty()) |
| errs() << " (for architecture " << ArchitectureName << ")"; |
| errs() << ": "; |
| logAllUnhandledErrors(std::move(E), errs()); |
| exit(1); |
| } |
| |
| static void reportCmdLineWarning(const Twine &Message) { |
| WithColor::warning(errs(), ToolName) << Message << "\n"; |
| } |
| |
| [[noreturn]] static void reportCmdLineError(const Twine &Message) { |
| WithColor::error(errs(), ToolName) << Message << "\n"; |
| exit(1); |
| } |
| |
| static void warnOnNoMatchForSections() { |
| SetVector<StringRef> MissingSections; |
| for (StringRef S : FilterSections) { |
| if (FoundSectionSet.count(S)) |
| return; |
| // User may specify a unnamed section. Don't warn for it. |
| if (!S.empty()) |
| MissingSections.insert(S); |
| } |
| |
| // Warn only if no section in FilterSections is matched. |
| for (StringRef S : MissingSections) |
| reportCmdLineWarning("section '" + S + |
| "' mentioned in a -j/--section option, but not " |
| "found in any input file"); |
| } |
| |
| static const Target *getTarget(const ObjectFile *Obj) { |
| // Figure out the target triple. |
| Triple TheTriple("unknown-unknown-unknown"); |
| if (TripleName.empty()) { |
| TheTriple = Obj->makeTriple(); |
| } else { |
| TheTriple.setTriple(Triple::normalize(TripleName)); |
| auto Arch = Obj->getArch(); |
| if (Arch == Triple::arm || Arch == Triple::armeb) |
| Obj->setARMSubArch(TheTriple); |
| } |
| |
| // Get the target specific parser. |
| std::string Error; |
| const Target *TheTarget = TargetRegistry::lookupTarget(ArchName, TheTriple, |
| Error); |
| if (!TheTarget) |
| reportError(Obj->getFileName(), "can't find target: " + Error); |
| |
| // Update the triple name and return the found target. |
| TripleName = TheTriple.getTriple(); |
| return TheTarget; |
| } |
| |
| bool objdump::isRelocAddressLess(RelocationRef A, RelocationRef B) { |
| return A.getOffset() < B.getOffset(); |
| } |
| |
| static Error getRelocationValueString(const RelocationRef &Rel, |
| SmallVectorImpl<char> &Result) { |
| const ObjectFile *Obj = Rel.getObject(); |
| if (auto *ELF = dyn_cast<ELFObjectFileBase>(Obj)) |
| return getELFRelocationValueString(ELF, Rel, Result); |
| if (auto *COFF = dyn_cast<COFFObjectFile>(Obj)) |
| return getCOFFRelocationValueString(COFF, Rel, Result); |
| if (auto *Wasm = dyn_cast<WasmObjectFile>(Obj)) |
| return getWasmRelocationValueString(Wasm, Rel, Result); |
| if (auto *MachO = dyn_cast<MachOObjectFile>(Obj)) |
| return getMachORelocationValueString(MachO, Rel, Result); |
| if (auto *XCOFF = dyn_cast<XCOFFObjectFile>(Obj)) |
| return getXCOFFRelocationValueString(*XCOFF, Rel, Result); |
| llvm_unreachable("unknown object file format"); |
| } |
| |
| /// Indicates whether this relocation should hidden when listing |
| /// relocations, usually because it is the trailing part of a multipart |
| /// relocation that will be printed as part of the leading relocation. |
| static bool getHidden(RelocationRef RelRef) { |
| auto *MachO = dyn_cast<MachOObjectFile>(RelRef.getObject()); |
| if (!MachO) |
| return false; |
| |
| unsigned Arch = MachO->getArch(); |
| DataRefImpl Rel = RelRef.getRawDataRefImpl(); |
| uint64_t Type = MachO->getRelocationType(Rel); |
| |
| // On arches that use the generic relocations, GENERIC_RELOC_PAIR |
| // is always hidden. |
| if (Arch == Triple::x86 || Arch == Triple::arm || Arch == Triple::ppc) |
| return Type == MachO::GENERIC_RELOC_PAIR; |
| |
| if (Arch == Triple::x86_64) { |
| // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows |
| // an X86_64_RELOC_SUBTRACTOR. |
| if (Type == MachO::X86_64_RELOC_UNSIGNED && Rel.d.a > 0) { |
| DataRefImpl RelPrev = Rel; |
| RelPrev.d.a--; |
| uint64_t PrevType = MachO->getRelocationType(RelPrev); |
| if (PrevType == MachO::X86_64_RELOC_SUBTRACTOR) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// Get the column at which we want to start printing the instruction |
| /// disassembly, taking into account anything which appears to the left of it. |
| unsigned objdump::getInstStartColumn(const MCSubtargetInfo &STI) { |
| return !ShowRawInsn ? 16 : STI.getTargetTriple().isX86() ? 40 : 24; |
| } |
| |
| static void AlignToInstStartColumn(size_t Start, const MCSubtargetInfo &STI, |
| raw_ostream &OS) { |
| // The output of printInst starts with a tab. Print some spaces so that |
| // the tab has 1 column and advances to the target tab stop. |
| unsigned TabStop = getInstStartColumn(STI); |
| unsigned Column = OS.tell() - Start; |
| OS.indent(Column < TabStop - 1 ? TabStop - 1 - Column : 7 - Column % 8); |
| } |
| |
| void objdump::printRawData(ArrayRef<uint8_t> Bytes, uint64_t Address, |
| formatted_raw_ostream &OS, |
| MCSubtargetInfo const &STI) { |
| size_t Start = OS.tell(); |
| if (LeadingAddr) |
| OS << format("%8" PRIx64 ":", Address); |
| if (ShowRawInsn) { |
| OS << ' '; |
| dumpBytes(Bytes, OS); |
| } |
| AlignToInstStartColumn(Start, STI, OS); |
| } |
| |
| namespace { |
| |
| static bool isAArch64Elf(const ObjectFile &Obj) { |
| const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| return Elf && Elf->getEMachine() == ELF::EM_AARCH64; |
| } |
| |
| static bool isArmElf(const ObjectFile &Obj) { |
| const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| return Elf && Elf->getEMachine() == ELF::EM_ARM; |
| } |
| |
| static bool isCSKYElf(const ObjectFile &Obj) { |
| const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj); |
| return Elf && Elf->getEMachine() == ELF::EM_CSKY; |
| } |
| |
| static bool hasMappingSymbols(const ObjectFile &Obj) { |
| return isArmElf(Obj) || isAArch64Elf(Obj) || isCSKYElf(Obj) ; |
| } |
| |
| static void printRelocation(formatted_raw_ostream &OS, StringRef FileName, |
| const RelocationRef &Rel, uint64_t Address, |
| bool Is64Bits) { |
| StringRef Fmt = Is64Bits ? "%016" PRIx64 ": " : "%08" PRIx64 ": "; |
| SmallString<16> Name; |
| SmallString<32> Val; |
| Rel.getTypeName(Name); |
| if (Error E = getRelocationValueString(Rel, Val)) |
| reportError(std::move(E), FileName); |
| OS << (Is64Bits || !LeadingAddr ? "\t\t" : "\t\t\t"); |
| if (LeadingAddr) |
| OS << format(Fmt.data(), Address); |
| OS << Name << "\t" << Val; |
| } |
| |
| static void printBTFRelocation(formatted_raw_ostream &FOS, llvm::BTFParser &BTF, |
| object::SectionedAddress Address, |
| LiveVariablePrinter &LVP) { |
| const llvm::BTF::BPFFieldReloc *Reloc = BTF.findFieldReloc(Address); |
| if (!Reloc) |
| return; |
| |
| SmallString<64> Val; |
| BTF.symbolize(Reloc, Val); |
| FOS << "\t\t"; |
| if (LeadingAddr) |
| FOS << format("%016" PRIx64 ": ", Address.Address + AdjustVMA); |
| FOS << "CO-RE " << Val; |
| LVP.printAfterOtherLine(FOS, true); |
| } |
| |
| class PrettyPrinter { |
| public: |
| virtual ~PrettyPrinter() = default; |
| virtual void |
| printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| LVP.printBetweenInsts(OS, false); |
| |
| printRawData(Bytes, Address.Address, OS, STI); |
| |
| if (MI) { |
| // See MCInstPrinter::printInst. On targets where a PC relative immediate |
| // is relative to the next instruction and the length of a MCInst is |
| // difficult to measure (x86), this is the address of the next |
| // instruction. |
| uint64_t Addr = |
| Address.Address + (STI.getTargetTriple().isX86() ? Bytes.size() : 0); |
| IP.printInst(MI, Addr, "", STI, OS); |
| } else |
| OS << "\t<unknown>"; |
| } |
| }; |
| PrettyPrinter PrettyPrinterInst; |
| |
| class HexagonPrettyPrinter : public PrettyPrinter { |
| public: |
| void printLead(ArrayRef<uint8_t> Bytes, uint64_t Address, |
| formatted_raw_ostream &OS) { |
| uint32_t opcode = |
| (Bytes[3] << 24) | (Bytes[2] << 16) | (Bytes[1] << 8) | Bytes[0]; |
| if (LeadingAddr) |
| OS << format("%8" PRIx64 ":", Address); |
| if (ShowRawInsn) { |
| OS << "\t"; |
| dumpBytes(Bytes.slice(0, 4), OS); |
| OS << format("\t%08" PRIx32, opcode); |
| } |
| } |
| void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) override { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); |
| if (!MI) { |
| printLead(Bytes, Address.Address, OS); |
| OS << " <unknown>"; |
| return; |
| } |
| std::string Buffer; |
| { |
| raw_string_ostream TempStream(Buffer); |
| IP.printInst(MI, Address.Address, "", STI, TempStream); |
| } |
| StringRef Contents(Buffer); |
| // Split off bundle attributes |
| auto PacketBundle = Contents.rsplit('\n'); |
| // Split off first instruction from the rest |
| auto HeadTail = PacketBundle.first.split('\n'); |
| auto Preamble = " { "; |
| auto Separator = ""; |
| |
| // Hexagon's packets require relocations to be inline rather than |
| // clustered at the end of the packet. |
| std::vector<RelocationRef>::const_iterator RelCur = Rels->begin(); |
| std::vector<RelocationRef>::const_iterator RelEnd = Rels->end(); |
| auto PrintReloc = [&]() -> void { |
| while ((RelCur != RelEnd) && (RelCur->getOffset() <= Address.Address)) { |
| if (RelCur->getOffset() == Address.Address) { |
| printRelocation(OS, ObjectFilename, *RelCur, Address.Address, false); |
| return; |
| } |
| ++RelCur; |
| } |
| }; |
| |
| while (!HeadTail.first.empty()) { |
| OS << Separator; |
| Separator = "\n"; |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP, ""); |
| printLead(Bytes, Address.Address, OS); |
| OS << Preamble; |
| Preamble = " "; |
| StringRef Inst; |
| auto Duplex = HeadTail.first.split('\v'); |
| if (!Duplex.second.empty()) { |
| OS << Duplex.first; |
| OS << "; "; |
| Inst = Duplex.second; |
| } |
| else |
| Inst = HeadTail.first; |
| OS << Inst; |
| HeadTail = HeadTail.second.split('\n'); |
| if (HeadTail.first.empty()) |
| OS << " } " << PacketBundle.second; |
| PrintReloc(); |
| Bytes = Bytes.slice(4); |
| Address.Address += 4; |
| } |
| } |
| }; |
| HexagonPrettyPrinter HexagonPrettyPrinterInst; |
| |
| class AMDGCNPrettyPrinter : public PrettyPrinter { |
| public: |
| void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) override { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| |
| if (MI) { |
| SmallString<40> InstStr; |
| raw_svector_ostream IS(InstStr); |
| |
| IP.printInst(MI, Address.Address, "", STI, IS); |
| |
| OS << left_justify(IS.str(), 60); |
| } else { |
| // an unrecognized encoding - this is probably data so represent it |
| // using the .long directive, or .byte directive if fewer than 4 bytes |
| // remaining |
| if (Bytes.size() >= 4) { |
| OS << format("\t.long 0x%08" PRIx32 " ", |
| support::endian::read32<support::little>(Bytes.data())); |
| OS.indent(42); |
| } else { |
| OS << format("\t.byte 0x%02" PRIx8, Bytes[0]); |
| for (unsigned int i = 1; i < Bytes.size(); i++) |
| OS << format(", 0x%02" PRIx8, Bytes[i]); |
| OS.indent(55 - (6 * Bytes.size())); |
| } |
| } |
| |
| OS << format("// %012" PRIX64 ":", Address.Address); |
| if (Bytes.size() >= 4) { |
| // D should be casted to uint32_t here as it is passed by format to |
| // snprintf as vararg. |
| for (uint32_t D : |
| ArrayRef(reinterpret_cast<const support::little32_t *>(Bytes.data()), |
| Bytes.size() / 4)) |
| OS << format(" %08" PRIX32, D); |
| } else { |
| for (unsigned char B : Bytes) |
| OS << format(" %02" PRIX8, B); |
| } |
| |
| if (!Annot.empty()) |
| OS << " // " << Annot; |
| } |
| }; |
| AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst; |
| |
| class BPFPrettyPrinter : public PrettyPrinter { |
| public: |
| void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) override { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| if (LeadingAddr) |
| OS << format("%8" PRId64 ":", Address.Address / 8); |
| if (ShowRawInsn) { |
| OS << "\t"; |
| dumpBytes(Bytes, OS); |
| } |
| if (MI) |
| IP.printInst(MI, Address.Address, "", STI, OS); |
| else |
| OS << "\t<unknown>"; |
| } |
| }; |
| BPFPrettyPrinter BPFPrettyPrinterInst; |
| |
| class ARMPrettyPrinter : public PrettyPrinter { |
| public: |
| void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) override { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| LVP.printBetweenInsts(OS, false); |
| |
| size_t Start = OS.tell(); |
| if (LeadingAddr) |
| OS << format("%8" PRIx64 ":", Address.Address); |
| if (ShowRawInsn) { |
| size_t Pos = 0, End = Bytes.size(); |
| if (STI.checkFeatures("+thumb-mode")) { |
| for (; Pos + 2 <= End; Pos += 2) |
| OS << ' ' |
| << format_hex_no_prefix( |
| llvm::support::endian::read<uint16_t>( |
| Bytes.data() + Pos, InstructionEndianness), |
| 4); |
| } else { |
| for (; Pos + 4 <= End; Pos += 4) |
| OS << ' ' |
| << format_hex_no_prefix( |
| llvm::support::endian::read<uint32_t>( |
| Bytes.data() + Pos, InstructionEndianness), |
| 8); |
| } |
| if (Pos < End) { |
| OS << ' '; |
| dumpBytes(Bytes.slice(Pos), OS); |
| } |
| } |
| |
| AlignToInstStartColumn(Start, STI, OS); |
| |
| if (MI) { |
| IP.printInst(MI, Address.Address, "", STI, OS); |
| } else |
| OS << "\t<unknown>"; |
| } |
| |
| void setInstructionEndianness(llvm::support::endianness Endianness) { |
| InstructionEndianness = Endianness; |
| } |
| |
| private: |
| llvm::support::endianness InstructionEndianness = llvm::support::little; |
| }; |
| ARMPrettyPrinter ARMPrettyPrinterInst; |
| |
| class AArch64PrettyPrinter : public PrettyPrinter { |
| public: |
| void printInst(MCInstPrinter &IP, const MCInst *MI, ArrayRef<uint8_t> Bytes, |
| object::SectionedAddress Address, formatted_raw_ostream &OS, |
| StringRef Annot, MCSubtargetInfo const &STI, SourcePrinter *SP, |
| StringRef ObjectFilename, std::vector<RelocationRef> *Rels, |
| LiveVariablePrinter &LVP) override { |
| if (SP && (PrintSource || PrintLines)) |
| SP->printSourceLine(OS, Address, ObjectFilename, LVP); |
| LVP.printBetweenInsts(OS, false); |
| |
| size_t Start = OS.tell(); |
| if (LeadingAddr) |
| OS << format("%8" PRIx64 ":", Address.Address); |
| if (ShowRawInsn) { |
| size_t Pos = 0, End = Bytes.size(); |
| for (; Pos + 4 <= End; Pos += 4) |
| OS << ' ' |
| << format_hex_no_prefix( |
| llvm::support::endian::read<uint32_t>(Bytes.data() + Pos, |
| llvm::support::little), |
| 8); |
| if (Pos < End) { |
| OS << ' '; |
| dumpBytes(Bytes.slice(Pos), OS); |
| } |
| } |
| |
| AlignToInstStartColumn(Start, STI, OS); |
| |
| if (MI) { |
| IP.printInst(MI, Address.Address, "", STI, OS); |
| } else |
| OS << "\t<unknown>"; |
| } |
| }; |
| AArch64PrettyPrinter AArch64PrettyPrinterInst; |
| |
| PrettyPrinter &selectPrettyPrinter(Triple const &Triple) { |
| switch(Triple.getArch()) { |
| default: |
| return PrettyPrinterInst; |
| case Triple::hexagon: |
| return HexagonPrettyPrinterInst; |
| case Triple::amdgcn: |
| return AMDGCNPrettyPrinterInst; |
| case Triple::bpfel: |
| case Triple::bpfeb: |
| return BPFPrettyPrinterInst; |
| case Triple::arm: |
| case Triple::armeb: |
| case Triple::thumb: |
| case Triple::thumbeb: |
| return ARMPrettyPrinterInst; |
| case Triple::aarch64: |
| case Triple::aarch64_be: |
| case Triple::aarch64_32: |
| return AArch64PrettyPrinterInst; |
| } |
| } |
| |
| class DisassemblerTarget { |
| public: |
| const Target *TheTarget; |
| std::unique_ptr<const MCSubtargetInfo> SubtargetInfo; |
| std::shared_ptr<MCContext> Context; |
| std::unique_ptr<MCDisassembler> DisAsm; |
| std::shared_ptr<const MCInstrAnalysis> InstrAnalysis; |
| std::shared_ptr<MCInstPrinter> InstPrinter; |
| PrettyPrinter *Printer; |
| |
| DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, |
| StringRef TripleName, StringRef MCPU, |
| SubtargetFeatures &Features); |
| DisassemblerTarget(DisassemblerTarget &Other, SubtargetFeatures &Features); |
| |
| private: |
| MCTargetOptions Options; |
| std::shared_ptr<const MCRegisterInfo> RegisterInfo; |
| std::shared_ptr<const MCAsmInfo> AsmInfo; |
| std::shared_ptr<const MCInstrInfo> InstrInfo; |
| std::shared_ptr<MCObjectFileInfo> ObjectFileInfo; |
| }; |
| |
| DisassemblerTarget::DisassemblerTarget(const Target *TheTarget, ObjectFile &Obj, |
| StringRef TripleName, StringRef MCPU, |
| SubtargetFeatures &Features) |
| : TheTarget(TheTarget), |
| Printer(&selectPrettyPrinter(Triple(TripleName))), |
| RegisterInfo(TheTarget->createMCRegInfo(TripleName)) { |
| if (!RegisterInfo) |
| reportError(Obj.getFileName(), "no register info for target " + TripleName); |
| |
| // Set up disassembler. |
| AsmInfo.reset(TheTarget->createMCAsmInfo(*RegisterInfo, TripleName, Options)); |
| if (!AsmInfo) |
| reportError(Obj.getFileName(), "no assembly info for target " + TripleName); |
| |
| SubtargetInfo.reset( |
| TheTarget->createMCSubtargetInfo(TripleName, MCPU, Features.getString())); |
| if (!SubtargetInfo) |
| reportError(Obj.getFileName(), |
| "no subtarget info for target " + TripleName); |
| InstrInfo.reset(TheTarget->createMCInstrInfo()); |
| if (!InstrInfo) |
| reportError(Obj.getFileName(), |
| "no instruction info for target " + TripleName); |
| Context = |
| std::make_shared<MCContext>(Triple(TripleName), AsmInfo.get(), |
| RegisterInfo.get(), SubtargetInfo.get()); |
| |
| // FIXME: for now initialize MCObjectFileInfo with default values |
| ObjectFileInfo.reset( |
| TheTarget->createMCObjectFileInfo(*Context, /*PIC=*/false)); |
| Context->setObjectFileInfo(ObjectFileInfo.get()); |
| |
| DisAsm.reset(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)); |
| if (!DisAsm) |
| reportError(Obj.getFileName(), "no disassembler for target " + TripleName); |
| |
| InstrAnalysis.reset(TheTarget->createMCInstrAnalysis(InstrInfo.get())); |
| |
| int AsmPrinterVariant = AsmInfo->getAssemblerDialect(); |
| InstPrinter.reset(TheTarget->createMCInstPrinter(Triple(TripleName), |
| AsmPrinterVariant, *AsmInfo, |
| *InstrInfo, *RegisterInfo)); |
| if (!InstPrinter) |
| reportError(Obj.getFileName(), |
| "no instruction printer for target " + TripleName); |
| InstPrinter->setPrintImmHex(PrintImmHex); |
| InstPrinter->setPrintBranchImmAsAddress(true); |
| InstPrinter->setSymbolizeOperands(SymbolizeOperands); |
| InstPrinter->setMCInstrAnalysis(InstrAnalysis.get()); |
| |
| switch (DisassemblyColor) { |
| case ColorOutput::Enable: |
| InstPrinter->setUseColor(true); |
| break; |
| case ColorOutput::Auto: |
| InstPrinter->setUseColor(outs().has_colors()); |
| break; |
| case ColorOutput::Disable: |
| case ColorOutput::Invalid: |
| InstPrinter->setUseColor(false); |
| break; |
| }; |
| } |
| |
| DisassemblerTarget::DisassemblerTarget(DisassemblerTarget &Other, |
| SubtargetFeatures &Features) |
| : TheTarget(Other.TheTarget), |
| SubtargetInfo(TheTarget->createMCSubtargetInfo(TripleName, MCPU, |
| Features.getString())), |
| Context(Other.Context), |
| DisAsm(TheTarget->createMCDisassembler(*SubtargetInfo, *Context)), |
| InstrAnalysis(Other.InstrAnalysis), InstPrinter(Other.InstPrinter), |
| Printer(Other.Printer), RegisterInfo(Other.RegisterInfo), |
| AsmInfo(Other.AsmInfo), InstrInfo(Other.InstrInfo), |
| ObjectFileInfo(Other.ObjectFileInfo) {} |
| } // namespace |
| |
| static uint8_t getElfSymbolType(const ObjectFile &Obj, const SymbolRef &Sym) { |
| assert(Obj.isELF()); |
| if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| return unwrapOrError(Elf32LEObj->getSymbol(Sym.getRawDataRefImpl()), |
| Obj.getFileName()) |
| ->getType(); |
| if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| return unwrapOrError(Elf64LEObj->getSymbol(Sym.getRawDataRefImpl()), |
| Obj.getFileName()) |
| ->getType(); |
| if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| return unwrapOrError(Elf32BEObj->getSymbol(Sym.getRawDataRefImpl()), |
| Obj.getFileName()) |
| ->getType(); |
| if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| return unwrapOrError(Elf64BEObj->getSymbol(Sym.getRawDataRefImpl()), |
| Obj.getFileName()) |
| ->getType(); |
| llvm_unreachable("Unsupported binary format"); |
| } |
| |
| template <class ELFT> |
| static void |
| addDynamicElfSymbols(const ELFObjectFile<ELFT> &Obj, |
| std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| for (auto Symbol : Obj.getDynamicSymbolIterators()) { |
| uint8_t SymbolType = Symbol.getELFType(); |
| if (SymbolType == ELF::STT_SECTION) |
| continue; |
| |
| uint64_t Address = unwrapOrError(Symbol.getAddress(), Obj.getFileName()); |
| // ELFSymbolRef::getAddress() returns size instead of value for common |
| // symbols which is not desirable for disassembly output. Overriding. |
| if (SymbolType == ELF::STT_COMMON) |
| Address = unwrapOrError(Obj.getSymbol(Symbol.getRawDataRefImpl()), |
| Obj.getFileName()) |
| ->st_value; |
| |
| StringRef Name = unwrapOrError(Symbol.getName(), Obj.getFileName()); |
| if (Name.empty()) |
| continue; |
| |
| section_iterator SecI = |
| unwrapOrError(Symbol.getSection(), Obj.getFileName()); |
| if (SecI == Obj.section_end()) |
| continue; |
| |
| AllSymbols[*SecI].emplace_back(Address, Name, SymbolType); |
| } |
| } |
| |
| static void |
| addDynamicElfSymbols(const ELFObjectFileBase &Obj, |
| std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| addDynamicElfSymbols(*Elf32LEObj, AllSymbols); |
| else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| addDynamicElfSymbols(*Elf64LEObj, AllSymbols); |
| else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| addDynamicElfSymbols(*Elf32BEObj, AllSymbols); |
| else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| addDynamicElfSymbols(*Elf64BEObj, AllSymbols); |
| else |
| llvm_unreachable("Unsupported binary format"); |
| } |
| |
| static std::optional<SectionRef> getWasmCodeSection(const WasmObjectFile &Obj) { |
| for (auto SecI : Obj.sections()) { |
| const WasmSection &Section = Obj.getWasmSection(SecI); |
| if (Section.Type == wasm::WASM_SEC_CODE) |
| return SecI; |
| } |
| return std::nullopt; |
| } |
| |
| static void |
| addMissingWasmCodeSymbols(const WasmObjectFile &Obj, |
| std::map<SectionRef, SectionSymbolsTy> &AllSymbols) { |
| std::optional<SectionRef> Section = getWasmCodeSection(Obj); |
| if (!Section) |
| return; |
| SectionSymbolsTy &Symbols = AllSymbols[*Section]; |
| |
| std::set<uint64_t> SymbolAddresses; |
| for (const auto &Sym : Symbols) |
| SymbolAddresses.insert(Sym.Addr); |
| |
| for (const wasm::WasmFunction &Function : Obj.functions()) { |
| uint64_t Address = Function.CodeSectionOffset; |
| // Only add fallback symbols for functions not already present in the symbol |
| // table. |
| if (SymbolAddresses.count(Address)) |
| continue; |
| // This function has no symbol, so it should have no SymbolName. |
| assert(Function.SymbolName.empty()); |
| // We use DebugName for the name, though it may be empty if there is no |
| // "name" custom section, or that section is missing a name for this |
| // function. |
| StringRef Name = Function.DebugName; |
| Symbols.emplace_back(Address, Name, ELF::STT_NOTYPE); |
| } |
| } |
| |
| static void addPltEntries(const ObjectFile &Obj, |
| std::map<SectionRef, SectionSymbolsTy> &AllSymbols, |
| StringSaver &Saver) { |
| auto *ElfObj = dyn_cast<ELFObjectFileBase>(&Obj); |
| if (!ElfObj) |
| return; |
| DenseMap<StringRef, SectionRef> Sections; |
| for (SectionRef Section : Obj.sections()) { |
| Expected<StringRef> SecNameOrErr = Section.getName(); |
| if (!SecNameOrErr) { |
| consumeError(SecNameOrErr.takeError()); |
| continue; |
| } |
| Sections[*SecNameOrErr] = Section; |
| } |
| for (auto Plt : ElfObj->getPltEntries()) { |
| if (Plt.Symbol) { |
| SymbolRef Symbol(*Plt.Symbol, ElfObj); |
| uint8_t SymbolType = getElfSymbolType(Obj, Symbol); |
| if (Expected<StringRef> NameOrErr = Symbol.getName()) { |
| if (!NameOrErr->empty()) |
| AllSymbols[Sections[Plt.Section]].emplace_back( |
| Plt.Address, Saver.save((*NameOrErr + "@plt").str()), SymbolType); |
| continue; |
| } else { |
| // The warning has been reported in disassembleObject(). |
| consumeError(NameOrErr.takeError()); |
| } |
| } |
| reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt.Address) + |
| " references an invalid symbol", |
| Obj.getFileName()); |
| } |
| } |
| |
| // Normally the disassembly output will skip blocks of zeroes. This function |
| // returns the number of zero bytes that can be skipped when dumping the |
| // disassembly of the instructions in Buf. |
| static size_t countSkippableZeroBytes(ArrayRef<uint8_t> Buf) { |
| // Find the number of leading zeroes. |
| size_t N = 0; |
| while (N < Buf.size() && !Buf[N]) |
| ++N; |
| |
| // We may want to skip blocks of zero bytes, but unless we see |
| // at least 8 of them in a row. |
| if (N < 8) |
| return 0; |
| |
| // We skip zeroes in multiples of 4 because do not want to truncate an |
| // instruction if it starts with a zero byte. |
| return N & ~0x3; |
| } |
| |
| // Returns a map from sections to their relocations. |
| static std::map<SectionRef, std::vector<RelocationRef>> |
| getRelocsMap(object::ObjectFile const &Obj) { |
| std::map<SectionRef, std::vector<RelocationRef>> Ret; |
| uint64_t I = (uint64_t)-1; |
| for (SectionRef Sec : Obj.sections()) { |
| ++I; |
| Expected<section_iterator> RelocatedOrErr = Sec.getRelocatedSection(); |
| if (!RelocatedOrErr) |
| reportError(Obj.getFileName(), |
| "section (" + Twine(I) + |
| "): failed to get a relocated section: " + |
| toString(RelocatedOrErr.takeError())); |
| |
| section_iterator Relocated = *RelocatedOrErr; |
| if (Relocated == Obj.section_end() || !checkSectionFilter(*Relocated).Keep) |
| continue; |
| std::vector<RelocationRef> &V = Ret[*Relocated]; |
| append_range(V, Sec.relocations()); |
| // Sort relocations by address. |
| llvm::stable_sort(V, isRelocAddressLess); |
| } |
| return Ret; |
| } |
| |
| // Used for --adjust-vma to check if address should be adjusted by the |
| // specified value for a given section. |
| // For ELF we do not adjust non-allocatable sections like debug ones, |
| // because they are not loadable. |
| // TODO: implement for other file formats. |
| static bool shouldAdjustVA(const SectionRef &Section) { |
| const ObjectFile *Obj = Section.getObject(); |
| if (Obj->isELF()) |
| return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC; |
| return false; |
| } |
| |
| |
| typedef std::pair<uint64_t, char> MappingSymbolPair; |
| static char getMappingSymbolKind(ArrayRef<MappingSymbolPair> MappingSymbols, |
| uint64_t Address) { |
| auto It = |
| partition_point(MappingSymbols, [Address](const MappingSymbolPair &Val) { |
| return Val.first <= Address; |
| }); |
| // Return zero for any address before the first mapping symbol; this means |
| // we should use the default disassembly mode, depending on the target. |
| if (It == MappingSymbols.begin()) |
| return '\x00'; |
| return (It - 1)->second; |
| } |
| |
| static uint64_t dumpARMELFData(uint64_t SectionAddr, uint64_t Index, |
| uint64_t End, const ObjectFile &Obj, |
| ArrayRef<uint8_t> Bytes, |
| ArrayRef<MappingSymbolPair> MappingSymbols, |
| const MCSubtargetInfo &STI, raw_ostream &OS) { |
| support::endianness Endian = |
| Obj.isLittleEndian() ? support::little : support::big; |
| size_t Start = OS.tell(); |
| OS << format("%8" PRIx64 ": ", SectionAddr + Index); |
| if (Index + 4 <= End) { |
| dumpBytes(Bytes.slice(Index, 4), OS); |
| AlignToInstStartColumn(Start, STI, OS); |
| OS << "\t.word\t" |
| << format_hex(support::endian::read32(Bytes.data() + Index, Endian), |
| 10); |
| return 4; |
| } |
| if (Index + 2 <= End) { |
| dumpBytes(Bytes.slice(Index, 2), OS); |
| AlignToInstStartColumn(Start, STI, OS); |
| OS << "\t.short\t" |
| << format_hex(support::endian::read16(Bytes.data() + Index, Endian), 6); |
| return 2; |
| } |
| dumpBytes(Bytes.slice(Index, 1), OS); |
| AlignToInstStartColumn(Start, STI, OS); |
| OS << "\t.byte\t" << format_hex(Bytes[Index], 4); |
| return 1; |
| } |
| |
| static void dumpELFData(uint64_t SectionAddr, uint64_t Index, uint64_t End, |
| ArrayRef<uint8_t> Bytes) { |
| // print out data up to 8 bytes at a time in hex and ascii |
| uint8_t AsciiData[9] = {'\0'}; |
| uint8_t Byte; |
| int NumBytes = 0; |
| |
| for (; Index < End; ++Index) { |
| if (NumBytes == 0) |
| outs() << format("%8" PRIx64 ":", SectionAddr + Index); |
| Byte = Bytes.slice(Index)[0]; |
| outs() << format(" %02x", Byte); |
| AsciiData[NumBytes] = isPrint(Byte) ? Byte : '.'; |
| |
| uint8_t IndentOffset = 0; |
| NumBytes++; |
| if (Index == End - 1 || NumBytes > 8) { |
| // Indent the space for less than 8 bytes data. |
| // 2 spaces for byte and one for space between bytes |
| IndentOffset = 3 * (8 - NumBytes); |
| for (int Excess = NumBytes; Excess < 8; Excess++) |
| AsciiData[Excess] = '\0'; |
| NumBytes = 8; |
| } |
| if (NumBytes == 8) { |
| AsciiData[8] = '\0'; |
| outs() << std::string(IndentOffset, ' ') << " "; |
| outs() << reinterpret_cast<char *>(AsciiData); |
| outs() << '\n'; |
| NumBytes = 0; |
| } |
| } |
| } |
| |
| SymbolInfoTy objdump::createSymbolInfo(const ObjectFile &Obj, |
| const SymbolRef &Symbol, |
| bool IsMappingSymbol) { |
| const StringRef FileName = Obj.getFileName(); |
| const uint64_t Addr = unwrapOrError(Symbol.getAddress(), FileName); |
| const StringRef Name = unwrapOrError(Symbol.getName(), FileName); |
| |
| if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) { |
| const auto &XCOFFObj = cast<XCOFFObjectFile>(Obj); |
| DataRefImpl SymbolDRI = Symbol.getRawDataRefImpl(); |
| |
| const uint32_t SymbolIndex = XCOFFObj.getSymbolIndex(SymbolDRI.p); |
| std::optional<XCOFF::StorageMappingClass> Smc = |
| getXCOFFSymbolCsectSMC(XCOFFObj, Symbol); |
| return SymbolInfoTy(Smc, Addr, Name, SymbolIndex, |
| isLabel(XCOFFObj, Symbol)); |
| } else if (Obj.isXCOFF()) { |
| const SymbolRef::Type SymType = unwrapOrError(Symbol.getType(), FileName); |
| return SymbolInfoTy(Addr, Name, SymType, /*IsMappingSymbol=*/false, |
| /*IsXCOFF=*/true); |
| } else { |
| uint8_t Type = |
| Obj.isELF() ? getElfSymbolType(Obj, Symbol) : (uint8_t)ELF::STT_NOTYPE; |
| return SymbolInfoTy(Addr, Name, Type, IsMappingSymbol); |
| } |
| } |
| |
| static SymbolInfoTy createDummySymbolInfo(const ObjectFile &Obj, |
| const uint64_t Addr, StringRef &Name, |
| uint8_t Type) { |
| if (Obj.isXCOFF() && (SymbolDescription || TracebackTable)) |
| return SymbolInfoTy(std::nullopt, Addr, Name, std::nullopt, false); |
| else |
| return SymbolInfoTy(Addr, Name, Type); |
| } |
| |
| static void |
| collectBBAddrMapLabels(const std::unordered_map<uint64_t, BBAddrMap> &AddrToBBAddrMap, |
| uint64_t SectionAddr, uint64_t Start, uint64_t End, |
| std::unordered_map<uint64_t, std::vector<std::string>> &Labels) { |
| if (AddrToBBAddrMap.empty()) |
| return; |
| Labels.clear(); |
| uint64_t StartAddress = SectionAddr + Start; |
| uint64_t EndAddress = SectionAddr + End; |
| auto Iter = AddrToBBAddrMap.find(StartAddress); |
| if (Iter == AddrToBBAddrMap.end()) |
| return; |
| for (const BBAddrMap::BBEntry &BBEntry : Iter->second.BBEntries) { |
| uint64_t BBAddress = BBEntry.Offset + Iter->second.Addr; |
| if (BBAddress >= EndAddress) |
| continue; |
| Labels[BBAddress].push_back(("BB" + Twine(BBEntry.ID)).str()); |
| } |
| } |
| |
| static void collectLocalBranchTargets( |
| ArrayRef<uint8_t> Bytes, const MCInstrAnalysis *MIA, MCDisassembler *DisAsm, |
| MCInstPrinter *IP, const MCSubtargetInfo *STI, uint64_t SectionAddr, |
| uint64_t Start, uint64_t End, std::unordered_map<uint64_t, std::string> &Labels) { |
| // So far only supports PowerPC and X86. |
| if (!STI->getTargetTriple().isPPC() && !STI->getTargetTriple().isX86()) |
| return; |
| |
| Labels.clear(); |
| unsigned LabelCount = 0; |
| Start += SectionAddr; |
| End += SectionAddr; |
| uint64_t Index = Start; |
| while (Index < End) { |
| // Disassemble a real instruction and record function-local branch labels. |
| MCInst Inst; |
| uint64_t Size; |
| ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index - SectionAddr); |
| bool Disassembled = |
| DisAsm->getInstruction(Inst, Size, ThisBytes, Index, nulls()); |
| if (Size == 0) |
| Size = std::min<uint64_t>(ThisBytes.size(), |
| DisAsm->suggestBytesToSkip(ThisBytes, Index)); |
| |
| if (Disassembled && MIA) { |
| uint64_t Target; |
| bool TargetKnown = MIA->evaluateBranch(Inst, Index, Size, Target); |
| // On PowerPC, if the address of a branch is the same as the target, it |
| // means that it's a function call. Do not mark the label for this case. |
| if (TargetKnown && (Target >= Start && Target < End) && |
| !Labels.count(Target) && |
| !(STI->getTargetTriple().isPPC() && Target == Index)) |
| Labels[Target] = ("L" + Twine(LabelCount++)).str(); |
| } |
| Index += Size; |
| } |
| } |
| |
| // Create an MCSymbolizer for the target and add it to the MCDisassembler. |
| // This is currently only used on AMDGPU, and assumes the format of the |
| // void * argument passed to AMDGPU's createMCSymbolizer. |
| static void addSymbolizer( |
| MCContext &Ctx, const Target *Target, StringRef TripleName, |
| MCDisassembler *DisAsm, uint64_t SectionAddr, ArrayRef<uint8_t> Bytes, |
| SectionSymbolsTy &Symbols, |
| std::vector<std::unique_ptr<std::string>> &SynthesizedLabelNames) { |
| |
| std::unique_ptr<MCRelocationInfo> RelInfo( |
| Target->createMCRelocationInfo(TripleName, Ctx)); |
| if (!RelInfo) |
| return; |
| std::unique_ptr<MCSymbolizer> Symbolizer(Target->createMCSymbolizer( |
| TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); |
| MCSymbolizer *SymbolizerPtr = &*Symbolizer; |
| DisAsm->setSymbolizer(std::move(Symbolizer)); |
| |
| if (!SymbolizeOperands) |
| return; |
| |
| // Synthesize labels referenced by branch instructions by |
| // disassembling, discarding the output, and collecting the referenced |
| // addresses from the symbolizer. |
| for (size_t Index = 0; Index != Bytes.size();) { |
| MCInst Inst; |
| uint64_t Size; |
| ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); |
| const uint64_t ThisAddr = SectionAddr + Index; |
| DisAsm->getInstruction(Inst, Size, ThisBytes, ThisAddr, nulls()); |
| if (Size == 0) |
| Size = std::min<uint64_t>(ThisBytes.size(), |
| DisAsm->suggestBytesToSkip(ThisBytes, Index)); |
| Index += Size; |
| } |
| ArrayRef<uint64_t> LabelAddrsRef = SymbolizerPtr->getReferencedAddresses(); |
| // Copy and sort to remove duplicates. |
| std::vector<uint64_t> LabelAddrs; |
| LabelAddrs.insert(LabelAddrs.end(), LabelAddrsRef.begin(), |
| LabelAddrsRef.end()); |
| llvm::sort(LabelAddrs); |
| LabelAddrs.resize(std::unique(LabelAddrs.begin(), LabelAddrs.end()) - |
| LabelAddrs.begin()); |
| // Add the labels. |
| for (unsigned LabelNum = 0; LabelNum != LabelAddrs.size(); ++LabelNum) { |
| auto Name = std::make_unique<std::string>(); |
| *Name = (Twine("L") + Twine(LabelNum)).str(); |
| SynthesizedLabelNames.push_back(std::move(Name)); |
| Symbols.push_back(SymbolInfoTy( |
| LabelAddrs[LabelNum], *SynthesizedLabelNames.back(), ELF::STT_NOTYPE)); |
| } |
| llvm::stable_sort(Symbols); |
| // Recreate the symbolizer with the new symbols list. |
| RelInfo.reset(Target->createMCRelocationInfo(TripleName, Ctx)); |
| Symbolizer.reset(Target->createMCSymbolizer( |
| TripleName, nullptr, nullptr, &Symbols, &Ctx, std::move(RelInfo))); |
| DisAsm->setSymbolizer(std::move(Symbolizer)); |
| } |
| |
| static StringRef getSegmentName(const MachOObjectFile *MachO, |
| const SectionRef &Section) { |
| if (MachO) { |
| DataRefImpl DR = Section.getRawDataRefImpl(); |
| StringRef SegmentName = MachO->getSectionFinalSegmentName(DR); |
| return SegmentName; |
| } |
| return ""; |
| } |
| |
| static void emitPostInstructionInfo(formatted_raw_ostream &FOS, |
| const MCAsmInfo &MAI, |
| const MCSubtargetInfo &STI, |
| StringRef Comments, |
| LiveVariablePrinter &LVP) { |
| do { |
| if (!Comments.empty()) { |
| // Emit a line of comments. |
| StringRef Comment; |
| std::tie(Comment, Comments) = Comments.split('\n'); |
| // MAI.getCommentColumn() assumes that instructions are printed at the |
| // position of 8, while getInstStartColumn() returns the actual position. |
| unsigned CommentColumn = |
| MAI.getCommentColumn() - 8 + getInstStartColumn(STI); |
| FOS.PadToColumn(CommentColumn); |
| FOS << MAI.getCommentString() << ' ' << Comment; |
| } |
| LVP.printAfterInst(FOS); |
| FOS << '\n'; |
| } while (!Comments.empty()); |
| FOS.flush(); |
| } |
| |
| static void createFakeELFSections(ObjectFile &Obj) { |
| assert(Obj.isELF()); |
| if (auto *Elf32LEObj = dyn_cast<ELF32LEObjectFile>(&Obj)) |
| Elf32LEObj->createFakeSections(); |
| else if (auto *Elf64LEObj = dyn_cast<ELF64LEObjectFile>(&Obj)) |
| Elf64LEObj->createFakeSections(); |
| else if (auto *Elf32BEObj = dyn_cast<ELF32BEObjectFile>(&Obj)) |
| Elf32BEObj->createFakeSections(); |
| else if (auto *Elf64BEObj = cast<ELF64BEObjectFile>(&Obj)) |
| Elf64BEObj->createFakeSections(); |
| else |
| llvm_unreachable("Unsupported binary format"); |
| } |
| |
| // Tries to fetch a more complete version of the given object file using its |
| // Build ID. Returns std::nullopt if nothing was found. |
| static std::optional<OwningBinary<Binary>> |
| fetchBinaryByBuildID(const ObjectFile &Obj) { |
| object::BuildIDRef BuildID = getBuildID(&Obj); |
| if (BuildID.empty()) |
| return std::nullopt; |
| std::optional<std::string> Path = BIDFetcher->fetch(BuildID); |
| if (!Path) |
| return std::nullopt; |
| Expected<OwningBinary<Binary>> DebugBinary = createBinary(*Path); |
| if (!DebugBinary) { |
| reportWarning(toString(DebugBinary.takeError()), *Path); |
| return std::nullopt; |
| } |
| return std::move(*DebugBinary); |
| } |
| |
| static void |
| disassembleObject(ObjectFile &Obj, const ObjectFile &DbgObj, |
| DisassemblerTarget &PrimaryTarget, |
| std::optional<DisassemblerTarget> &SecondaryTarget, |
| SourcePrinter &SP, bool InlineRelocs) { |
| DisassemblerTarget *DT = &PrimaryTarget; |
| bool PrimaryIsThumb = false; |
| SmallVector<std::pair<uint64_t, uint64_t>, 0> CHPECodeMap; |
| |
| if (SecondaryTarget) { |
| if (isArmElf(Obj)) { |
| PrimaryIsThumb = |
| PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode"); |
| } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { |
| const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); |
| if (CHPEMetadata && CHPEMetadata->CodeMapCount) { |
| uintptr_t CodeMapInt; |
| cantFail(COFFObj->getRvaPtr(CHPEMetadata->CodeMap, CodeMapInt)); |
| auto CodeMap = reinterpret_cast<const chpe_range_entry *>(CodeMapInt); |
| |
| for (uint32_t i = 0; i < CHPEMetadata->CodeMapCount; ++i) { |
| if (CodeMap[i].getType() == chpe_range_type::Amd64 && |
| CodeMap[i].Length) { |
| // Store x86_64 CHPE code ranges. |
| uint64_t Start = CodeMap[i].getStart() + COFFObj->getImageBase(); |
| CHPECodeMap.emplace_back(Start, Start + CodeMap[i].Length); |
| } |
| } |
| llvm::sort(CHPECodeMap); |
| } |
| } |
| } |
| |
| std::map<SectionRef, std::vector<RelocationRef>> RelocMap; |
| if (InlineRelocs) |
| RelocMap = getRelocsMap(Obj); |
| bool Is64Bits = Obj.getBytesInAddress() > 4; |
| |
| // Create a mapping from virtual address to symbol name. This is used to |
| // pretty print the symbols while disassembling. |
| std::map<SectionRef, SectionSymbolsTy> AllSymbols; |
| std::map<SectionRef, SmallVector<MappingSymbolPair, 0>> AllMappingSymbols; |
| SectionSymbolsTy AbsoluteSymbols; |
| const StringRef FileName = Obj.getFileName(); |
| const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(&Obj); |
| for (const SymbolRef &Symbol : Obj.symbols()) { |
| Expected<StringRef> NameOrErr = Symbol.getName(); |
| if (!NameOrErr) { |
| reportWarning(toString(NameOrErr.takeError()), FileName); |
| continue; |
| } |
| if (NameOrErr->empty() && !(Obj.isXCOFF() && SymbolDescription)) |
| continue; |
| |
| if (Obj.isELF() && |
| (cantFail(Symbol.getFlags()) & SymbolRef::SF_FormatSpecific)) { |
| // Symbol is intended not to be displayed by default (STT_FILE, |
| // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will |
| // synthesize a section symbol if no symbol is defined at offset 0. |
| // |
| // For a mapping symbol, store it within both AllSymbols and |
| // AllMappingSymbols. If --show-all-symbols is unspecified, its label will |
| // not be printed in disassembly listing. |
| if (getElfSymbolType(Obj, Symbol) != ELF::STT_SECTION && |
| hasMappingSymbols(Obj)) { |
| section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); |
| if (SecI != Obj.section_end()) { |
| uint64_t SectionAddr = SecI->getAddress(); |
| uint64_t Address = cantFail(Symbol.getAddress()); |
| StringRef Name = *NameOrErr; |
| if (Name.consume_front("$") && Name.size() && |
| strchr("adtx", Name[0])) { |
| AllMappingSymbols[*SecI].emplace_back(Address - SectionAddr, |
| Name[0]); |
| AllSymbols[*SecI].push_back( |
| createSymbolInfo(Obj, Symbol, /*MappingSymbol=*/true)); |
| } |
| } |
| } |
| continue; |
| } |
| |
| if (MachO) { |
| // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special |
| // symbols that support MachO header introspection. They do not bind to |
| // code locations and are irrelevant for disassembly. |
| if (NameOrErr->startswith("__mh_") && NameOrErr->endswith("_header")) |
| continue; |
| // Don't ask a Mach-O STAB symbol for its section unless you know that |
| // STAB symbol's section field refers to a valid section index. Otherwise |
| // the symbol may error trying to load a section that does not exist. |
| DataRefImpl SymDRI = Symbol.getRawDataRefImpl(); |
| uint8_t NType = (MachO->is64Bit() ? |
| MachO->getSymbol64TableEntry(SymDRI).n_type: |
| MachO->getSymbolTableEntry(SymDRI).n_type); |
| if (NType & MachO::N_STAB) |
| continue; |
| } |
| |
| section_iterator SecI = unwrapOrError(Symbol.getSection(), FileName); |
| if (SecI != Obj.section_end()) |
| AllSymbols[*SecI].push_back(createSymbolInfo(Obj, Symbol)); |
| else |
| AbsoluteSymbols.push_back(createSymbolInfo(Obj, Symbol)); |
| } |
| |
| if (AllSymbols.empty() && Obj.isELF()) |
| addDynamicElfSymbols(cast<ELFObjectFileBase>(Obj), AllSymbols); |
| |
| if (Obj.isWasm()) |
| addMissingWasmCodeSymbols(cast<WasmObjectFile>(Obj), AllSymbols); |
| |
| if (Obj.isELF() && Obj.sections().empty()) |
| createFakeELFSections(Obj); |
| |
| BumpPtrAllocator A; |
| StringSaver Saver(A); |
| addPltEntries(Obj, AllSymbols, Saver); |
| |
| // Create a mapping from virtual address to section. An empty section can |
| // cause more than one section at the same address. Sort such sections to be |
| // before same-addressed non-empty sections so that symbol lookups prefer the |
| // non-empty section. |
| std::vector<std::pair<uint64_t, SectionRef>> SectionAddresses; |
| for (SectionRef Sec : Obj.sections()) |
| SectionAddresses.emplace_back(Sec.getAddress(), Sec); |
| llvm::stable_sort(SectionAddresses, [](const auto &LHS, const auto &RHS) { |
| if (LHS.first != RHS.first) |
| return LHS.first < RHS.first; |
| return LHS.second.getSize() < RHS.second.getSize(); |
| }); |
| |
| // Linked executables (.exe and .dll files) typically don't include a real |
| // symbol table but they might contain an export table. |
| if (const auto *COFFObj = dyn_cast<COFFObjectFile>(&Obj)) { |
| for (const auto &ExportEntry : COFFObj->export_directories()) { |
| StringRef Name; |
| if (Error E = ExportEntry.getSymbolName(Name)) |
| reportError(std::move(E), Obj.getFileName()); |
| if (Name.empty()) |
| continue; |
| |
| uint32_t RVA; |
| if (Error E = ExportEntry.getExportRVA(RVA)) |
| reportError(std::move(E), Obj.getFileName()); |
| |
| uint64_t VA = COFFObj->getImageBase() + RVA; |
| auto Sec = partition_point( |
| SectionAddresses, [VA](const std::pair<uint64_t, SectionRef> &O) { |
| return O.first <= VA; |
| }); |
| if (Sec != SectionAddresses.begin()) { |
| --Sec; |
| AllSymbols[Sec->second].emplace_back(VA, Name, ELF::STT_NOTYPE); |
| } else |
| AbsoluteSymbols.emplace_back(VA, Name, ELF::STT_NOTYPE); |
| } |
| } |
| |
| // Sort all the symbols, this allows us to use a simple binary search to find |
| // Multiple symbols can have the same address. Use a stable sort to stabilize |
| // the output. |
| StringSet<> FoundDisasmSymbolSet; |
| for (std::pair<const SectionRef, SectionSymbolsTy> &SecSyms : AllSymbols) |
| llvm::stable_sort(SecSyms.second); |
| llvm::stable_sort(AbsoluteSymbols); |
| |
| std::unique_ptr<DWARFContext> DICtx; |
| LiveVariablePrinter LVP(*DT->Context->getRegisterInfo(), *DT->SubtargetInfo); |
| |
| if (DbgVariables != DVDisabled) { |
| DICtx = DWARFContext::create(DbgObj); |
| for (const std::unique_ptr<DWARFUnit> &CU : DICtx->compile_units()) |
| LVP.addCompileUnit(CU->getUnitDIE(false)); |
| } |
| |
| LLVM_DEBUG(LVP.dump()); |
| |
| std::unordered_map<uint64_t, BBAddrMap> AddrToBBAddrMap; |
| auto ReadBBAddrMap = [&](std::optional<unsigned> SectionIndex = |
| std::nullopt) { |
| AddrToBBAddrMap.clear(); |
| if (const auto *Elf = dyn_cast<ELFObjectFileBase>(&Obj)) { |
| auto BBAddrMapsOrErr = Elf->readBBAddrMap(SectionIndex); |
| if (!BBAddrMapsOrErr) { |
| reportWarning(toString(BBAddrMapsOrErr.takeError()), Obj.getFileName()); |
| return; |
| } |
| for (auto &FunctionBBAddrMap : *BBAddrMapsOrErr) |
| AddrToBBAddrMap.emplace(FunctionBBAddrMap.Addr, |
| std::move(FunctionBBAddrMap)); |
| } |
| }; |
| |
| // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a |
| // single mapping, since they don't have any conflicts. |
| if (SymbolizeOperands && !Obj.isRelocatableObject()) |
| ReadBBAddrMap(); |
| |
| std::optional<llvm::BTFParser> BTF; |
| if (InlineRelocs && BTFParser::hasBTFSections(Obj)) { |
| BTF.emplace(); |
| BTFParser::ParseOptions Opts = {}; |
| Opts.LoadTypes = true; |
| Opts.LoadRelocs = true; |
| if (Error E = BTF->parse(Obj, Opts)) |
| WithColor::defaultErrorHandler(std::move(E)); |
| } |
| |
| for (const SectionRef &Section : ToolSectionFilter(Obj)) { |
| if (FilterSections.empty() && !DisassembleAll && |
| (!Section.isText() || Section.isVirtual())) |
| continue; |
| |
| uint64_t SectionAddr = Section.getAddress(); |
| uint64_t SectSize = Section.getSize(); |
| if (!SectSize) |
| continue; |
| |
| // For relocatable object files, read the LLVM_BB_ADDR_MAP section |
| // corresponding to this section, if present. |
| if (SymbolizeOperands && Obj.isRelocatableObject()) |
| ReadBBAddrMap(Section.getIndex()); |
| |
| // Get the list of all the symbols in this section. |
| SectionSymbolsTy &Symbols = AllSymbols[Section]; |
| auto &MappingSymbols = AllMappingSymbols[Section]; |
| llvm::sort(MappingSymbols); |
| |
| ArrayRef<uint8_t> Bytes = arrayRefFromStringRef( |
| unwrapOrError(Section.getContents(), Obj.getFileName())); |
| |
| std::vector<std::unique_ptr<std::string>> SynthesizedLabelNames; |
| if (Obj.isELF() && Obj.getArch() == Triple::amdgcn) { |
| // AMDGPU disassembler uses symbolizer for printing labels |
| addSymbolizer(*DT->Context, DT->TheTarget, TripleName, DT->DisAsm.get(), |
| SectionAddr, Bytes, Symbols, SynthesizedLabelNames); |
| } |
| |
| StringRef SegmentName = getSegmentName(MachO, Section); |
| StringRef SectionName = unwrapOrError(Section.getName(), Obj.getFileName()); |
| // If the section has no symbol at the start, just insert a dummy one. |
| // Without --show-all-symbols, also insert one if all symbols at the start |
| // are mapping symbols. |
| bool CreateDummy = Symbols.empty(); |
| if (!CreateDummy) { |
| CreateDummy = true; |
| for (auto &Sym : Symbols) { |
| if (Sym.Addr != SectionAddr) |
| break; |
| if (!Sym.IsMappingSymbol || ShowAllSymbols) |
| CreateDummy = false; |
| } |
| } |
| if (CreateDummy) { |
| SymbolInfoTy Sym = createDummySymbolInfo( |
| Obj, SectionAddr, SectionName, |
| Section.isText() ? ELF::STT_FUNC : ELF::STT_OBJECT); |
| if (Obj.isXCOFF()) |
| Symbols.insert(Symbols.begin(), Sym); |
| else |
| Symbols.insert(llvm::lower_bound(Symbols, Sym), Sym); |
| } |
| |
| SmallString<40> Comments; |
| raw_svector_ostream CommentStream(Comments); |
| |
| uint64_t VMAAdjustment = 0; |
| if (shouldAdjustVA(Section)) |
| VMAAdjustment = AdjustVMA; |
| |
| // In executable and shared objects, r_offset holds a virtual address. |
| // Subtract SectionAddr from the r_offset field of a relocation to get |
| // the section offset. |
| uint64_t RelAdjustment = Obj.isRelocatableObject() ? 0 : SectionAddr; |
| uint64_t Size; |
| uint64_t Index; |
| bool PrintedSection = false; |
| std::vector<RelocationRef> Rels = RelocMap[Section]; |
| std::vector<RelocationRef>::const_iterator RelCur = Rels.begin(); |
| std::vector<RelocationRef>::const_iterator RelEnd = Rels.end(); |
| |
| // Loop over each chunk of code between two points where at least |
| // one symbol is defined. |
| for (size_t SI = 0, SE = Symbols.size(); SI != SE;) { |
| // Advance SI past all the symbols starting at the same address, |
| // and make an ArrayRef of them. |
| unsigned FirstSI = SI; |
| uint64_t Start = Symbols[SI].Addr; |
| ArrayRef<SymbolInfoTy> SymbolsHere; |
| while (SI != SE && Symbols[SI].Addr == Start) |
| ++SI; |
| SymbolsHere = ArrayRef<SymbolInfoTy>(&Symbols[FirstSI], SI - FirstSI); |
| |
| // Get the demangled names of all those symbols. We end up with a vector |
| // of StringRef that holds the names we're going to use, and a vector of |
| // std::string that stores the new strings returned by demangle(), if |
| // any. If we don't call demangle() then that vector can stay empty. |
| std::vector<StringRef> SymNamesHere; |
| std::vector<std::string> DemangledSymNamesHere; |
| if (Demangle) { |
| // Fetch the demangled names and store them locally. |
| for (const SymbolInfoTy &Symbol : SymbolsHere) |
| DemangledSymNamesHere.push_back(demangle(Symbol.Name)); |
| // Now we've finished modifying that vector, it's safe to make |
| // a vector of StringRefs pointing into it. |
| SymNamesHere.insert(SymNamesHere.begin(), DemangledSymNamesHere.begin(), |
| DemangledSymNamesHere.end()); |
| } else { |
| for (const SymbolInfoTy &Symbol : SymbolsHere) |
| SymNamesHere.push_back(Symbol.Name); |
| } |
| |
| // Distinguish ELF data from code symbols, which will be used later on to |
| // decide whether to 'disassemble' this chunk as a data declaration via |
| // dumpELFData(), or whether to treat it as code. |
| // |
| // If data _and_ code symbols are defined at the same address, the code |
| // takes priority, on the grounds that disassembling code is our main |
| // purpose here, and it would be a worse failure to _not_ interpret |
| // something that _was_ meaningful as code than vice versa. |
| // |
| // Any ELF symbol type that is not clearly data will be regarded as code. |
| // In particular, one of the uses of STT_NOTYPE is for branch targets |
| // inside functions, for which STT_FUNC would be inaccurate. |
| // |
| // So here, we spot whether there's any non-data symbol present at all, |
| // and only set the DisassembleAsData flag if there isn't. Also, we use |
| // this distinction to inform the decision of which symbol to print at |
| // the head of the section, so that if we're printing code, we print a |
| // code-related symbol name to go with it. |
| bool DisassembleAsData = false; |
| size_t DisplaySymIndex = SymbolsHere.size() - 1; |
| if (Obj.isELF() && !DisassembleAll && Section.isText()) { |
| DisassembleAsData = true; // unless we find a code symbol below |
| |
| for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| uint8_t SymTy = SymbolsHere[i].Type; |
| if (SymTy != ELF::STT_OBJECT && SymTy != ELF::STT_COMMON) { |
| DisassembleAsData = false; |
| DisplaySymIndex = i; |
| } |
| } |
| } |
| |
| // Decide which symbol(s) from this collection we're going to print. |
| std::vector<bool> SymsToPrint(SymbolsHere.size(), false); |
| // If the user has given the --disassemble-symbols option, then we must |
| // display every symbol in that set, and no others. |
| if (!DisasmSymbolSet.empty()) { |
| bool FoundAny = false; |
| for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| if (DisasmSymbolSet.count(SymNamesHere[i])) { |
| SymsToPrint[i] = true; |
| FoundAny = true; |
| } |
| } |
| |
| // And if none of the symbols here is one that the user asked for, skip |
| // disassembling this entire chunk of code. |
| if (!FoundAny) |
| continue; |
| } else if (!SymbolsHere[DisplaySymIndex].IsMappingSymbol) { |
| // Otherwise, print whichever symbol at this location is last in the |
| // Symbols array, because that array is pre-sorted in a way intended to |
| // correlate with priority of which symbol to display. |
| SymsToPrint[DisplaySymIndex] = true; |
| } |
| |
| // Now that we know we're disassembling this section, override the choice |
| // of which symbols to display by printing _all_ of them at this address |
| // if the user asked for all symbols. |
| // |
| // That way, '--show-all-symbols --disassemble-symbol=foo' will print |
| // only the chunk of code headed by 'foo', but also show any other |
| // symbols defined at that address, such as aliases for 'foo', or the ARM |
| // mapping symbol preceding its code. |
| if (ShowAllSymbols) { |
| for (size_t i = 0; i < SymbolsHere.size(); ++i) |
| SymsToPrint[i] = true; |
| } |
| |
| if (Start < SectionAddr || StopAddress <= Start) |
| continue; |
| |
| for (size_t i = 0; i < SymbolsHere.size(); ++i) |
| FoundDisasmSymbolSet.insert(SymNamesHere[i]); |
| |
| // The end is the section end, the beginning of the next symbol, or |
| // --stop-address. |
| uint64_t End = std::min<uint64_t>(SectionAddr + SectSize, StopAddress); |
| if (SI < SE) |
| End = std::min(End, Symbols[SI].Addr); |
| if (Start >= End || End <= StartAddress) |
| continue; |
| Start -= SectionAddr; |
| End -= SectionAddr; |
| |
| if (!PrintedSection) { |
| PrintedSection = true; |
| outs() << "\nDisassembly of section "; |
| if (!SegmentName.empty()) |
| outs() << SegmentName << ","; |
| outs() << SectionName << ":\n"; |
| } |
| |
| bool PrintedLabel = false; |
| for (size_t i = 0; i < SymbolsHere.size(); ++i) { |
| if (!SymsToPrint[i]) |
| continue; |
| |
| const SymbolInfoTy &Symbol = SymbolsHere[i]; |
| const StringRef SymbolName = SymNamesHere[i]; |
| |
| if (!PrintedLabel) { |
| outs() << '\n'; |
| PrintedLabel = true; |
| } |
| if (LeadingAddr) |
| outs() << format(Is64Bits ? "%016" PRIx64 " " : "%08" PRIx64 " ", |
| SectionAddr + Start + VMAAdjustment); |
| if (Obj.isXCOFF() && SymbolDescription) { |
| outs() << getXCOFFSymbolDescription(Symbol, SymbolName) << ":\n"; |
| } else |
| outs() << '<' << SymbolName << ">:\n"; |
| } |
| |
| // Don't print raw contents of a virtual section. A virtual section |
| // doesn't have any contents in the file. |
| if (Section.isVirtual()) { |
| outs() << "...\n"; |
| continue; |
| } |
| |
| // See if any of the symbols defined at this location triggers target- |
| // specific disassembly behavior, e.g. of special descriptors or function |
| // prelude information. |
| // |
| // We stop this loop at the first symbol that triggers some kind of |
| // interesting behavior (if any), on the assumption that if two symbols |
| // defined at the same address trigger two conflicting symbol handlers, |
| // the object file is probably confused anyway, and it would make even |
| // less sense to present the output of _both_ handlers, because that |
| // would describe the same data twice. |
| for (size_t SHI = 0; SHI < SymbolsHere.size(); ++SHI) { |
| SymbolInfoTy Symbol = SymbolsHere[SHI]; |
| |
| auto Status = DT->DisAsm->onSymbolStart( |
| Symbol, Size, Bytes.slice(Start, End - Start), SectionAddr + Start, |
| CommentStream); |
| |
| if (!Status) { |
| // If onSymbolStart returns std::nullopt, that means it didn't trigger |
| // any interesting handling for this symbol. Try the other symbols |
| // defined at this address. |
| continue; |
| } |
| |
| if (*Status == MCDisassembler::Fail) { |
| // If onSymbolStart returns Fail, that means it identified some kind |
| // of special data at this address, but wasn't able to disassemble it |
| // meaningfully. So we fall back to disassembling the failed region |
| // as bytes, assuming that the target detected the failure before |
| // printing anything. |
| // |
| // Return values Success or SoftFail (i.e no 'real' failure) are |
| // expected to mean that the target has emitted its own output. |
| // |
| // Either way, 'Size' will have been set to the amount of data |
| // covered by whatever prologue the target identified. So we advance |
| // our own position to beyond that. Sometimes that will be the entire |
| // distance to the next symbol, and sometimes it will be just a |
| // prologue and we should start disassembling instructions from where |
| // it left off. |
| outs() << DT->Context->getAsmInfo()->getCommentString() |
| << " error in decoding " << SymNamesHere[SHI] |
| << " : decoding failed region as bytes.\n"; |
| for (uint64_t I = 0; I < Size; ++I) { |
| outs() << "\t.byte\t " << format_hex(Bytes[I], 1, /*Upper=*/true) |
| << "\n"; |
| } |
| } |
| Start += Size; |
| break; |
| } |
| |
| Index = Start; |
| if (SectionAddr < StartAddress) |
| Index = std::max<uint64_t>(Index, StartAddress - SectionAddr); |
| |
| if (DisassembleAsData) { |
| dumpELFData(SectionAddr, Index, End, Bytes); |
| Index = End; |
| continue; |
| } |
| |
| bool DumpARMELFData = false; |
| bool DumpTracebackTableForXCOFFFunction = |
| Obj.isXCOFF() && Section.isText() && TracebackTable && |
| Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass && |
| (*Symbols[SI - 1].XCOFFSymInfo.StorageMappingClass == XCOFF::XMC_PR); |
| |
| formatted_raw_ostream FOS(outs()); |
| |
| // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes |
| // are (incorrectly) written directly to the unbuffered raw_ostream |
| // wrapped by the formatted_raw_ostream. |
| if (DisassemblyColor == ColorOutput::Enable || |
| DisassemblyColor == ColorOutput::Auto) |
| FOS.SetUnbuffered(); |
| |
| std::unordered_map<uint64_t, std::string> AllLabels; |
| std::unordered_map<uint64_t, std::vector<std::string>> BBAddrMapLabels; |
| if (SymbolizeOperands) { |
| collectLocalBranchTargets(Bytes, DT->InstrAnalysis.get(), |
| DT->DisAsm.get(), DT->InstPrinter.get(), |
| PrimaryTarget.SubtargetInfo.get(), |
| SectionAddr, Index, End, AllLabels); |
| collectBBAddrMapLabels(AddrToBBAddrMap, SectionAddr, Index, End, |
| BBAddrMapLabels); |
| } |
| |
| while (Index < End) { |
| // ARM and AArch64 ELF binaries can interleave data and text in the |
| // same section. We rely on the markers introduced to understand what |
| // we need to dump. If the data marker is within a function, it is |
| // denoted as a word/short etc. |
| if (!MappingSymbols.empty()) { |
| char Kind = getMappingSymbolKind(MappingSymbols, Index); |
| DumpARMELFData = Kind == 'd'; |
| if (SecondaryTarget) { |
| if (Kind == 'a') { |
| DT = PrimaryIsThumb ? &*SecondaryTarget : &PrimaryTarget; |
| } else if (Kind == 't') { |
| DT = PrimaryIsThumb ? &PrimaryTarget : &*SecondaryTarget; |
| } |
| } |
| } else if (!CHPECodeMap.empty()) { |
| uint64_t Address = SectionAddr + Index; |
| auto It = partition_point( |
| CHPECodeMap, |
| [Address](const std::pair<uint64_t, uint64_t> &Entry) { |
| return Entry.first <= Address; |
| }); |
| if (It != CHPECodeMap.begin() && Address < (It - 1)->second) { |
| DT = &*SecondaryTarget; |
| } else { |
| DT = &PrimaryTarget; |
| // X64 disassembler range may have left Index unaligned, so |
| // make sure that it's aligned when we switch back to ARM64 |
| // code. |
| Index = llvm::alignTo(Index, 4); |
| if (Index >= End) |
| break; |
| } |
| } |
| |
| if (DumpARMELFData) { |
| Size = dumpARMELFData(SectionAddr, Index, End, Obj, Bytes, |
| MappingSymbols, *DT->SubtargetInfo, FOS); |
| } else { |
| // When -z or --disassemble-zeroes are given we always dissasemble |
| // them. Otherwise we might want to skip zero bytes we see. |
| if (!DisassembleZeroes) { |
| uint64_t MaxOffset = End - Index; |
| // For --reloc: print zero blocks patched by relocations, so that |
| // relocations can be shown in the dump. |
| if (RelCur != RelEnd) |
| MaxOffset = std::min(RelCur->getOffset() - RelAdjustment - Index, |
| MaxOffset); |
| |
| if (size_t N = |
| countSkippableZeroBytes(Bytes.slice(Index, MaxOffset))) { |
| FOS << "\t\t..." << '\n'; |
| Index += N; |
| continue; |
| } |
| } |
| |
| if (DumpTracebackTableForXCOFFFunction && |
| doesXCOFFTracebackTableBegin(Bytes.slice(Index, 4))) { |
| dumpTracebackTable(Bytes.slice(Index), |
| SectionAddr + Index + VMAAdjustment, FOS, |
| SectionAddr + End + VMAAdjustment, |
| *DT->SubtargetInfo, cast<XCOFFObjectFile>(&Obj)); |
| Index = End; |
| continue; |
| } |
| |
| // Print local label if there's any. |
| auto Iter1 = BBAddrMapLabels.find(SectionAddr + Index); |
| if (Iter1 != BBAddrMapLabels.end()) { |
| for (StringRef Label : Iter1->second) |
| FOS << "<" << Label << ">:\n"; |
| } else { |
| auto Iter2 = AllLabels.find(SectionAddr + Index); |
| if (Iter2 != AllLabels.end()) |
| FOS << "<" << Iter2->second << ">:\n"; |
| } |
| |
| // Disassemble a real instruction or a data when disassemble all is |
| // provided |
| MCInst Inst; |
| ArrayRef<uint8_t> ThisBytes = Bytes.slice(Index); |
| uint64_t ThisAddr = SectionAddr + Index; |
| bool Disassembled = DT->DisAsm->getInstruction( |
| Inst, Size, ThisBytes, ThisAddr, CommentStream); |
| if (Size == 0) |
| Size = std::min<uint64_t>( |
| ThisBytes.size(), |
| DT->DisAsm->suggestBytesToSkip(ThisBytes, ThisAddr)); |
| |
| LVP.update({Index, Section.getIndex()}, |
| {Index + Size, Section.getIndex()}, Index + Size != End); |
| |
| DT->InstPrinter->setCommentStream(CommentStream); |
| |
| DT->Printer->printInst( |
| *DT->InstPrinter, Disassembled ? &Inst : nullptr, |
| Bytes.slice(Index, Size), |
| {SectionAddr + Index + VMAAdjustment, Section.getIndex()}, FOS, |
| "", *DT->SubtargetInfo, &SP, Obj.getFileName(), &Rels, LVP); |
| |
| DT->InstPrinter->setCommentStream(llvm::nulls()); |
| |
| // If disassembly has failed, avoid analysing invalid/incomplete |
| // instruction information. Otherwise, try to resolve the target |
| // address (jump target or memory operand address) and print it on the |
| // right of the instruction. |
| if (Disassembled && DT->InstrAnalysis) { |
| // Branch targets are printed just after the instructions. |
| llvm::raw_ostream *TargetOS = &FOS; |
| uint64_t Target; |
| bool PrintTarget = DT->InstrAnalysis->evaluateBranch( |
| Inst, SectionAddr + Index, Size, Target); |
| if (!PrintTarget) |
| if (std::optional<uint64_t> MaybeTarget = |
| DT->InstrAnalysis->evaluateMemoryOperandAddress( |
| Inst, DT->SubtargetInfo.get(), SectionAddr + Index, |
| Size)) { |
| Target = *MaybeTarget; |
| PrintTarget = true; |
| // Do not print real address when symbolizing. |
| if (!SymbolizeOperands) { |
| // Memory operand addresses are printed as comments. |
| TargetOS = &CommentStream; |
| *TargetOS << "0x" << Twine::utohexstr(Target); |
| } |
| } |
| if (PrintTarget) { |
| // In a relocatable object, the target's section must reside in |
| // the same section as the call instruction or it is accessed |
| // through a relocation. |
| // |
| // In a non-relocatable object, the target may be in any section. |
| // In that case, locate the section(s) containing the target |
| // address and find the symbol in one of those, if possible. |
| // |
| // N.B. We don't walk the relocations in the relocatable case yet. |
| std::vector<const SectionSymbolsTy *> TargetSectionSymbols; |
| if (!Obj.isRelocatableObject()) { |
| auto It = llvm::partition_point( |
| SectionAddresses, |
| [=](const std::pair<uint64_t, SectionRef> &O) { |
| return O.first <= Target; |
| }); |
| uint64_t TargetSecAddr = 0; |
| while (It != SectionAddresses.begin()) { |
| --It; |
| if (TargetSecAddr == 0) |
| TargetSecAddr = It->first; |
| if (It->first != TargetSecAddr) |
| break; |
| TargetSectionSymbols.push_back(&AllSymbols[It->second]); |
| } |
| } else { |
| TargetSectionSymbols.push_back(&Symbols); |
| } |
| TargetSectionSymbols.push_back(&AbsoluteSymbols); |
| |
| // Find the last symbol in the first candidate section whose |
| // offset is less than or equal to the target. If there are no |
| // such symbols, try in the next section and so on, before finally |
| // using the nearest preceding absolute symbol (if any), if there |
| // are no other valid symbols. |
| const SymbolInfoTy *TargetSym = nullptr; |
| for (const SectionSymbolsTy *TargetSymbols : |
| TargetSectionSymbols) { |
| auto It = llvm::partition_point( |
| *TargetSymbols, |
| [=](const SymbolInfoTy &O) { return O.Addr <= Target; }); |
| while (It != TargetSymbols->begin()) { |
| --It; |
| // Skip mapping symbols to avoid possible ambiguity as they |
| // do not allow uniquely identifying the target address. |
| if (!It->IsMappingSymbol) { |
| TargetSym = &*It; |
| break; |
| } |
| } |
| if (TargetSym) |
| break; |
| } |
| |
| // Print the labels corresponding to the target if there's any. |
| bool BBAddrMapLabelAvailable = BBAddrMapLabels.count(Target); |
| bool LabelAvailable = AllLabels.count(Target); |
| if (TargetSym != nullptr) { |
| uint64_t TargetAddress = TargetSym->Addr; |
| uint64_t Disp = Target - TargetAddress; |
| std::string TargetName = Demangle ? demangle(TargetSym->Name) |
| : TargetSym->Name.str(); |
| |
| *TargetOS << " <"; |
| if (!Disp) { |
| // Always Print the binary symbol precisely corresponding to |
| // the target address. |
| *TargetOS << TargetName; |
| } else if (BBAddrMapLabelAvailable) { |
| *TargetOS << BBAddrMapLabels[Target].front(); |
| } else if (LabelAvailable) { |
| *TargetOS << AllLabels[Target]; |
| } else { |
| // Always Print the binary symbol plus an offset if there's no |
| // local label corresponding to the target address. |
| *TargetOS << TargetName << "+0x" << Twine::utohexstr(Disp); |
| } |
| *TargetOS << ">"; |
| } else if (BBAddrMapLabelAvailable) { |
| *TargetOS << " <" << BBAddrMapLabels[Target].front() << ">"; |
| } else if (LabelAvailable) { |
| *TargetOS << " <" << AllLabels[Target] << ">"; |
| } |
| // By convention, each record in the comment stream should be |
| // terminated. |
| if (TargetOS == &CommentStream) |
| *TargetOS << "\n"; |
| } |
| } |
| } |
| |
| assert(DT->Context->getAsmInfo()); |
| emitPostInstructionInfo(FOS, *DT->Context->getAsmInfo(), |
| *DT->SubtargetInfo, CommentStream.str(), LVP); |
| Comments.clear(); |
| |
| if (BTF) |
| printBTFRelocation(FOS, *BTF, {Index, Section.getIndex()}, LVP); |
| |
| // Hexagon does this in pretty printer |
| if (Obj.getArch() != Triple::hexagon) { |
| // Print relocation for instruction and data. |
| while (RelCur != RelEnd) { |
| uint64_t Offset = RelCur->getOffset() - RelAdjustment; |
| // If this relocation is hidden, skip it. |
| if (getHidden(*RelCur) || SectionAddr + Offset < StartAddress) { |
| ++RelCur; |
| continue; |
| } |
| |
| // Stop when RelCur's offset is past the disassembled |
| // instruction/data. Note that it's possible the disassembled data |
| // is not the complete data: we might see the relocation printed in |
| // the middle of the data, but this matches the binutils objdump |
| // output. |
| if (Offset >= Index + Size) |
| break; |
| |
| // When --adjust-vma is used, update the address printed. |
| if (RelCur->getSymbol() != Obj.symbol_end()) { |
| Expected<section_iterator> SymSI = |
| RelCur->getSymbol()->getSection(); |
| if (SymSI && *SymSI != Obj.section_end() && |
| shouldAdjustVA(**SymSI)) |
| Offset += AdjustVMA; |
| } |
| |
| printRelocation(FOS, Obj.getFileName(), *RelCur, |
| SectionAddr + Offset, Is64Bits); |
| LVP.printAfterOtherLine(FOS, true); |
| ++RelCur; |
| } |
| } |
| |
| Index += Size; |
| } |
| } |
| } |
| StringSet<> MissingDisasmSymbolSet = |
| set_difference(DisasmSymbolSet, FoundDisasmSymbolSet); |
| for (StringRef Sym : MissingDisasmSymbolSet.keys()) |
| reportWarning("failed to disassemble missing symbol " + Sym, FileName); |
| } |
| |
| static void disassembleObject(ObjectFile *Obj, bool InlineRelocs) { |
| // If information useful for showing the disassembly is missing, try to find a |
| // more complete binary and disassemble that instead. |
| OwningBinary<Binary> FetchedBinary; |
| if (Obj->symbols().empty()) { |
| if (std::optional<OwningBinary<Binary>> FetchedBinaryOpt = |
| fetchBinaryByBuildID(*Obj)) { |
| if (auto *O = dyn_cast<ObjectFile>(FetchedBinaryOpt->getBinary())) { |
| if (!O->symbols().empty() || |
| (!O->sections().empty() && Obj->sections().empty())) { |
| FetchedBinary = std::move(*FetchedBinaryOpt); |
| Obj = O; |
| } |
| } |
| } |
| } |
| |
| const Target *TheTarget = getTarget(Obj); |
| |
| // Package up features to be passed to target/subtarget |
| Expected<SubtargetFeatures> FeaturesValue = Obj->getFeatures(); |
| if (!FeaturesValue) |
| reportError(FeaturesValue.takeError(), Obj->getFileName()); |
| SubtargetFeatures Features = *FeaturesValue; |
| if (!MAttrs.empty()) { |
| for (unsigned I = 0; I != MAttrs.size(); ++I) |
| Features.AddFeature(MAttrs[I]); |
| } else if (MCPU.empty() && Obj->getArch() == llvm::Triple::aarch64) { |
| Features.AddFeature("+all"); |
| } |
| |
| if (MCPU.empty()) |
| MCPU = Obj->tryGetCPUName().value_or("").str(); |
| |
| if (isArmElf(*Obj)) { |
| // When disassembling big-endian Arm ELF, the instruction endianness is |
| // determined in a complex way. In relocatable objects, AAELF32 mandates |
| // that instruction endianness matches the ELF file endianness; in |
| // executable images, that's true unless the file header has the EF_ARM_BE8 |
| // flag, in which case instructions are little-endian regardless of data |
| // endianness. |
| // |
| // We must set the big-endian-instructions SubtargetFeature to make the |
| // disassembler read the instructions the right way round, and also tell |
| // our own prettyprinter to retrieve the encodings the same way to print in |
| // hex. |
| const auto *Elf32BE = dyn_cast<ELF32BEObjectFile>(Obj); |
| |
| if (Elf32BE && (Elf32BE->isRelocatableObject() || |
| !(Elf32BE->getPlatformFlags() & ELF::EF_ARM_BE8))) { |
| Features.AddFeature("+big-endian-instructions"); |
| ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::big); |
| } else { |
| ARMPrettyPrinterInst.setInstructionEndianness(llvm::support::little); |
| } |
| } |
| |
| DisassemblerTarget PrimaryTarget(TheTarget, *Obj, TripleName, MCPU, Features); |
| |
| // If we have an ARM object file, we need a second disassembler, because |
| // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode. |
| // We use mapping symbols to switch between the two assemblers, where |
| // appropriate. |
| std::optional<DisassemblerTarget> SecondaryTarget; |
| |
| if (isArmElf(*Obj)) { |
| if (!PrimaryTarget.SubtargetInfo->checkFeatures("+mclass")) { |
| if (PrimaryTarget.SubtargetInfo->checkFeatures("+thumb-mode")) |
| Features.AddFeature("-thumb-mode"); |
| else |
| Features.AddFeature("+thumb-mode"); |
| SecondaryTarget.emplace(PrimaryTarget, Features); |
| } |
| } else if (const auto *COFFObj = dyn_cast<COFFObjectFile>(Obj)) { |
| const chpe_metadata *CHPEMetadata = COFFObj->getCHPEMetadata(); |
| if (CHPEMetadata && CHPEMetadata->CodeMapCount) { |
| // Set up x86_64 disassembler for ARM64EC binaries. |
| Triple X64Triple(TripleName); |
| X64Triple.setArch(Triple::ArchType::x86_64); |
| |
| std::string Error; |
| const Target *X64Target = |
| TargetRegistry::lookupTarget("", X64Triple, Error); |
| if (X64Target) { |
| SubtargetFeatures X64Features; |
| SecondaryTarget.emplace(X64Target, *Obj, X64Triple.getTriple(), "", |
| X64Features); |
| } else { |
| reportWarning(Error, Obj->getFileName()); |
| } |
| } |
| } |
| |
| const ObjectFile *DbgObj = Obj; |
| if (!FetchedBinary.getBinary() && !Obj->hasDebugInfo()) { |
| if (std::optional<OwningBinary<Binary>> DebugBinaryOpt = |
| fetchBinaryByBuildID(*Obj)) { |
| if (auto *FetchedObj = |
| dyn_cast<const ObjectFile>(DebugBinaryOpt->getBinary())) { |
| if (FetchedObj->hasDebugInfo()) { |
| FetchedBinary = std::move(*DebugBinaryOpt); |
| DbgObj = FetchedObj; |
| } |
| } |
| } |
| } |
| |
| std::unique_ptr<object::Binary> DSYMBinary; |
| std::unique_ptr<MemoryBuffer> DSYMBuf; |
| if (!DbgObj->hasDebugInfo()) { |
| if (const MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*Obj)) { |
| DbgObj = objdump::getMachODSymObject(MachOOF, Obj->getFileName(), |
| DSYMBinary, DSYMBuf); |
| if (!DbgObj) |
| return; |
| } |
| } |
| |
| SourcePrinter SP(DbgObj, TheTarget->getName()); |
| |
| for (StringRef Opt : DisassemblerOptions) |
| if (!PrimaryTarget.InstPrinter->applyTargetSpecificCLOption(Opt)) |
| reportError(Obj->getFileName(), |
| "Unrecognized disassembler option: " + Opt); |
| |
| disassembleObject(*Obj, *DbgObj, PrimaryTarget, SecondaryTarget, SP, |
| InlineRelocs); |
| } |
| |
| void Dumper::printRelocations() { |
| StringRef Fmt = O.getBytesInAddress() > 4 ? "%016" PRIx64 : "%08" PRIx64; |
| |
| // Build a mapping from relocation target to a vector of relocation |
| // sections. Usually, there is an only one relocation section for |
| // each relocated section. |
| MapVector<SectionRef, std::vector<SectionRef>> SecToRelSec; |
| uint64_t Ndx; |
| for (const SectionRef &Section : ToolSectionFilter(O, &Ndx)) { |
| if (O.isELF() && (ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC)) |
| continue; |
| if (Section.relocation_begin() == Section.relocation_end()) |
| continue; |
| Expected<section_iterator> SecOrErr = Section.getRelocatedSection(); |
| if (!SecOrErr) |
| reportError(O.getFileName(), |
| "section (" + Twine(Ndx) + |
| "): unable to get a relocation target: " + |
| toString(SecOrErr.takeError())); |
| SecToRelSec[**SecOrErr].push_back(Section); |
| } |
| |
| for (std::pair<SectionRef, std::vector<SectionRef>> &P : SecToRelSec) { |
| StringRef SecName = unwrapOrError(P.first.getName(), O.getFileName()); |
| outs() << "\nRELOCATION RECORDS FOR [" << SecName << "]:\n"; |
| uint32_t OffsetPadding = (O.getBytesInAddress() > 4 ? 16 : 8); |
| uint32_t TypePadding = 24; |
| outs() << left_justify("OFFSET", OffsetPadding) << " " |
| << left_justify("TYPE", TypePadding) << " " |
| << "VALUE\n"; |
| |
| for (SectionRef Section : P.second) { |
| for (const RelocationRef &Reloc : Section.relocations()) { |
| uint64_t Address = Reloc.getOffset(); |
| SmallString<32> RelocName; |
| SmallString<32> ValueStr; |
| if (Address < StartAddress || Address > StopAddress || getHidden(Reloc)) |
| continue; |
| Reloc.getTypeName(RelocName); |
| if (Error E = getRelocationValueString(Reloc, ValueStr)) |
| reportUniqueWarning(std::move(E)); |
| |
| outs() << format(Fmt.data(), Address) << " " |
| << left_justify(RelocName, TypePadding) << " " << ValueStr |
| << "\n"; |
| } |
| } |
| } |
| } |
| |
| // Returns true if we need to show LMA column when dumping section headers. We |
| // show it only when the platform is ELF and either we have at least one section |
| // whose VMA and LMA are different and/or when --show-lma flag is used. |
| static bool shouldDisplayLMA(const ObjectFile &Obj) { |
| if (!Obj.isELF()) |
| return false; |
| for (const SectionRef &S : ToolSectionFilter(Obj)) |
| if (S.getAddress() != getELFSectionLMA(S)) |
| return true; |
| return ShowLMA; |
| } |
| |
| static size_t getMaxSectionNameWidth(const ObjectFile &Obj) { |
| // Default column width for names is 13 even if no names are that long. |
| size_t MaxWidth = 13; |
| for (const SectionRef &Section : ToolSectionFilter(Obj)) { |
| StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); |
| MaxWidth = std::max(MaxWidth, Name.size()); |
| } |
| return MaxWidth; |
| } |
| |
| void objdump::printSectionHeaders(ObjectFile &Obj) { |
| if (Obj.isELF() && Obj.sections().empty()) |
| createFakeELFSections(Obj); |
| |
| size_t NameWidth = getMaxSectionNameWidth(Obj); |
| size_t AddressWidth = 2 * Obj.getBytesInAddress(); |
| bool HasLMAColumn = shouldDisplayLMA(Obj); |
| outs() << "\nSections:\n"; |
| if (HasLMAColumn) |
| outs() << "Idx " << left_justify("Name", NameWidth) << " Size " |
| << left_justify("VMA", AddressWidth) << " " |
| << left_justify("LMA", AddressWidth) << " Type\n"; |
| else |
| outs() << "Idx " << left_justify("Name", NameWidth) << " Size " |
| << left_justify("VMA", AddressWidth) << " Type\n"; |
| |
| uint64_t Idx; |
| for (const SectionRef &Section : ToolSectionFilter(Obj, &Idx)) { |
| StringRef Name = unwrapOrError(Section.getName(), Obj.getFileName()); |
| uint64_t VMA = Section.getAddress(); |
| if (shouldAdjustVA(Section)) |
| VMA += AdjustVMA; |
| |
| uint64_t Size = Section.getSize(); |
| |
| std::string Type = Section.isText() ? "TEXT" : ""; |
| if (Section.isData()) |
| Type += Type.empty() ? "DATA" : ", DATA"; |
| if (Section.isBSS()) |
| Type += Type.empty() ? "BSS" : ", BSS"; |
| if (Section.isDebugSection()) |
| Type += Type.empty() ? "DEBUG" : ", DEBUG"; |
| |
| if (HasLMAColumn) |
| outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, |
| Name.str().c_str(), Size) |
| << format_hex_no_prefix(VMA, AddressWidth) << " " |
| << format_hex_no_prefix(getELFSectionLMA(Section), AddressWidth) |
| << " " << Type << "\n"; |
| else |
| outs() << format("%3" PRIu64 " %-*s %08" PRIx64 " ", Idx, NameWidth, |
| Name.str().c_str(), Size) |
| << format_hex_no_prefix(VMA, AddressWidth) << " " << Type << "\n"; |
| } |
| } |
| |
| void objdump::printSectionContents(const ObjectFile *Obj) { |
| const MachOObjectFile *MachO = dyn_cast<const MachOObjectFile>(Obj); |
| |
| for (const SectionRef &Section : ToolSectionFilter(*Obj)) { |
| StringRef Name = unwrapOrError(Section.getName(), Obj->getFileName()); |
| uint64_t BaseAddr = Section.getAddress(); |
| uint64_t Size = Section.getSize(); |
| if (!Size) |
| continue; |
| |
| outs() << "Contents of section "; |
| StringRef SegmentName = getSegmentName(MachO, Section); |
| if (!SegmentName.empty()) |
| outs() << SegmentName << ","; |
| outs() << Name << ":\n"; |
| if (Section.isBSS()) { |
| outs() << format("<skipping contents of bss section at [%04" PRIx64 |
| ", %04" PRIx64 ")>\n", |
| BaseAddr, BaseAddr + Size); |
| continue; |
| } |
| |
| StringRef Contents = unwrapOrError(Section.getContents(), Obj->getFileName()); |
| |
| // Dump out the content as hex and printable ascii characters. |
| for (std::size_t Addr = 0, End = Contents.size(); Addr < End; Addr += 16) { |
| outs() << format(" %04" PRIx64 " ", BaseAddr + Addr); |
| // Dump line of hex. |
| for (std::size_t I = 0; I < 16; ++I) { |
| if (I != 0 && I % 4 == 0) |
| outs() << ' '; |
| if (Addr + I < End) |
| outs() << hexdigit((Contents[Addr + I] >> 4) & 0xF, true) |
| << hexdigit(Contents[Addr + I] & 0xF, true); |
| else |
| outs() << " "; |
| } |
| // Print ascii. |
| outs() << " "; |
| for (std::size_t I = 0; I < 16 && Addr + I < End; ++I) { |
| if (isPrint(static_cast<unsigned char>(Contents[Addr + I]) & 0xFF)) |
| outs() << Contents[Addr + I]; |
| else |
| outs() << "."; |
| } |
| o
|