| //===-- llvm/CodeGen/GlobalISel/LegalizerHelper.cpp -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file This file implements the LegalizerHelper class to legalize |
| /// individual instructions and the LegalizeMachineIR wrapper pass for the |
| /// primary legalization. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h" |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h" |
| #include "llvm/CodeGen/GlobalISel/GISelKnownBits.h" |
| #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/LostDebugLocObserver.h" |
| #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/GlobalISel/Utils.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <numeric> |
| #include <optional> |
| |
| #define DEBUG_TYPE "legalizer" |
| |
| using namespace llvm; |
| using namespace LegalizeActions; |
| using namespace MIPatternMatch; |
| |
| /// Try to break down \p OrigTy into \p NarrowTy sized pieces. |
| /// |
| /// Returns the number of \p NarrowTy elements needed to reconstruct \p OrigTy, |
| /// with any leftover piece as type \p LeftoverTy |
| /// |
| /// Returns -1 in the first element of the pair if the breakdown is not |
| /// satisfiable. |
| static std::pair<int, int> |
| getNarrowTypeBreakDown(LLT OrigTy, LLT NarrowTy, LLT &LeftoverTy) { |
| assert(!LeftoverTy.isValid() && "this is an out argument"); |
| |
| unsigned Size = OrigTy.getSizeInBits(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| unsigned NumParts = Size / NarrowSize; |
| unsigned LeftoverSize = Size - NumParts * NarrowSize; |
| assert(Size > NarrowSize); |
| |
| if (LeftoverSize == 0) |
| return {NumParts, 0}; |
| |
| if (NarrowTy.isVector()) { |
| unsigned EltSize = OrigTy.getScalarSizeInBits(); |
| if (LeftoverSize % EltSize != 0) |
| return {-1, -1}; |
| LeftoverTy = LLT::scalarOrVector( |
| ElementCount::getFixed(LeftoverSize / EltSize), EltSize); |
| } else { |
| LeftoverTy = LLT::scalar(LeftoverSize); |
| } |
| |
| int NumLeftover = LeftoverSize / LeftoverTy.getSizeInBits(); |
| return std::make_pair(NumParts, NumLeftover); |
| } |
| |
| static Type *getFloatTypeForLLT(LLVMContext &Ctx, LLT Ty) { |
| |
| if (!Ty.isScalar()) |
| return nullptr; |
| |
| switch (Ty.getSizeInBits()) { |
| case 16: |
| return Type::getHalfTy(Ctx); |
| case 32: |
| return Type::getFloatTy(Ctx); |
| case 64: |
| return Type::getDoubleTy(Ctx); |
| case 80: |
| return Type::getX86_FP80Ty(Ctx); |
| case 128: |
| return Type::getFP128Ty(Ctx); |
| default: |
| return nullptr; |
| } |
| } |
| |
| LegalizerHelper::LegalizerHelper(MachineFunction &MF, |
| GISelChangeObserver &Observer, |
| MachineIRBuilder &Builder) |
| : MIRBuilder(Builder), Observer(Observer), MRI(MF.getRegInfo()), |
| LI(*MF.getSubtarget().getLegalizerInfo()), |
| TLI(*MF.getSubtarget().getTargetLowering()), KB(nullptr) {} |
| |
| LegalizerHelper::LegalizerHelper(MachineFunction &MF, const LegalizerInfo &LI, |
| GISelChangeObserver &Observer, |
| MachineIRBuilder &B, GISelKnownBits *KB) |
| : MIRBuilder(B), Observer(Observer), MRI(MF.getRegInfo()), LI(LI), |
| TLI(*MF.getSubtarget().getTargetLowering()), KB(KB) {} |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::legalizeInstrStep(MachineInstr &MI, |
| LostDebugLocObserver &LocObserver) { |
| LLVM_DEBUG(dbgs() << "Legalizing: " << MI); |
| |
| MIRBuilder.setInstrAndDebugLoc(MI); |
| |
| if (isa<GIntrinsic>(MI)) |
| return LI.legalizeIntrinsic(*this, MI) ? Legalized : UnableToLegalize; |
| auto Step = LI.getAction(MI, MRI); |
| switch (Step.Action) { |
| case Legal: |
| LLVM_DEBUG(dbgs() << ".. Already legal\n"); |
| return AlreadyLegal; |
| case Libcall: |
| LLVM_DEBUG(dbgs() << ".. Convert to libcall\n"); |
| return libcall(MI, LocObserver); |
| case NarrowScalar: |
| LLVM_DEBUG(dbgs() << ".. Narrow scalar\n"); |
| return narrowScalar(MI, Step.TypeIdx, Step.NewType); |
| case WidenScalar: |
| LLVM_DEBUG(dbgs() << ".. Widen scalar\n"); |
| return widenScalar(MI, Step.TypeIdx, Step.NewType); |
| case Bitcast: |
| LLVM_DEBUG(dbgs() << ".. Bitcast type\n"); |
| return bitcast(MI, Step.TypeIdx, Step.NewType); |
| case Lower: |
| LLVM_DEBUG(dbgs() << ".. Lower\n"); |
| return lower(MI, Step.TypeIdx, Step.NewType); |
| case FewerElements: |
| LLVM_DEBUG(dbgs() << ".. Reduce number of elements\n"); |
| return fewerElementsVector(MI, Step.TypeIdx, Step.NewType); |
| case MoreElements: |
| LLVM_DEBUG(dbgs() << ".. Increase number of elements\n"); |
| return moreElementsVector(MI, Step.TypeIdx, Step.NewType); |
| case Custom: |
| LLVM_DEBUG(dbgs() << ".. Custom legalization\n"); |
| return LI.legalizeCustom(*this, MI) ? Legalized : UnableToLegalize; |
| default: |
| LLVM_DEBUG(dbgs() << ".. Unable to legalize\n"); |
| return UnableToLegalize; |
| } |
| } |
| |
| void LegalizerHelper::extractParts(Register Reg, LLT Ty, int NumParts, |
| SmallVectorImpl<Register> &VRegs) { |
| for (int i = 0; i < NumParts; ++i) |
| VRegs.push_back(MRI.createGenericVirtualRegister(Ty)); |
| MIRBuilder.buildUnmerge(VRegs, Reg); |
| } |
| |
| bool LegalizerHelper::extractParts(Register Reg, LLT RegTy, |
| LLT MainTy, LLT &LeftoverTy, |
| SmallVectorImpl<Register> &VRegs, |
| SmallVectorImpl<Register> &LeftoverRegs) { |
| assert(!LeftoverTy.isValid() && "this is an out argument"); |
| |
| unsigned RegSize = RegTy.getSizeInBits(); |
| unsigned MainSize = MainTy.getSizeInBits(); |
| unsigned NumParts = RegSize / MainSize; |
| unsigned LeftoverSize = RegSize - NumParts * MainSize; |
| |
| // Use an unmerge when possible. |
| if (LeftoverSize == 0) { |
| for (unsigned I = 0; I < NumParts; ++I) |
| VRegs.push_back(MRI.createGenericVirtualRegister(MainTy)); |
| MIRBuilder.buildUnmerge(VRegs, Reg); |
| return true; |
| } |
| |
| // Perform irregular split. Leftover is last element of RegPieces. |
| if (MainTy.isVector()) { |
| SmallVector<Register, 8> RegPieces; |
| extractVectorParts(Reg, MainTy.getNumElements(), RegPieces); |
| for (unsigned i = 0; i < RegPieces.size() - 1; ++i) |
| VRegs.push_back(RegPieces[i]); |
| LeftoverRegs.push_back(RegPieces[RegPieces.size() - 1]); |
| LeftoverTy = MRI.getType(LeftoverRegs[0]); |
| return true; |
| } |
| |
| LeftoverTy = LLT::scalar(LeftoverSize); |
| // For irregular sizes, extract the individual parts. |
| for (unsigned I = 0; I != NumParts; ++I) { |
| Register NewReg = MRI.createGenericVirtualRegister(MainTy); |
| VRegs.push_back(NewReg); |
| MIRBuilder.buildExtract(NewReg, Reg, MainSize * I); |
| } |
| |
| for (unsigned Offset = MainSize * NumParts; Offset < RegSize; |
| Offset += LeftoverSize) { |
| Register NewReg = MRI.createGenericVirtualRegister(LeftoverTy); |
| LeftoverRegs.push_back(NewReg); |
| MIRBuilder.buildExtract(NewReg, Reg, Offset); |
| } |
| |
| return true; |
| } |
| |
| void LegalizerHelper::extractVectorParts(Register Reg, unsigned NumElts, |
| SmallVectorImpl<Register> &VRegs) { |
| LLT RegTy = MRI.getType(Reg); |
| assert(RegTy.isVector() && "Expected a vector type"); |
| |
| LLT EltTy = RegTy.getElementType(); |
| LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); |
| unsigned RegNumElts = RegTy.getNumElements(); |
| unsigned LeftoverNumElts = RegNumElts % NumElts; |
| unsigned NumNarrowTyPieces = RegNumElts / NumElts; |
| |
| // Perfect split without leftover |
| if (LeftoverNumElts == 0) |
| return extractParts(Reg, NarrowTy, NumNarrowTyPieces, VRegs); |
| |
| // Irregular split. Provide direct access to all elements for artifact |
| // combiner using unmerge to elements. Then build vectors with NumElts |
| // elements. Remaining element(s) will be (used to build vector) Leftover. |
| SmallVector<Register, 8> Elts; |
| extractParts(Reg, EltTy, RegNumElts, Elts); |
| |
| unsigned Offset = 0; |
| // Requested sub-vectors of NarrowTy. |
| for (unsigned i = 0; i < NumNarrowTyPieces; ++i, Offset += NumElts) { |
| ArrayRef<Register> Pieces(&Elts[Offset], NumElts); |
| VRegs.push_back(MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); |
| } |
| |
| // Leftover element(s). |
| if (LeftoverNumElts == 1) { |
| VRegs.push_back(Elts[Offset]); |
| } else { |
| LLT LeftoverTy = LLT::fixed_vector(LeftoverNumElts, EltTy); |
| ArrayRef<Register> Pieces(&Elts[Offset], LeftoverNumElts); |
| VRegs.push_back( |
| MIRBuilder.buildMergeLikeInstr(LeftoverTy, Pieces).getReg(0)); |
| } |
| } |
| |
| void LegalizerHelper::insertParts(Register DstReg, |
| LLT ResultTy, LLT PartTy, |
| ArrayRef<Register> PartRegs, |
| LLT LeftoverTy, |
| ArrayRef<Register> LeftoverRegs) { |
| if (!LeftoverTy.isValid()) { |
| assert(LeftoverRegs.empty()); |
| |
| if (!ResultTy.isVector()) { |
| MIRBuilder.buildMergeLikeInstr(DstReg, PartRegs); |
| return; |
| } |
| |
| if (PartTy.isVector()) |
| MIRBuilder.buildConcatVectors(DstReg, PartRegs); |
| else |
| MIRBuilder.buildBuildVector(DstReg, PartRegs); |
| return; |
| } |
| |
| // Merge sub-vectors with different number of elements and insert into DstReg. |
| if (ResultTy.isVector()) { |
| assert(LeftoverRegs.size() == 1 && "Expected one leftover register"); |
| SmallVector<Register, 8> AllRegs; |
| for (auto Reg : concat<const Register>(PartRegs, LeftoverRegs)) |
| AllRegs.push_back(Reg); |
| return mergeMixedSubvectors(DstReg, AllRegs); |
| } |
| |
| SmallVector<Register> GCDRegs; |
| LLT GCDTy = getGCDType(getGCDType(ResultTy, LeftoverTy), PartTy); |
| for (auto PartReg : concat<const Register>(PartRegs, LeftoverRegs)) |
| extractGCDType(GCDRegs, GCDTy, PartReg); |
| LLT ResultLCMTy = buildLCMMergePieces(ResultTy, LeftoverTy, GCDTy, GCDRegs); |
| buildWidenedRemergeToDst(DstReg, ResultLCMTy, GCDRegs); |
| } |
| |
| void LegalizerHelper::appendVectorElts(SmallVectorImpl<Register> &Elts, |
| Register Reg) { |
| LLT Ty = MRI.getType(Reg); |
| SmallVector<Register, 8> RegElts; |
| extractParts(Reg, Ty.getScalarType(), Ty.getNumElements(), RegElts); |
| Elts.append(RegElts); |
| } |
| |
| /// Merge \p PartRegs with different types into \p DstReg. |
| void LegalizerHelper::mergeMixedSubvectors(Register DstReg, |
| ArrayRef<Register> PartRegs) { |
| SmallVector<Register, 8> AllElts; |
| for (unsigned i = 0; i < PartRegs.size() - 1; ++i) |
| appendVectorElts(AllElts, PartRegs[i]); |
| |
| Register Leftover = PartRegs[PartRegs.size() - 1]; |
| if (MRI.getType(Leftover).isScalar()) |
| AllElts.push_back(Leftover); |
| else |
| appendVectorElts(AllElts, Leftover); |
| |
| MIRBuilder.buildMergeLikeInstr(DstReg, AllElts); |
| } |
| |
| /// Append the result registers of G_UNMERGE_VALUES \p MI to \p Regs. |
| static void getUnmergeResults(SmallVectorImpl<Register> &Regs, |
| const MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); |
| |
| const int StartIdx = Regs.size(); |
| const int NumResults = MI.getNumOperands() - 1; |
| Regs.resize(Regs.size() + NumResults); |
| for (int I = 0; I != NumResults; ++I) |
| Regs[StartIdx + I] = MI.getOperand(I).getReg(); |
| } |
| |
| void LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, |
| LLT GCDTy, Register SrcReg) { |
| LLT SrcTy = MRI.getType(SrcReg); |
| if (SrcTy == GCDTy) { |
| // If the source already evenly divides the result type, we don't need to do |
| // anything. |
| Parts.push_back(SrcReg); |
| } else { |
| // Need to split into common type sized pieces. |
| auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); |
| getUnmergeResults(Parts, *Unmerge); |
| } |
| } |
| |
| LLT LegalizerHelper::extractGCDType(SmallVectorImpl<Register> &Parts, LLT DstTy, |
| LLT NarrowTy, Register SrcReg) { |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT GCDTy = getGCDType(getGCDType(SrcTy, NarrowTy), DstTy); |
| extractGCDType(Parts, GCDTy, SrcReg); |
| return GCDTy; |
| } |
| |
| LLT LegalizerHelper::buildLCMMergePieces(LLT DstTy, LLT NarrowTy, LLT GCDTy, |
| SmallVectorImpl<Register> &VRegs, |
| unsigned PadStrategy) { |
| LLT LCMTy = getLCMType(DstTy, NarrowTy); |
| |
| int NumParts = LCMTy.getSizeInBits() / NarrowTy.getSizeInBits(); |
| int NumSubParts = NarrowTy.getSizeInBits() / GCDTy.getSizeInBits(); |
| int NumOrigSrc = VRegs.size(); |
| |
| Register PadReg; |
| |
| // Get a value we can use to pad the source value if the sources won't evenly |
| // cover the result type. |
| if (NumOrigSrc < NumParts * NumSubParts) { |
| if (PadStrategy == TargetOpcode::G_ZEXT) |
| PadReg = MIRBuilder.buildConstant(GCDTy, 0).getReg(0); |
| else if (PadStrategy == TargetOpcode::G_ANYEXT) |
| PadReg = MIRBuilder.buildUndef(GCDTy).getReg(0); |
| else { |
| assert(PadStrategy == TargetOpcode::G_SEXT); |
| |
| // Shift the sign bit of the low register through the high register. |
| auto ShiftAmt = |
| MIRBuilder.buildConstant(LLT::scalar(64), GCDTy.getSizeInBits() - 1); |
| PadReg = MIRBuilder.buildAShr(GCDTy, VRegs.back(), ShiftAmt).getReg(0); |
| } |
| } |
| |
| // Registers for the final merge to be produced. |
| SmallVector<Register, 4> Remerge(NumParts); |
| |
| // Registers needed for intermediate merges, which will be merged into a |
| // source for Remerge. |
| SmallVector<Register, 4> SubMerge(NumSubParts); |
| |
| // Once we've fully read off the end of the original source bits, we can reuse |
| // the same high bits for remaining padding elements. |
| Register AllPadReg; |
| |
| // Build merges to the LCM type to cover the original result type. |
| for (int I = 0; I != NumParts; ++I) { |
| bool AllMergePartsArePadding = true; |
| |
| // Build the requested merges to the requested type. |
| for (int J = 0; J != NumSubParts; ++J) { |
| int Idx = I * NumSubParts + J; |
| if (Idx >= NumOrigSrc) { |
| SubMerge[J] = PadReg; |
| continue; |
| } |
| |
| SubMerge[J] = VRegs[Idx]; |
| |
| // There are meaningful bits here we can't reuse later. |
| AllMergePartsArePadding = false; |
| } |
| |
| // If we've filled up a complete piece with padding bits, we can directly |
| // emit the natural sized constant if applicable, rather than a merge of |
| // smaller constants. |
| if (AllMergePartsArePadding && !AllPadReg) { |
| if (PadStrategy == TargetOpcode::G_ANYEXT) |
| AllPadReg = MIRBuilder.buildUndef(NarrowTy).getReg(0); |
| else if (PadStrategy == TargetOpcode::G_ZEXT) |
| AllPadReg = MIRBuilder.buildConstant(NarrowTy, 0).getReg(0); |
| |
| // If this is a sign extension, we can't materialize a trivial constant |
| // with the right type and have to produce a merge. |
| } |
| |
| if (AllPadReg) { |
| // Avoid creating additional instructions if we're just adding additional |
| // copies of padding bits. |
| Remerge[I] = AllPadReg; |
| continue; |
| } |
| |
| if (NumSubParts == 1) |
| Remerge[I] = SubMerge[0]; |
| else |
| Remerge[I] = MIRBuilder.buildMergeLikeInstr(NarrowTy, SubMerge).getReg(0); |
| |
| // In the sign extend padding case, re-use the first all-signbit merge. |
| if (AllMergePartsArePadding && !AllPadReg) |
| AllPadReg = Remerge[I]; |
| } |
| |
| VRegs = std::move(Remerge); |
| return LCMTy; |
| } |
| |
| void LegalizerHelper::buildWidenedRemergeToDst(Register DstReg, LLT LCMTy, |
| ArrayRef<Register> RemergeRegs) { |
| LLT DstTy = MRI.getType(DstReg); |
| |
| // Create the merge to the widened source, and extract the relevant bits into |
| // the result. |
| |
| if (DstTy == LCMTy) { |
| MIRBuilder.buildMergeLikeInstr(DstReg, RemergeRegs); |
| return; |
| } |
| |
| auto Remerge = MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs); |
| if (DstTy.isScalar() && LCMTy.isScalar()) { |
| MIRBuilder.buildTrunc(DstReg, Remerge); |
| return; |
| } |
| |
| if (LCMTy.isVector()) { |
| unsigned NumDefs = LCMTy.getSizeInBits() / DstTy.getSizeInBits(); |
| SmallVector<Register, 8> UnmergeDefs(NumDefs); |
| UnmergeDefs[0] = DstReg; |
| for (unsigned I = 1; I != NumDefs; ++I) |
| UnmergeDefs[I] = MRI.createGenericVirtualRegister(DstTy); |
| |
| MIRBuilder.buildUnmerge(UnmergeDefs, |
| MIRBuilder.buildMergeLikeInstr(LCMTy, RemergeRegs)); |
| return; |
| } |
| |
| llvm_unreachable("unhandled case"); |
| } |
| |
| static RTLIB::Libcall getRTLibDesc(unsigned Opcode, unsigned Size) { |
| #define RTLIBCASE_INT(LibcallPrefix) \ |
| do { \ |
| switch (Size) { \ |
| case 32: \ |
| return RTLIB::LibcallPrefix##32; \ |
| case 64: \ |
| return RTLIB::LibcallPrefix##64; \ |
| case 128: \ |
| return RTLIB::LibcallPrefix##128; \ |
| default: \ |
| llvm_unreachable("unexpected size"); \ |
| } \ |
| } while (0) |
| |
| #define RTLIBCASE(LibcallPrefix) \ |
| do { \ |
| switch (Size) { \ |
| case 32: \ |
| return RTLIB::LibcallPrefix##32; \ |
| case 64: \ |
| return RTLIB::LibcallPrefix##64; \ |
| case 80: \ |
| return RTLIB::LibcallPrefix##80; \ |
| case 128: \ |
| return RTLIB::LibcallPrefix##128; \ |
| default: \ |
| llvm_unreachable("unexpected size"); \ |
| } \ |
| } while (0) |
| |
| switch (Opcode) { |
| case TargetOpcode::G_MUL: |
| RTLIBCASE_INT(MUL_I); |
| case TargetOpcode::G_SDIV: |
| RTLIBCASE_INT(SDIV_I); |
| case TargetOpcode::G_UDIV: |
| RTLIBCASE_INT(UDIV_I); |
| case TargetOpcode::G_SREM: |
| RTLIBCASE_INT(SREM_I); |
| case TargetOpcode::G_UREM: |
| RTLIBCASE_INT(UREM_I); |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: |
| RTLIBCASE_INT(CTLZ_I); |
| case TargetOpcode::G_FADD: |
| RTLIBCASE(ADD_F); |
| case TargetOpcode::G_FSUB: |
| RTLIBCASE(SUB_F); |
| case TargetOpcode::G_FMUL: |
| RTLIBCASE(MUL_F); |
| case TargetOpcode::G_FDIV: |
| RTLIBCASE(DIV_F); |
| case TargetOpcode::G_FEXP: |
| RTLIBCASE(EXP_F); |
| case TargetOpcode::G_FEXP2: |
| RTLIBCASE(EXP2_F); |
| case TargetOpcode::G_FEXP10: |
| RTLIBCASE(EXP10_F); |
| case TargetOpcode::G_FREM: |
| RTLIBCASE(REM_F); |
| case TargetOpcode::G_FPOW: |
| RTLIBCASE(POW_F); |
| case TargetOpcode::G_FMA: |
| RTLIBCASE(FMA_F); |
| case TargetOpcode::G_FSIN: |
| RTLIBCASE(SIN_F); |
| case TargetOpcode::G_FCOS: |
| RTLIBCASE(COS_F); |
| case TargetOpcode::G_FLOG10: |
| RTLIBCASE(LOG10_F); |
| case TargetOpcode::G_FLOG: |
| RTLIBCASE(LOG_F); |
| case TargetOpcode::G_FLOG2: |
| RTLIBCASE(LOG2_F); |
| case TargetOpcode::G_FLDEXP: |
| RTLIBCASE(LDEXP_F); |
| case TargetOpcode::G_FCEIL: |
| RTLIBCASE(CEIL_F); |
| case TargetOpcode::G_FFLOOR: |
| RTLIBCASE(FLOOR_F); |
| case TargetOpcode::G_FMINNUM: |
| RTLIBCASE(FMIN_F); |
| case TargetOpcode::G_FMAXNUM: |
| RTLIBCASE(FMAX_F); |
| case TargetOpcode::G_FSQRT: |
| RTLIBCASE(SQRT_F); |
| case TargetOpcode::G_FRINT: |
| RTLIBCASE(RINT_F); |
| case TargetOpcode::G_FNEARBYINT: |
| RTLIBCASE(NEARBYINT_F); |
| case TargetOpcode::G_INTRINSIC_ROUNDEVEN: |
| RTLIBCASE(ROUNDEVEN_F); |
| } |
| llvm_unreachable("Unknown libcall function"); |
| } |
| |
| /// True if an instruction is in tail position in its caller. Intended for |
| /// legalizing libcalls as tail calls when possible. |
| static bool isLibCallInTailPosition(MachineInstr &MI, |
| const TargetInstrInfo &TII, |
| MachineRegisterInfo &MRI) { |
| MachineBasicBlock &MBB = *MI.getParent(); |
| const Function &F = MBB.getParent()->getFunction(); |
| |
| // Conservatively require the attributes of the call to match those of |
| // the return. Ignore NoAlias and NonNull because they don't affect the |
| // call sequence. |
| AttributeList CallerAttrs = F.getAttributes(); |
| if (AttrBuilder(F.getContext(), CallerAttrs.getRetAttrs()) |
| .removeAttribute(Attribute::NoAlias) |
| .removeAttribute(Attribute::NonNull) |
| .hasAttributes()) |
| return false; |
| |
| // It's not safe to eliminate the sign / zero extension of the return value. |
| if (CallerAttrs.hasRetAttr(Attribute::ZExt) || |
| CallerAttrs.hasRetAttr(Attribute::SExt)) |
| return false; |
| |
| // Only tail call if the following instruction is a standard return or if we |
| // have a `thisreturn` callee, and a sequence like: |
| // |
| // G_MEMCPY %0, %1, %2 |
| // $x0 = COPY %0 |
| // RET_ReallyLR implicit $x0 |
| auto Next = next_nodbg(MI.getIterator(), MBB.instr_end()); |
| if (Next != MBB.instr_end() && Next->isCopy()) { |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("unsupported opcode"); |
| case TargetOpcode::G_BZERO: |
| return false; |
| case TargetOpcode::G_MEMCPY: |
| case TargetOpcode::G_MEMMOVE: |
| case TargetOpcode::G_MEMSET: |
| break; |
| } |
| |
| Register VReg = MI.getOperand(0).getReg(); |
| if (!VReg.isVirtual() || VReg != Next->getOperand(1).getReg()) |
| return false; |
| |
| Register PReg = Next->getOperand(0).getReg(); |
| if (!PReg.isPhysical()) |
| return false; |
| |
| auto Ret = next_nodbg(Next, MBB.instr_end()); |
| if (Ret == MBB.instr_end() || !Ret->isReturn()) |
| return false; |
| |
| if (Ret->getNumImplicitOperands() != 1) |
| return false; |
| |
| if (PReg != Ret->getOperand(0).getReg()) |
| return false; |
| |
| // Skip over the COPY that we just validated. |
| Next = Ret; |
| } |
| |
| if (Next == MBB.instr_end() || TII.isTailCall(*Next) || !Next->isReturn()) |
| return false; |
| |
| return true; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| llvm::createLibcall(MachineIRBuilder &MIRBuilder, const char *Name, |
| const CallLowering::ArgInfo &Result, |
| ArrayRef<CallLowering::ArgInfo> Args, |
| const CallingConv::ID CC) { |
| auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); |
| |
| CallLowering::CallLoweringInfo Info; |
| Info.CallConv = CC; |
| Info.Callee = MachineOperand::CreateES(Name); |
| Info.OrigRet = Result; |
| std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); |
| if (!CLI.lowerCall(MIRBuilder, Info)) |
| return LegalizerHelper::UnableToLegalize; |
| |
| return LegalizerHelper::Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| llvm::createLibcall(MachineIRBuilder &MIRBuilder, RTLIB::Libcall Libcall, |
| const CallLowering::ArgInfo &Result, |
| ArrayRef<CallLowering::ArgInfo> Args) { |
| auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); |
| const char *Name = TLI.getLibcallName(Libcall); |
| const CallingConv::ID CC = TLI.getLibcallCallingConv(Libcall); |
| return createLibcall(MIRBuilder, Name, Result, Args, CC); |
| } |
| |
| // Useful for libcalls where all operands have the same type. |
| static LegalizerHelper::LegalizeResult |
| simpleLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, unsigned Size, |
| Type *OpType) { |
| auto Libcall = getRTLibDesc(MI.getOpcode(), Size); |
| |
| // FIXME: What does the original arg index mean here? |
| SmallVector<CallLowering::ArgInfo, 3> Args; |
| for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) |
| Args.push_back({MO.getReg(), OpType, 0}); |
| return createLibcall(MIRBuilder, Libcall, |
| {MI.getOperand(0).getReg(), OpType, 0}, Args); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| llvm::createMemLibcall(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI, |
| MachineInstr &MI, LostDebugLocObserver &LocObserver) { |
| auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| |
| SmallVector<CallLowering::ArgInfo, 3> Args; |
| // Add all the args, except for the last which is an imm denoting 'tail'. |
| for (unsigned i = 0; i < MI.getNumOperands() - 1; ++i) { |
| Register Reg = MI.getOperand(i).getReg(); |
| |
| // Need derive an IR type for call lowering. |
| LLT OpLLT = MRI.getType(Reg); |
| Type *OpTy = nullptr; |
| if (OpLLT.isPointer()) |
| OpTy = PointerType::get(Ctx, OpLLT.getAddressSpace()); |
| else |
| OpTy = IntegerType::get(Ctx, OpLLT.getSizeInBits()); |
| Args.push_back({Reg, OpTy, 0}); |
| } |
| |
| auto &CLI = *MIRBuilder.getMF().getSubtarget().getCallLowering(); |
| auto &TLI = *MIRBuilder.getMF().getSubtarget().getTargetLowering(); |
| RTLIB::Libcall RTLibcall; |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::G_BZERO: |
| RTLibcall = RTLIB::BZERO; |
| break; |
| case TargetOpcode::G_MEMCPY: |
| RTLibcall = RTLIB::MEMCPY; |
| Args[0].Flags[0].setReturned(); |
| break; |
| case TargetOpcode::G_MEMMOVE: |
| RTLibcall = RTLIB::MEMMOVE; |
| Args[0].Flags[0].setReturned(); |
| break; |
| case TargetOpcode::G_MEMSET: |
| RTLibcall = RTLIB::MEMSET; |
| Args[0].Flags[0].setReturned(); |
| break; |
| default: |
| llvm_unreachable("unsupported opcode"); |
| } |
| const char *Name = TLI.getLibcallName(RTLibcall); |
| |
| // Unsupported libcall on the target. |
| if (!Name) { |
| LLVM_DEBUG(dbgs() << ".. .. Could not find libcall name for " |
| << MIRBuilder.getTII().getName(Opc) << "\n"); |
| return LegalizerHelper::UnableToLegalize; |
| } |
| |
| CallLowering::CallLoweringInfo Info; |
| Info.CallConv = TLI.getLibcallCallingConv(RTLibcall); |
| Info.Callee = MachineOperand::CreateES(Name); |
| Info.OrigRet = CallLowering::ArgInfo({0}, Type::getVoidTy(Ctx), 0); |
| Info.IsTailCall = MI.getOperand(MI.getNumOperands() - 1).getImm() && |
| isLibCallInTailPosition(MI, MIRBuilder.getTII(), MRI); |
| |
| std::copy(Args.begin(), Args.end(), std::back_inserter(Info.OrigArgs)); |
| if (!CLI.lowerCall(MIRBuilder, Info)) |
| return LegalizerHelper::UnableToLegalize; |
| |
| if (Info.LoweredTailCall) { |
| assert(Info.IsTailCall && "Lowered tail call when it wasn't a tail call?"); |
| |
| // Check debug locations before removing the return. |
| LocObserver.checkpoint(true); |
| |
| // We must have a return following the call (or debug insts) to get past |
| // isLibCallInTailPosition. |
| do { |
| MachineInstr *Next = MI.getNextNode(); |
| assert(Next && |
| (Next->isCopy() || Next->isReturn() || Next->isDebugInstr()) && |
| "Expected instr following MI to be return or debug inst?"); |
| // We lowered a tail call, so the call is now the return from the block. |
| // Delete the old return. |
| Next->eraseFromParent(); |
| } while (MI.getNextNode()); |
| |
| // We expect to lose the debug location from the return. |
| LocObserver.checkpoint(false); |
| } |
| |
| return LegalizerHelper::Legalized; |
| } |
| |
| static RTLIB::Libcall getConvRTLibDesc(unsigned Opcode, Type *ToType, |
| Type *FromType) { |
| auto ToMVT = MVT::getVT(ToType); |
| auto FromMVT = MVT::getVT(FromType); |
| |
| switch (Opcode) { |
| case TargetOpcode::G_FPEXT: |
| return RTLIB::getFPEXT(FromMVT, ToMVT); |
| case TargetOpcode::G_FPTRUNC: |
| return RTLIB::getFPROUND(FromMVT, ToMVT); |
| case TargetOpcode::G_FPTOSI: |
| return RTLIB::getFPTOSINT(FromMVT, ToMVT); |
| case TargetOpcode::G_FPTOUI: |
| return RTLIB::getFPTOUINT(FromMVT, ToMVT); |
| case TargetOpcode::G_SITOFP: |
| return RTLIB::getSINTTOFP(FromMVT, ToMVT); |
| case TargetOpcode::G_UITOFP: |
| return RTLIB::getUINTTOFP(FromMVT, ToMVT); |
| } |
| llvm_unreachable("Unsupported libcall function"); |
| } |
| |
| static LegalizerHelper::LegalizeResult |
| conversionLibcall(MachineInstr &MI, MachineIRBuilder &MIRBuilder, Type *ToType, |
| Type *FromType) { |
| RTLIB::Libcall Libcall = getConvRTLibDesc(MI.getOpcode(), ToType, FromType); |
| return createLibcall(MIRBuilder, Libcall, |
| {MI.getOperand(0).getReg(), ToType, 0}, |
| {{MI.getOperand(1).getReg(), FromType, 0}}); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::libcall(MachineInstr &MI, LostDebugLocObserver &LocObserver) { |
| LLT LLTy = MRI.getType(MI.getOperand(0).getReg()); |
| unsigned Size = LLTy.getSizeInBits(); |
| auto &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return UnableToLegalize; |
| case TargetOpcode::G_MUL: |
| case TargetOpcode::G_SDIV: |
| case TargetOpcode::G_UDIV: |
| case TargetOpcode::G_SREM: |
| case TargetOpcode::G_UREM: |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: { |
| Type *HLTy = IntegerType::get(Ctx, Size); |
| auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); |
| if (Status != Legalized) |
| return Status; |
| break; |
| } |
| case TargetOpcode::G_FADD: |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_FMUL: |
| case TargetOpcode::G_FDIV: |
| case TargetOpcode::G_FMA: |
| case TargetOpcode::G_FPOW: |
| case TargetOpcode::G_FREM: |
| case TargetOpcode::G_FCOS: |
| case TargetOpcode::G_FSIN: |
| case TargetOpcode::G_FLOG10: |
| case TargetOpcode::G_FLOG: |
| case TargetOpcode::G_FLOG2: |
| case TargetOpcode::G_FLDEXP: |
| case TargetOpcode::G_FEXP: |
| case TargetOpcode::G_FEXP2: |
| case TargetOpcode::G_FEXP10: |
| case TargetOpcode::G_FCEIL: |
| case TargetOpcode::G_FFLOOR: |
| case TargetOpcode::G_FMINNUM: |
| case TargetOpcode::G_FMAXNUM: |
| case TargetOpcode::G_FSQRT: |
| case TargetOpcode::G_FRINT: |
| case TargetOpcode::G_FNEARBYINT: |
| case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { |
| Type *HLTy = getFloatTypeForLLT(Ctx, LLTy); |
| if (!HLTy || (Size != 32 && Size != 64 && Size != 80 && Size != 128)) { |
| LLVM_DEBUG(dbgs() << "No libcall available for type " << LLTy << ".\n"); |
| return UnableToLegalize; |
| } |
| auto Status = simpleLibcall(MI, MIRBuilder, Size, HLTy); |
| if (Status != Legalized) |
| return Status; |
| break; |
| } |
| case TargetOpcode::G_FPEXT: |
| case TargetOpcode::G_FPTRUNC: { |
| Type *FromTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(1).getReg())); |
| Type *ToTy = getFloatTypeForLLT(Ctx, MRI.getType(MI.getOperand(0).getReg())); |
| if (!FromTy || !ToTy) |
| return UnableToLegalize; |
| LegalizeResult Status = conversionLibcall(MI, MIRBuilder, ToTy, FromTy ); |
| if (Status != Legalized) |
| return Status; |
| break; |
| } |
| case TargetOpcode::G_FPTOSI: |
| case TargetOpcode::G_FPTOUI: { |
| // FIXME: Support other types |
| unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| if ((ToSize != 32 && ToSize != 64) || (FromSize != 32 && FromSize != 64)) |
| return UnableToLegalize; |
| LegalizeResult Status = conversionLibcall( |
| MI, MIRBuilder, |
| ToSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx), |
| FromSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx)); |
| if (Status != Legalized) |
| return Status; |
| break; |
| } |
| case TargetOpcode::G_SITOFP: |
| case TargetOpcode::G_UITOFP: { |
| // FIXME: Support other types |
| unsigned FromSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| unsigned ToSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| if ((FromSize != 32 && FromSize != 64) || (ToSize != 32 && ToSize != 64)) |
| return UnableToLegalize; |
| LegalizeResult Status = conversionLibcall( |
| MI, MIRBuilder, |
| ToSize == 64 ? Type::getDoubleTy(Ctx) : Type::getFloatTy(Ctx), |
| FromSize == 32 ? Type::getInt32Ty(Ctx) : Type::getInt64Ty(Ctx)); |
| if (Status != Legalized) |
| return Status; |
| break; |
| } |
| case TargetOpcode::G_BZERO: |
| case TargetOpcode::G_MEMCPY: |
| case TargetOpcode::G_MEMMOVE: |
| case TargetOpcode::G_MEMSET: { |
| LegalizeResult Result = |
| createMemLibcall(MIRBuilder, *MIRBuilder.getMRI(), MI, LocObserver); |
| if (Result != Legalized) |
| return Result; |
| MI.eraseFromParent(); |
| return Result; |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::narrowScalar(MachineInstr &MI, |
| unsigned TypeIdx, |
| LLT NarrowTy) { |
| uint64_t SizeOp0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits(); |
| uint64_t NarrowSize = NarrowTy.getSizeInBits(); |
| |
| switch (MI.getOpcode()) { |
| default: |
| return UnableToLegalize; |
| case TargetOpcode::G_IMPLICIT_DEF: { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| // If SizeOp0 is not an exact multiple of NarrowSize, emit |
| // G_ANYEXT(G_IMPLICIT_DEF). Cast result to vector if needed. |
| // FIXME: Although this would also be legal for the general case, it causes |
| // a lot of regressions in the emitted code (superfluous COPYs, artifact |
| // combines not being hit). This seems to be a problem related to the |
| // artifact combiner. |
| if (SizeOp0 % NarrowSize != 0) { |
| LLT ImplicitTy = NarrowTy; |
| if (DstTy.isVector()) |
| ImplicitTy = LLT::vector(DstTy.getElementCount(), ImplicitTy); |
| |
| Register ImplicitReg = MIRBuilder.buildUndef(ImplicitTy).getReg(0); |
| MIRBuilder.buildAnyExt(DstReg, ImplicitReg); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| int NumParts = SizeOp0 / NarrowSize; |
| |
| SmallVector<Register, 2> DstRegs; |
| for (int i = 0; i < NumParts; ++i) |
| DstRegs.push_back(MIRBuilder.buildUndef(NarrowTy).getReg(0)); |
| |
| if (DstTy.isVector()) |
| MIRBuilder.buildBuildVector(DstReg, DstRegs); |
| else |
| MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_CONSTANT: { |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| const APInt &Val = MI.getOperand(1).getCImm()->getValue(); |
| unsigned TotalSize = Ty.getSizeInBits(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| int NumParts = TotalSize / NarrowSize; |
| |
| SmallVector<Register, 4> PartRegs; |
| for (int I = 0; I != NumParts; ++I) { |
| unsigned Offset = I * NarrowSize; |
| auto K = MIRBuilder.buildConstant(NarrowTy, |
| Val.lshr(Offset).trunc(NarrowSize)); |
| PartRegs.push_back(K.getReg(0)); |
| } |
| |
| LLT LeftoverTy; |
| unsigned LeftoverBits = TotalSize - NumParts * NarrowSize; |
| SmallVector<Register, 1> LeftoverRegs; |
| if (LeftoverBits != 0) { |
| LeftoverTy = LLT::scalar(LeftoverBits); |
| auto K = MIRBuilder.buildConstant( |
| LeftoverTy, |
| Val.lshr(NumParts * NarrowSize).trunc(LeftoverBits)); |
| LeftoverRegs.push_back(K.getReg(0)); |
| } |
| |
| insertParts(MI.getOperand(0).getReg(), |
| Ty, NarrowTy, PartRegs, LeftoverTy, LeftoverRegs); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_SEXT: |
| case TargetOpcode::G_ZEXT: |
| case TargetOpcode::G_ANYEXT: |
| return narrowScalarExt(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_TRUNC: { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| uint64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| if (NarrowTy.getSizeInBits() * 2 != SizeOp1) { |
| LLVM_DEBUG(dbgs() << "Can't narrow trunc to type " << NarrowTy << "\n"); |
| return UnableToLegalize; |
| } |
| |
| auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); |
| MIRBuilder.buildCopy(MI.getOperand(0), Unmerge.getReg(0)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| case TargetOpcode::G_FREEZE: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| // Should widen scalar first |
| if (Ty.getSizeInBits() % NarrowTy.getSizeInBits() != 0) |
| return UnableToLegalize; |
| |
| auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1).getReg()); |
| SmallVector<Register, 8> Parts; |
| for (unsigned i = 0; i < Unmerge->getNumDefs(); ++i) { |
| Parts.push_back( |
| MIRBuilder.buildFreeze(NarrowTy, Unmerge.getReg(i)).getReg(0)); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(0).getReg(), Parts); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_ADD: |
| case TargetOpcode::G_SUB: |
| case TargetOpcode::G_SADDO: |
| case TargetOpcode::G_SSUBO: |
| case TargetOpcode::G_SADDE: |
| case TargetOpcode::G_SSUBE: |
| case TargetOpcode::G_UADDO: |
| case TargetOpcode::G_USUBO: |
| case TargetOpcode::G_UADDE: |
| case TargetOpcode::G_USUBE: |
| return narrowScalarAddSub(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_MUL: |
| case TargetOpcode::G_UMULH: |
| return narrowScalarMul(MI, NarrowTy); |
| case TargetOpcode::G_EXTRACT: |
| return narrowScalarExtract(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_INSERT: |
| return narrowScalarInsert(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_LOAD: { |
| auto &LoadMI = cast<GLoad>(MI); |
| Register DstReg = LoadMI.getDstReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy.isVector()) |
| return UnableToLegalize; |
| |
| if (8 * LoadMI.getMemSize() != DstTy.getSizeInBits()) { |
| Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.buildLoad(TmpReg, LoadMI.getPointerReg(), LoadMI.getMMO()); |
| MIRBuilder.buildAnyExt(DstReg, TmpReg); |
| LoadMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return reduceLoadStoreWidth(LoadMI, TypeIdx, NarrowTy); |
| } |
| case TargetOpcode::G_ZEXTLOAD: |
| case TargetOpcode::G_SEXTLOAD: { |
| auto &LoadMI = cast<GExtLoad>(MI); |
| Register DstReg = LoadMI.getDstReg(); |
| Register PtrReg = LoadMI.getPointerReg(); |
| |
| Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); |
| auto &MMO = LoadMI.getMMO(); |
| unsigned MemSize = MMO.getSizeInBits(); |
| |
| if (MemSize == NarrowSize) { |
| MIRBuilder.buildLoad(TmpReg, PtrReg, MMO); |
| } else if (MemSize < NarrowSize) { |
| MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), TmpReg, PtrReg, MMO); |
| } else if (MemSize > NarrowSize) { |
| // FIXME: Need to split the load. |
| return UnableToLegalize; |
| } |
| |
| if (isa<GZExtLoad>(LoadMI)) |
| MIRBuilder.buildZExt(DstReg, TmpReg); |
| else |
| MIRBuilder.buildSExt(DstReg, TmpReg); |
| |
| LoadMI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_STORE: { |
| auto &StoreMI = cast<GStore>(MI); |
| |
| Register SrcReg = StoreMI.getValueReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| if (SrcTy.isVector()) |
| return UnableToLegalize; |
| |
| int NumParts = SizeOp0 / NarrowSize; |
| unsigned HandledSize = NumParts * NarrowTy.getSizeInBits(); |
| unsigned LeftoverBits = SrcTy.getSizeInBits() - HandledSize; |
| if (SrcTy.isVector() && LeftoverBits != 0) |
| return UnableToLegalize; |
| |
| if (8 * StoreMI.getMemSize() != SrcTy.getSizeInBits()) { |
| Register TmpReg = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.buildTrunc(TmpReg, SrcReg); |
| MIRBuilder.buildStore(TmpReg, StoreMI.getPointerReg(), StoreMI.getMMO()); |
| StoreMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return reduceLoadStoreWidth(StoreMI, 0, NarrowTy); |
| } |
| case TargetOpcode::G_SELECT: |
| return narrowScalarSelect(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_OR: |
| case TargetOpcode::G_XOR: { |
| // Legalize bitwise operation: |
| // A = BinOp<Ty> B, C |
| // into: |
| // B1, ..., BN = G_UNMERGE_VALUES B |
| // C1, ..., CN = G_UNMERGE_VALUES C |
| // A1 = BinOp<Ty/N> B1, C2 |
| // ... |
| // AN = BinOp<Ty/N> BN, CN |
| // A = G_MERGE_VALUES A1, ..., AN |
| return narrowScalarBasic(MI, TypeIdx, NarrowTy); |
| } |
| case TargetOpcode::G_SHL: |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_ASHR: |
| return narrowScalarShift(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_CTLZ: |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTTZ: |
| case TargetOpcode::G_CTTZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTPOP: |
| if (TypeIdx == 1) |
| switch (MI.getOpcode()) { |
| case TargetOpcode::G_CTLZ: |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: |
| return narrowScalarCTLZ(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_CTTZ: |
| case TargetOpcode::G_CTTZ_ZERO_UNDEF: |
| return narrowScalarCTTZ(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_CTPOP: |
| return narrowScalarCTPOP(MI, TypeIdx, NarrowTy); |
| default: |
| return UnableToLegalize; |
| } |
| |
| Observer.changingInstr(MI); |
| narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_INTTOPTR: |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| narrowScalarSrc(MI, NarrowTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_PTRTOINT: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_ZEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_PHI: { |
| // FIXME: add support for when SizeOp0 isn't an exact multiple of |
| // NarrowSize. |
| if (SizeOp0 % NarrowSize != 0) |
| return UnableToLegalize; |
| |
| unsigned NumParts = SizeOp0 / NarrowSize; |
| SmallVector<Register, 2> DstRegs(NumParts); |
| SmallVector<SmallVector<Register, 2>, 2> SrcRegs(MI.getNumOperands() / 2); |
| Observer.changingInstr(MI); |
| for (unsigned i = 1; i < MI.getNumOperands(); i += 2) { |
| MachineBasicBlock &OpMBB = *MI.getOperand(i + 1).getMBB(); |
| MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); |
| extractParts(MI.getOperand(i).getReg(), NarrowTy, NumParts, |
| SrcRegs[i / 2]); |
| } |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MIRBuilder.setInsertPt(MBB, MI); |
| for (unsigned i = 0; i < NumParts; ++i) { |
| DstRegs[i] = MRI.createGenericVirtualRegister(NarrowTy); |
| MachineInstrBuilder MIB = |
| MIRBuilder.buildInstr(TargetOpcode::G_PHI).addDef(DstRegs[i]); |
| for (unsigned j = 1; j < MI.getNumOperands(); j += 2) |
| MIB.addUse(SrcRegs[j / 2][i]).add(MI.getOperand(j + 1)); |
| } |
| MIRBuilder.setInsertPt(MBB, MBB.getFirstNonPHI()); |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); |
| Observer.changedInstr(MI); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| if (TypeIdx != 2) |
| return UnableToLegalize; |
| |
| int OpIdx = MI.getOpcode() == TargetOpcode::G_EXTRACT_VECTOR_ELT ? 2 : 3; |
| Observer.changingInstr(MI); |
| narrowScalarSrc(MI, NarrowTy, OpIdx); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_ICMP: { |
| Register LHS = MI.getOperand(2).getReg(); |
| LLT SrcTy = MRI.getType(LHS); |
| uint64_t SrcSize = SrcTy.getSizeInBits(); |
| CmpInst::Predicate Pred = |
| static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate()); |
| |
| // TODO: Handle the non-equality case for weird sizes. |
| if (NarrowSize * 2 != SrcSize && !ICmpInst::isEquality(Pred)) |
| return UnableToLegalize; |
| |
| LLT LeftoverTy; // Example: s88 -> s64 (NarrowTy) + s24 (leftover) |
| SmallVector<Register, 4> LHSPartRegs, LHSLeftoverRegs; |
| if (!extractParts(LHS, SrcTy, NarrowTy, LeftoverTy, LHSPartRegs, |
| LHSLeftoverRegs)) |
| return UnableToLegalize; |
| |
| LLT Unused; // Matches LeftoverTy; G_ICMP LHS and RHS are the same type. |
| SmallVector<Register, 4> RHSPartRegs, RHSLeftoverRegs; |
| if (!extractParts(MI.getOperand(3).getReg(), SrcTy, NarrowTy, Unused, |
| RHSPartRegs, RHSLeftoverRegs)) |
| return UnableToLegalize; |
| |
| // We now have the LHS and RHS of the compare split into narrow-type |
| // registers, plus potentially some leftover type. |
| Register Dst = MI.getOperand(0).getReg(); |
| LLT ResTy = MRI.getType(Dst); |
| if (ICmpInst::isEquality(Pred)) { |
| // For each part on the LHS and RHS, keep track of the result of XOR-ing |
| // them together. For each equal part, the result should be all 0s. For |
| // each non-equal part, we'll get at least one 1. |
| auto Zero = MIRBuilder.buildConstant(NarrowTy, 0); |
| SmallVector<Register, 4> Xors; |
| for (auto LHSAndRHS : zip(LHSPartRegs, RHSPartRegs)) { |
| auto LHS = std::get<0>(LHSAndRHS); |
| auto RHS = std::get<1>(LHSAndRHS); |
| auto Xor = MIRBuilder.buildXor(NarrowTy, LHS, RHS).getReg(0); |
| Xors.push_back(Xor); |
| } |
| |
| // Build a G_XOR for each leftover register. Each G_XOR must be widened |
| // to the desired narrow type so that we can OR them together later. |
| SmallVector<Register, 4> WidenedXors; |
| for (auto LHSAndRHS : zip(LHSLeftoverRegs, RHSLeftoverRegs)) { |
| auto LHS = std::get<0>(LHSAndRHS); |
| auto RHS = std::get<1>(LHSAndRHS); |
| auto Xor = MIRBuilder.buildXor(LeftoverTy, LHS, RHS).getReg(0); |
| LLT GCDTy = extractGCDType(WidenedXors, NarrowTy, LeftoverTy, Xor); |
| buildLCMMergePieces(LeftoverTy, NarrowTy, GCDTy, WidenedXors, |
| /* PadStrategy = */ TargetOpcode::G_ZEXT); |
| Xors.insert(Xors.end(), WidenedXors.begin(), WidenedXors.end()); |
| } |
| |
| // Now, for each part we broke up, we know if they are equal/not equal |
| // based off the G_XOR. We can OR these all together and compare against |
| // 0 to get the result. |
| assert(Xors.size() >= 2 && "Should have gotten at least two Xors?"); |
| auto Or = MIRBuilder.buildOr(NarrowTy, Xors[0], Xors[1]); |
| for (unsigned I = 2, E = Xors.size(); I < E; ++I) |
| Or = MIRBuilder.buildOr(NarrowTy, Or, Xors[I]); |
| MIRBuilder.buildICmp(Pred, Dst, Or, Zero); |
| } else { |
| // TODO: Handle non-power-of-two types. |
| assert(LHSPartRegs.size() == 2 && "Expected exactly 2 LHS part regs?"); |
| assert(RHSPartRegs.size() == 2 && "Expected exactly 2 RHS part regs?"); |
| Register LHSL = LHSPartRegs[0]; |
| Register LHSH = LHSPartRegs[1]; |
| Register RHSL = RHSPartRegs[0]; |
| Register RHSH = RHSPartRegs[1]; |
| MachineInstrBuilder CmpH = MIRBuilder.buildICmp(Pred, ResTy, LHSH, RHSH); |
| MachineInstrBuilder CmpHEQ = |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, ResTy, LHSH, RHSH); |
| MachineInstrBuilder CmpLU = MIRBuilder.buildICmp( |
| ICmpInst::getUnsignedPredicate(Pred), ResTy, LHSL, RHSL); |
| MIRBuilder.buildSelect(Dst, CmpHEQ, CmpLU, CmpH); |
| } |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_SEXT_INREG: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| int64_t SizeInBits = MI.getOperand(2).getImm(); |
| |
| // So long as the new type has more bits than the bits we're extending we |
| // don't need to break it apart. |
| if (NarrowTy.getScalarSizeInBits() >= SizeInBits) { |
| Observer.changingInstr(MI); |
| // We don't lose any non-extension bits by truncating the src and |
| // sign-extending the dst. |
| MachineOperand &MO1 = MI.getOperand(1); |
| auto TruncMIB = MIRBuilder.buildTrunc(NarrowTy, MO1); |
| MO1.setReg(TruncMIB.getReg(0)); |
| |
| MachineOperand &MO2 = MI.getOperand(0); |
| Register DstExt = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| MIRBuilder.buildSExt(MO2, DstExt); |
| MO2.setReg(DstExt); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| // Break it apart. Components below the extension point are unmodified. The |
| // component containing the extension point becomes a narrower SEXT_INREG. |
| // Components above it are ashr'd from the component containing the |
| // extension point. |
| if (SizeOp0 % NarrowSize != 0) |
| return UnableToLegalize; |
| int NumParts = SizeOp0 / NarrowSize; |
| |
| // List the registers where the destination will be scattered. |
| SmallVector<Register, 2> DstRegs; |
| // List the registers where the source will be split. |
| SmallVector<Register, 2> SrcRegs; |
| |
| // Create all the temporary registers. |
| for (int i = 0; i < NumParts; ++i) { |
| Register SrcReg = MRI.createGenericVirtualRegister(NarrowTy); |
| |
| SrcRegs.push_back(SrcReg); |
| } |
| |
| // Explode the big arguments into smaller chunks. |
| MIRBuilder.buildUnmerge(SrcRegs, MI.getOperand(1)); |
| |
| Register AshrCstReg = |
| MIRBuilder.buildConstant(NarrowTy, NarrowTy.getScalarSizeInBits() - 1) |
| .getReg(0); |
| Register FullExtensionReg = 0; |
| Register PartialExtensionReg = 0; |
| |
| // Do the operation on each small part. |
| for (int i = 0; i < NumParts; ++i) { |
| if ((i + 1) * NarrowTy.getScalarSizeInBits() < SizeInBits) |
| DstRegs.push_back(SrcRegs[i]); |
| else if (i * NarrowTy.getScalarSizeInBits() > SizeInBits) { |
| assert(PartialExtensionReg && |
| "Expected to visit partial extension before full"); |
| if (FullExtensionReg) { |
| DstRegs.push_back(FullExtensionReg); |
| continue; |
| } |
| DstRegs.push_back( |
| MIRBuilder.buildAShr(NarrowTy, PartialExtensionReg, AshrCstReg) |
| .getReg(0)); |
| FullExtensionReg = DstRegs.back(); |
| } else { |
| DstRegs.push_back( |
| MIRBuilder |
| .buildInstr( |
| TargetOpcode::G_SEXT_INREG, {NarrowTy}, |
| {SrcRegs[i], SizeInBits % NarrowTy.getScalarSizeInBits()}) |
| .getReg(0)); |
| PartialExtensionReg = DstRegs.back(); |
| } |
| } |
| |
| // Gather the destination registers into the final destination. |
| Register DstReg = MI.getOperand(0).getReg(); |
| MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_BSWAP: |
| case TargetOpcode::G_BITREVERSE: { |
| if (SizeOp0 % NarrowSize != 0) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| SmallVector<Register, 2> SrcRegs, DstRegs; |
| unsigned NumParts = SizeOp0 / NarrowSize; |
| extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); |
| |
| for (unsigned i = 0; i < NumParts; ++i) { |
| auto DstPart = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, |
| {SrcRegs[NumParts - 1 - i]}); |
| DstRegs.push_back(DstPart.getReg(0)); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), DstRegs); |
| |
| Observer.changedInstr(MI); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_PTR_ADD: |
| case TargetOpcode::G_PTRMASK: { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| narrowScalarSrc(MI, NarrowTy, 2); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_FPTOUI: |
| case TargetOpcode::G_FPTOSI: |
| return narrowScalarFPTOI(MI, TypeIdx, NarrowTy); |
| case TargetOpcode::G_FPEXT: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| narrowScalarDst(MI, NarrowTy, 0, TargetOpcode::G_FPEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_FLDEXP: |
| case TargetOpcode::G_STRICT_FLDEXP: |
| return narrowScalarFLDEXP(MI, TypeIdx, NarrowTy); |
| } |
| } |
| |
| Register LegalizerHelper::coerceToScalar(Register Val) { |
| LLT Ty = MRI.getType(Val); |
| if (Ty.isScalar()) |
| return Val; |
| |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| LLT NewTy = LLT::scalar(Ty.getSizeInBits()); |
| if (Ty.isPointer()) { |
| if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace())) |
| return Register(); |
| return MIRBuilder.buildPtrToInt(NewTy, Val).getReg(0); |
| } |
| |
| Register NewVal = Val; |
| |
| assert(Ty.isVector()); |
| LLT EltTy = Ty.getElementType(); |
| if (EltTy.isPointer()) |
| NewVal = MIRBuilder.buildPtrToInt(NewTy, NewVal).getReg(0); |
| return MIRBuilder.buildBitcast(NewTy, NewVal).getReg(0); |
| } |
| |
| void LegalizerHelper::widenScalarSrc(MachineInstr &MI, LLT WideTy, |
| unsigned OpIdx, unsigned ExtOpcode) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| auto ExtB = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MO}); |
| MO.setReg(ExtB.getReg(0)); |
| } |
| |
| void LegalizerHelper::narrowScalarSrc(MachineInstr &MI, LLT NarrowTy, |
| unsigned OpIdx) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| auto ExtB = MIRBuilder.buildTrunc(NarrowTy, MO); |
| MO.setReg(ExtB.getReg(0)); |
| } |
| |
| void LegalizerHelper::widenScalarDst(MachineInstr &MI, LLT WideTy, |
| unsigned OpIdx, unsigned TruncOpcode) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| Register DstExt = MRI.createGenericVirtualRegister(WideTy); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| MIRBuilder.buildInstr(TruncOpcode, {MO}, {DstExt}); |
| MO.setReg(DstExt); |
| } |
| |
| void LegalizerHelper::narrowScalarDst(MachineInstr &MI, LLT NarrowTy, |
| unsigned OpIdx, unsigned ExtOpcode) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| Register DstTrunc = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| MIRBuilder.buildInstr(ExtOpcode, {MO}, {DstTrunc}); |
| MO.setReg(DstTrunc); |
| } |
| |
| void LegalizerHelper::moreElementsVectorDst(MachineInstr &MI, LLT WideTy, |
| unsigned OpIdx) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| Register Dst = MO.getReg(); |
| Register DstExt = MRI.createGenericVirtualRegister(WideTy); |
| MO.setReg(DstExt); |
| MIRBuilder.buildDeleteTrailingVectorElements(Dst, DstExt); |
| } |
| |
| void LegalizerHelper::moreElementsVectorSrc(MachineInstr &MI, LLT MoreTy, |
| unsigned OpIdx) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| SmallVector<Register, 8> Regs; |
| MO.setReg(MIRBuilder.buildPadVectorWithUndefElements(MoreTy, MO).getReg(0)); |
| } |
| |
| void LegalizerHelper::bitcastSrc(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { |
| MachineOperand &Op = MI.getOperand(OpIdx); |
| Op.setReg(MIRBuilder.buildBitcast(CastTy, Op).getReg(0)); |
| } |
| |
| void LegalizerHelper::bitcastDst(MachineInstr &MI, LLT CastTy, unsigned OpIdx) { |
| MachineOperand &MO = MI.getOperand(OpIdx); |
| Register CastDst = MRI.createGenericVirtualRegister(CastTy); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| MIRBuilder.buildBitcast(MO, CastDst); |
| MO.setReg(CastDst); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarMergeValues(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| auto [DstReg, DstTy, Src1Reg, Src1Ty] = MI.getFirst2RegLLTs(); |
| if (DstTy.isVector()) |
| return UnableToLegalize; |
| |
| LLT SrcTy = MRI.getType(Src1Reg); |
| const int DstSize = DstTy.getSizeInBits(); |
| const int SrcSize = SrcTy.getSizeInBits(); |
| const int WideSize = WideTy.getSizeInBits(); |
| const int NumMerge = (DstSize + WideSize - 1) / WideSize; |
| |
| unsigned NumOps = MI.getNumOperands(); |
| unsigned NumSrc = MI.getNumOperands() - 1; |
| unsigned PartSize = DstTy.getSizeInBits() / NumSrc; |
| |
| if (WideSize >= DstSize) { |
| // Directly pack the bits in the target type. |
| Register ResultReg = MIRBuilder.buildZExt(WideTy, Src1Reg).getReg(0); |
| |
| for (unsigned I = 2; I != NumOps; ++I) { |
| const unsigned Offset = (I - 1) * PartSize; |
| |
| Register SrcReg = MI.getOperand(I).getReg(); |
| assert(MRI.getType(SrcReg) == LLT::scalar(PartSize)); |
| |
| auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); |
| |
| Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : |
| MRI.createGenericVirtualRegister(WideTy); |
| |
| auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); |
| auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); |
| MIRBuilder.buildOr(NextResult, ResultReg, Shl); |
| ResultReg = NextResult; |
| } |
| |
| if (WideSize > DstSize) |
| MIRBuilder.buildTrunc(DstReg, ResultReg); |
| else if (DstTy.isPointer()) |
| MIRBuilder.buildIntToPtr(DstReg, ResultReg); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // Unmerge the original values to the GCD type, and recombine to the next |
| // multiple greater than the original type. |
| // |
| // %3:_(s12) = G_MERGE_VALUES %0:_(s4), %1:_(s4), %2:_(s4) -> s6 |
| // %4:_(s2), %5:_(s2) = G_UNMERGE_VALUES %0 |
| // %6:_(s2), %7:_(s2) = G_UNMERGE_VALUES %1 |
| // %8:_(s2), %9:_(s2) = G_UNMERGE_VALUES %2 |
| // %10:_(s6) = G_MERGE_VALUES %4, %5, %6 |
| // %11:_(s6) = G_MERGE_VALUES %7, %8, %9 |
| // %12:_(s12) = G_MERGE_VALUES %10, %11 |
| // |
| // Padding with undef if necessary: |
| // |
| // %2:_(s8) = G_MERGE_VALUES %0:_(s4), %1:_(s4) -> s6 |
| // %3:_(s2), %4:_(s2) = G_UNMERGE_VALUES %0 |
| // %5:_(s2), %6:_(s2) = G_UNMERGE_VALUES %1 |
| // %7:_(s2) = G_IMPLICIT_DEF |
| // %8:_(s6) = G_MERGE_VALUES %3, %4, %5 |
| // %9:_(s6) = G_MERGE_VALUES %6, %7, %7 |
| // %10:_(s12) = G_MERGE_VALUES %8, %9 |
| |
| const int GCD = std::gcd(SrcSize, WideSize); |
| LLT GCDTy = LLT::scalar(GCD); |
| |
| SmallVector<Register, 8> Parts; |
| SmallVector<Register, 8> NewMergeRegs; |
| SmallVector<Register, 8> Unmerges; |
| LLT WideDstTy = LLT::scalar(NumMerge * WideSize); |
| |
| // Decompose the original operands if they don't evenly divide. |
| for (const MachineOperand &MO : llvm::drop_begin(MI.operands())) { |
| Register SrcReg = MO.getReg(); |
| if (GCD == SrcSize) { |
| Unmerges.push_back(SrcReg); |
| } else { |
| auto Unmerge = MIRBuilder.buildUnmerge(GCDTy, SrcReg); |
| for (int J = 0, JE = Unmerge->getNumOperands() - 1; J != JE; ++J) |
| Unmerges.push_back(Unmerge.getReg(J)); |
| } |
| } |
| |
| // Pad with undef to the next size that is a multiple of the requested size. |
| if (static_cast<int>(Unmerges.size()) != NumMerge * WideSize) { |
| Register UndefReg = MIRBuilder.buildUndef(GCDTy).getReg(0); |
| for (int I = Unmerges.size(); I != NumMerge * WideSize; ++I) |
| Unmerges.push_back(UndefReg); |
| } |
| |
| const int PartsPerGCD = WideSize / GCD; |
| |
| // Build merges of each piece. |
| ArrayRef<Register> Slicer(Unmerges); |
| for (int I = 0; I != NumMerge; ++I, Slicer = Slicer.drop_front(PartsPerGCD)) { |
| auto Merge = |
| MIRBuilder.buildMergeLikeInstr(WideTy, Slicer.take_front(PartsPerGCD)); |
| NewMergeRegs.push_back(Merge.getReg(0)); |
| } |
| |
| // A truncate may be necessary if the requested type doesn't evenly divide the |
| // original result type. |
| if (DstTy.getSizeInBits() == WideDstTy.getSizeInBits()) { |
| MIRBuilder.buildMergeLikeInstr(DstReg, NewMergeRegs); |
| } else { |
| auto FinalMerge = MIRBuilder.buildMergeLikeInstr(WideDstTy, NewMergeRegs); |
| MIRBuilder.buildTrunc(DstReg, FinalMerge.getReg(0)); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarUnmergeValues(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| int NumDst = MI.getNumOperands() - 1; |
| Register SrcReg = MI.getOperand(NumDst).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| if (SrcTy.isVector()) |
| return UnableToLegalize; |
| |
| Register Dst0Reg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(Dst0Reg); |
| if (!DstTy.isScalar()) |
| return UnableToLegalize; |
| |
| if (WideTy.getSizeInBits() >= SrcTy.getSizeInBits()) { |
| if (SrcTy.isPointer()) { |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) { |
| LLVM_DEBUG( |
| dbgs() << "Not casting non-integral address space integer\n"); |
| return UnableToLegalize; |
| } |
| |
| SrcTy = LLT::scalar(SrcTy.getSizeInBits()); |
| SrcReg = MIRBuilder.buildPtrToInt(SrcTy, SrcReg).getReg(0); |
| } |
| |
| // Widen SrcTy to WideTy. This does not affect the result, but since the |
| // user requested this size, it is probably better handled than SrcTy and |
| // should reduce the total number of legalization artifacts. |
| if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { |
| SrcTy = WideTy; |
| SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); |
| } |
| |
| // Theres no unmerge type to target. Directly extract the bits from the |
| // source type |
| unsigned DstSize = DstTy.getSizeInBits(); |
| |
| MIRBuilder.buildTrunc(Dst0Reg, SrcReg); |
| for (int I = 1; I != NumDst; ++I) { |
| auto ShiftAmt = MIRBuilder.buildConstant(SrcTy, DstSize * I); |
| auto Shr = MIRBuilder.buildLShr(SrcTy, SrcReg, ShiftAmt); |
| MIRBuilder.buildTrunc(MI.getOperand(I), Shr); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // Extend the source to a wider type. |
| LLT LCMTy = getLCMType(SrcTy, WideTy); |
| |
| Register WideSrc = SrcReg; |
| if (LCMTy.getSizeInBits() != SrcTy.getSizeInBits()) { |
| // TODO: If this is an integral address space, cast to integer and anyext. |
| if (SrcTy.isPointer()) { |
| LLVM_DEBUG(dbgs() << "Widening pointer source types not implemented\n"); |
| return UnableToLegalize; |
| } |
| |
| WideSrc = MIRBuilder.buildAnyExt(LCMTy, WideSrc).getReg(0); |
| } |
| |
| auto Unmerge = MIRBuilder.buildUnmerge(WideTy, WideSrc); |
| |
| // Create a sequence of unmerges and merges to the original results. Since we |
| // may have widened the source, we will need to pad the results with dead defs |
| // to cover the source register. |
| // e.g. widen s48 to s64: |
| // %1:_(s48), %2:_(s48) = G_UNMERGE_VALUES %0:_(s96) |
| // |
| // => |
| // %4:_(s192) = G_ANYEXT %0:_(s96) |
| // %5:_(s64), %6, %7 = G_UNMERGE_VALUES %4 ; Requested unmerge |
| // ; unpack to GCD type, with extra dead defs |
| // %8:_(s16), %9, %10, %11 = G_UNMERGE_VALUES %5:_(s64) |
| // %12:_(s16), %13, dead %14, dead %15 = G_UNMERGE_VALUES %6:_(s64) |
| // dead %16:_(s16), dead %17, dead %18, dead %18 = G_UNMERGE_VALUES %7:_(s64) |
| // %1:_(s48) = G_MERGE_VALUES %8:_(s16), %9, %10 ; Remerge to destination |
| // %2:_(s48) = G_MERGE_VALUES %11:_(s16), %12, %13 ; Remerge to destination |
| const LLT GCDTy = getGCDType(WideTy, DstTy); |
| const int NumUnmerge = Unmerge->getNumOperands() - 1; |
| const int PartsPerRemerge = DstTy.getSizeInBits() / GCDTy.getSizeInBits(); |
| |
| // Directly unmerge to the destination without going through a GCD type |
| // if possible |
| if (PartsPerRemerge == 1) { |
| const int PartsPerUnmerge = WideTy.getSizeInBits() / DstTy.getSizeInBits(); |
| |
| for (int I = 0; I != NumUnmerge; ++I) { |
| auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); |
| |
| for (int J = 0; J != PartsPerUnmerge; ++J) { |
| int Idx = I * PartsPerUnmerge + J; |
| if (Idx < NumDst) |
| MIB.addDef(MI.getOperand(Idx).getReg()); |
| else { |
| // Create dead def for excess components. |
| MIB.addDef(MRI.createGenericVirtualRegister(DstTy)); |
| } |
| } |
| |
| MIB.addUse(Unmerge.getReg(I)); |
| } |
| } else { |
| SmallVector<Register, 16> Parts; |
| for (int J = 0; J != NumUnmerge; ++J) |
| extractGCDType(Parts, GCDTy, Unmerge.getReg(J)); |
| |
| SmallVector<Register, 8> RemergeParts; |
| for (int I = 0; I != NumDst; ++I) { |
| for (int J = 0; J < PartsPerRemerge; ++J) { |
| const int Idx = I * PartsPerRemerge + J; |
| RemergeParts.emplace_back(Parts[Idx]); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(I).getReg(), RemergeParts); |
| RemergeParts.clear(); |
| } |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarExtract(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned Offset = MI.getOperand(2).getImm(); |
| |
| if (TypeIdx == 0) { |
| if (SrcTy.isVector() || DstTy.isVector()) |
| return UnableToLegalize; |
| |
| SrcOp Src(SrcReg); |
| if (SrcTy.isPointer()) { |
| // Extracts from pointers can be handled only if they are really just |
| // simple integers. |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| if (DL.isNonIntegralAddressSpace(SrcTy.getAddressSpace())) |
| return UnableToLegalize; |
| |
| LLT SrcAsIntTy = LLT::scalar(SrcTy.getSizeInBits()); |
| Src = MIRBuilder.buildPtrToInt(SrcAsIntTy, Src); |
| SrcTy = SrcAsIntTy; |
| } |
| |
| if (DstTy.isPointer()) |
| return UnableToLegalize; |
| |
| if (Offset == 0) { |
| // Avoid a shift in the degenerate case. |
| MIRBuilder.buildTrunc(DstReg, |
| MIRBuilder.buildAnyExtOrTrunc(WideTy, Src)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // Do a shift in the source type. |
| LLT ShiftTy = SrcTy; |
| if (WideTy.getSizeInBits() > SrcTy.getSizeInBits()) { |
| Src = MIRBuilder.buildAnyExt(WideTy, Src); |
| ShiftTy = WideTy; |
| } |
| |
| auto LShr = MIRBuilder.buildLShr( |
| ShiftTy, Src, MIRBuilder.buildConstant(ShiftTy, Offset)); |
| MIRBuilder.buildTrunc(DstReg, LShr); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (SrcTy.isScalar()) { |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (!SrcTy.isVector()) |
| return UnableToLegalize; |
| |
| if (DstTy != SrcTy.getElementType()) |
| return UnableToLegalize; |
| |
| if (Offset % SrcTy.getScalarSizeInBits() != 0) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| |
| MI.getOperand(2).setImm((WideTy.getSizeInBits() / SrcTy.getSizeInBits()) * |
| Offset); |
| widenScalarDst(MI, WideTy.getScalarType(), 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarInsert(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| if (TypeIdx != 0 || WideTy.isVector()) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarAddSubOverflow(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| unsigned Opcode; |
| unsigned ExtOpcode; |
| std::optional<Register> CarryIn; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("Unexpected opcode!"); |
| case TargetOpcode::G_SADDO: |
| Opcode = TargetOpcode::G_ADD; |
| ExtOpcode = TargetOpcode::G_SEXT; |
| break; |
| case TargetOpcode::G_SSUBO: |
| Opcode = TargetOpcode::G_SUB; |
| ExtOpcode = TargetOpcode::G_SEXT; |
| break; |
| case TargetOpcode::G_UADDO: |
| Opcode = TargetOpcode::G_ADD; |
| ExtOpcode = TargetOpcode::G_ZEXT; |
| break; |
| case TargetOpcode::G_USUBO: |
| Opcode = TargetOpcode::G_SUB; |
| ExtOpcode = TargetOpcode::G_ZEXT; |
| break; |
| case TargetOpcode::G_SADDE: |
| Opcode = TargetOpcode::G_UADDE; |
| ExtOpcode = TargetOpcode::G_SEXT; |
| CarryIn = MI.getOperand(4).getReg(); |
| break; |
| case TargetOpcode::G_SSUBE: |
| Opcode = TargetOpcode::G_USUBE; |
| ExtOpcode = TargetOpcode::G_SEXT; |
| CarryIn = MI.getOperand(4).getReg(); |
| break; |
| case TargetOpcode::G_UADDE: |
| Opcode = TargetOpcode::G_UADDE; |
| ExtOpcode = TargetOpcode::G_ZEXT; |
| CarryIn = MI.getOperand(4).getReg(); |
| break; |
| case TargetOpcode::G_USUBE: |
| Opcode = TargetOpcode::G_USUBE; |
| ExtOpcode = TargetOpcode::G_ZEXT; |
| CarryIn = MI.getOperand(4).getReg(); |
| break; |
| } |
| |
| if (TypeIdx == 1) { |
| unsigned BoolExtOp = MIRBuilder.getBoolExtOp(WideTy.isVector(), false); |
| |
| Observer.changingInstr(MI); |
| if (CarryIn) |
| widenScalarSrc(MI, WideTy, 4, BoolExtOp); |
| widenScalarDst(MI, WideTy, 1); |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| auto LHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(2)}); |
| auto RHSExt = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {MI.getOperand(3)}); |
| // Do the arithmetic in the larger type. |
| Register NewOp; |
| if (CarryIn) { |
| LLT CarryOutTy = MRI.getType(MI.getOperand(1).getReg()); |
| NewOp = MIRBuilder |
| .buildInstr(Opcode, {WideTy, CarryOutTy}, |
| {LHSExt, RHSExt, *CarryIn}) |
| .getReg(0); |
| } else { |
| NewOp = MIRBuilder.buildInstr(Opcode, {WideTy}, {LHSExt, RHSExt}).getReg(0); |
| } |
| LLT OrigTy = MRI.getType(MI.getOperand(0).getReg()); |
| auto TruncOp = MIRBuilder.buildTrunc(OrigTy, NewOp); |
| auto ExtOp = MIRBuilder.buildInstr(ExtOpcode, {WideTy}, {TruncOp}); |
| // There is no overflow if the ExtOp is the same as NewOp. |
| MIRBuilder.buildICmp(CmpInst::ICMP_NE, MI.getOperand(1), NewOp, ExtOp); |
| // Now trunc the NewOp to the original result. |
| MIRBuilder.buildTrunc(MI.getOperand(0), NewOp); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarAddSubShlSat(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| bool IsSigned = MI.getOpcode() == TargetOpcode::G_SADDSAT || |
| MI.getOpcode() == TargetOpcode::G_SSUBSAT || |
| MI.getOpcode() == TargetOpcode::G_SSHLSAT; |
| bool IsShift = MI.getOpcode() == TargetOpcode::G_SSHLSAT || |
| MI.getOpcode() == TargetOpcode::G_USHLSAT; |
| // We can convert this to: |
| // 1. Any extend iN to iM |
| // 2. SHL by M-N |
| // 3. [US][ADD|SUB|SHL]SAT |
| // 4. L/ASHR by M-N |
| // |
| // It may be more efficient to lower this to a min and a max operation in |
| // the higher precision arithmetic if the promoted operation isn't legal, |
| // but this decision is up to the target's lowering request. |
| Register DstReg = MI.getOperand(0).getReg(); |
| |
| unsigned NewBits = WideTy.getScalarSizeInBits(); |
| unsigned SHLAmount = NewBits - MRI.getType(DstReg).getScalarSizeInBits(); |
| |
| // Shifts must zero-extend the RHS to preserve the unsigned quantity, and |
| // must not left shift the RHS to preserve the shift amount. |
| auto LHS = MIRBuilder.buildAnyExt(WideTy, MI.getOperand(1)); |
| auto RHS = IsShift ? MIRBuilder.buildZExt(WideTy, MI.getOperand(2)) |
| : MIRBuilder.buildAnyExt(WideTy, MI.getOperand(2)); |
| auto ShiftK = MIRBuilder.buildConstant(WideTy, SHLAmount); |
| auto ShiftL = MIRBuilder.buildShl(WideTy, LHS, ShiftK); |
| auto ShiftR = IsShift ? RHS : MIRBuilder.buildShl(WideTy, RHS, ShiftK); |
| |
| auto WideInst = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy}, |
| {ShiftL, ShiftR}, MI.getFlags()); |
| |
| // Use a shift that will preserve the number of sign bits when the trunc is |
| // folded away. |
| auto Result = IsSigned ? MIRBuilder.buildAShr(WideTy, WideInst, ShiftK) |
| : MIRBuilder.buildLShr(WideTy, WideInst, ShiftK); |
| |
| MIRBuilder.buildTrunc(DstReg, Result); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalarMulo(MachineInstr &MI, unsigned TypeIdx, |
| LLT WideTy) { |
| if (TypeIdx == 1) { |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULO; |
| auto [Result, OriginalOverflow, LHS, RHS] = MI.getFirst4Regs(); |
| LLT SrcTy = MRI.getType(LHS); |
| LLT OverflowTy = MRI.getType(OriginalOverflow); |
| unsigned SrcBitWidth = SrcTy.getScalarSizeInBits(); |
| |
| // To determine if the result overflowed in the larger type, we extend the |
| // input to the larger type, do the multiply (checking if it overflows), |
| // then also check the high bits of the result to see if overflow happened |
| // there. |
| unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; |
| auto LeftOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {LHS}); |
| auto RightOperand = MIRBuilder.buildInstr(ExtOp, {WideTy}, {RHS}); |
| |
| auto Mulo = MIRBuilder.buildInstr(MI.getOpcode(), {WideTy, OverflowTy}, |
| {LeftOperand, RightOperand}); |
| auto Mul = Mulo->getOperand(0); |
| MIRBuilder.buildTrunc(Result, Mul); |
| |
| MachineInstrBuilder ExtResult; |
| // Overflow occurred if it occurred in the larger type, or if the high part |
| // of the result does not zero/sign-extend the low part. Check this second |
| // possibility first. |
| if (IsSigned) { |
| // For signed, overflow occurred when the high part does not sign-extend |
| // the low part. |
| ExtResult = MIRBuilder.buildSExtInReg(WideTy, Mul, SrcBitWidth); |
| } else { |
| // Unsigned overflow occurred when the high part does not zero-extend the |
| // low part. |
| ExtResult = MIRBuilder.buildZExtInReg(WideTy, Mul, SrcBitWidth); |
| } |
| |
| // Multiplication cannot overflow if the WideTy is >= 2 * original width, |
| // so we don't need to check the overflow result of larger type Mulo. |
| if (WideTy.getScalarSizeInBits() < 2 * SrcBitWidth) { |
| auto Overflow = |
| MIRBuilder.buildICmp(CmpInst::ICMP_NE, OverflowTy, Mul, ExtResult); |
| // Finally check if the multiplication in the larger type itself overflowed. |
| MIRBuilder.buildOr(OriginalOverflow, Mulo->getOperand(1), Overflow); |
| } else { |
| MIRBuilder.buildICmp(CmpInst::ICMP_NE, OriginalOverflow, Mul, ExtResult); |
| } |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::widenScalar(MachineInstr &MI, unsigned TypeIdx, LLT WideTy) { |
| switch (MI.getOpcode()) { |
| default: |
| return UnableToLegalize; |
| case TargetOpcode::G_ATOMICRMW_XCHG: |
| case TargetOpcode::G_ATOMICRMW_ADD: |
| case TargetOpcode::G_ATOMICRMW_SUB: |
| case TargetOpcode::G_ATOMICRMW_AND: |
| case TargetOpcode::G_ATOMICRMW_OR: |
| case TargetOpcode::G_ATOMICRMW_XOR: |
| case TargetOpcode::G_ATOMICRMW_MIN: |
| case TargetOpcode::G_ATOMICRMW_MAX: |
| case TargetOpcode::G_ATOMICRMW_UMIN: |
| case TargetOpcode::G_ATOMICRMW_UMAX: |
| assert(TypeIdx == 0 && "atomicrmw with second scalar type"); |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_ATOMIC_CMPXCHG: |
| assert(TypeIdx == 0 && "G_ATOMIC_CMPXCHG with second scalar type"); |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: |
| if (TypeIdx == 0) { |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideTy, 4, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| assert(TypeIdx == 1 && |
| "G_ATOMIC_CMPXCHG_WITH_SUCCESS with third scalar type"); |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_EXTRACT: |
| return widenScalarExtract(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_INSERT: |
| return widenScalarInsert(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_MERGE_VALUES: |
| return widenScalarMergeValues(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_UNMERGE_VALUES: |
| return widenScalarUnmergeValues(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_SADDO: |
| case TargetOpcode::G_SSUBO: |
| case TargetOpcode::G_UADDO: |
| case TargetOpcode::G_USUBO: |
| case TargetOpcode::G_SADDE: |
| case TargetOpcode::G_SSUBE: |
| case TargetOpcode::G_UADDE: |
| case TargetOpcode::G_USUBE: |
| return widenScalarAddSubOverflow(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_UMULO: |
| case TargetOpcode::G_SMULO: |
| return widenScalarMulo(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_SADDSAT: |
| case TargetOpcode::G_SSUBSAT: |
| case TargetOpcode::G_SSHLSAT: |
| case TargetOpcode::G_UADDSAT: |
| case TargetOpcode::G_USUBSAT: |
| case TargetOpcode::G_USHLSAT: |
| return widenScalarAddSubShlSat(MI, TypeIdx, WideTy); |
| case TargetOpcode::G_CTTZ: |
| case TargetOpcode::G_CTTZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTLZ: |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTPOP: { |
| if (TypeIdx == 0) { |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| Register SrcReg = MI.getOperand(1).getReg(); |
| |
| // First extend the input. |
| unsigned ExtOpc = MI.getOpcode() == TargetOpcode::G_CTTZ || |
| MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF |
| ? TargetOpcode::G_ANYEXT |
| : TargetOpcode::G_ZEXT; |
| auto MIBSrc = MIRBuilder.buildInstr(ExtOpc, {WideTy}, {SrcReg}); |
| LLT CurTy = MRI.getType(SrcReg); |
| unsigned NewOpc = MI.getOpcode(); |
| if (NewOpc == TargetOpcode::G_CTTZ) { |
| // The count is the same in the larger type except if the original |
| // value was zero. This can be handled by setting the bit just off |
| // the top of the original type. |
| auto TopBit = |
| APInt::getOneBitSet(WideTy.getSizeInBits(), CurTy.getSizeInBits()); |
| MIBSrc = MIRBuilder.buildOr( |
| WideTy, MIBSrc, MIRBuilder.buildConstant(WideTy, TopBit)); |
| // Now we know the operand is non-zero, use the more relaxed opcode. |
| NewOpc = TargetOpcode::G_CTTZ_ZERO_UNDEF; |
| } |
| |
| // Perform the operation at the larger size. |
| auto MIBNewOp = MIRBuilder.buildInstr(NewOpc, {WideTy}, {MIBSrc}); |
| // This is already the correct result for CTPOP and CTTZs |
| if (MI.getOpcode() == TargetOpcode::G_CTLZ || |
| MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF) { |
| // The correct result is NewOp - (Difference in widety and current ty). |
| unsigned SizeDiff = WideTy.getSizeInBits() - CurTy.getSizeInBits(); |
| MIBNewOp = MIRBuilder.buildSub( |
| WideTy, MIBNewOp, MIRBuilder.buildConstant(WideTy, SizeDiff)); |
| } |
| |
| MIRBuilder.buildZExtOrTrunc(MI.getOperand(0), MIBNewOp); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_BSWAP: { |
| Observer.changingInstr(MI); |
| Register DstReg = MI.getOperand(0).getReg(); |
| |
| Register ShrReg = MRI.createGenericVirtualRegister(WideTy); |
| Register DstExt = MRI.createGenericVirtualRegister(WideTy); |
| Register ShiftAmtReg = MRI.createGenericVirtualRegister(WideTy); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| |
| MI.getOperand(0).setReg(DstExt); |
| |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| |
| LLT Ty = MRI.getType(DstReg); |
| unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); |
| MIRBuilder.buildConstant(ShiftAmtReg, DiffBits); |
| MIRBuilder.buildLShr(ShrReg, DstExt, ShiftAmtReg); |
| |
| MIRBuilder.buildTrunc(DstReg, ShrReg); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_BITREVERSE: { |
| Observer.changingInstr(MI); |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DstReg); |
| unsigned DiffBits = WideTy.getScalarSizeInBits() - Ty.getScalarSizeInBits(); |
| |
| Register DstExt = MRI.createGenericVirtualRegister(WideTy); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| MI.getOperand(0).setReg(DstExt); |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| |
| auto ShiftAmt = MIRBuilder.buildConstant(WideTy, DiffBits); |
| auto Shift = MIRBuilder.buildLShr(WideTy, DstExt, ShiftAmt); |
| MIRBuilder.buildTrunc(DstReg, Shift); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_FREEZE: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_ABS: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_ADD: |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_MUL: |
| case TargetOpcode::G_OR: |
| case TargetOpcode::G_XOR: |
| case TargetOpcode::G_SUB: |
| // Perform operation at larger width (any extension is fines here, high bits |
| // don't affect the result) and then truncate the result back to the |
| // original type. |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_SBFX: |
| case TargetOpcode::G_UBFX: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) { |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| } else { |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); |
| } |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_SHL: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) { |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| } else { |
| assert(TypeIdx == 1); |
| // The "number of bits to shift" operand must preserve its value as an |
| // unsigned integer: |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| } |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_SDIV: |
| case TargetOpcode::G_SREM: |
| case TargetOpcode::G_SMIN: |
| case TargetOpcode::G_SMAX: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_SDIVREM: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); |
| widenScalarDst(MI, WideTy); |
| widenScalarDst(MI, WideTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_ASHR: |
| case TargetOpcode::G_LSHR: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) { |
| unsigned CvtOp = MI.getOpcode() == TargetOpcode::G_ASHR ? |
| TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; |
| |
| widenScalarSrc(MI, WideTy, 1, CvtOp); |
| widenScalarDst(MI, WideTy); |
| } else { |
| assert(TypeIdx == 1); |
| // The "number of bits to shift" operand must preserve its value as an |
| // unsigned integer: |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| } |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_UDIV: |
| case TargetOpcode::G_UREM: |
| case TargetOpcode::G_UMIN: |
| case TargetOpcode::G_UMAX: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_UDIVREM: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ZEXT); |
| widenScalarDst(MI, WideTy); |
| widenScalarDst(MI, WideTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_SELECT: |
| Observer.changingInstr(MI); |
| if (TypeIdx == 0) { |
| // Perform operation at larger width (any extension is fine here, high |
| // bits don't affect the result) and then truncate the result back to the |
| // original type. |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy); |
| } else { |
| bool IsVec = MRI.getType(MI.getOperand(1).getReg()).isVector(); |
| // Explicit extension is required here since high bits affect the result. |
| widenScalarSrc(MI, WideTy, 1, MIRBuilder.getBoolExtOp(IsVec, false)); |
| } |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_FPTOSI: |
| case TargetOpcode::G_FPTOUI: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) |
| widenScalarDst(MI, WideTy); |
| else |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_SITOFP: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| else |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_SEXT); |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_UITOFP: |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| else |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_SEXTLOAD: |
| case TargetOpcode::G_ZEXTLOAD: |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_STORE: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| if (!Ty.isScalar()) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| |
| unsigned ExtType = Ty.getScalarSizeInBits() == 1 ? |
| TargetOpcode::G_ZEXT : TargetOpcode::G_ANYEXT; |
| widenScalarSrc(MI, WideTy, 0, ExtType); |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_CONSTANT: { |
| MachineOperand &SrcMO = MI.getOperand(1); |
| LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext(); |
| unsigned ExtOpc = LI.getExtOpcodeForWideningConstant( |
| MRI.getType(MI.getOperand(0).getReg())); |
| assert((ExtOpc == TargetOpcode::G_ZEXT || ExtOpc == TargetOpcode::G_SEXT || |
| ExtOpc == TargetOpcode::G_ANYEXT) && |
| "Illegal Extend"); |
| const APInt &SrcVal = SrcMO.getCImm()->getValue(); |
| const APInt &Val = (ExtOpc == TargetOpcode::G_SEXT) |
| ? SrcVal.sext(WideTy.getSizeInBits()) |
| : SrcVal.zext(WideTy.getSizeInBits()); |
| Observer.changingInstr(MI); |
| SrcMO.setCImm(ConstantInt::get(Ctx, Val)); |
| |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_FCONSTANT: { |
| // To avoid changing the bits of the constant due to extension to a larger |
| // type and then using G_FPTRUNC, we simply convert to a G_CONSTANT. |
| MachineOperand &SrcMO = MI.getOperand(1); |
| APInt Val = SrcMO.getFPImm()->getValueAPF().bitcastToAPInt(); |
| MIRBuilder.setInstrAndDebugLoc(MI); |
| auto IntCst = MIRBuilder.buildConstant(MI.getOperand(0).getReg(), Val); |
| widenScalarDst(*IntCst, WideTy, 0, TargetOpcode::G_TRUNC); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_IMPLICIT_DEF: { |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_BRCOND: |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 0, MIRBuilder.getBoolExtOp(false, false)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_FCMP: |
| Observer.changingInstr(MI); |
| if (TypeIdx == 0) |
| widenScalarDst(MI, WideTy); |
| else { |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_FPEXT); |
| } |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_ICMP: |
| Observer.changingInstr(MI); |
| if (TypeIdx == 0) |
| widenScalarDst(MI, WideTy); |
| else { |
| unsigned ExtOpcode = CmpInst::isSigned(static_cast<CmpInst::Predicate>( |
| MI.getOperand(1).getPredicate())) |
| ? TargetOpcode::G_SEXT |
| : TargetOpcode::G_ZEXT; |
| widenScalarSrc(MI, WideTy, 2, ExtOpcode); |
| widenScalarSrc(MI, WideTy, 3, ExtOpcode); |
| } |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_PTR_ADD: |
| assert(TypeIdx == 1 && "unable to legalize pointer of G_PTR_ADD"); |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| |
| case TargetOpcode::G_PHI: { |
| assert(TypeIdx == 0 && "Expecting only Idx 0"); |
| |
| Observer.changingInstr(MI); |
| for (unsigned I = 1; I < MI.getNumOperands(); I += 2) { |
| MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); |
| MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); |
| widenScalarSrc(MI, WideTy, I, TargetOpcode::G_ANYEXT); |
| } |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); |
| widenScalarDst(MI, WideTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_EXTRACT_VECTOR_ELT: { |
| if (TypeIdx == 0) { |
| Register VecReg = MI.getOperand(1).getReg(); |
| LLT VecTy = MRI.getType(VecReg); |
| Observer.changingInstr(MI); |
| |
| widenScalarSrc( |
| MI, LLT::vector(VecTy.getElementCount(), WideTy.getSizeInBits()), 1, |
| TargetOpcode::G_ANYEXT); |
| |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (TypeIdx != 2) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| // TODO: Probably should be zext |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_INSERT_VECTOR_ELT: { |
| if (TypeIdx == 0) { |
| Observer.changingInstr(MI); |
| const LLT WideEltTy = WideTy.getElementType(); |
| |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideEltTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (TypeIdx == 1) { |
| Observer.changingInstr(MI); |
| |
| Register VecReg = MI.getOperand(1).getReg(); |
| LLT VecTy = MRI.getType(VecReg); |
| LLT WideVecTy = LLT::vector(VecTy.getElementCount(), WideTy); |
| |
| widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideVecTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (TypeIdx == 2) { |
| Observer.changingInstr(MI); |
| // TODO: Probably should be zext |
| widenScalarSrc(MI, WideTy, 3, TargetOpcode::G_SEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| case TargetOpcode::G_FADD: |
| case TargetOpcode::G_FMUL: |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_FMA: |
| case TargetOpcode::G_FMAD: |
| case TargetOpcode::G_FNEG: |
| case TargetOpcode::G_FABS: |
| case TargetOpcode::G_FCANONICALIZE: |
| case TargetOpcode::G_FMINNUM: |
| case TargetOpcode::G_FMAXNUM: |
| case TargetOpcode::G_FMINNUM_IEEE: |
| case TargetOpcode::G_FMAXNUM_IEEE: |
| case TargetOpcode::G_FMINIMUM: |
| case TargetOpcode::G_FMAXIMUM: |
| case TargetOpcode::G_FDIV: |
| case TargetOpcode::G_FREM: |
| case TargetOpcode::G_FCEIL: |
| case TargetOpcode::G_FFLOOR: |
| case TargetOpcode::G_FCOS: |
| case TargetOpcode::G_FSIN: |
| case TargetOpcode::G_FLOG10: |
| case TargetOpcode::G_FLOG: |
| case TargetOpcode::G_FLOG2: |
| case TargetOpcode::G_FRINT: |
| case TargetOpcode::G_FNEARBYINT: |
| case TargetOpcode::G_FSQRT: |
| case TargetOpcode::G_FEXP: |
| case TargetOpcode::G_FEXP2: |
| case TargetOpcode::G_FEXP10: |
| case TargetOpcode::G_FPOW: |
| case TargetOpcode::G_INTRINSIC_TRUNC: |
| case TargetOpcode::G_INTRINSIC_ROUND: |
| case TargetOpcode::G_INTRINSIC_ROUNDEVEN: |
| assert(TypeIdx == 0); |
| Observer.changingInstr(MI); |
| |
| for (unsigned I = 1, E = MI.getNumOperands(); I != E; ++I) |
| widenScalarSrc(MI, WideTy, I, TargetOpcode::G_FPEXT); |
| |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_FPOWI: |
| case TargetOpcode::G_FLDEXP: |
| case TargetOpcode::G_STRICT_FLDEXP: { |
| if (TypeIdx == 0) { |
| if (MI.getOpcode() == TargetOpcode::G_STRICT_FLDEXP) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_FPEXT); |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (TypeIdx == 1) { |
| // For some reason SelectionDAG tries to promote to a libcall without |
| // actually changing the integer type for promotion. |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_SEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| case TargetOpcode::G_FFREXP: { |
| Observer.changingInstr(MI); |
| |
| if (TypeIdx == 0) { |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_FPEXT); |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| } else { |
| widenScalarDst(MI, WideTy, 1); |
| } |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_INTTOPTR: |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ZEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_PTRTOINT: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| widenScalarDst(MI, WideTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_BUILD_VECTOR: { |
| Observer.changingInstr(MI); |
| |
| const LLT WideEltTy = TypeIdx == 1 ? WideTy : WideTy.getElementType(); |
| for (int I = 1, E = MI.getNumOperands(); I != E; ++I) |
| widenScalarSrc(MI, WideEltTy, I, TargetOpcode::G_ANYEXT); |
| |
| // Avoid changing the result vector type if the source element type was |
| // requested. |
| if (TypeIdx == 1) { |
| MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BUILD_VECTOR_TRUNC)); |
| } else { |
| widenScalarDst(MI, WideTy, 0); |
| } |
| |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_SEXT_INREG: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 1, TargetOpcode::G_ANYEXT); |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_TRUNC); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_PTRMASK: { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| widenScalarSrc(MI, WideTy, 2, TargetOpcode::G_ZEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_VECREDUCE_FMIN: |
| case TargetOpcode::G_VECREDUCE_FMAX: |
| case TargetOpcode::G_VECREDUCE_FMINIMUM: |
| case TargetOpcode::G_VECREDUCE_FMAXIMUM: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| Register VecReg = MI.getOperand(1).getReg(); |
| LLT VecTy = MRI.getType(VecReg); |
| LLT WideVecTy = VecTy.isVector() |
| ? LLT::vector(VecTy.getElementCount(), WideTy) |
| : WideTy; |
| widenScalarSrc(MI, WideVecTy, 1, TargetOpcode::G_FPEXT); |
| widenScalarDst(MI, WideTy, 0, TargetOpcode::G_FPTRUNC); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| } |
| |
| static void getUnmergePieces(SmallVectorImpl<Register> &Pieces, |
| MachineIRBuilder &B, Register Src, LLT Ty) { |
| auto Unmerge = B.buildUnmerge(Ty, Src); |
| for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I) |
| Pieces.push_back(Unmerge.getReg(I)); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFConstant(MachineInstr &MI) { |
| Register Dst = MI.getOperand(0).getReg(); |
| |
| MachineFunction &MF = MIRBuilder.getMF(); |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| |
| unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace(); |
| LLT AddrPtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); |
| Align Alignment = Align(DL.getABITypeAlign( |
| getFloatTypeForLLT(MF.getFunction().getContext(), MRI.getType(Dst)))); |
| |
| auto Addr = MIRBuilder.buildConstantPool( |
| AddrPtrTy, MF.getConstantPool()->getConstantPoolIndex( |
| MI.getOperand(1).getFPImm(), Alignment)); |
| |
| MachineMemOperand *MMO = MF.getMachineMemOperand( |
| MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad, |
| MRI.getType(Dst), Alignment); |
| |
| MIRBuilder.buildLoadInstr(TargetOpcode::G_LOAD, Dst, Addr, *MMO); |
| MI.eraseFromParent(); |
| |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerBitcast(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); |
| if (SrcTy.isVector()) { |
| LLT SrcEltTy = SrcTy.getElementType(); |
| SmallVector<Register, 8> SrcRegs; |
| |
| if (DstTy.isVector()) { |
| int NumDstElt = DstTy.getNumElements(); |
| int NumSrcElt = SrcTy.getNumElements(); |
| |
| LLT DstEltTy = DstTy.getElementType(); |
| LLT DstCastTy = DstEltTy; // Intermediate bitcast result type |
| LLT SrcPartTy = SrcEltTy; // Original unmerge result type. |
| |
| // If there's an element size mismatch, insert intermediate casts to match |
| // the result element type. |
| if (NumSrcElt < NumDstElt) { // Source element type is larger. |
| // %1:_(<4 x s8>) = G_BITCAST %0:_(<2 x s16>) |
| // |
| // => |
| // |
| // %2:_(s16), %3:_(s16) = G_UNMERGE_VALUES %0 |
| // %3:_(<2 x s8>) = G_BITCAST %2 |
| // %4:_(<2 x s8>) = G_BITCAST %3 |
| // %1:_(<4 x s16>) = G_CONCAT_VECTORS %3, %4 |
| DstCastTy = LLT::fixed_vector(NumDstElt / NumSrcElt, DstEltTy); |
| SrcPartTy = SrcEltTy; |
| } else if (NumSrcElt > NumDstElt) { // Source element type is smaller. |
| // |
| // %1:_(<2 x s16>) = G_BITCAST %0:_(<4 x s8>) |
| // |
| // => |
| // |
| // %2:_(<2 x s8>), %3:_(<2 x s8>) = G_UNMERGE_VALUES %0 |
| // %3:_(s16) = G_BITCAST %2 |
| // %4:_(s16) = G_BITCAST %3 |
| // %1:_(<2 x s16>) = G_BUILD_VECTOR %3, %4 |
| SrcPartTy = LLT::fixed_vector(NumSrcElt / NumDstElt, SrcEltTy); |
| DstCastTy = DstEltTy; |
| } |
| |
| getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcPartTy); |
| for (Register &SrcReg : SrcRegs) |
| SrcReg = MIRBuilder.buildBitcast(DstCastTy, SrcReg).getReg(0); |
| } else |
| getUnmergePieces(SrcRegs, MIRBuilder, Src, SrcEltTy); |
| |
| MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (DstTy.isVector()) { |
| SmallVector<Register, 8> SrcRegs; |
| getUnmergePieces(SrcRegs, MIRBuilder, Src, DstTy.getElementType()); |
| MIRBuilder.buildMergeLikeInstr(Dst, SrcRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| /// Figure out the bit offset into a register when coercing a vector index for |
| /// the wide element type. This is only for the case when promoting vector to |
| /// one with larger elements. |
| // |
| /// |
| /// %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) |
| /// %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) |
| static Register getBitcastWiderVectorElementOffset(MachineIRBuilder &B, |
| Register Idx, |
| unsigned NewEltSize, |
| unsigned OldEltSize) { |
| const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); |
| LLT IdxTy = B.getMRI()->getType(Idx); |
| |
| // Now figure out the amount we need to shift to get the target bits. |
| auto OffsetMask = B.buildConstant( |
| IdxTy, ~(APInt::getAllOnes(IdxTy.getSizeInBits()) << Log2EltRatio)); |
| auto OffsetIdx = B.buildAnd(IdxTy, Idx, OffsetMask); |
| return B.buildShl(IdxTy, OffsetIdx, |
| B.buildConstant(IdxTy, Log2_32(OldEltSize))).getReg(0); |
| } |
| |
| /// Perform a G_EXTRACT_VECTOR_ELT in a different sized vector element. If this |
| /// is casting to a vector with a smaller element size, perform multiple element |
| /// extracts and merge the results. If this is coercing to a vector with larger |
| /// elements, index the bitcasted vector and extract the target element with bit |
| /// operations. This is intended to force the indexing in the native register |
| /// size for architectures that can dynamically index the register file. |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::bitcastExtractVectorElt(MachineInstr &MI, unsigned TypeIdx, |
| LLT CastTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| auto [Dst, DstTy, SrcVec, SrcVecTy, Idx, IdxTy] = MI.getFirst3RegLLTs(); |
| |
| LLT SrcEltTy = SrcVecTy.getElementType(); |
| unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; |
| unsigned OldNumElts = SrcVecTy.getNumElements(); |
| |
| LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; |
| Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); |
| |
| const unsigned NewEltSize = NewEltTy.getSizeInBits(); |
| const unsigned OldEltSize = SrcEltTy.getSizeInBits(); |
| if (NewNumElts > OldNumElts) { |
| // Decreasing the vector element size |
| // |
| // e.g. i64 = extract_vector_elt x:v2i64, y:i32 |
| // => |
| // v4i32:castx = bitcast x:v2i64 |
| // |
| // i64 = bitcast |
| // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), |
| // (i32 (extract_vector_elt castx, (2 * y + 1))) |
| // |
| if (NewNumElts % OldNumElts != 0) |
| return UnableToLegalize; |
| |
| // Type of the intermediate result vector. |
| const unsigned NewEltsPerOldElt = NewNumElts / OldNumElts; |
| LLT MidTy = |
| LLT::scalarOrVector(ElementCount::getFixed(NewEltsPerOldElt), NewEltTy); |
| |
| auto NewEltsPerOldEltK = MIRBuilder.buildConstant(IdxTy, NewEltsPerOldElt); |
| |
| SmallVector<Register, 8> NewOps(NewEltsPerOldElt); |
| auto NewBaseIdx = MIRBuilder.buildMul(IdxTy, Idx, NewEltsPerOldEltK); |
| |
| for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { |
| auto IdxOffset = MIRBuilder.buildConstant(IdxTy, I); |
| auto TmpIdx = MIRBuilder.buildAdd(IdxTy, NewBaseIdx, IdxOffset); |
| auto Elt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, TmpIdx); |
| NewOps[I] = Elt.getReg(0); |
| } |
| |
| auto NewVec = MIRBuilder.buildBuildVector(MidTy, NewOps); |
| MIRBuilder.buildBitcast(Dst, NewVec); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (NewNumElts < OldNumElts) { |
| if (NewEltSize % OldEltSize != 0) |
| return UnableToLegalize; |
| |
| // This only depends on powers of 2 because we use bit tricks to figure out |
| // the bit offset we need to shift to get the target element. A general |
| // expansion could emit division/multiply. |
| if (!isPowerOf2_32(NewEltSize / OldEltSize)) |
| return UnableToLegalize; |
| |
| // Increasing the vector element size. |
| // %elt:_(small_elt) = G_EXTRACT_VECTOR_ELT %vec:_(<N x small_elt>), %idx |
| // |
| // => |
| // |
| // %cast = G_BITCAST %vec |
| // %scaled_idx = G_LSHR %idx, Log2(DstEltSize / SrcEltSize) |
| // %wide_elt = G_EXTRACT_VECTOR_ELT %cast, %scaled_idx |
| // %offset_idx = G_AND %idx, ~(-1 << Log2(DstEltSize / SrcEltSize)) |
| // %offset_bits = G_SHL %offset_idx, Log2(SrcEltSize) |
| // %elt_bits = G_LSHR %wide_elt, %offset_bits |
| // %elt = G_TRUNC %elt_bits |
| |
| const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); |
| auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); |
| |
| // Divide to get the index in the wider element type. |
| auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); |
| |
| Register WideElt = CastVec; |
| if (CastTy.isVector()) { |
| WideElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, |
| ScaledIdx).getReg(0); |
| } |
| |
| // Compute the bit offset into the register of the target element. |
| Register OffsetBits = getBitcastWiderVectorElementOffset( |
| MIRBuilder, Idx, NewEltSize, OldEltSize); |
| |
| // Shift the wide element to get the target element. |
| auto ExtractedBits = MIRBuilder.buildLShr(NewEltTy, WideElt, OffsetBits); |
| MIRBuilder.buildTrunc(Dst, ExtractedBits); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| /// Emit code to insert \p InsertReg into \p TargetRet at \p OffsetBits in \p |
| /// TargetReg, while preserving other bits in \p TargetReg. |
| /// |
| /// (InsertReg << Offset) | (TargetReg & ~(-1 >> InsertReg.size()) << Offset) |
| static Register buildBitFieldInsert(MachineIRBuilder &B, |
| Register TargetReg, Register InsertReg, |
| Register OffsetBits) { |
| LLT TargetTy = B.getMRI()->getType(TargetReg); |
| LLT InsertTy = B.getMRI()->getType(InsertReg); |
| auto ZextVal = B.buildZExt(TargetTy, InsertReg); |
| auto ShiftedInsertVal = B.buildShl(TargetTy, ZextVal, OffsetBits); |
| |
| // Produce a bitmask of the value to insert |
| auto EltMask = B.buildConstant( |
| TargetTy, APInt::getLowBitsSet(TargetTy.getSizeInBits(), |
| InsertTy.getSizeInBits())); |
| // Shift it into position |
| auto ShiftedMask = B.buildShl(TargetTy, EltMask, OffsetBits); |
| auto InvShiftedMask = B.buildNot(TargetTy, ShiftedMask); |
| |
| // Clear out the bits in the wide element |
| auto MaskedOldElt = B.buildAnd(TargetTy, TargetReg, InvShiftedMask); |
| |
| // The value to insert has all zeros already, so stick it into the masked |
| // wide element. |
| return B.buildOr(TargetTy, MaskedOldElt, ShiftedInsertVal).getReg(0); |
| } |
| |
| /// Perform a G_INSERT_VECTOR_ELT in a different sized vector element. If this |
| /// is increasing the element size, perform the indexing in the target element |
| /// type, and use bit operations to insert at the element position. This is |
| /// intended for architectures that can dynamically index the register file and |
| /// want to force indexing in the native register size. |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::bitcastInsertVectorElt(MachineInstr &MI, unsigned TypeIdx, |
| LLT CastTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| auto [Dst, DstTy, SrcVec, SrcVecTy, Val, ValTy, Idx, IdxTy] = |
| MI.getFirst4RegLLTs(); |
| LLT VecTy = DstTy; |
| |
| LLT VecEltTy = VecTy.getElementType(); |
| LLT NewEltTy = CastTy.isVector() ? CastTy.getElementType() : CastTy; |
| const unsigned NewEltSize = NewEltTy.getSizeInBits(); |
| const unsigned OldEltSize = VecEltTy.getSizeInBits(); |
| |
| unsigned NewNumElts = CastTy.isVector() ? CastTy.getNumElements() : 1; |
| unsigned OldNumElts = VecTy.getNumElements(); |
| |
| Register CastVec = MIRBuilder.buildBitcast(CastTy, SrcVec).getReg(0); |
| if (NewNumElts < OldNumElts) { |
| if (NewEltSize % OldEltSize != 0) |
| return UnableToLegalize; |
| |
| // This only depends on powers of 2 because we use bit tricks to figure out |
| // the bit offset we need to shift to get the target element. A general |
| // expansion could emit division/multiply. |
| if (!isPowerOf2_32(NewEltSize / OldEltSize)) |
| return UnableToLegalize; |
| |
| const unsigned Log2EltRatio = Log2_32(NewEltSize / OldEltSize); |
| auto Log2Ratio = MIRBuilder.buildConstant(IdxTy, Log2EltRatio); |
| |
| // Divide to get the index in the wider element type. |
| auto ScaledIdx = MIRBuilder.buildLShr(IdxTy, Idx, Log2Ratio); |
| |
| Register ExtractedElt = CastVec; |
| if (CastTy.isVector()) { |
| ExtractedElt = MIRBuilder.buildExtractVectorElement(NewEltTy, CastVec, |
| ScaledIdx).getReg(0); |
| } |
| |
| // Compute the bit offset into the register of the target element. |
| Register OffsetBits = getBitcastWiderVectorElementOffset( |
| MIRBuilder, Idx, NewEltSize, OldEltSize); |
| |
| Register InsertedElt = buildBitFieldInsert(MIRBuilder, ExtractedElt, |
| Val, OffsetBits); |
| if (CastTy.isVector()) { |
| InsertedElt = MIRBuilder.buildInsertVectorElement( |
| CastTy, CastVec, InsertedElt, ScaledIdx).getReg(0); |
| } |
| |
| MIRBuilder.buildBitcast(Dst, InsertedElt); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerLoad(GAnyLoad &LoadMI) { |
| // Lower to a memory-width G_LOAD and a G_SEXT/G_ZEXT/G_ANYEXT |
| Register DstReg = LoadMI.getDstReg(); |
| Register PtrReg = LoadMI.getPointerReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| MachineMemOperand &MMO = LoadMI.getMMO(); |
| LLT MemTy = MMO.getMemoryType(); |
| MachineFunction &MF = MIRBuilder.getMF(); |
| |
| unsigned MemSizeInBits = MemTy.getSizeInBits(); |
| unsigned MemStoreSizeInBits = 8 * MemTy.getSizeInBytes(); |
| |
| if (MemSizeInBits != MemStoreSizeInBits) { |
| if (MemTy.isVector()) |
| return UnableToLegalize; |
| |
| // Promote to a byte-sized load if not loading an integral number of |
| // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. |
| LLT WideMemTy = LLT::scalar(MemStoreSizeInBits); |
| MachineMemOperand *NewMMO = |
| MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideMemTy); |
| |
| Register LoadReg = DstReg; |
| LLT LoadTy = DstTy; |
| |
| // If this wasn't already an extending load, we need to widen the result |
| // register to avoid creating a load with a narrower result than the source. |
| if (MemStoreSizeInBits > DstTy.getSizeInBits()) { |
| LoadTy = WideMemTy; |
| LoadReg = MRI.createGenericVirtualRegister(WideMemTy); |
| } |
| |
| if (isa<GSExtLoad>(LoadMI)) { |
| auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); |
| MIRBuilder.buildSExtInReg(LoadReg, NewLoad, MemSizeInBits); |
| } else if (isa<GZExtLoad>(LoadMI) || WideMemTy == LoadTy) { |
| auto NewLoad = MIRBuilder.buildLoad(LoadTy, PtrReg, *NewMMO); |
| // The extra bits are guaranteed to be zero, since we stored them that |
| // way. A zext load from Wide thus automatically gives zext from MemVT. |
| MIRBuilder.buildAssertZExt(LoadReg, NewLoad, MemSizeInBits); |
| } else { |
| MIRBuilder.buildLoad(LoadReg, PtrReg, *NewMMO); |
| } |
| |
| if (DstTy != LoadTy) |
| MIRBuilder.buildTrunc(DstReg, LoadReg); |
| |
| LoadMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // Big endian lowering not implemented. |
| if (MIRBuilder.getDataLayout().isBigEndian()) |
| return UnableToLegalize; |
| |
| // This load needs splitting into power of 2 sized loads. |
| // |
| // Our strategy here is to generate anyextending loads for the smaller |
| // types up to next power-2 result type, and then combine the two larger |
| // result values together, before truncating back down to the non-pow-2 |
| // type. |
| // E.g. v1 = i24 load => |
| // v2 = i32 zextload (2 byte) |
| // v3 = i32 load (1 byte) |
| // v4 = i32 shl v3, 16 |
| // v5 = i32 or v4, v2 |
| // v1 = i24 trunc v5 |
| // By doing this we generate the correct truncate which should get |
| // combined away as an artifact with a matching extend. |
| |
| uint64_t LargeSplitSize, SmallSplitSize; |
| |
| if (!isPowerOf2_32(MemSizeInBits)) { |
| // This load needs splitting into power of 2 sized loads. |
| LargeSplitSize = llvm::bit_floor(MemSizeInBits); |
| SmallSplitSize = MemSizeInBits - LargeSplitSize; |
| } else { |
| // This is already a power of 2, but we still need to split this in half. |
| // |
| // Assume we're being asked to decompose an unaligned load. |
| // TODO: If this requires multiple splits, handle them all at once. |
| auto &Ctx = MF.getFunction().getContext(); |
| if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) |
| return UnableToLegalize; |
| |
| SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; |
| } |
| |
| if (MemTy.isVector()) { |
| // TODO: Handle vector extloads |
| if (MemTy != DstTy) |
| return UnableToLegalize; |
| |
| // TODO: We can do better than scalarizing the vector and at least split it |
| // in half. |
| return reduceLoadStoreWidth(LoadMI, 0, DstTy.getElementType()); |
| } |
| |
| MachineMemOperand *LargeMMO = |
| MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); |
| MachineMemOperand *SmallMMO = |
| MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); |
| |
| LLT PtrTy = MRI.getType(PtrReg); |
| unsigned AnyExtSize = PowerOf2Ceil(DstTy.getSizeInBits()); |
| LLT AnyExtTy = LLT::scalar(AnyExtSize); |
| auto LargeLoad = MIRBuilder.buildLoadInstr(TargetOpcode::G_ZEXTLOAD, AnyExtTy, |
| PtrReg, *LargeMMO); |
| |
| auto OffsetCst = MIRBuilder.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), |
| LargeSplitSize / 8); |
| Register PtrAddReg = MRI.createGenericVirtualRegister(PtrTy); |
| auto SmallPtr = MIRBuilder.buildPtrAdd(PtrAddReg, PtrReg, OffsetCst); |
| auto SmallLoad = MIRBuilder.buildLoadInstr(LoadMI.getOpcode(), AnyExtTy, |
| SmallPtr, *SmallMMO); |
| |
| auto ShiftAmt = MIRBuilder.buildConstant(AnyExtTy, LargeSplitSize); |
| auto Shift = MIRBuilder.buildShl(AnyExtTy, SmallLoad, ShiftAmt); |
| |
| if (AnyExtTy == DstTy) |
| MIRBuilder.buildOr(DstReg, Shift, LargeLoad); |
| else if (AnyExtTy.getSizeInBits() != DstTy.getSizeInBits()) { |
| auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); |
| MIRBuilder.buildTrunc(DstReg, {Or}); |
| } else { |
| assert(DstTy.isPointer() && "expected pointer"); |
| auto Or = MIRBuilder.buildOr(AnyExtTy, Shift, LargeLoad); |
| |
| // FIXME: We currently consider this to be illegal for non-integral address |
| // spaces, but we need still need a way to reinterpret the bits. |
| MIRBuilder.buildIntToPtr(DstReg, Or); |
| } |
| |
| LoadMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerStore(GStore &StoreMI) { |
| // Lower a non-power of 2 store into multiple pow-2 stores. |
| // E.g. split an i24 store into an i16 store + i8 store. |
| // We do this by first extending the stored value to the next largest power |
| // of 2 type, and then using truncating stores to store the components. |
| // By doing this, likewise with G_LOAD, generate an extend that can be |
| // artifact-combined away instead of leaving behind extracts. |
| Register SrcReg = StoreMI.getValueReg(); |
| Register PtrReg = StoreMI.getPointerReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| MachineFunction &MF = MIRBuilder.getMF(); |
| MachineMemOperand &MMO = **StoreMI.memoperands_begin(); |
| LLT MemTy = MMO.getMemoryType(); |
| |
| unsigned StoreWidth = MemTy.getSizeInBits(); |
| unsigned StoreSizeInBits = 8 * MemTy.getSizeInBytes(); |
| |
| if (StoreWidth != StoreSizeInBits) { |
| if (SrcTy.isVector()) |
| return UnableToLegalize; |
| |
| // Promote to a byte-sized store with upper bits zero if not |
| // storing an integral number of bytes. For example, promote |
| // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) |
| LLT WideTy = LLT::scalar(StoreSizeInBits); |
| |
| if (StoreSizeInBits > SrcTy.getSizeInBits()) { |
| // Avoid creating a store with a narrower source than result. |
| SrcReg = MIRBuilder.buildAnyExt(WideTy, SrcReg).getReg(0); |
| SrcTy = WideTy; |
| } |
| |
| auto ZextInReg = MIRBuilder.buildZExtInReg(SrcTy, SrcReg, StoreWidth); |
| |
| MachineMemOperand *NewMMO = |
| MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), WideTy); |
| MIRBuilder.buildStore(ZextInReg, PtrReg, *NewMMO); |
| StoreMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (MemTy.isVector()) { |
| // TODO: Handle vector trunc stores |
| if (MemTy != SrcTy) |
| return UnableToLegalize; |
| |
| // TODO: We can do better than scalarizing the vector and at least split it |
| // in half. |
| return reduceLoadStoreWidth(StoreMI, 0, SrcTy.getElementType()); |
| } |
| |
| unsigned MemSizeInBits = MemTy.getSizeInBits(); |
| uint64_t LargeSplitSize, SmallSplitSize; |
| |
| if (!isPowerOf2_32(MemSizeInBits)) { |
| LargeSplitSize = llvm::bit_floor<uint64_t>(MemTy.getSizeInBits()); |
| SmallSplitSize = MemTy.getSizeInBits() - LargeSplitSize; |
| } else { |
| auto &Ctx = MF.getFunction().getContext(); |
| if (TLI.allowsMemoryAccess(Ctx, MIRBuilder.getDataLayout(), MemTy, MMO)) |
| return UnableToLegalize; // Don't know what we're being asked to do. |
| |
| SmallSplitSize = LargeSplitSize = MemSizeInBits / 2; |
| } |
| |
| // Extend to the next pow-2. If this store was itself the result of lowering, |
| // e.g. an s56 store being broken into s32 + s24, we might have a stored type |
| // that's wider than the stored size. |
| unsigned AnyExtSize = PowerOf2Ceil(MemTy.getSizeInBits()); |
| const LLT NewSrcTy = LLT::scalar(AnyExtSize); |
| |
| if (SrcTy.isPointer()) { |
| const LLT IntPtrTy = LLT::scalar(SrcTy.getSizeInBits()); |
| SrcReg = MIRBuilder.buildPtrToInt(IntPtrTy, SrcReg).getReg(0); |
| } |
| |
| auto ExtVal = MIRBuilder.buildAnyExtOrTrunc(NewSrcTy, SrcReg); |
| |
| // Obtain the smaller value by shifting away the larger value. |
| auto ShiftAmt = MIRBuilder.buildConstant(NewSrcTy, LargeSplitSize); |
| auto SmallVal = MIRBuilder.buildLShr(NewSrcTy, ExtVal, ShiftAmt); |
| |
| // Generate the PtrAdd and truncating stores. |
| LLT PtrTy = MRI.getType(PtrReg); |
| auto OffsetCst = MIRBuilder.buildConstant( |
| LLT::scalar(PtrTy.getSizeInBits()), LargeSplitSize / 8); |
| auto SmallPtr = |
| MIRBuilder.buildPtrAdd(PtrTy, PtrReg, OffsetCst); |
| |
| MachineMemOperand *LargeMMO = |
| MF.getMachineMemOperand(&MMO, 0, LargeSplitSize / 8); |
| MachineMemOperand *SmallMMO = |
| MF.getMachineMemOperand(&MMO, LargeSplitSize / 8, SmallSplitSize / 8); |
| MIRBuilder.buildStore(ExtVal, PtrReg, *LargeMMO); |
| MIRBuilder.buildStore(SmallVal, SmallPtr, *SmallMMO); |
| StoreMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::bitcast(MachineInstr &MI, unsigned TypeIdx, LLT CastTy) { |
| switch (MI.getOpcode()) { |
| case TargetOpcode::G_LOAD: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| MachineMemOperand &MMO = **MI.memoperands_begin(); |
| |
| // Not sure how to interpret a bitcast of an extending load. |
| if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| bitcastDst(MI, CastTy, 0); |
| MMO.setType(CastTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_STORE: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| MachineMemOperand &MMO = **MI.memoperands_begin(); |
| |
| // Not sure how to interpret a bitcast of a truncating store. |
| if (MMO.getMemoryType().getSizeInBits() != CastTy.getSizeInBits()) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| bitcastSrc(MI, CastTy, 0); |
| MMO.setType(CastTy); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_SELECT: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| if (MRI.getType(MI.getOperand(1).getReg()).isVector()) { |
| LLVM_DEBUG( |
| dbgs() << "bitcast action not implemented for vector select\n"); |
| return UnableToLegalize; |
| } |
| |
| Observer.changingInstr(MI); |
| bitcastSrc(MI, CastTy, 2); |
| bitcastSrc(MI, CastTy, 3); |
| bitcastDst(MI, CastTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_OR: |
| case TargetOpcode::G_XOR: { |
| Observer.changingInstr(MI); |
| bitcastSrc(MI, CastTy, 1); |
| bitcastSrc(MI, CastTy, 2); |
| bitcastDst(MI, CastTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| return bitcastExtractVectorElt(MI, TypeIdx, CastTy); |
| case TargetOpcode::G_INSERT_VECTOR_ELT: |
| return bitcastInsertVectorElt(MI, TypeIdx, CastTy); |
| default: |
| return UnableToLegalize; |
| } |
| } |
| |
| // Legalize an instruction by changing the opcode in place. |
| void LegalizerHelper::changeOpcode(MachineInstr &MI, unsigned NewOpcode) { |
| Observer.changingInstr(MI); |
| MI.setDesc(MIRBuilder.getTII().get(NewOpcode)); |
| Observer.changedInstr(MI); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lower(MachineInstr &MI, unsigned TypeIdx, LLT LowerHintTy) { |
| using namespace TargetOpcode; |
| |
| switch(MI.getOpcode()) { |
| default: |
| return UnableToLegalize; |
| case TargetOpcode::G_FCONSTANT: |
| return lowerFConstant(MI); |
| case TargetOpcode::G_BITCAST: |
| return lowerBitcast(MI); |
| case TargetOpcode::G_SREM: |
| case TargetOpcode::G_UREM: { |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| auto Quot = |
| MIRBuilder.buildInstr(MI.getOpcode() == G_SREM ? G_SDIV : G_UDIV, {Ty}, |
| {MI.getOperand(1), MI.getOperand(2)}); |
| |
| auto Prod = MIRBuilder.buildMul(Ty, Quot, MI.getOperand(2)); |
| MIRBuilder.buildSub(MI.getOperand(0), MI.getOperand(1), Prod); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_SADDO: |
| case TargetOpcode::G_SSUBO: |
| return lowerSADDO_SSUBO(MI); |
| case TargetOpcode::G_UMULH: |
| case TargetOpcode::G_SMULH: |
| return lowerSMULH_UMULH(MI); |
| case TargetOpcode::G_SMULO: |
| case TargetOpcode::G_UMULO: { |
| // Generate G_UMULH/G_SMULH to check for overflow and a normal G_MUL for the |
| // result. |
| auto [Res, Overflow, LHS, RHS] = MI.getFirst4Regs(); |
| LLT Ty = MRI.getType(Res); |
| |
| unsigned Opcode = MI.getOpcode() == TargetOpcode::G_SMULO |
| ? TargetOpcode::G_SMULH |
| : TargetOpcode::G_UMULH; |
| |
| Observer.changingInstr(MI); |
| const auto &TII = MIRBuilder.getTII(); |
| MI.setDesc(TII.get(TargetOpcode::G_MUL)); |
| MI.removeOperand(1); |
| Observer.changedInstr(MI); |
| |
| auto HiPart = MIRBuilder.buildInstr(Opcode, {Ty}, {LHS, RHS}); |
| auto Zero = MIRBuilder.buildConstant(Ty, 0); |
| |
| // Move insert point forward so we can use the Res register if needed. |
| MIRBuilder.setInsertPt(MIRBuilder.getMBB(), ++MIRBuilder.getInsertPt()); |
| |
| // For *signed* multiply, overflow is detected by checking: |
| // (hi != (lo >> bitwidth-1)) |
| if (Opcode == TargetOpcode::G_SMULH) { |
| auto ShiftAmt = MIRBuilder.buildConstant(Ty, Ty.getSizeInBits() - 1); |
| auto Shifted = MIRBuilder.buildAShr(Ty, Res, ShiftAmt); |
| MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Shifted); |
| } else { |
| MIRBuilder.buildICmp(CmpInst::ICMP_NE, Overflow, HiPart, Zero); |
| } |
| return Legalized; |
| } |
| case TargetOpcode::G_FNEG: { |
| auto [Res, SubByReg] = MI.getFirst2Regs(); |
| LLT Ty = MRI.getType(Res); |
| |
| // TODO: Handle vector types once we are able to |
| // represent them. |
| if (Ty.isVector()) |
| return UnableToLegalize; |
| auto SignMask = |
| MIRBuilder.buildConstant(Ty, APInt::getSignMask(Ty.getSizeInBits())); |
| MIRBuilder.buildXor(Res, SubByReg, SignMask); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_STRICT_FSUB: { |
| auto [Res, LHS, RHS] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Res); |
| |
| // Lower (G_FSUB LHS, RHS) to (G_FADD LHS, (G_FNEG RHS)). |
| auto Neg = MIRBuilder.buildFNeg(Ty, RHS); |
| |
| if (MI.getOpcode() == TargetOpcode::G_STRICT_FSUB) |
| MIRBuilder.buildStrictFAdd(Res, LHS, Neg, MI.getFlags()); |
| else |
| MIRBuilder.buildFAdd(Res, LHS, Neg, MI.getFlags()); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_FMAD: |
| return lowerFMad(MI); |
| case TargetOpcode::G_FFLOOR: |
| return lowerFFloor(MI); |
| case TargetOpcode::G_INTRINSIC_ROUND: |
| return lowerIntrinsicRound(MI); |
| case TargetOpcode::G_INTRINSIC_ROUNDEVEN: { |
| // Since round even is the assumed rounding mode for unconstrained FP |
| // operations, rint and roundeven are the same operation. |
| changeOpcode(MI, TargetOpcode::G_FRINT); |
| return Legalized; |
| } |
| case TargetOpcode::G_ATOMIC_CMPXCHG_WITH_SUCCESS: { |
| auto [OldValRes, SuccessRes, Addr, CmpVal, NewVal] = MI.getFirst5Regs(); |
| MIRBuilder.buildAtomicCmpXchg(OldValRes, Addr, CmpVal, NewVal, |
| **MI.memoperands_begin()); |
| MIRBuilder.buildICmp(CmpInst::ICMP_EQ, SuccessRes, OldValRes, CmpVal); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_SEXTLOAD: |
| case TargetOpcode::G_ZEXTLOAD: |
| return lowerLoad(cast<GAnyLoad>(MI)); |
| case TargetOpcode::G_STORE: |
| return lowerStore(cast<GStore>(MI)); |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTTZ_ZERO_UNDEF: |
| case TargetOpcode::G_CTLZ: |
| case TargetOpcode::G_CTTZ: |
| case TargetOpcode::G_CTPOP: |
| return lowerBitCount(MI); |
| case G_UADDO: { |
| auto [Res, CarryOut, LHS, RHS] = MI.getFirst4Regs(); |
| |
| MIRBuilder.buildAdd(Res, LHS, RHS); |
| MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CarryOut, Res, RHS); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case G_UADDE: { |
| auto [Res, CarryOut, LHS, RHS, CarryIn] = MI.getFirst5Regs(); |
| const LLT CondTy = MRI.getType(CarryOut); |
| const LLT Ty = MRI.getType(Res); |
| |
| // Initial add of the two operands. |
| auto TmpRes = MIRBuilder.buildAdd(Ty, LHS, RHS); |
| |
| // Initial check for carry. |
| auto Carry = MIRBuilder.buildICmp(CmpInst::ICMP_ULT, CondTy, TmpRes, LHS); |
| |
| // Add the sum and the carry. |
| auto ZExtCarryIn = MIRBuilder.buildZExt(Ty, CarryIn); |
| MIRBuilder.buildAdd(Res, TmpRes, ZExtCarryIn); |
| |
| // Second check for carry. We can only carry if the initial sum is all 1s |
| // and the carry is set, resulting in a new sum of 0. |
| auto Zero = MIRBuilder.buildConstant(Ty, 0); |
| auto ResEqZero = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, Res, Zero); |
| auto Carry2 = MIRBuilder.buildAnd(CondTy, ResEqZero, CarryIn); |
| MIRBuilder.buildOr(CarryOut, Carry, Carry2); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case G_USUBO: { |
| auto [Res, BorrowOut, LHS, RHS] = MI.getFirst4Regs(); |
| |
| MIRBuilder.buildSub(Res, LHS, RHS); |
| MIRBuilder.buildICmp(CmpInst::ICMP_ULT, BorrowOut, LHS, RHS); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case G_USUBE: { |
| auto [Res, BorrowOut, LHS, RHS, BorrowIn] = MI.getFirst5Regs(); |
| const LLT CondTy = MRI.getType(BorrowOut); |
| const LLT Ty = MRI.getType(Res); |
| |
| // Initial subtract of the two operands. |
| auto TmpRes = MIRBuilder.buildSub(Ty, LHS, RHS); |
| |
| // Initial check for borrow. |
| auto Borrow = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, CondTy, TmpRes, LHS); |
| |
| // Subtract the borrow from the first subtract. |
| auto ZExtBorrowIn = MIRBuilder.buildZExt(Ty, BorrowIn); |
| MIRBuilder.buildSub(Res, TmpRes, ZExtBorrowIn); |
| |
| // Second check for borrow. We can only borrow if the initial difference is |
| // 0 and the borrow is set, resulting in a new difference of all 1s. |
| auto Zero = MIRBuilder.buildConstant(Ty, 0); |
| auto TmpResEqZero = |
| MIRBuilder.buildICmp(CmpInst::ICMP_EQ, CondTy, TmpRes, Zero); |
| auto Borrow2 = MIRBuilder.buildAnd(CondTy, TmpResEqZero, BorrowIn); |
| MIRBuilder.buildOr(BorrowOut, Borrow, Borrow2); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case G_UITOFP: |
| return lowerUITOFP(MI); |
| case G_SITOFP: |
| return lowerSITOFP(MI); |
| case G_FPTOUI: |
| return lowerFPTOUI(MI); |
| case G_FPTOSI: |
| return lowerFPTOSI(MI); |
| case G_FPTRUNC: |
| return lowerFPTRUNC(MI); |
| case G_FPOWI: |
| return lowerFPOWI(MI); |
| case G_SMIN: |
| case G_SMAX: |
| case G_UMIN: |
| case G_UMAX: |
| return lowerMinMax(MI); |
| case G_FCOPYSIGN: |
| return lowerFCopySign(MI); |
| case G_FMINNUM: |
| case G_FMAXNUM: |
| return lowerFMinNumMaxNum(MI); |
| case G_MERGE_VALUES: |
| return lowerMergeValues(MI); |
| case G_UNMERGE_VALUES: |
| return lowerUnmergeValues(MI); |
| case TargetOpcode::G_SEXT_INREG: { |
| assert(MI.getOperand(2).isImm() && "Expected immediate"); |
| int64_t SizeInBits = MI.getOperand(2).getImm(); |
| |
| auto [DstReg, SrcReg] = MI.getFirst2Regs(); |
| LLT DstTy = MRI.getType(DstReg); |
| Register TmpRes = MRI.createGenericVirtualRegister(DstTy); |
| |
| auto MIBSz = MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - SizeInBits); |
| MIRBuilder.buildShl(TmpRes, SrcReg, MIBSz->getOperand(0)); |
| MIRBuilder.buildAShr(DstReg, TmpRes, MIBSz->getOperand(0)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case G_EXTRACT_VECTOR_ELT: |
| case G_INSERT_VECTOR_ELT: |
| return lowerExtractInsertVectorElt(MI); |
| case G_SHUFFLE_VECTOR: |
| return lowerShuffleVector(MI); |
| case G_DYN_STACKALLOC: |
| return lowerDynStackAlloc(MI); |
| case G_STACKSAVE: |
| return lowerStackSave(MI); |
| case G_STACKRESTORE: |
| return lowerStackRestore(MI); |
| case G_EXTRACT: |
| return lowerExtract(MI); |
| case G_INSERT: |
| return lowerInsert(MI); |
| case G_BSWAP: |
| return lowerBswap(MI); |
| case G_BITREVERSE: |
| return lowerBitreverse(MI); |
| case G_READ_REGISTER: |
| case G_WRITE_REGISTER: |
| return lowerReadWriteRegister(MI); |
| case G_UADDSAT: |
| case G_USUBSAT: { |
| // Try to make a reasonable guess about which lowering strategy to use. The |
| // target can override this with custom lowering and calling the |
| // implementation functions. |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| if (LI.isLegalOrCustom({G_UMIN, Ty})) |
| return lowerAddSubSatToMinMax(MI); |
| return lowerAddSubSatToAddoSubo(MI); |
| } |
| case G_SADDSAT: |
| case G_SSUBSAT: { |
| LLT Ty = MRI.getType(MI.getOperand(0).getReg()); |
| |
| // FIXME: It would probably make more sense to see if G_SADDO is preferred, |
| // since it's a shorter expansion. However, we would need to figure out the |
| // preferred boolean type for the carry out for the query. |
| if (LI.isLegalOrCustom({G_SMIN, Ty}) && LI.isLegalOrCustom({G_SMAX, Ty})) |
| return lowerAddSubSatToMinMax(MI); |
| return lowerAddSubSatToAddoSubo(MI); |
| } |
| case G_SSHLSAT: |
| case G_USHLSAT: |
| return lowerShlSat(MI); |
| case G_ABS: |
| return lowerAbsToAddXor(MI); |
| case G_SELECT: |
| return lowerSelect(MI); |
| case G_IS_FPCLASS: |
| return lowerISFPCLASS(MI); |
| case G_SDIVREM: |
| case G_UDIVREM: |
| return lowerDIVREM(MI); |
| case G_FSHL: |
| case G_FSHR: |
| return lowerFunnelShift(MI); |
| case G_ROTL: |
| case G_ROTR: |
| return lowerRotate(MI); |
| case G_MEMSET: |
| case G_MEMCPY: |
| case G_MEMMOVE: |
| return lowerMemCpyFamily(MI); |
| case G_MEMCPY_INLINE: |
| return lowerMemcpyInline(MI); |
| case G_ZEXT: |
| case G_SEXT: |
| case G_ANYEXT: |
| return lowerEXT(MI); |
| GISEL_VECREDUCE_CASES_NONSEQ |
| return lowerVectorReduction(MI); |
| } |
| } |
| |
| Align LegalizerHelper::getStackTemporaryAlignment(LLT Ty, |
| Align MinAlign) const { |
| // FIXME: We're missing a way to go back from LLT to llvm::Type to query the |
| // datalayout for the preferred alignment. Also there should be a target hook |
| // for this to allow targets to reduce the alignment and ignore the |
| // datalayout. e.g. AMDGPU should always use a 4-byte alignment, regardless of |
| // the type. |
| return std::max(Align(PowerOf2Ceil(Ty.getSizeInBytes())), MinAlign); |
| } |
| |
| MachineInstrBuilder |
| LegalizerHelper::createStackTemporary(TypeSize Bytes, Align Alignment, |
| MachinePointerInfo &PtrInfo) { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| int FrameIdx = MF.getFrameInfo().CreateStackObject(Bytes, Alignment, false); |
| |
| unsigned AddrSpace = DL.getAllocaAddrSpace(); |
| LLT FramePtrTy = LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)); |
| |
| PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIdx); |
| return MIRBuilder.buildFrameIndex(FramePtrTy, FrameIdx); |
| } |
| |
| static Register clampDynamicVectorIndex(MachineIRBuilder &B, Register IdxReg, |
| LLT VecTy) { |
| int64_t IdxVal; |
| if (mi_match(IdxReg, *B.getMRI(), m_ICst(IdxVal))) |
| return IdxReg; |
| |
| LLT IdxTy = B.getMRI()->getType(IdxReg); |
| unsigned NElts = VecTy.getNumElements(); |
| if (isPowerOf2_32(NElts)) { |
| APInt Imm = APInt::getLowBitsSet(IdxTy.getSizeInBits(), Log2_32(NElts)); |
| return B.buildAnd(IdxTy, IdxReg, B.buildConstant(IdxTy, Imm)).getReg(0); |
| } |
| |
| return B.buildUMin(IdxTy, IdxReg, B.buildConstant(IdxTy, NElts - 1)) |
| .getReg(0); |
| } |
| |
| Register LegalizerHelper::getVectorElementPointer(Register VecPtr, LLT VecTy, |
| Register Index) { |
| LLT EltTy = VecTy.getElementType(); |
| |
| // Calculate the element offset and add it to the pointer. |
| unsigned EltSize = EltTy.getSizeInBits() / 8; // FIXME: should be ABI size. |
| assert(EltSize * 8 == EltTy.getSizeInBits() && |
| "Converting bits to bytes lost precision"); |
| |
| Index = clampDynamicVectorIndex(MIRBuilder, Index, VecTy); |
| |
| LLT IdxTy = MRI.getType(Index); |
| auto Mul = MIRBuilder.buildMul(IdxTy, Index, |
| MIRBuilder.buildConstant(IdxTy, EltSize)); |
| |
| LLT PtrTy = MRI.getType(VecPtr); |
| return MIRBuilder.buildPtrAdd(PtrTy, VecPtr, Mul).getReg(0); |
| } |
| |
| #ifndef NDEBUG |
| /// Check that all vector operands have same number of elements. Other operands |
| /// should be listed in NonVecOp. |
| static bool hasSameNumEltsOnAllVectorOperands( |
| GenericMachineInstr &MI, MachineRegisterInfo &MRI, |
| std::initializer_list<unsigned> NonVecOpIndices) { |
| if (MI.getNumMemOperands() != 0) |
| return false; |
| |
| LLT VecTy = MRI.getType(MI.getReg(0)); |
| if (!VecTy.isVector()) |
| return false; |
| unsigned NumElts = VecTy.getNumElements(); |
| |
| for (unsigned OpIdx = 1; OpIdx < MI.getNumOperands(); ++OpIdx) { |
| MachineOperand &Op = MI.getOperand(OpIdx); |
| if (!Op.isReg()) { |
| if (!is_contained(NonVecOpIndices, OpIdx)) |
| return false; |
| continue; |
| } |
| |
| LLT Ty = MRI.getType(Op.getReg()); |
| if (!Ty.isVector()) { |
| if (!is_contained(NonVecOpIndices, OpIdx)) |
| return false; |
| continue; |
| } |
| |
| if (Ty.getNumElements() != NumElts) |
| return false; |
| } |
| |
| return true; |
| } |
| #endif |
| |
| /// Fill \p DstOps with DstOps that have same number of elements combined as |
| /// the Ty. These DstOps have either scalar type when \p NumElts = 1 or are |
| /// vectors with \p NumElts elements. When Ty.getNumElements() is not multiple |
| /// of \p NumElts last DstOp (leftover) has fewer then \p NumElts elements. |
| static void makeDstOps(SmallVectorImpl<DstOp> &DstOps, LLT Ty, |
| unsigned NumElts) { |
| LLT LeftoverTy; |
| assert(Ty.isVector() && "Expected vector type"); |
| LLT EltTy = Ty.getElementType(); |
| LLT NarrowTy = (NumElts == 1) ? EltTy : LLT::fixed_vector(NumElts, EltTy); |
| int NumParts, NumLeftover; |
| std::tie(NumParts, NumLeftover) = |
| getNarrowTypeBreakDown(Ty, NarrowTy, LeftoverTy); |
| |
| assert(NumParts > 0 && "Error in getNarrowTypeBreakDown"); |
| for (int i = 0; i < NumParts; ++i) { |
| DstOps.push_back(NarrowTy); |
| } |
| |
| if (LeftoverTy.isValid()) { |
| assert(NumLeftover == 1 && "expected exactly one leftover"); |
| DstOps.push_back(LeftoverTy); |
| } |
| } |
| |
| /// Operand \p Op is used on \p N sub-instructions. Fill \p Ops with \p N SrcOps |
| /// made from \p Op depending on operand type. |
| static void broadcastSrcOp(SmallVectorImpl<SrcOp> &Ops, unsigned N, |
| MachineOperand &Op) { |
| for (unsigned i = 0; i < N; ++i) { |
| if (Op.isReg()) |
| Ops.push_back(Op.getReg()); |
| else if (Op.isImm()) |
| Ops.push_back(Op.getImm()); |
| else if (Op.isPredicate()) |
| Ops.push_back(static_cast<CmpInst::Predicate>(Op.getPredicate())); |
| else |
| llvm_unreachable("Unsupported type"); |
| } |
| } |
| |
| // Handle splitting vector operations which need to have the same number of |
| // elements in each type index, but each type index may have a different element |
| // type. |
| // |
| // e.g. <4 x s64> = G_SHL <4 x s64>, <4 x s32> -> |
| // <2 x s64> = G_SHL <2 x s64>, <2 x s32> |
| // <2 x s64> = G_SHL <2 x s64>, <2 x s32> |
| // |
| // Also handles some irregular breakdown cases, e.g. |
| // e.g. <3 x s64> = G_SHL <3 x s64>, <3 x s32> -> |
| // <2 x s64> = G_SHL <2 x s64>, <2 x s32> |
| // s64 = G_SHL s64, s32 |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVectorMultiEltType( |
| GenericMachineInstr &MI, unsigned NumElts, |
| std::initializer_list<unsigned> NonVecOpIndices) { |
| assert(hasSameNumEltsOnAllVectorOperands(MI, MRI, NonVecOpIndices) && |
| "Non-compatible opcode or not specified non-vector operands"); |
| unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); |
| |
| unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); |
| unsigned NumDefs = MI.getNumDefs(); |
| |
| // Create DstOps (sub-vectors with NumElts elts + Leftover) for each output. |
| // Build instructions with DstOps to use instruction found by CSE directly. |
| // CSE copies found instruction into given vreg when building with vreg dest. |
| SmallVector<SmallVector<DstOp, 8>, 2> OutputOpsPieces(NumDefs); |
| // Output registers will be taken from created instructions. |
| SmallVector<SmallVector<Register, 8>, 2> OutputRegs(NumDefs); |
| for (unsigned i = 0; i < NumDefs; ++i) { |
| makeDstOps(OutputOpsPieces[i], MRI.getType(MI.getReg(i)), NumElts); |
| } |
| |
| // Split vector input operands into sub-vectors with NumElts elts + Leftover. |
| // Operands listed in NonVecOpIndices will be used as is without splitting; |
| // examples: compare predicate in icmp and fcmp (op 1), vector select with i1 |
| // scalar condition (op 1), immediate in sext_inreg (op 2). |
| SmallVector<SmallVector<SrcOp, 8>, 3> InputOpsPieces(NumInputs); |
| for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); |
| ++UseIdx, ++UseNo) { |
| if (is_contained(NonVecOpIndices, UseIdx)) { |
| broadcastSrcOp(InputOpsPieces[UseNo], OutputOpsPieces[0].size(), |
| MI.getOperand(UseIdx)); |
| } else { |
| SmallVector<Register, 8> SplitPieces; |
| extractVectorParts(MI.getReg(UseIdx), NumElts, SplitPieces); |
| for (auto Reg : SplitPieces) |
| InputOpsPieces[UseNo].push_back(Reg); |
| } |
| } |
| |
| unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; |
| |
| // Take i-th piece of each input operand split and build sub-vector/scalar |
| // instruction. Set i-th DstOp(s) from OutputOpsPieces as destination(s). |
| for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { |
| SmallVector<DstOp, 2> Defs; |
| for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) |
| Defs.push_back(OutputOpsPieces[DstNo][i]); |
| |
| SmallVector<SrcOp, 3> Uses; |
| for (unsigned InputNo = 0; InputNo < NumInputs; ++InputNo) |
| Uses.push_back(InputOpsPieces[InputNo][i]); |
| |
| auto I = MIRBuilder.buildInstr(MI.getOpcode(), Defs, Uses, MI.getFlags()); |
| for (unsigned DstNo = 0; DstNo < NumDefs; ++DstNo) |
| OutputRegs[DstNo].push_back(I.getReg(DstNo)); |
| } |
| |
| // Merge small outputs into MI's output for each def operand. |
| if (NumLeftovers) { |
| for (unsigned i = 0; i < NumDefs; ++i) |
| mergeMixedSubvectors(MI.getReg(i), OutputRegs[i]); |
| } else { |
| for (unsigned i = 0; i < NumDefs; ++i) |
| MIRBuilder.buildMergeLikeInstr(MI.getReg(i), OutputRegs[i]); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVectorPhi(GenericMachineInstr &MI, |
| unsigned NumElts) { |
| unsigned OrigNumElts = MRI.getType(MI.getReg(0)).getNumElements(); |
| |
| unsigned NumInputs = MI.getNumOperands() - MI.getNumDefs(); |
| unsigned NumDefs = MI.getNumDefs(); |
| |
| SmallVector<DstOp, 8> OutputOpsPieces; |
| SmallVector<Register, 8> OutputRegs; |
| makeDstOps(OutputOpsPieces, MRI.getType(MI.getReg(0)), NumElts); |
| |
| // Instructions that perform register split will be inserted in basic block |
| // where register is defined (basic block is in the next operand). |
| SmallVector<SmallVector<Register, 8>, 3> InputOpsPieces(NumInputs / 2); |
| for (unsigned UseIdx = NumDefs, UseNo = 0; UseIdx < MI.getNumOperands(); |
| UseIdx += 2, ++UseNo) { |
| MachineBasicBlock &OpMBB = *MI.getOperand(UseIdx + 1).getMBB(); |
| MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminatorForward()); |
| extractVectorParts(MI.getReg(UseIdx), NumElts, InputOpsPieces[UseNo]); |
| } |
| |
| // Build PHIs with fewer elements. |
| unsigned NumLeftovers = OrigNumElts % NumElts ? 1 : 0; |
| MIRBuilder.setInsertPt(*MI.getParent(), MI); |
| for (unsigned i = 0; i < OrigNumElts / NumElts + NumLeftovers; ++i) { |
| auto Phi = MIRBuilder.buildInstr(TargetOpcode::G_PHI); |
| Phi.addDef( |
| MRI.createGenericVirtualRegister(OutputOpsPieces[i].getLLTTy(MRI))); |
| OutputRegs.push_back(Phi.getReg(0)); |
| |
| for (unsigned j = 0; j < NumInputs / 2; ++j) { |
| Phi.addUse(InputOpsPieces[j][i]); |
| Phi.add(MI.getOperand(1 + j * 2 + 1)); |
| } |
| } |
| |
| // Merge small outputs into MI's def. |
| if (NumLeftovers) { |
| mergeMixedSubvectors(MI.getReg(0), OutputRegs); |
| } else { |
| MIRBuilder.buildMergeLikeInstr(MI.getReg(0), OutputRegs); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVectorUnmergeValues(MachineInstr &MI, |
| unsigned TypeIdx, |
| LLT NarrowTy) { |
| const int NumDst = MI.getNumOperands() - 1; |
| const Register SrcReg = MI.getOperand(NumDst).getReg(); |
| LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); |
| LLT SrcTy = MRI.getType(SrcReg); |
| |
| if (TypeIdx != 1 || NarrowTy == DstTy) |
| return UnableToLegalize; |
| |
| // Requires compatible types. Otherwise SrcReg should have been defined by |
| // merge-like instruction that would get artifact combined. Most likely |
| // instruction that defines SrcReg has to perform more/fewer elements |
| // legalization compatible with NarrowTy. |
| assert(SrcTy.isVector() && NarrowTy.isVector() && "Expected vector types"); |
| assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); |
| |
| if ((SrcTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || |
| (NarrowTy.getSizeInBits() % DstTy.getSizeInBits() != 0)) |
| return UnableToLegalize; |
| |
| // This is most likely DstTy (smaller then register size) packed in SrcTy |
| // (larger then register size) and since unmerge was not combined it will be |
| // lowered to bit sequence extracts from register. Unpack SrcTy to NarrowTy |
| // (register size) pieces first. Then unpack each of NarrowTy pieces to DstTy. |
| |
| // %1:_(DstTy), %2, %3, %4 = G_UNMERGE_VALUES %0:_(SrcTy) |
| // |
| // %5:_(NarrowTy), %6 = G_UNMERGE_VALUES %0:_(SrcTy) - reg sequence |
| // %1:_(DstTy), %2 = G_UNMERGE_VALUES %5:_(NarrowTy) - sequence of bits in reg |
| // %3:_(DstTy), %4 = G_UNMERGE_VALUES %6:_(NarrowTy) |
| auto Unmerge = MIRBuilder.buildUnmerge(NarrowTy, SrcReg); |
| const int NumUnmerge = Unmerge->getNumOperands() - 1; |
| const int PartsPerUnmerge = NumDst / NumUnmerge; |
| |
| for (int I = 0; I != NumUnmerge; ++I) { |
| auto MIB = MIRBuilder.buildInstr(TargetOpcode::G_UNMERGE_VALUES); |
| |
| for (int J = 0; J != PartsPerUnmerge; ++J) |
| MIB.addDef(MI.getOperand(I * PartsPerUnmerge + J).getReg()); |
| MIB.addUse(Unmerge.getReg(I)); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVectorMerge(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| // Requires compatible types. Otherwise user of DstReg did not perform unmerge |
| // that should have been artifact combined. Most likely instruction that uses |
| // DstReg has to do more/fewer elements legalization compatible with NarrowTy. |
| assert(DstTy.isVector() && NarrowTy.isVector() && "Expected vector types"); |
| assert((DstTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); |
| if (NarrowTy == SrcTy) |
| return UnableToLegalize; |
| |
| // This attempts to lower part of LCMTy merge/unmerge sequence. Intended use |
| // is for old mir tests. Since the changes to more/fewer elements it should no |
| // longer be possible to generate MIR like this when starting from llvm-ir |
| // because LCMTy approach was replaced with merge/unmerge to vector elements. |
| if (TypeIdx == 1) { |
| assert(SrcTy.isVector() && "Expected vector types"); |
| assert((SrcTy.getScalarType() == NarrowTy.getScalarType()) && "bad type"); |
| if ((DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0) || |
| (NarrowTy.getNumElements() >= SrcTy.getNumElements())) |
| return UnableToLegalize; |
| // %2:_(DstTy) = G_CONCAT_VECTORS %0:_(SrcTy), %1:_(SrcTy) |
| // |
| // %3:_(EltTy), %4, %5 = G_UNMERGE_VALUES %0:_(SrcTy) |
| // %6:_(EltTy), %7, %8 = G_UNMERGE_VALUES %1:_(SrcTy) |
| // %9:_(NarrowTy) = G_BUILD_VECTOR %3:_(EltTy), %4 |
| // %10:_(NarrowTy) = G_BUILD_VECTOR %5:_(EltTy), %6 |
| // %11:_(NarrowTy) = G_BUILD_VECTOR %7:_(EltTy), %8 |
| // %2:_(DstTy) = G_CONCAT_VECTORS %9:_(NarrowTy), %10, %11 |
| |
| SmallVector<Register, 8> Elts; |
| LLT EltTy = MRI.getType(MI.getOperand(1).getReg()).getScalarType(); |
| for (unsigned i = 1; i < MI.getNumOperands(); ++i) { |
| auto Unmerge = MIRBuilder.buildUnmerge(EltTy, MI.getOperand(i).getReg()); |
| for (unsigned j = 0; j < Unmerge->getNumDefs(); ++j) |
| Elts.push_back(Unmerge.getReg(j)); |
| } |
| |
| SmallVector<Register, 8> NarrowTyElts; |
| unsigned NumNarrowTyElts = NarrowTy.getNumElements(); |
| unsigned NumNarrowTyPieces = DstTy.getNumElements() / NumNarrowTyElts; |
| for (unsigned i = 0, Offset = 0; i < NumNarrowTyPieces; |
| ++i, Offset += NumNarrowTyElts) { |
| ArrayRef<Register> Pieces(&Elts[Offset], NumNarrowTyElts); |
| NarrowTyElts.push_back( |
| MIRBuilder.buildMergeLikeInstr(NarrowTy, Pieces).getReg(0)); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| assert(TypeIdx == 0 && "Bad type index"); |
| if ((NarrowTy.getSizeInBits() % SrcTy.getSizeInBits() != 0) || |
| (DstTy.getSizeInBits() % NarrowTy.getSizeInBits() != 0)) |
| return UnableToLegalize; |
| |
| // This is most likely SrcTy (smaller then register size) packed in DstTy |
| // (larger then register size) and since merge was not combined it will be |
| // lowered to bit sequence packing into register. Merge SrcTy to NarrowTy |
| // (register size) pieces first. Then merge each of NarrowTy pieces to DstTy. |
| |
| // %0:_(DstTy) = G_MERGE_VALUES %1:_(SrcTy), %2, %3, %4 |
| // |
| // %5:_(NarrowTy) = G_MERGE_VALUES %1:_(SrcTy), %2 - sequence of bits in reg |
| // %6:_(NarrowTy) = G_MERGE_VALUES %3:_(SrcTy), %4 |
| // %0:_(DstTy) = G_MERGE_VALUES %5:_(NarrowTy), %6 - reg sequence |
| SmallVector<Register, 8> NarrowTyElts; |
| unsigned NumParts = DstTy.getNumElements() / NarrowTy.getNumElements(); |
| unsigned NumSrcElts = SrcTy.isVector() ? SrcTy.getNumElements() : 1; |
| unsigned NumElts = NarrowTy.getNumElements() / NumSrcElts; |
| for (unsigned i = 0; i < NumParts; ++i) { |
| SmallVector<Register, 8> Sources; |
| for (unsigned j = 0; j < NumElts; ++j) |
| Sources.push_back(MI.getOperand(1 + i * NumElts + j).getReg()); |
| NarrowTyElts.push_back( |
| MIRBuilder.buildMergeLikeInstr(NarrowTy, Sources).getReg(0)); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(DstReg, NarrowTyElts); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVectorExtractInsertVectorElt(MachineInstr &MI, |
| unsigned TypeIdx, |
| LLT NarrowVecTy) { |
| auto [DstReg, SrcVec] = MI.getFirst2Regs(); |
| Register InsertVal; |
| bool IsInsert = MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT; |
| |
| assert((IsInsert ? TypeIdx == 0 : TypeIdx == 1) && "not a vector type index"); |
| if (IsInsert) |
| InsertVal = MI.getOperand(2).getReg(); |
| |
| Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); |
| |
| // TODO: Handle total scalarization case. |
| if (!NarrowVecTy.isVector()) |
| return UnableToLegalize; |
| |
| LLT VecTy = MRI.getType(SrcVec); |
| |
| // If the index is a constant, we can really break this down as you would |
| // expect, and index into the target size pieces. |
| int64_t IdxVal; |
| auto MaybeCst = getIConstantVRegValWithLookThrough(Idx, MRI); |
| if (MaybeCst) { |
| IdxVal = MaybeCst->Value.getSExtValue(); |
| // Avoid out of bounds indexing the pieces. |
| if (IdxVal >= VecTy.getNumElements()) { |
| MIRBuilder.buildUndef(DstReg); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| SmallVector<Register, 8> VecParts; |
| LLT GCDTy = extractGCDType(VecParts, VecTy, NarrowVecTy, SrcVec); |
| |
| // Build a sequence of NarrowTy pieces in VecParts for this operand. |
| LLT LCMTy = buildLCMMergePieces(VecTy, NarrowVecTy, GCDTy, VecParts, |
| TargetOpcode::G_ANYEXT); |
| |
| unsigned NewNumElts = NarrowVecTy.getNumElements(); |
| |
| LLT IdxTy = MRI.getType(Idx); |
| int64_t PartIdx = IdxVal / NewNumElts; |
| auto NewIdx = |
| MIRBuilder.buildConstant(IdxTy, IdxVal - NewNumElts * PartIdx); |
| |
| if (IsInsert) { |
| LLT PartTy = MRI.getType(VecParts[PartIdx]); |
| |
| // Use the adjusted index to insert into one of the subvectors. |
| auto InsertPart = MIRBuilder.buildInsertVectorElement( |
| PartTy, VecParts[PartIdx], InsertVal, NewIdx); |
| VecParts[PartIdx] = InsertPart.getReg(0); |
| |
| // Recombine the inserted subvector with the others to reform the result |
| // vector. |
| buildWidenedRemergeToDst(DstReg, LCMTy, VecParts); |
| } else { |
| MIRBuilder.buildExtractVectorElement(DstReg, VecParts[PartIdx], NewIdx); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // With a variable index, we can't perform the operation in a smaller type, so |
| // we're forced to expand this. |
| // |
| // TODO: We could emit a chain of compare/select to figure out which piece to |
| // index. |
| return lowerExtractInsertVectorElt(MI); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::reduceLoadStoreWidth(GLoadStore &LdStMI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| // FIXME: Don't know how to handle secondary types yet. |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| // This implementation doesn't work for atomics. Give up instead of doing |
| // something invalid. |
| if (LdStMI.isAtomic()) |
| return UnableToLegalize; |
| |
| bool IsLoad = isa<GLoad>(LdStMI); |
| Register ValReg = LdStMI.getReg(0); |
| Register AddrReg = LdStMI.getPointerReg(); |
| LLT ValTy = MRI.getType(ValReg); |
| |
| // FIXME: Do we need a distinct NarrowMemory legalize action? |
| if (ValTy.getSizeInBits() != 8 * LdStMI.getMemSize()) { |
| LLVM_DEBUG(dbgs() << "Can't narrow extload/truncstore\n"); |
| return UnableToLegalize; |
| } |
| |
| int NumParts = -1; |
| int NumLeftover = -1; |
| LLT LeftoverTy; |
| SmallVector<Register, 8> NarrowRegs, NarrowLeftoverRegs; |
| if (IsLoad) { |
| std::tie(NumParts, NumLeftover) = getNarrowTypeBreakDown(ValTy, NarrowTy, LeftoverTy); |
| } else { |
| if (extractParts(ValReg, ValTy, NarrowTy, LeftoverTy, NarrowRegs, |
| NarrowLeftoverRegs)) { |
| NumParts = NarrowRegs.size(); |
| NumLeftover = NarrowLeftoverRegs.size(); |
| } |
| } |
| |
| if (NumParts == -1) |
| return UnableToLegalize; |
| |
| LLT PtrTy = MRI.getType(AddrReg); |
| const LLT OffsetTy = LLT::scalar(PtrTy.getSizeInBits()); |
| |
| unsigned TotalSize = ValTy.getSizeInBits(); |
| |
| // Split the load/store into PartTy sized pieces starting at Offset. If this |
| // is a load, return the new registers in ValRegs. For a store, each elements |
| // of ValRegs should be PartTy. Returns the next offset that needs to be |
| // handled. |
| bool isBigEndian = MIRBuilder.getDataLayout().isBigEndian(); |
| auto MMO = LdStMI.getMMO(); |
| auto splitTypePieces = [=](LLT PartTy, SmallVectorImpl<Register> &ValRegs, |
| unsigned NumParts, unsigned Offset) -> unsigned { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| unsigned PartSize = PartTy.getSizeInBits(); |
| for (unsigned Idx = 0, E = NumParts; Idx != E && Offset < TotalSize; |
| ++Idx) { |
| unsigned ByteOffset = Offset / 8; |
| Register NewAddrReg; |
| |
| MIRBuilder.materializePtrAdd(NewAddrReg, AddrReg, OffsetTy, ByteOffset); |
| |
| MachineMemOperand *NewMMO = |
| MF.getMachineMemOperand(&MMO, ByteOffset, PartTy); |
| |
| if (IsLoad) { |
| Register Dst = MRI.createGenericVirtualRegister(PartTy); |
| ValRegs.push_back(Dst); |
| MIRBuilder.buildLoad(Dst, NewAddrReg, *NewMMO); |
| } else { |
| MIRBuilder.buildStore(ValRegs[Idx], NewAddrReg, *NewMMO); |
| } |
| Offset = isBigEndian ? Offset - PartSize : Offset + PartSize; |
| } |
| |
| return Offset; |
| }; |
| |
| unsigned Offset = isBigEndian ? TotalSize - NarrowTy.getSizeInBits() : 0; |
| unsigned HandledOffset = |
| splitTypePieces(NarrowTy, NarrowRegs, NumParts, Offset); |
| |
| // Handle the rest of the register if this isn't an even type breakdown. |
| if (LeftoverTy.isValid()) |
| splitTypePieces(LeftoverTy, NarrowLeftoverRegs, NumLeftover, HandledOffset); |
| |
| if (IsLoad) { |
| insertParts(ValReg, ValTy, NarrowTy, NarrowRegs, |
| LeftoverTy, NarrowLeftoverRegs); |
| } |
| |
| LdStMI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::fewerElementsVector(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| using namespace TargetOpcode; |
| GenericMachineInstr &GMI = cast<GenericMachineInstr>(MI); |
| unsigned NumElts = NarrowTy.isVector() ? NarrowTy.getNumElements() : 1; |
| |
| switch (MI.getOpcode()) { |
| case G_IMPLICIT_DEF: |
| case G_TRUNC: |
| case G_AND: |
| case G_OR: |
| case G_XOR: |
| case G_ADD: |
| case G_SUB: |
| case G_MUL: |
| case G_PTR_ADD: |
| case G_SMULH: |
| case G_UMULH: |
| case G_FADD: |
| case G_FMUL: |
| case G_FSUB: |
| case G_FNEG: |
| case G_FABS: |
| case G_FCANONICALIZE: |
| case G_FDIV: |
| case G_FREM: |
| case G_FMA: |
| case G_FMAD: |
| case G_FPOW: |
| case G_FEXP: |
| case G_FEXP2: |
| case G_FEXP10: |
| case G_FLOG: |
| case G_FLOG2: |
| case G_FLOG10: |
| case G_FLDEXP: |
| case G_FNEARBYINT: |
| case G_FCEIL: |
| case G_FFLOOR: |
| case G_FRINT: |
| case G_INTRINSIC_ROUND: |
| case G_INTRINSIC_ROUNDEVEN: |
| case G_INTRINSIC_TRUNC: |
| case G_FCOS: |
| case G_FSIN: |
| case G_FSQRT: |
| case G_BSWAP: |
| case G_BITREVERSE: |
| case G_SDIV: |
| case G_UDIV: |
| case G_SREM: |
| case G_UREM: |
| case G_SDIVREM: |
| case G_UDIVREM: |
| case G_SMIN: |
| case G_SMAX: |
| case G_UMIN: |
| case G_UMAX: |
| case G_ABS: |
| case G_FMINNUM: |
| case G_FMAXNUM: |
| case G_FMINNUM_IEEE: |
| case G_FMAXNUM_IEEE: |
| case G_FMINIMUM: |
| case G_FMAXIMUM: |
| case G_FSHL: |
| case G_FSHR: |
| case G_ROTL: |
| case G_ROTR: |
| case G_FREEZE: |
| case G_SADDSAT: |
| case G_SSUBSAT: |
| case G_UADDSAT: |
| case G_USUBSAT: |
| case G_UMULO: |
| case G_SMULO: |
| case G_SHL: |
| case G_LSHR: |
| case G_ASHR: |
| case G_SSHLSAT: |
| case G_USHLSAT: |
| case G_CTLZ: |
| case G_CTLZ_ZERO_UNDEF: |
| case G_CTTZ: |
| case G_CTTZ_ZERO_UNDEF: |
| case G_CTPOP: |
| case G_FCOPYSIGN: |
| case G_ZEXT: |
| case G_SEXT: |
| case G_ANYEXT: |
| case G_FPEXT: |
| case G_FPTRUNC: |
| case G_SITOFP: |
| case G_UITOFP: |
| case G_FPTOSI: |
| case G_FPTOUI: |
| case G_INTTOPTR: |
| case G_PTRTOINT: |
| case G_ADDRSPACE_CAST: |
| case G_UADDO: |
| case G_USUBO: |
| case G_UADDE: |
| case G_USUBE: |
| case G_SADDO: |
| case G_SSUBO: |
| case G_SADDE: |
| case G_SSUBE: |
| case G_STRICT_FADD: |
| case G_STRICT_FSUB: |
| case G_STRICT_FMUL: |
| case G_STRICT_FMA: |
| case G_STRICT_FLDEXP: |
| case G_FFREXP: |
| return fewerElementsVectorMultiEltType(GMI, NumElts); |
| case G_ICMP: |
| case G_FCMP: |
| return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*cpm predicate*/}); |
| case G_IS_FPCLASS: |
| return fewerElementsVectorMultiEltType(GMI, NumElts, {2, 3 /*mask,fpsem*/}); |
| case G_SELECT: |
| if (MRI.getType(MI.getOperand(1).getReg()).isVector()) |
| return fewerElementsVectorMultiEltType(GMI, NumElts); |
| return fewerElementsVectorMultiEltType(GMI, NumElts, {1 /*scalar cond*/}); |
| case G_PHI: |
| return fewerElementsVectorPhi(GMI, NumElts); |
| case G_UNMERGE_VALUES: |
| return fewerElementsVectorUnmergeValues(MI, TypeIdx, NarrowTy); |
| case G_BUILD_VECTOR: |
| assert(TypeIdx == 0 && "not a vector type index"); |
| return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); |
| case G_CONCAT_VECTORS: |
| if (TypeIdx != 1) // TODO: This probably does work as expected already. |
| return UnableToLegalize; |
| return fewerElementsVectorMerge(MI, TypeIdx, NarrowTy); |
| case G_EXTRACT_VECTOR_ELT: |
| case G_INSERT_VECTOR_ELT: |
| return fewerElementsVectorExtractInsertVectorElt(MI, TypeIdx, NarrowTy); |
| case G_LOAD: |
| case G_STORE: |
| return reduceLoadStoreWidth(cast<GLoadStore>(MI), TypeIdx, NarrowTy); |
| case G_SEXT_INREG: |
| return fewerElementsVectorMultiEltType(GMI, NumElts, {2 /*imm*/}); |
| GISEL_VECREDUCE_CASES_NONSEQ |
| return fewerElementsVectorReductions(MI, TypeIdx, NarrowTy); |
| case G_SHUFFLE_VECTOR: |
| return fewerElementsVectorShuffle(MI, TypeIdx, NarrowTy); |
| default: |
| return UnableToLegalize; |
| } |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorShuffle( |
| MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { |
| assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR); |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| auto [DstReg, DstTy, Src1Reg, Src1Ty, Src2Reg, Src2Ty] = |
| MI.getFirst3RegLLTs(); |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| // The shuffle should be canonicalized by now. |
| if (DstTy != Src1Ty) |
| return UnableToLegalize; |
| if (DstTy != Src2Ty) |
| return UnableToLegalize; |
| |
| if (!isPowerOf2_32(DstTy.getNumElements())) |
| return UnableToLegalize; |
| |
| // We only support splitting a shuffle into 2, so adjust NarrowTy accordingly. |
| // Further legalization attempts will be needed to do split further. |
| NarrowTy = |
| DstTy.changeElementCount(DstTy.getElementCount().divideCoefficientBy(2)); |
| unsigned NewElts = NarrowTy.getNumElements(); |
| |
| SmallVector<Register> SplitSrc1Regs, SplitSrc2Regs; |
| extractParts(Src1Reg, NarrowTy, 2, SplitSrc1Regs); |
| extractParts(Src2Reg, NarrowTy, 2, SplitSrc2Regs); |
| Register Inputs[4] = {SplitSrc1Regs[0], SplitSrc1Regs[1], SplitSrc2Regs[0], |
| SplitSrc2Regs[1]}; |
| |
| Register Hi, Lo; |
| |
| // If Lo or Hi uses elements from at most two of the four input vectors, then |
| // express it as a vector shuffle of those two inputs. Otherwise extract the |
| // input elements by hand and construct the Lo/Hi output using a BUILD_VECTOR. |
| SmallVector<int, 16> Ops; |
| for (unsigned High = 0; High < 2; ++High) { |
| Register &Output = High ? Hi : Lo; |
| |
| // Build a shuffle mask for the output, discovering on the fly which |
| // input vectors to use as shuffle operands (recorded in InputUsed). |
| // If building a suitable shuffle vector proves too hard, then bail |
| // out with useBuildVector set. |
| unsigned InputUsed[2] = {-1U, -1U}; // Not yet discovered. |
| unsigned FirstMaskIdx = High * NewElts; |
| bool UseBuildVector = false; |
| for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { |
| // The mask element. This indexes into the input. |
| int Idx = Mask[FirstMaskIdx + MaskOffset]; |
| |
| // The input vector this mask element indexes into. |
| unsigned Input = (unsigned)Idx / NewElts; |
| |
| if (Input >= std::size(Inputs)) { |
| // The mask element does not index into any input vector. |
| Ops.push_back(-1); |
| continue; |
| } |
| |
| // Turn the index into an offset from the start of the input vector. |
| Idx -= Input * NewElts; |
| |
| // Find or create a shuffle vector operand to hold this input. |
| unsigned OpNo; |
| for (OpNo = 0; OpNo < std::size(InputUsed); ++OpNo) { |
| if (InputUsed[OpNo] == Input) { |
| // This input vector is already an operand. |
| break; |
| } else if (InputUsed[OpNo] == -1U) { |
| // Create a new operand for this input vector. |
| InputUsed[OpNo] = Input; |
| break; |
| } |
| } |
| |
| if (OpNo >= std::size(InputUsed)) { |
| // More than two input vectors used! Give up on trying to create a |
| // shuffle vector. Insert all elements into a BUILD_VECTOR instead. |
| UseBuildVector = true; |
| break; |
| } |
| |
| // Add the mask index for the new shuffle vector. |
| Ops.push_back(Idx + OpNo * NewElts); |
| } |
| |
| if (UseBuildVector) { |
| LLT EltTy = NarrowTy.getElementType(); |
| SmallVector<Register, 16> SVOps; |
| |
| // Extract the input elements by hand. |
| for (unsigned MaskOffset = 0; MaskOffset < NewElts; ++MaskOffset) { |
| // The mask element. This indexes into the input. |
| int Idx = Mask[FirstMaskIdx + MaskOffset]; |
| |
| // The input vector this mask element indexes into. |
| unsigned Input = (unsigned)Idx / NewElts; |
| |
| if (Input >= std::size(Inputs)) { |
| // The mask element is "undef" or indexes off the end of the input. |
| SVOps.push_back(MIRBuilder.buildUndef(EltTy).getReg(0)); |
| continue; |
| } |
| |
| // Turn the index into an offset from the start of the input vector. |
| Idx -= Input * NewElts; |
| |
| // Extract the vector element by hand. |
| SVOps.push_back(MIRBuilder |
| .buildExtractVectorElement( |
| EltTy, Inputs[Input], |
| MIRBuilder.buildConstant(LLT::scalar(32), Idx)) |
| .getReg(0)); |
| } |
| |
| // Construct the Lo/Hi output using a G_BUILD_VECTOR. |
| Output = MIRBuilder.buildBuildVector(NarrowTy, SVOps).getReg(0); |
| } else if (InputUsed[0] == -1U) { |
| // No input vectors were used! The result is undefined. |
| Output = MIRBuilder.buildUndef(NarrowTy).getReg(0); |
| } else { |
| Register Op0 = Inputs[InputUsed[0]]; |
| // If only one input was used, use an undefined vector for the other. |
| Register Op1 = InputUsed[1] == -1U |
| ? MIRBuilder.buildUndef(NarrowTy).getReg(0) |
| : Inputs[InputUsed[1]]; |
| // At least one input vector was used. Create a new shuffle vector. |
| Output = MIRBuilder.buildShuffleVector(NarrowTy, Op0, Op1, Ops).getReg(0); |
| } |
| |
| Ops.clear(); |
| } |
| |
| MIRBuilder.buildConcatVectors(DstReg, {Lo, Hi}); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::fewerElementsVectorReductions( |
| MachineInstr &MI, unsigned int TypeIdx, LLT NarrowTy) { |
| auto &RdxMI = cast<GVecReduce>(MI); |
| |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| // The semantics of the normal non-sequential reductions allow us to freely |
| // re-associate the operation. |
| auto [DstReg, DstTy, SrcReg, SrcTy] = RdxMI.getFirst2RegLLTs(); |
| |
| if (NarrowTy.isVector() && |
| (SrcTy.getNumElements() % NarrowTy.getNumElements() != 0)) |
| return UnableToLegalize; |
| |
| unsigned ScalarOpc = RdxMI.getScalarOpcForReduction(); |
| SmallVector<Register> SplitSrcs; |
| // If NarrowTy is a scalar then we're being asked to scalarize. |
| const unsigned NumParts = |
| NarrowTy.isVector() ? SrcTy.getNumElements() / NarrowTy.getNumElements() |
| : SrcTy.getNumElements(); |
| |
| extractParts(SrcReg, NarrowTy, NumParts, SplitSrcs); |
| if (NarrowTy.isScalar()) { |
| if (DstTy != NarrowTy) |
| return UnableToLegalize; // FIXME: handle implicit extensions. |
| |
| if (isPowerOf2_32(NumParts)) { |
| // Generate a tree of scalar operations to reduce the critical path. |
| SmallVector<Register> PartialResults; |
| unsigned NumPartsLeft = NumParts; |
| while (NumPartsLeft > 1) { |
| for (unsigned Idx = 0; Idx < NumPartsLeft - 1; Idx += 2) { |
| PartialResults.emplace_back( |
| MIRBuilder |
| .buildInstr(ScalarOpc, {NarrowTy}, |
| {SplitSrcs[Idx], SplitSrcs[Idx + 1]}) |
| .getReg(0)); |
| } |
| SplitSrcs = PartialResults; |
| PartialResults.clear(); |
| NumPartsLeft = SplitSrcs.size(); |
| } |
| assert(SplitSrcs.size() == 1); |
| MIRBuilder.buildCopy(DstReg, SplitSrcs[0]); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| // If we can't generate a tree, then just do sequential operations. |
| Register Acc = SplitSrcs[0]; |
| for (unsigned Idx = 1; Idx < NumParts; ++Idx) |
| Acc = MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {Acc, SplitSrcs[Idx]}) |
| .getReg(0); |
| MIRBuilder.buildCopy(DstReg, Acc); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| SmallVector<Register> PartialReductions; |
| for (unsigned Part = 0; Part < NumParts; ++Part) { |
| PartialReductions.push_back( |
| MIRBuilder.buildInstr(RdxMI.getOpcode(), {DstTy}, {SplitSrcs[Part]}) |
| .getReg(0)); |
| } |
| |
| // If the types involved are powers of 2, we can generate intermediate vector |
| // ops, before generating a final reduction operation. |
| if (isPowerOf2_32(SrcTy.getNumElements()) && |
| isPowerOf2_32(NarrowTy.getNumElements())) { |
| return tryNarrowPow2Reduction(MI, SrcReg, SrcTy, NarrowTy, ScalarOpc); |
| } |
| |
| Register Acc = PartialReductions[0]; |
| for (unsigned Part = 1; Part < NumParts; ++Part) { |
| if (Part == NumParts - 1) { |
| MIRBuilder.buildInstr(ScalarOpc, {DstReg}, |
| {Acc, PartialReductions[Part]}); |
| } else { |
| Acc = MIRBuilder |
| .buildInstr(ScalarOpc, {DstTy}, {Acc, PartialReductions[Part]}) |
| .getReg(0); |
| } |
| } |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::tryNarrowPow2Reduction(MachineInstr &MI, Register SrcReg, |
| LLT SrcTy, LLT NarrowTy, |
| unsigned ScalarOpc) { |
| SmallVector<Register> SplitSrcs; |
| // Split the sources into NarrowTy size pieces. |
| extractParts(SrcReg, NarrowTy, |
| SrcTy.getNumElements() / NarrowTy.getNumElements(), SplitSrcs); |
| // We're going to do a tree reduction using vector operations until we have |
| // one NarrowTy size value left. |
| while (SplitSrcs.size() > 1) { |
| SmallVector<Register> PartialRdxs; |
| for (unsigned Idx = 0; Idx < SplitSrcs.size()-1; Idx += 2) { |
| Register LHS = SplitSrcs[Idx]; |
| Register RHS = SplitSrcs[Idx + 1]; |
| // Create the intermediate vector op. |
| Register Res = |
| MIRBuilder.buildInstr(ScalarOpc, {NarrowTy}, {LHS, RHS}).getReg(0); |
| PartialRdxs.push_back(Res); |
| } |
| SplitSrcs = std::move(PartialRdxs); |
| } |
| // Finally generate the requested NarrowTy based reduction. |
| Observer.changingInstr(MI); |
| MI.getOperand(1).setReg(SplitSrcs[0]); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarShiftByConstant(MachineInstr &MI, const APInt &Amt, |
| const LLT HalfTy, const LLT AmtTy) { |
| |
| Register InL = MRI.createGenericVirtualRegister(HalfTy); |
| Register InH = MRI.createGenericVirtualRegister(HalfTy); |
| MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); |
| |
| if (Amt.isZero()) { |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {InL, InH}); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LLT NVT = HalfTy; |
| unsigned NVTBits = HalfTy.getSizeInBits(); |
| unsigned VTBits = 2 * NVTBits; |
| |
| SrcOp Lo(Register(0)), Hi(Register(0)); |
| if (MI.getOpcode() == TargetOpcode::G_SHL) { |
| if (Amt.ugt(VTBits)) { |
| Lo = Hi = MIRBuilder.buildConstant(NVT, 0); |
| } else if (Amt.ugt(NVTBits)) { |
| Lo = MIRBuilder.buildConstant(NVT, 0); |
| Hi = MIRBuilder.buildShl(NVT, InL, |
| MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); |
| } else if (Amt == NVTBits) { |
| Lo = MIRBuilder.buildConstant(NVT, 0); |
| Hi = InL; |
| } else { |
| Lo = MIRBuilder.buildShl(NVT, InL, MIRBuilder.buildConstant(AmtTy, Amt)); |
| auto OrLHS = |
| MIRBuilder.buildShl(NVT, InH, MIRBuilder.buildConstant(AmtTy, Amt)); |
| auto OrRHS = MIRBuilder.buildLShr( |
| NVT, InL, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); |
| Hi = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); |
| } |
| } else if (MI.getOpcode() == TargetOpcode::G_LSHR) { |
| if (Amt.ugt(VTBits)) { |
| Lo = Hi = MIRBuilder.buildConstant(NVT, 0); |
| } else if (Amt.ugt(NVTBits)) { |
| Lo = MIRBuilder.buildLShr(NVT, InH, |
| MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); |
| Hi = MIRBuilder.buildConstant(NVT, 0); |
| } else if (Amt == NVTBits) { |
| Lo = InH; |
| Hi = MIRBuilder.buildConstant(NVT, 0); |
| } else { |
| auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); |
| |
| auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); |
| auto OrRHS = MIRBuilder.buildShl( |
| NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); |
| |
| Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); |
| Hi = MIRBuilder.buildLShr(NVT, InH, ShiftAmtConst); |
| } |
| } else { |
| if (Amt.ugt(VTBits)) { |
| Hi = Lo = MIRBuilder.buildAShr( |
| NVT, InH, MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); |
| } else if (Amt.ugt(NVTBits)) { |
| Lo = MIRBuilder.buildAShr(NVT, InH, |
| MIRBuilder.buildConstant(AmtTy, Amt - NVTBits)); |
| Hi = MIRBuilder.buildAShr(NVT, InH, |
| MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); |
| } else if (Amt == NVTBits) { |
| Lo = InH; |
| Hi = MIRBuilder.buildAShr(NVT, InH, |
| MIRBuilder.buildConstant(AmtTy, NVTBits - 1)); |
| } else { |
| auto ShiftAmtConst = MIRBuilder.buildConstant(AmtTy, Amt); |
| |
| auto OrLHS = MIRBuilder.buildLShr(NVT, InL, ShiftAmtConst); |
| auto OrRHS = MIRBuilder.buildShl( |
| NVT, InH, MIRBuilder.buildConstant(AmtTy, -Amt + NVTBits)); |
| |
| Lo = MIRBuilder.buildOr(NVT, OrLHS, OrRHS); |
| Hi = MIRBuilder.buildAShr(NVT, InH, ShiftAmtConst); |
| } |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(MI.getOperand(0), {Lo, Hi}); |
| MI.eraseFromParent(); |
| |
| return Legalized; |
| } |
| |
| // TODO: Optimize if constant shift amount. |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarShift(MachineInstr &MI, unsigned TypeIdx, |
| LLT RequestedTy) { |
| if (TypeIdx == 1) { |
| Observer.changingInstr(MI); |
| narrowScalarSrc(MI, RequestedTy, 2); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy.isVector()) |
| return UnableToLegalize; |
| |
| Register Amt = MI.getOperand(2).getReg(); |
| LLT ShiftAmtTy = MRI.getType(Amt); |
| const unsigned DstEltSize = DstTy.getScalarSizeInBits(); |
| if (DstEltSize % 2 != 0) |
| return UnableToLegalize; |
| |
| // Ignore the input type. We can only go to exactly half the size of the |
| // input. If that isn't small enough, the resulting pieces will be further |
| // legalized. |
| const unsigned NewBitSize = DstEltSize / 2; |
| const LLT HalfTy = LLT::scalar(NewBitSize); |
| const LLT CondTy = LLT::scalar(1); |
| |
| if (auto VRegAndVal = getIConstantVRegValWithLookThrough(Amt, MRI)) { |
| return narrowScalarShiftByConstant(MI, VRegAndVal->Value, HalfTy, |
| ShiftAmtTy); |
| } |
| |
| // TODO: Expand with known bits. |
| |
| // Handle the fully general expansion by an unknown amount. |
| auto NewBits = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize); |
| |
| Register InL = MRI.createGenericVirtualRegister(HalfTy); |
| Register InH = MRI.createGenericVirtualRegister(HalfTy); |
| MIRBuilder.buildUnmerge({InL, InH}, MI.getOperand(1)); |
| |
| auto AmtExcess = MIRBuilder.buildSub(ShiftAmtTy, Amt, NewBits); |
| auto AmtLack = MIRBuilder.buildSub(ShiftAmtTy, NewBits, Amt); |
| |
| auto Zero = MIRBuilder.buildConstant(ShiftAmtTy, 0); |
| auto IsShort = MIRBuilder.buildICmp(ICmpInst::ICMP_ULT, CondTy, Amt, NewBits); |
| auto IsZero = MIRBuilder.buildICmp(ICmpInst::ICMP_EQ, CondTy, Amt, Zero); |
| |
| Register ResultRegs[2]; |
| switch (MI.getOpcode()) { |
| case TargetOpcode::G_SHL: { |
| // Short: ShAmt < NewBitSize |
| auto LoS = MIRBuilder.buildShl(HalfTy, InL, Amt); |
| |
| auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, AmtLack); |
| auto HiOr = MIRBuilder.buildShl(HalfTy, InH, Amt); |
| auto HiS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); |
| |
| // Long: ShAmt >= NewBitSize |
| auto LoL = MIRBuilder.buildConstant(HalfTy, 0); // Lo part is zero. |
| auto HiL = MIRBuilder.buildShl(HalfTy, InL, AmtExcess); // Hi from Lo part. |
| |
| auto Lo = MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL); |
| auto Hi = MIRBuilder.buildSelect( |
| HalfTy, IsZero, InH, MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL)); |
| |
| ResultRegs[0] = Lo.getReg(0); |
| ResultRegs[1] = Hi.getReg(0); |
| break; |
| } |
| case TargetOpcode::G_LSHR: |
| case TargetOpcode::G_ASHR: { |
| // Short: ShAmt < NewBitSize |
| auto HiS = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, {InH, Amt}); |
| |
| auto LoOr = MIRBuilder.buildLShr(HalfTy, InL, Amt); |
| auto HiOr = MIRBuilder.buildShl(HalfTy, InH, AmtLack); |
| auto LoS = MIRBuilder.buildOr(HalfTy, LoOr, HiOr); |
| |
| // Long: ShAmt >= NewBitSize |
| MachineInstrBuilder HiL; |
| if (MI.getOpcode() == TargetOpcode::G_LSHR) { |
| HiL = MIRBuilder.buildConstant(HalfTy, 0); // Hi part is zero. |
| } else { |
| auto ShiftAmt = MIRBuilder.buildConstant(ShiftAmtTy, NewBitSize - 1); |
| HiL = MIRBuilder.buildAShr(HalfTy, InH, ShiftAmt); // Sign of Hi part. |
| } |
| auto LoL = MIRBuilder.buildInstr(MI.getOpcode(), {HalfTy}, |
| {InH, AmtExcess}); // Lo from Hi part. |
| |
| auto Lo = MIRBuilder.buildSelect( |
| HalfTy, IsZero, InL, MIRBuilder.buildSelect(HalfTy, IsShort, LoS, LoL)); |
| |
| auto Hi = MIRBuilder.buildSelect(HalfTy, IsShort, HiS, HiL); |
| |
| ResultRegs[0] = Lo.getReg(0); |
| ResultRegs[1] = Hi.getReg(0); |
| break; |
| } |
| default: |
| llvm_unreachable("not a shift"); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(DstReg, ResultRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::moreElementsVectorPhi(MachineInstr &MI, unsigned TypeIdx, |
| LLT MoreTy) { |
| assert(TypeIdx == 0 && "Expecting only Idx 0"); |
| |
| Observer.changingInstr(MI); |
| for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) { |
| MachineBasicBlock &OpMBB = *MI.getOperand(I + 1).getMBB(); |
| MIRBuilder.setInsertPt(OpMBB, OpMBB.getFirstTerminator()); |
| moreElementsVectorSrc(MI, MoreTy, I); |
| } |
| |
| MachineBasicBlock &MBB = *MI.getParent(); |
| MIRBuilder.setInsertPt(MBB, --MBB.getFirstNonPHI()); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::moreElementsVector(MachineInstr &MI, unsigned TypeIdx, |
| LLT MoreTy) { |
| unsigned Opc = MI.getOpcode(); |
| switch (Opc) { |
| case TargetOpcode::G_IMPLICIT_DEF: |
| case TargetOpcode::G_LOAD: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_STORE: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_AND: |
| case TargetOpcode::G_OR: |
| case TargetOpcode::G_XOR: |
| case TargetOpcode::G_ADD: |
| case TargetOpcode::G_SUB: |
| case TargetOpcode::G_MUL: |
| case TargetOpcode::G_FADD: |
| case TargetOpcode::G_FSUB: |
| case TargetOpcode::G_FMUL: |
| case TargetOpcode::G_FDIV: |
| case TargetOpcode::G_UADDSAT: |
| case TargetOpcode::G_USUBSAT: |
| case TargetOpcode::G_SADDSAT: |
| case TargetOpcode::G_SSUBSAT: |
| case TargetOpcode::G_SMIN: |
| case TargetOpcode::G_SMAX: |
| case TargetOpcode::G_UMIN: |
| case TargetOpcode::G_UMAX: |
| case TargetOpcode::G_FMINNUM: |
| case TargetOpcode::G_FMAXNUM: |
| case TargetOpcode::G_FMINNUM_IEEE: |
| case TargetOpcode::G_FMAXNUM_IEEE: |
| case TargetOpcode::G_FMINIMUM: |
| case TargetOpcode::G_FMAXIMUM: |
| case TargetOpcode::G_STRICT_FADD: |
| case TargetOpcode::G_STRICT_FSUB: |
| case TargetOpcode::G_STRICT_FMUL: { |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| moreElementsVectorSrc(MI, MoreTy, 2); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_FMA: |
| case TargetOpcode::G_STRICT_FMA: |
| case TargetOpcode::G_FSHR: |
| case TargetOpcode::G_FSHL: { |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| moreElementsVectorSrc(MI, MoreTy, 2); |
| moreElementsVectorSrc(MI, MoreTy, 3); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_EXTRACT_VECTOR_ELT: |
| case TargetOpcode::G_EXTRACT: |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_INSERT: |
| case TargetOpcode::G_INSERT_VECTOR_ELT: |
| case TargetOpcode::G_FREEZE: |
| case TargetOpcode::G_FNEG: |
| case TargetOpcode::G_FABS: |
| case TargetOpcode::G_FSQRT: |
| case TargetOpcode::G_FCEIL: |
| case TargetOpcode::G_FFLOOR: |
| case TargetOpcode::G_FNEARBYINT: |
| case TargetOpcode::G_FRINT: |
| case TargetOpcode::G_INTRINSIC_ROUND: |
| case TargetOpcode::G_INTRINSIC_ROUNDEVEN: |
| case TargetOpcode::G_INTRINSIC_TRUNC: |
| case TargetOpcode::G_BSWAP: |
| case TargetOpcode::G_FCANONICALIZE: |
| case TargetOpcode::G_SEXT_INREG: |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| case TargetOpcode::G_SELECT: { |
| auto [DstReg, DstTy, CondReg, CondTy] = MI.getFirst2RegLLTs(); |
| if (TypeIdx == 1) { |
| if (!CondTy.isScalar() || |
| DstTy.getElementCount() != MoreTy.getElementCount()) |
| return UnableToLegalize; |
| |
| // This is turning a scalar select of vectors into a vector |
| // select. Broadcast the select condition. |
| auto ShufSplat = MIRBuilder.buildShuffleSplat(MoreTy, CondReg); |
| Observer.changingInstr(MI); |
| MI.getOperand(1).setReg(ShufSplat.getReg(0)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| if (CondTy.isVector()) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 2); |
| moreElementsVectorSrc(MI, MoreTy, 3); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_UNMERGE_VALUES: |
| return UnableToLegalize; |
| case TargetOpcode::G_PHI: |
| return moreElementsVectorPhi(MI, TypeIdx, MoreTy); |
| case TargetOpcode::G_SHUFFLE_VECTOR: |
| return moreElementsVectorShuffle(MI, TypeIdx, MoreTy); |
| case TargetOpcode::G_BUILD_VECTOR: { |
| SmallVector<SrcOp, 8> Elts; |
| for (auto Op : MI.uses()) { |
| Elts.push_back(Op.getReg()); |
| } |
| |
| for (unsigned i = Elts.size(); i < MoreTy.getNumElements(); ++i) { |
| Elts.push_back(MIRBuilder.buildUndef(MoreTy.getScalarType())); |
| } |
| |
| MIRBuilder.buildDeleteTrailingVectorElements( |
| MI.getOperand(0).getReg(), MIRBuilder.buildInstr(Opc, {MoreTy}, Elts)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_TRUNC: { |
| Observer.changingInstr(MI); |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_FPTRUNC: |
| case TargetOpcode::G_FPEXT: { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| Observer.changingInstr(MI); |
| LLT SrcTy = LLT::fixed_vector( |
| MoreTy.getNumElements(), |
| MRI.getType(MI.getOperand(1).getReg()).getElementType()); |
| moreElementsVectorSrc(MI, SrcTy, 1); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| default: |
| return UnableToLegalize; |
| } |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::equalizeVectorShuffleLengths(MachineInstr &MI) { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| unsigned MaskNumElts = Mask.size(); |
| unsigned SrcNumElts = SrcTy.getNumElements(); |
| LLT DestEltTy = DstTy.getElementType(); |
| |
| if (MaskNumElts == SrcNumElts) |
| return Legalized; |
| |
| if (MaskNumElts < SrcNumElts) { |
| // Extend mask to match new destination vector size with |
| // undef values. |
| SmallVector<int, 16> NewMask(Mask); |
| for (unsigned I = MaskNumElts; I < SrcNumElts; ++I) |
| NewMask.push_back(-1); |
| |
| moreElementsVectorDst(MI, SrcTy, 0); |
| MIRBuilder.setInstrAndDebugLoc(MI); |
| MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), |
| MI.getOperand(1).getReg(), |
| MI.getOperand(2).getReg(), NewMask); |
| MI.eraseFromParent(); |
| |
| return Legalized; |
| } |
| |
| unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); |
| unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; |
| LLT PaddedTy = LLT::fixed_vector(PaddedMaskNumElts, DestEltTy); |
| |
| // Create new source vectors by concatenating the initial |
| // source vectors with undefined vectors of the same size. |
| auto Undef = MIRBuilder.buildUndef(SrcTy); |
| SmallVector<Register, 8> MOps1(NumConcat, Undef.getReg(0)); |
| SmallVector<Register, 8> MOps2(NumConcat, Undef.getReg(0)); |
| MOps1[0] = MI.getOperand(1).getReg(); |
| MOps2[0] = MI.getOperand(2).getReg(); |
| |
| auto Src1 = MIRBuilder.buildConcatVectors(PaddedTy, MOps1); |
| auto Src2 = MIRBuilder.buildConcatVectors(PaddedTy, MOps2); |
| |
| // Readjust mask for new input vector length. |
| SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); |
| for (unsigned I = 0; I != MaskNumElts; ++I) { |
| int Idx = Mask[I]; |
| if (Idx >= static_cast<int>(SrcNumElts)) |
| Idx += PaddedMaskNumElts - SrcNumElts; |
| MappedOps[I] = Idx; |
| } |
| |
| // If we got more elements than required, extract subvector. |
| if (MaskNumElts != PaddedMaskNumElts) { |
| auto Shuffle = |
| MIRBuilder.buildShuffleVector(PaddedTy, Src1, Src2, MappedOps); |
| |
| SmallVector<Register, 16> Elts(MaskNumElts); |
| for (unsigned I = 0; I < MaskNumElts; ++I) { |
| Elts[I] = |
| MIRBuilder.buildExtractVectorElementConstant(DestEltTy, Shuffle, I) |
| .getReg(0); |
| } |
| MIRBuilder.buildBuildVector(DstReg, Elts); |
| } else { |
| MIRBuilder.buildShuffleVector(DstReg, Src1, Src2, MappedOps); |
| } |
| |
| MI.eraseFromParent(); |
| return LegalizerHelper::LegalizeResult::Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::moreElementsVectorShuffle(MachineInstr &MI, |
| unsigned int TypeIdx, LLT MoreTy) { |
| auto [DstTy, Src1Ty, Src2Ty] = MI.getFirst3LLTs(); |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| unsigned NumElts = DstTy.getNumElements(); |
| unsigned WidenNumElts = MoreTy.getNumElements(); |
| |
| if (DstTy.isVector() && Src1Ty.isVector() && |
| DstTy.getNumElements() != Src1Ty.getNumElements()) { |
| return equalizeVectorShuffleLengths(MI); |
| } |
| |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| // Expect a canonicalized shuffle. |
| if (DstTy != Src1Ty || DstTy != Src2Ty) |
| return UnableToLegalize; |
| |
| moreElementsVectorSrc(MI, MoreTy, 1); |
| moreElementsVectorSrc(MI, MoreTy, 2); |
| |
| // Adjust mask based on new input vector length. |
| SmallVector<int, 16> NewMask; |
| for (unsigned I = 0; I != NumElts; ++I) { |
| int Idx = Mask[I]; |
| if (Idx < static_cast<int>(NumElts)) |
| NewMask.push_back(Idx); |
| else |
| NewMask.push_back(Idx - NumElts + WidenNumElts); |
| } |
| for (unsigned I = NumElts; I != WidenNumElts; ++I) |
| NewMask.push_back(-1); |
| moreElementsVectorDst(MI, MoreTy, 0); |
| MIRBuilder.setInstrAndDebugLoc(MI); |
| MIRBuilder.buildShuffleVector(MI.getOperand(0).getReg(), |
| MI.getOperand(1).getReg(), |
| MI.getOperand(2).getReg(), NewMask); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| void LegalizerHelper::multiplyRegisters(SmallVectorImpl<Register> &DstRegs, |
| ArrayRef<Register> Src1Regs, |
| ArrayRef<Register> Src2Regs, |
| LLT NarrowTy) { |
| MachineIRBuilder &B = MIRBuilder; |
| unsigned SrcParts = Src1Regs.size(); |
| unsigned DstParts = DstRegs.size(); |
| |
| unsigned DstIdx = 0; // Low bits of the result. |
| Register FactorSum = |
| B.buildMul(NarrowTy, Src1Regs[DstIdx], Src2Regs[DstIdx]).getReg(0); |
| DstRegs[DstIdx] = FactorSum; |
| |
| unsigned CarrySumPrevDstIdx; |
| SmallVector<Register, 4> Factors; |
| |
| for (DstIdx = 1; DstIdx < DstParts; DstIdx++) { |
| // Collect low parts of muls for DstIdx. |
| for (unsigned i = DstIdx + 1 < SrcParts ? 0 : DstIdx - SrcParts + 1; |
| i <= std::min(DstIdx, SrcParts - 1); ++i) { |
| MachineInstrBuilder Mul = |
| B.buildMul(NarrowTy, Src1Regs[DstIdx - i], Src2Regs[i]); |
| Factors.push_back(Mul.getReg(0)); |
| } |
| // Collect high parts of muls from previous DstIdx. |
| for (unsigned i = DstIdx < SrcParts ? 0 : DstIdx - SrcParts; |
| i <= std::min(DstIdx - 1, SrcParts - 1); ++i) { |
| MachineInstrBuilder Umulh = |
| B.buildUMulH(NarrowTy, Src1Regs[DstIdx - 1 - i], Src2Regs[i]); |
| Factors.push_back(Umulh.getReg(0)); |
| } |
| // Add CarrySum from additions calculated for previous DstIdx. |
| if (DstIdx != 1) { |
| Factors.push_back(CarrySumPrevDstIdx); |
| } |
| |
| Register CarrySum; |
| // Add all factors and accumulate all carries into CarrySum. |
| if (DstIdx != DstParts - 1) { |
| MachineInstrBuilder Uaddo = |
| B.buildUAddo(NarrowTy, LLT::scalar(1), Factors[0], Factors[1]); |
| FactorSum = Uaddo.getReg(0); |
| CarrySum = B.buildZExt(NarrowTy, Uaddo.getReg(1)).getReg(0); |
| for (unsigned i = 2; i < Factors.size(); ++i) { |
| MachineInstrBuilder Uaddo = |
| B.buildUAddo(NarrowTy, LLT::scalar(1), FactorSum, Factors[i]); |
| FactorSum = Uaddo.getReg(0); |
| MachineInstrBuilder Carry = B.buildZExt(NarrowTy, Uaddo.getReg(1)); |
| CarrySum = B.buildAdd(NarrowTy, CarrySum, Carry).getReg(0); |
| } |
| } else { |
| // Since value for the next index is not calculated, neither is CarrySum. |
| FactorSum = B.buildAdd(NarrowTy, Factors[0], Factors[1]).getReg(0); |
| for (unsigned i = 2; i < Factors.size(); ++i) |
| FactorSum = B.buildAdd(NarrowTy, FactorSum, Factors[i]).getReg(0); |
| } |
| |
| CarrySumPrevDstIdx = CarrySum; |
| DstRegs[DstIdx] = FactorSum; |
| Factors.clear(); |
| } |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarAddSub(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstType = MRI.getType(DstReg); |
| // FIXME: add support for vector types |
| if (DstType.isVector()) |
| return UnableToLegalize; |
| |
| unsigned Opcode = MI.getOpcode(); |
| unsigned OpO, OpE, OpF; |
| switch (Opcode) { |
| case TargetOpcode::G_SADDO: |
| case TargetOpcode::G_SADDE: |
| case TargetOpcode::G_UADDO: |
| case TargetOpcode::G_UADDE: |
| case TargetOpcode::G_ADD: |
| OpO = TargetOpcode::G_UADDO; |
| OpE = TargetOpcode::G_UADDE; |
| OpF = TargetOpcode::G_UADDE; |
| if (Opcode == TargetOpcode::G_SADDO || Opcode == TargetOpcode::G_SADDE) |
| OpF = TargetOpcode::G_SADDE; |
| break; |
| case TargetOpcode::G_SSUBO: |
| case TargetOpcode::G_SSUBE: |
| case TargetOpcode::G_USUBO: |
| case TargetOpcode::G_USUBE: |
| case TargetOpcode::G_SUB: |
| OpO = TargetOpcode::G_USUBO; |
| OpE = TargetOpcode::G_USUBE; |
| OpF = TargetOpcode::G_USUBE; |
| if (Opcode == TargetOpcode::G_SSUBO || Opcode == TargetOpcode::G_SSUBE) |
| OpF = TargetOpcode::G_SSUBE; |
| break; |
| default: |
| llvm_unreachable("Unexpected add/sub opcode!"); |
| } |
| |
| // 1 for a plain add/sub, 2 if this is an operation with a carry-out. |
| unsigned NumDefs = MI.getNumExplicitDefs(); |
| Register Src1 = MI.getOperand(NumDefs).getReg(); |
| Register Src2 = MI.getOperand(NumDefs + 1).getReg(); |
| Register CarryDst, CarryIn; |
| if (NumDefs == 2) |
| CarryDst = MI.getOperand(1).getReg(); |
| if (MI.getNumOperands() == NumDefs + 3) |
| CarryIn = MI.getOperand(NumDefs + 2).getReg(); |
| |
| LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); |
| LLT LeftoverTy, DummyTy; |
| SmallVector<Register, 2> Src1Regs, Src2Regs, Src1Left, Src2Left, DstRegs; |
| extractParts(Src1, RegTy, NarrowTy, LeftoverTy, Src1Regs, Src1Left); |
| extractParts(Src2, RegTy, NarrowTy, DummyTy, Src2Regs, Src2Left); |
| |
| int NarrowParts = Src1Regs.size(); |
| for (int I = 0, E = Src1Left.size(); I != E; ++I) { |
| Src1Regs.push_back(Src1Left[I]); |
| Src2Regs.push_back(Src2Left[I]); |
| } |
| DstRegs.reserve(Src1Regs.size()); |
| |
| for (int i = 0, e = Src1Regs.size(); i != e; ++i) { |
| Register DstReg = |
| MRI.createGenericVirtualRegister(MRI.getType(Src1Regs[i])); |
| Register CarryOut = MRI.createGenericVirtualRegister(LLT::scalar(1)); |
| // Forward the final carry-out to the destination register |
| if (i == e - 1 && CarryDst) |
| CarryOut = CarryDst; |
| |
| if (!CarryIn) { |
| MIRBuilder.buildInstr(OpO, {DstReg, CarryOut}, |
| {Src1Regs[i], Src2Regs[i]}); |
| } else if (i == e - 1) { |
| MIRBuilder.buildInstr(OpF, {DstReg, CarryOut}, |
| {Src1Regs[i], Src2Regs[i], CarryIn}); |
| } else { |
| MIRBuilder.buildInstr(OpE, {DstReg, CarryOut}, |
| {Src1Regs[i], Src2Regs[i], CarryIn}); |
| } |
| |
| DstRegs.push_back(DstReg); |
| CarryIn = CarryOut; |
| } |
| insertParts(MI.getOperand(0).getReg(), RegTy, NarrowTy, |
| ArrayRef(DstRegs).take_front(NarrowParts), LeftoverTy, |
| ArrayRef(DstRegs).drop_front(NarrowParts)); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarMul(MachineInstr &MI, LLT NarrowTy) { |
| auto [DstReg, Src1, Src2] = MI.getFirst3Regs(); |
| |
| LLT Ty = MRI.getType(DstReg); |
| if (Ty.isVector()) |
| return UnableToLegalize; |
| |
| unsigned Size = Ty.getSizeInBits(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| if (Size % NarrowSize != 0) |
| return UnableToLegalize; |
| |
| unsigned NumParts = Size / NarrowSize; |
| bool IsMulHigh = MI.getOpcode() == TargetOpcode::G_UMULH; |
| unsigned DstTmpParts = NumParts * (IsMulHigh ? 2 : 1); |
| |
| SmallVector<Register, 2> Src1Parts, Src2Parts; |
| SmallVector<Register, 2> DstTmpRegs(DstTmpParts); |
| extractParts(Src1, NarrowTy, NumParts, Src1Parts); |
| extractParts(Src2, NarrowTy, NumParts, Src2Parts); |
| multiplyRegisters(DstTmpRegs, Src1Parts, Src2Parts, NarrowTy); |
| |
| // Take only high half of registers if this is high mul. |
| ArrayRef<Register> DstRegs(&DstTmpRegs[DstTmpParts - NumParts], NumParts); |
| MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarFPTOI(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| bool IsSigned = MI.getOpcode() == TargetOpcode::G_FPTOSI; |
| |
| Register Src = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(Src); |
| |
| // If all finite floats fit into the narrowed integer type, we can just swap |
| // out the result type. This is practically only useful for conversions from |
| // half to at least 16-bits, so just handle the one case. |
| if (SrcTy.getScalarType() != LLT::scalar(16) || |
| NarrowTy.getScalarSizeInBits() < (IsSigned ? 17u : 16u)) |
| return UnableToLegalize; |
| |
| Observer.changingInstr(MI); |
| narrowScalarDst(MI, NarrowTy, 0, |
| IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarExtract(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| uint64_t NarrowSize = NarrowTy.getSizeInBits(); |
| |
| int64_t SizeOp1 = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits(); |
| // FIXME: add support for when SizeOp1 isn't an exact multiple of |
| // NarrowSize. |
| if (SizeOp1 % NarrowSize != 0) |
| return UnableToLegalize; |
| int NumParts = SizeOp1 / NarrowSize; |
| |
| SmallVector<Register, 2> SrcRegs, DstRegs; |
| SmallVector<uint64_t, 2> Indexes; |
| extractParts(MI.getOperand(1).getReg(), NarrowTy, NumParts, SrcRegs); |
| |
| Register OpReg = MI.getOperand(0).getReg(); |
| uint64_t OpStart = MI.getOperand(2).getImm(); |
| uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); |
| for (int i = 0; i < NumParts; ++i) { |
| unsigned SrcStart = i * NarrowSize; |
| |
| if (SrcStart + NarrowSize <= OpStart || SrcStart >= OpStart + OpSize) { |
| // No part of the extract uses this subregister, ignore it. |
| continue; |
| } else if (SrcStart == OpStart && NarrowTy == MRI.getType(OpReg)) { |
| // The entire subregister is extracted, forward the value. |
| DstRegs.push_back(SrcRegs[i]); |
| continue; |
| } |
| |
| // OpSegStart is where this destination segment would start in OpReg if it |
| // extended infinitely in both directions. |
| int64_t ExtractOffset; |
| uint64_t SegSize; |
| if (OpStart < SrcStart) { |
| ExtractOffset = 0; |
| SegSize = std::min(NarrowSize, OpStart + OpSize - SrcStart); |
| } else { |
| ExtractOffset = OpStart - SrcStart; |
| SegSize = std::min(SrcStart + NarrowSize - OpStart, OpSize); |
| } |
| |
| Register SegReg = SrcRegs[i]; |
| if (ExtractOffset != 0 || SegSize != NarrowSize) { |
| // A genuine extract is needed. |
| SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); |
| MIRBuilder.buildExtract(SegReg, SrcRegs[i], ExtractOffset); |
| } |
| |
| DstRegs.push_back(SegReg); |
| } |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| if (MRI.getType(DstReg).isVector()) |
| MIRBuilder.buildBuildVector(DstReg, DstRegs); |
| else if (DstRegs.size() > 1) |
| MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); |
| else |
| MIRBuilder.buildCopy(DstReg, DstRegs[0]); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarInsert(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| // FIXME: Don't know how to handle secondary types yet. |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| SmallVector<Register, 2> SrcRegs, LeftoverRegs, DstRegs; |
| SmallVector<uint64_t, 2> Indexes; |
| LLT RegTy = MRI.getType(MI.getOperand(0).getReg()); |
| LLT LeftoverTy; |
| extractParts(MI.getOperand(1).getReg(), RegTy, NarrowTy, LeftoverTy, SrcRegs, |
| LeftoverRegs); |
| |
| for (Register Reg : LeftoverRegs) |
| SrcRegs.push_back(Reg); |
| |
| uint64_t NarrowSize = NarrowTy.getSizeInBits(); |
| Register OpReg = MI.getOperand(2).getReg(); |
| uint64_t OpStart = MI.getOperand(3).getImm(); |
| uint64_t OpSize = MRI.getType(OpReg).getSizeInBits(); |
| for (int I = 0, E = SrcRegs.size(); I != E; ++I) { |
| unsigned DstStart = I * NarrowSize; |
| |
| if (DstStart == OpStart && NarrowTy == MRI.getType(OpReg)) { |
| // The entire subregister is defined by this insert, forward the new |
| // value. |
| DstRegs.push_back(OpReg); |
| continue; |
| } |
| |
| Register SrcReg = SrcRegs[I]; |
| if (MRI.getType(SrcRegs[I]) == LeftoverTy) { |
| // The leftover reg is smaller than NarrowTy, so we need to extend it. |
| SrcReg = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.buildAnyExt(SrcReg, SrcRegs[I]); |
| } |
| |
| if (DstStart + NarrowSize <= OpStart || DstStart >= OpStart + OpSize) { |
| // No part of the insert affects this subregister, forward the original. |
| DstRegs.push_back(SrcReg); |
| continue; |
| } |
| |
| // OpSegStart is where this destination segment would start in OpReg if it |
| // extended infinitely in both directions. |
| int64_t ExtractOffset, InsertOffset; |
| uint64_t SegSize; |
| if (OpStart < DstStart) { |
| InsertOffset = 0; |
| ExtractOffset = DstStart - OpStart; |
| SegSize = std::min(NarrowSize, OpStart + OpSize - DstStart); |
| } else { |
| InsertOffset = OpStart - DstStart; |
| ExtractOffset = 0; |
| SegSize = |
| std::min(NarrowSize - InsertOffset, OpStart + OpSize - DstStart); |
| } |
| |
| Register SegReg = OpReg; |
| if (ExtractOffset != 0 || SegSize != OpSize) { |
| // A genuine extract is needed. |
| SegReg = MRI.createGenericVirtualRegister(LLT::scalar(SegSize)); |
| MIRBuilder.buildExtract(SegReg, OpReg, ExtractOffset); |
| } |
| |
| Register DstReg = MRI.createGenericVirtualRegister(NarrowTy); |
| MIRBuilder.buildInsert(DstReg, SrcReg, SegReg, InsertOffset); |
| DstRegs.push_back(DstReg); |
| } |
| |
| uint64_t WideSize = DstRegs.size() * NarrowSize; |
| Register DstReg = MI.getOperand(0).getReg(); |
| if (WideSize > RegTy.getSizeInBits()) { |
| Register MergeReg = MRI.createGenericVirtualRegister(LLT::scalar(WideSize)); |
| MIRBuilder.buildMergeLikeInstr(MergeReg, DstRegs); |
| MIRBuilder.buildTrunc(DstReg, MergeReg); |
| } else |
| MIRBuilder.buildMergeLikeInstr(DstReg, DstRegs); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarBasic(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| assert(MI.getNumOperands() == 3 && TypeIdx == 0); |
| |
| SmallVector<Register, 4> DstRegs, DstLeftoverRegs; |
| SmallVector<Register, 4> Src0Regs, Src0LeftoverRegs; |
| SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; |
| LLT LeftoverTy; |
| if (!extractParts(MI.getOperand(1).getReg(), DstTy, NarrowTy, LeftoverTy, |
| Src0Regs, Src0LeftoverRegs)) |
| return UnableToLegalize; |
| |
| LLT Unused; |
| if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, Unused, |
| Src1Regs, Src1LeftoverRegs)) |
| llvm_unreachable("inconsistent extractParts result"); |
| |
| for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { |
| auto Inst = MIRBuilder.buildInstr(MI.getOpcode(), {NarrowTy}, |
| {Src0Regs[I], Src1Regs[I]}); |
| DstRegs.push_back(Inst.getReg(0)); |
| } |
| |
| for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { |
| auto Inst = MIRBuilder.buildInstr( |
| MI.getOpcode(), |
| {LeftoverTy}, {Src0LeftoverRegs[I], Src1LeftoverRegs[I]}); |
| DstLeftoverRegs.push_back(Inst.getReg(0)); |
| } |
| |
| insertParts(DstReg, DstTy, NarrowTy, DstRegs, |
| LeftoverTy, DstLeftoverRegs); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarExt(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| auto [DstReg, SrcReg] = MI.getFirst2Regs(); |
| |
| LLT DstTy = MRI.getType(DstReg); |
| if (DstTy.isVector()) |
| return UnableToLegalize; |
| |
| SmallVector<Register, 8> Parts; |
| LLT GCDTy = extractGCDType(Parts, DstTy, NarrowTy, SrcReg); |
| LLT LCMTy = buildLCMMergePieces(DstTy, NarrowTy, GCDTy, Parts, MI.getOpcode()); |
| buildWidenedRemergeToDst(DstReg, LCMTy, Parts); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarSelect(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 0) |
| return UnableToLegalize; |
| |
| Register CondReg = MI.getOperand(1).getReg(); |
| LLT CondTy = MRI.getType(CondReg); |
| if (CondTy.isVector()) // TODO: Handle vselect |
| return UnableToLegalize; |
| |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(DstReg); |
| |
| SmallVector<Register, 4> DstRegs, DstLeftoverRegs; |
| SmallVector<Register, 4> Src1Regs, Src1LeftoverRegs; |
| SmallVector<Register, 4> Src2Regs, Src2LeftoverRegs; |
| LLT LeftoverTy; |
| if (!extractParts(MI.getOperand(2).getReg(), DstTy, NarrowTy, LeftoverTy, |
| Src1Regs, Src1LeftoverRegs)) |
| return UnableToLegalize; |
| |
| LLT Unused; |
| if (!extractParts(MI.getOperand(3).getReg(), DstTy, NarrowTy, Unused, |
| Src2Regs, Src2LeftoverRegs)) |
| llvm_unreachable("inconsistent extractParts result"); |
| |
| for (unsigned I = 0, E = Src1Regs.size(); I != E; ++I) { |
| auto Select = MIRBuilder.buildSelect(NarrowTy, |
| CondReg, Src1Regs[I], Src2Regs[I]); |
| DstRegs.push_back(Select.getReg(0)); |
| } |
| |
| for (unsigned I = 0, E = Src1LeftoverRegs.size(); I != E; ++I) { |
| auto Select = MIRBuilder.buildSelect( |
| LeftoverTy, CondReg, Src1LeftoverRegs[I], Src2LeftoverRegs[I]); |
| DstLeftoverRegs.push_back(Select.getReg(0)); |
| } |
| |
| insertParts(DstReg, DstTy, NarrowTy, DstRegs, |
| LeftoverTy, DstLeftoverRegs); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarCTLZ(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| |
| if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { |
| const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTLZ_ZERO_UNDEF; |
| |
| MachineIRBuilder &B = MIRBuilder; |
| auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); |
| // ctlz(Hi:Lo) -> Hi == 0 ? (NarrowSize + ctlz(Lo)) : ctlz(Hi) |
| auto C_0 = B.buildConstant(NarrowTy, 0); |
| auto HiIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), |
| UnmergeSrc.getReg(1), C_0); |
| auto LoCTLZ = IsUndef ? |
| B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)) : |
| B.buildCTLZ(DstTy, UnmergeSrc.getReg(0)); |
| auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); |
| auto HiIsZeroCTLZ = B.buildAdd(DstTy, LoCTLZ, C_NarrowSize); |
| auto HiCTLZ = B.buildCTLZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)); |
| B.buildSelect(DstReg, HiIsZero, HiIsZeroCTLZ, HiCTLZ); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarCTTZ(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| |
| if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { |
| const bool IsUndef = MI.getOpcode() == TargetOpcode::G_CTTZ_ZERO_UNDEF; |
| |
| MachineIRBuilder &B = MIRBuilder; |
| auto UnmergeSrc = B.buildUnmerge(NarrowTy, SrcReg); |
| // cttz(Hi:Lo) -> Lo == 0 ? (cttz(Hi) + NarrowSize) : cttz(Lo) |
| auto C_0 = B.buildConstant(NarrowTy, 0); |
| auto LoIsZero = B.buildICmp(CmpInst::ICMP_EQ, LLT::scalar(1), |
| UnmergeSrc.getReg(0), C_0); |
| auto HiCTTZ = IsUndef ? |
| B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(1)) : |
| B.buildCTTZ(DstTy, UnmergeSrc.getReg(1)); |
| auto C_NarrowSize = B.buildConstant(DstTy, NarrowSize); |
| auto LoIsZeroCTTZ = B.buildAdd(DstTy, HiCTTZ, C_NarrowSize); |
| auto LoCTTZ = B.buildCTTZ_ZERO_UNDEF(DstTy, UnmergeSrc.getReg(0)); |
| B.buildSelect(DstReg, LoIsZero, LoIsZeroCTTZ, LoCTTZ); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarCTPOP(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned NarrowSize = NarrowTy.getSizeInBits(); |
| |
| if (SrcTy.isScalar() && SrcTy.getSizeInBits() == 2 * NarrowSize) { |
| auto UnmergeSrc = MIRBuilder.buildUnmerge(NarrowTy, MI.getOperand(1)); |
| |
| auto LoCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(0)); |
| auto HiCTPOP = MIRBuilder.buildCTPOP(DstTy, UnmergeSrc.getReg(1)); |
| MIRBuilder.buildAdd(DstReg, HiCTPOP, LoCTPOP); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::narrowScalarFLDEXP(MachineInstr &MI, unsigned TypeIdx, |
| LLT NarrowTy) { |
| if (TypeIdx != 1) |
| return UnableToLegalize; |
| |
| MachineIRBuilder &B = MIRBuilder; |
| Register ExpReg = MI.getOperand(2).getReg(); |
| LLT ExpTy = MRI.getType(ExpReg); |
| |
| unsigned ClampSize = NarrowTy.getScalarSizeInBits(); |
| |
| // Clamp the exponent to the range of the target type. |
| auto MinExp = B.buildConstant(ExpTy, minIntN(ClampSize)); |
| auto ClampMin = B.buildSMax(ExpTy, ExpReg, MinExp); |
| auto MaxExp = B.buildConstant(ExpTy, maxIntN(ClampSize)); |
| auto Clamp = B.buildSMin(ExpTy, ClampMin, MaxExp); |
| |
| auto Trunc = B.buildTrunc(NarrowTy, Clamp); |
| Observer.changingInstr(MI); |
| MI.getOperand(2).setReg(Trunc.getReg(0)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerBitCount(MachineInstr &MI) { |
| unsigned Opc = MI.getOpcode(); |
| const auto &TII = MIRBuilder.getTII(); |
| auto isSupported = [this](const LegalityQuery &Q) { |
| auto QAction = LI.getAction(Q).Action; |
| return QAction == Legal || QAction == Libcall || QAction == Custom; |
| }; |
| switch (Opc) { |
| default: |
| return UnableToLegalize; |
| case TargetOpcode::G_CTLZ_ZERO_UNDEF: { |
| // This trivially expands to CTLZ. |
| Observer.changingInstr(MI); |
| MI.setDesc(TII.get(TargetOpcode::G_CTLZ)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_CTLZ: { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned Len = SrcTy.getSizeInBits(); |
| |
| if (isSupported({TargetOpcode::G_CTLZ_ZERO_UNDEF, {DstTy, SrcTy}})) { |
| // If CTLZ_ZERO_UNDEF is supported, emit that and a select for zero. |
| auto CtlzZU = MIRBuilder.buildCTLZ_ZERO_UNDEF(DstTy, SrcReg); |
| auto ZeroSrc = MIRBuilder.buildConstant(SrcTy, 0); |
| auto ICmp = MIRBuilder.buildICmp( |
| CmpInst::ICMP_EQ, SrcTy.changeElementSize(1), SrcReg, ZeroSrc); |
| auto LenConst = MIRBuilder.buildConstant(DstTy, Len); |
| MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CtlzZU); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| // for now, we do this: |
| // NewLen = NextPowerOf2(Len); |
| // x = x | (x >> 1); |
| // x = x | (x >> 2); |
| // ... |
| // x = x | (x >>16); |
| // x = x | (x >>32); // for 64-bit input |
| // Upto NewLen/2 |
| // return Len - popcount(x); |
| // |
| // Ref: "Hacker's Delight" by Henry Warren |
| Register Op = SrcReg; |
| unsigned NewLen = PowerOf2Ceil(Len); |
| for (unsigned i = 0; (1U << i) <= (NewLen / 2); ++i) { |
| auto MIBShiftAmt = MIRBuilder.buildConstant(SrcTy, 1ULL << i); |
| auto MIBOp = MIRBuilder.buildOr( |
| SrcTy, Op, MIRBuilder.buildLShr(SrcTy, Op, MIBShiftAmt)); |
| Op = MIBOp.getReg(0); |
| } |
| auto MIBPop = MIRBuilder.buildCTPOP(DstTy, Op); |
| MIRBuilder.buildSub(MI.getOperand(0), MIRBuilder.buildConstant(DstTy, Len), |
| MIBPop); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| case TargetOpcode::G_CTTZ_ZERO_UNDEF: { |
| // This trivially expands to CTTZ. |
| Observer.changingInstr(MI); |
| MI.setDesc(TII.get(TargetOpcode::G_CTTZ)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| case TargetOpcode::G_CTTZ: { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| |
| unsigned Len = SrcTy.getSizeInBits(); |
| if (isSupported({TargetOpcode::G_CTTZ_ZERO_UNDEF, {DstTy, SrcTy}})) { |
| // If CTTZ_ZERO_UNDEF is legal or custom, emit that and a select with |
| // zero. |
| auto CttzZU = MIRBuilder.buildCTTZ_ZERO_UNDEF(DstTy, SrcReg); |
| auto Zero = MIRBuilder.buildConstant(SrcTy, 0); |
| auto ICmp = MIRBuilder.buildICmp( |
| CmpInst::ICMP_EQ, DstTy.changeElementSize(1), SrcReg, Zero); |
| auto LenConst = MIRBuilder.buildConstant(DstTy, Len); |
| MIRBuilder.buildSelect(DstReg, ICmp, LenConst, CttzZU); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| // for now, we use: { return popcount(~x & (x - 1)); } |
| // unless the target has ctlz but not ctpop, in which case we use: |
| // { return 32 - nlz(~x & (x-1)); } |
| // Ref: "Hacker's Delight" by Henry Warren |
| auto MIBCstNeg1 = MIRBuilder.buildConstant(SrcTy, -1); |
| auto MIBNot = MIRBuilder.buildXor(SrcTy, SrcReg, MIBCstNeg1); |
| auto MIBTmp = MIRBuilder.buildAnd( |
| SrcTy, MIBNot, MIRBuilder.buildAdd(SrcTy, SrcReg, MIBCstNeg1)); |
| if (!isSupported({TargetOpcode::G_CTPOP, {SrcTy, SrcTy}}) && |
| isSupported({TargetOpcode::G_CTLZ, {SrcTy, SrcTy}})) { |
| auto MIBCstLen = MIRBuilder.buildConstant(SrcTy, Len); |
| MIRBuilder.buildSub(MI.getOperand(0), MIBCstLen, |
| MIRBuilder.buildCTLZ(SrcTy, MIBTmp)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| MI.setDesc(TII.get(TargetOpcode::G_CTPOP)); |
| MI.getOperand(1).setReg(MIBTmp.getReg(0)); |
| return Legalized; |
| } |
| case TargetOpcode::G_CTPOP: { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT Ty = MRI.getType(SrcReg); |
| unsigned Size = Ty.getSizeInBits(); |
| MachineIRBuilder &B = MIRBuilder; |
| |
| // Count set bits in blocks of 2 bits. Default approach would be |
| // B2Count = { val & 0x55555555 } + { (val >> 1) & 0x55555555 } |
| // We use following formula instead: |
| // B2Count = val - { (val >> 1) & 0x55555555 } |
| // since it gives same result in blocks of 2 with one instruction less. |
| auto C_1 = B.buildConstant(Ty, 1); |
| auto B2Set1LoTo1Hi = B.buildLShr(Ty, SrcReg, C_1); |
| APInt B2Mask1HiTo0 = APInt::getSplat(Size, APInt(8, 0x55)); |
| auto C_B2Mask1HiTo0 = B.buildConstant(Ty, B2Mask1HiTo0); |
| auto B2Count1Hi = B.buildAnd(Ty, B2Set1LoTo1Hi, C_B2Mask1HiTo0); |
| auto B2Count = B.buildSub(Ty, SrcReg, B2Count1Hi); |
| |
| // In order to get count in blocks of 4 add values from adjacent block of 2. |
| // B4Count = { B2Count & 0x33333333 } + { (B2Count >> 2) & 0x33333333 } |
| auto C_2 = B.buildConstant(Ty, 2); |
| auto B4Set2LoTo2Hi = B.buildLShr(Ty, B2Count, C_2); |
| APInt B4Mask2HiTo0 = APInt::getSplat(Size, APInt(8, 0x33)); |
| auto C_B4Mask2HiTo0 = B.buildConstant(Ty, B4Mask2HiTo0); |
| auto B4HiB2Count = B.buildAnd(Ty, B4Set2LoTo2Hi, C_B4Mask2HiTo0); |
| auto B4LoB2Count = B.buildAnd(Ty, B2Count, C_B4Mask2HiTo0); |
| auto B4Count = B.buildAdd(Ty, B4HiB2Count, B4LoB2Count); |
| |
| // For count in blocks of 8 bits we don't have to mask high 4 bits before |
| // addition since count value sits in range {0,...,8} and 4 bits are enough |
| // to hold such binary values. After addition high 4 bits still hold count |
| // of set bits in high 4 bit block, set them to zero and get 8 bit result. |
| // B8Count = { B4Count + (B4Count >> 4) } & 0x0F0F0F0F |
| auto C_4 = B.buildConstant(Ty, 4); |
| auto B8HiB4Count = B.buildLShr(Ty, B4Count, C_4); |
| auto B8CountDirty4Hi = B.buildAdd(Ty, B8HiB4Count, B4Count); |
| APInt B8Mask4HiTo0 = APInt::getSplat(Size, APInt(8, 0x0F)); |
| auto C_B8Mask4HiTo0 = B.buildConstant(Ty, B8Mask4HiTo0); |
| auto B8Count = B.buildAnd(Ty, B8CountDirty4Hi, C_B8Mask4HiTo0); |
| |
| assert(Size<=128 && "Scalar size is too large for CTPOP lower algorithm"); |
| // 8 bits can hold CTPOP result of 128 bit int or smaller. Mul with this |
| // bitmask will set 8 msb in ResTmp to sum of all B8Counts in 8 bit blocks. |
| auto MulMask = B.buildConstant(Ty, APInt::getSplat(Size, APInt(8, 0x01))); |
| auto ResTmp = B.buildMul(Ty, B8Count, MulMask); |
| |
| // Shift count result from 8 high bits to low bits. |
| auto C_SizeM8 = B.buildConstant(Ty, Size - 8); |
| B.buildLShr(MI.getOperand(0).getReg(), ResTmp, C_SizeM8); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| } |
| } |
| |
| // Check that (every element of) Reg is undef or not an exact multiple of BW. |
| static bool isNonZeroModBitWidthOrUndef(const MachineRegisterInfo &MRI, |
| Register Reg, unsigned BW) { |
| return matchUnaryPredicate( |
| MRI, Reg, |
| [=](const Constant *C) { |
| // Null constant here means an undef. |
| const ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C); |
| return !CI || CI->getValue().urem(BW) != 0; |
| }, |
| /*AllowUndefs*/ true); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFunnelShiftWithInverse(MachineInstr &MI) { |
| auto [Dst, X, Y, Z] = MI.getFirst4Regs(); |
| LLT Ty = MRI.getType(Dst); |
| LLT ShTy = MRI.getType(Z); |
| |
| unsigned BW = Ty.getScalarSizeInBits(); |
| |
| if (!isPowerOf2_32(BW)) |
| return UnableToLegalize; |
| |
| const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; |
| unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; |
| |
| if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { |
| // fshl X, Y, Z -> fshr X, Y, -Z |
| // fshr X, Y, Z -> fshl X, Y, -Z |
| auto Zero = MIRBuilder.buildConstant(ShTy, 0); |
| Z = MIRBuilder.buildSub(Ty, Zero, Z).getReg(0); |
| } else { |
| // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z |
| // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z |
| auto One = MIRBuilder.buildConstant(ShTy, 1); |
| if (IsFSHL) { |
| Y = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); |
| X = MIRBuilder.buildLShr(Ty, X, One).getReg(0); |
| } else { |
| X = MIRBuilder.buildInstr(RevOpcode, {Ty}, {X, Y, One}).getReg(0); |
| Y = MIRBuilder.buildShl(Ty, Y, One).getReg(0); |
| } |
| |
| Z = MIRBuilder.buildNot(ShTy, Z).getReg(0); |
| } |
| |
| MIRBuilder.buildInstr(RevOpcode, {Dst}, {X, Y, Z}); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFunnelShiftAsShifts(MachineInstr &MI) { |
| auto [Dst, X, Y, Z] = MI.getFirst4Regs(); |
| LLT Ty = MRI.getType(Dst); |
| LLT ShTy = MRI.getType(Z); |
| |
| const unsigned BW = Ty.getScalarSizeInBits(); |
| const bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; |
| |
| Register ShX, ShY; |
| Register ShAmt, InvShAmt; |
| |
| // FIXME: Emit optimized urem by constant instead of letting it expand later. |
| if (isNonZeroModBitWidthOrUndef(MRI, Z, BW)) { |
| // fshl: X << C | Y >> (BW - C) |
| // fshr: X << (BW - C) | Y >> C |
| // where C = Z % BW is not zero |
| auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); |
| ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); |
| InvShAmt = MIRBuilder.buildSub(ShTy, BitWidthC, ShAmt).getReg(0); |
| ShX = MIRBuilder.buildShl(Ty, X, IsFSHL ? ShAmt : InvShAmt).getReg(0); |
| ShY = MIRBuilder.buildLShr(Ty, Y, IsFSHL ? InvShAmt : ShAmt).getReg(0); |
| } else { |
| // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) |
| // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) |
| auto Mask = MIRBuilder.buildConstant(ShTy, BW - 1); |
| if (isPowerOf2_32(BW)) { |
| // Z % BW -> Z & (BW - 1) |
| ShAmt = MIRBuilder.buildAnd(ShTy, Z, Mask).getReg(0); |
| // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) |
| auto NotZ = MIRBuilder.buildNot(ShTy, Z); |
| InvShAmt = MIRBuilder.buildAnd(ShTy, NotZ, Mask).getReg(0); |
| } else { |
| auto BitWidthC = MIRBuilder.buildConstant(ShTy, BW); |
| ShAmt = MIRBuilder.buildURem(ShTy, Z, BitWidthC).getReg(0); |
| InvShAmt = MIRBuilder.buildSub(ShTy, Mask, ShAmt).getReg(0); |
| } |
| |
| auto One = MIRBuilder.buildConstant(ShTy, 1); |
| if (IsFSHL) { |
| ShX = MIRBuilder.buildShl(Ty, X, ShAmt).getReg(0); |
| auto ShY1 = MIRBuilder.buildLShr(Ty, Y, One); |
| ShY = MIRBuilder.buildLShr(Ty, ShY1, InvShAmt).getReg(0); |
| } else { |
| auto ShX1 = MIRBuilder.buildShl(Ty, X, One); |
| ShX = MIRBuilder.buildShl(Ty, ShX1, InvShAmt).getReg(0); |
| ShY = MIRBuilder.buildLShr(Ty, Y, ShAmt).getReg(0); |
| } |
| } |
| |
| MIRBuilder.buildOr(Dst, ShX, ShY); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFunnelShift(MachineInstr &MI) { |
| // These operations approximately do the following (while avoiding undefined |
| // shifts by BW): |
| // G_FSHL: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| // G_FSHR: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| Register Dst = MI.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(Dst); |
| LLT ShTy = MRI.getType(MI.getOperand(3).getReg()); |
| |
| bool IsFSHL = MI.getOpcode() == TargetOpcode::G_FSHL; |
| unsigned RevOpcode = IsFSHL ? TargetOpcode::G_FSHR : TargetOpcode::G_FSHL; |
| |
| // TODO: Use smarter heuristic that accounts for vector legalization. |
| if (LI.getAction({RevOpcode, {Ty, ShTy}}).Action == Lower) |
| return lowerFunnelShiftAsShifts(MI); |
| |
| // This only works for powers of 2, fallback to shifts if it fails. |
| LegalizerHelper::LegalizeResult Result = lowerFunnelShiftWithInverse(MI); |
| if (Result == UnableToLegalize) |
| return lowerFunnelShiftAsShifts(MI); |
| return Result; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerEXT(MachineInstr &MI) { |
| auto [Dst, Src] = MI.getFirst2Regs(); |
| LLT DstTy = MRI.getType(Dst); |
| LLT SrcTy = MRI.getType(Src); |
| |
| uint32_t DstTySize = DstTy.getSizeInBits(); |
| uint32_t DstTyScalarSize = DstTy.getScalarSizeInBits(); |
| uint32_t SrcTyScalarSize = SrcTy.getScalarSizeInBits(); |
| |
| if (!isPowerOf2_32(DstTySize) || !isPowerOf2_32(DstTyScalarSize) || |
| !isPowerOf2_32(SrcTyScalarSize)) |
| return UnableToLegalize; |
| |
| // The step between extend is too large, split it by creating an intermediate |
| // extend instruction |
| if (SrcTyScalarSize * 2 < DstTyScalarSize) { |
| LLT MidTy = SrcTy.changeElementSize(SrcTyScalarSize * 2); |
| // If the destination type is illegal, split it into multiple statements |
| // zext x -> zext(merge(zext(unmerge), zext(unmerge))) |
| auto NewExt = MIRBuilder.buildInstr(MI.getOpcode(), {MidTy}, {Src}); |
| // Unmerge the vector |
| LLT EltTy = MidTy.changeElementCount( |
| MidTy.getElementCount().divideCoefficientBy(2)); |
| auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, NewExt); |
| |
| // ZExt the vectors |
| LLT ZExtResTy = DstTy.changeElementCount( |
| DstTy.getElementCount().divideCoefficientBy(2)); |
| auto ZExtRes1 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, |
| {UnmergeSrc.getReg(0)}); |
| auto ZExtRes2 = MIRBuilder.buildInstr(MI.getOpcode(), {ZExtResTy}, |
| {UnmergeSrc.getReg(1)}); |
| |
| // Merge the ending vectors |
| MIRBuilder.buildMergeLikeInstr(Dst, {ZExtRes1, ZExtRes2}); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerRotateWithReverseRotate(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); |
| auto Zero = MIRBuilder.buildConstant(AmtTy, 0); |
| bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; |
| unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; |
| auto Neg = MIRBuilder.buildSub(AmtTy, Zero, Amt); |
| MIRBuilder.buildInstr(RevRot, {Dst}, {Src, Neg}); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerRotate(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy, Amt, AmtTy] = MI.getFirst3RegLLTs(); |
| |
| unsigned EltSizeInBits = DstTy.getScalarSizeInBits(); |
| bool IsLeft = MI.getOpcode() == TargetOpcode::G_ROTL; |
| |
| MIRBuilder.setInstrAndDebugLoc(MI); |
| |
| // If a rotate in the other direction is supported, use it. |
| unsigned RevRot = IsLeft ? TargetOpcode::G_ROTR : TargetOpcode::G_ROTL; |
| if (LI.isLegalOrCustom({RevRot, {DstTy, SrcTy}}) && |
| isPowerOf2_32(EltSizeInBits)) |
| return lowerRotateWithReverseRotate(MI); |
| |
| // If a funnel shift is supported, use it. |
| unsigned FShOpc = IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; |
| unsigned RevFsh = !IsLeft ? TargetOpcode::G_FSHL : TargetOpcode::G_FSHR; |
| bool IsFShLegal = false; |
| if ((IsFShLegal = LI.isLegalOrCustom({FShOpc, {DstTy, AmtTy}})) || |
| LI.isLegalOrCustom({RevFsh, {DstTy, AmtTy}})) { |
| auto buildFunnelShift = [&](unsigned Opc, Register R1, Register R2, |
| Register R3) { |
| MIRBuilder.buildInstr(Opc, {R1}, {R2, R2, R3}); |
| MI.eraseFromParent(); |
| return Legalized; |
| }; |
| // If a funnel shift in the other direction is supported, use it. |
| if (IsFShLegal) { |
| return buildFunnelShift(FShOpc, Dst, Src, Amt); |
| } else if (isPowerOf2_32(EltSizeInBits)) { |
| Amt = MIRBuilder.buildNeg(DstTy, Amt).getReg(0); |
| return buildFunnelShift(RevFsh, Dst, Src, Amt); |
| } |
| } |
| |
| auto Zero = MIRBuilder.buildConstant(AmtTy, 0); |
| unsigned ShOpc = IsLeft ? TargetOpcode::G_SHL : TargetOpcode::G_LSHR; |
| unsigned RevShiftOpc = IsLeft ? TargetOpcode::G_LSHR : TargetOpcode::G_SHL; |
| auto BitWidthMinusOneC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits - 1); |
| Register ShVal; |
| Register RevShiftVal; |
| if (isPowerOf2_32(EltSizeInBits)) { |
| // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) |
| // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) |
| auto NegAmt = MIRBuilder.buildSub(AmtTy, Zero, Amt); |
| auto ShAmt = MIRBuilder.buildAnd(AmtTy, Amt, BitWidthMinusOneC); |
| ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); |
| auto RevAmt = MIRBuilder.buildAnd(AmtTy, NegAmt, BitWidthMinusOneC); |
| RevShiftVal = |
| MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, RevAmt}).getReg(0); |
| } else { |
| // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) |
| // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) |
| auto BitWidthC = MIRBuilder.buildConstant(AmtTy, EltSizeInBits); |
| auto ShAmt = MIRBuilder.buildURem(AmtTy, Amt, BitWidthC); |
| ShVal = MIRBuilder.buildInstr(ShOpc, {DstTy}, {Src, ShAmt}).getReg(0); |
| auto RevAmt = MIRBuilder.buildSub(AmtTy, BitWidthMinusOneC, ShAmt); |
| auto One = MIRBuilder.buildConstant(AmtTy, 1); |
| auto Inner = MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Src, One}); |
| RevShiftVal = |
| MIRBuilder.buildInstr(RevShiftOpc, {DstTy}, {Inner, RevAmt}).getReg(0); |
| } |
| MIRBuilder.buildOr(Dst, ShVal, RevShiftVal); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // Expand s32 = G_UITOFP s64 using bit operations to an IEEE float |
| // representation. |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerU64ToF32BitOps(MachineInstr &MI) { |
| auto [Dst, Src] = MI.getFirst2Regs(); |
| const LLT S64 = LLT::scalar(64); |
| const LLT S32 = LLT::scalar(32); |
| const LLT S1 = LLT::scalar(1); |
| |
| assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S32); |
| |
| // unsigned cul2f(ulong u) { |
| // uint lz = clz(u); |
| // uint e = (u != 0) ? 127U + 63U - lz : 0; |
| // u = (u << lz) & 0x7fffffffffffffffUL; |
| // ulong t = u & 0xffffffffffUL; |
| // uint v = (e << 23) | (uint)(u >> 40); |
| // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); |
| // return as_float(v + r); |
| // } |
| |
| auto Zero32 = MIRBuilder.buildConstant(S32, 0); |
| auto Zero64 = MIRBuilder.buildConstant(S64, 0); |
| |
| auto LZ = MIRBuilder.buildCTLZ_ZERO_UNDEF(S32, Src); |
| |
| auto K = MIRBuilder.buildConstant(S32, 127U + 63U); |
| auto Sub = MIRBuilder.buildSub(S32, K, LZ); |
| |
| auto NotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, Src, Zero64); |
| auto E = MIRBuilder.buildSelect(S32, NotZero, Sub, Zero32); |
| |
| auto Mask0 = MIRBuilder.buildConstant(S64, (-1ULL) >> 1); |
| auto ShlLZ = MIRBuilder.buildShl(S64, Src, LZ); |
| |
| auto U = MIRBuilder.buildAnd(S64, ShlLZ, Mask0); |
| |
| auto Mask1 = MIRBuilder.buildConstant(S64, 0xffffffffffULL); |
| auto T = MIRBuilder.buildAnd(S64, U, Mask1); |
| |
| auto UShl = MIRBuilder.buildLShr(S64, U, MIRBuilder.buildConstant(S64, 40)); |
| auto ShlE = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 23)); |
| auto V = MIRBuilder.buildOr(S32, ShlE, MIRBuilder.buildTrunc(S32, UShl)); |
| |
| auto C = MIRBuilder.buildConstant(S64, 0x8000000000ULL); |
| auto RCmp = MIRBuilder.buildICmp(CmpInst::ICMP_UGT, S1, T, C); |
| auto TCmp = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, T, C); |
| auto One = MIRBuilder.buildConstant(S32, 1); |
| |
| auto VTrunc1 = MIRBuilder.buildAnd(S32, V, One); |
| auto Select0 = MIRBuilder.buildSelect(S32, TCmp, VTrunc1, Zero32); |
| auto R = MIRBuilder.buildSelect(S32, RCmp, One, Select0); |
| MIRBuilder.buildAdd(Dst, V, R); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerUITOFP(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); |
| |
| if (SrcTy == LLT::scalar(1)) { |
| auto True = MIRBuilder.buildFConstant(DstTy, 1.0); |
| auto False = MIRBuilder.buildFConstant(DstTy, 0.0); |
| MIRBuilder.buildSelect(Dst, Src, True, False); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (SrcTy != LLT::scalar(64)) |
| return UnableToLegalize; |
| |
| if (DstTy == LLT::scalar(32)) { |
| // TODO: SelectionDAG has several alternative expansions to port which may |
| // be more reasonble depending on the available instructions. If a target |
| // has sitofp, does not have CTLZ, or can efficiently use f64 as an |
| // intermediate type, this is probably worse. |
| return lowerU64ToF32BitOps(MI); |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerSITOFP(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); |
| |
| const LLT S64 = LLT::scalar(64); |
| const LLT S32 = LLT::scalar(32); |
| const LLT S1 = LLT::scalar(1); |
| |
| if (SrcTy == S1) { |
| auto True = MIRBuilder.buildFConstant(DstTy, -1.0); |
| auto False = MIRBuilder.buildFConstant(DstTy, 0.0); |
| MIRBuilder.buildSelect(Dst, Src, True, False); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (SrcTy != S64) |
| return UnableToLegalize; |
| |
| if (DstTy == S32) { |
| // signed cl2f(long l) { |
| // long s = l >> 63; |
| // float r = cul2f((l + s) ^ s); |
| // return s ? -r : r; |
| // } |
| Register L = Src; |
| auto SignBit = MIRBuilder.buildConstant(S64, 63); |
| auto S = MIRBuilder.buildAShr(S64, L, SignBit); |
| |
| auto LPlusS = MIRBuilder.buildAdd(S64, L, S); |
| auto Xor = MIRBuilder.buildXor(S64, LPlusS, S); |
| auto R = MIRBuilder.buildUITOFP(S32, Xor); |
| |
| auto RNeg = MIRBuilder.buildFNeg(S32, R); |
| auto SignNotZero = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, S, |
| MIRBuilder.buildConstant(S64, 0)); |
| MIRBuilder.buildSelect(Dst, SignNotZero, RNeg, R); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOUI(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); |
| const LLT S64 = LLT::scalar(64); |
| const LLT S32 = LLT::scalar(32); |
| |
| if (SrcTy != S64 && SrcTy != S32) |
| return UnableToLegalize; |
| if (DstTy != S32 && DstTy != S64) |
| return UnableToLegalize; |
| |
| // FPTOSI gives same result as FPTOUI for positive signed integers. |
| // FPTOUI needs to deal with fp values that convert to unsigned integers |
| // greater or equal to 2^31 for float or 2^63 for double. For brevity 2^Exp. |
| |
| APInt TwoPExpInt = APInt::getSignMask(DstTy.getSizeInBits()); |
| APFloat TwoPExpFP(SrcTy.getSizeInBits() == 32 ? APFloat::IEEEsingle() |
| : APFloat::IEEEdouble(), |
| APInt::getZero(SrcTy.getSizeInBits())); |
| TwoPExpFP.convertFromAPInt(TwoPExpInt, false, APFloat::rmNearestTiesToEven); |
| |
| MachineInstrBuilder FPTOSI = MIRBuilder.buildFPTOSI(DstTy, Src); |
| |
| MachineInstrBuilder Threshold = MIRBuilder.buildFConstant(SrcTy, TwoPExpFP); |
| // For fp Value greater or equal to Threshold(2^Exp), we use FPTOSI on |
| // (Value - 2^Exp) and add 2^Exp by setting highest bit in result to 1. |
| MachineInstrBuilder FSub = MIRBuilder.buildFSub(SrcTy, Src, Threshold); |
| MachineInstrBuilder ResLowBits = MIRBuilder.buildFPTOSI(DstTy, FSub); |
| MachineInstrBuilder ResHighBit = MIRBuilder.buildConstant(DstTy, TwoPExpInt); |
| MachineInstrBuilder Res = MIRBuilder.buildXor(DstTy, ResLowBits, ResHighBit); |
| |
| const LLT S1 = LLT::scalar(1); |
| |
| MachineInstrBuilder FCMP = |
| MIRBuilder.buildFCmp(CmpInst::FCMP_ULT, S1, Src, Threshold); |
| MIRBuilder.buildSelect(Dst, FCMP, FPTOSI, Res); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPTOSI(MachineInstr &MI) { |
| auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs(); |
| const LLT S64 = LLT::scalar(64); |
| const LLT S32 = LLT::scalar(32); |
| |
| // FIXME: Only f32 to i64 conversions are supported. |
| if (SrcTy.getScalarType() != S32 || DstTy.getScalarType() != S64) |
| return UnableToLegalize; |
| |
| // Expand f32 -> i64 conversion |
| // This algorithm comes from compiler-rt's implementation of fixsfdi: |
| // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c |
| |
| unsigned SrcEltBits = SrcTy.getScalarSizeInBits(); |
| |
| auto ExponentMask = MIRBuilder.buildConstant(SrcTy, 0x7F800000); |
| auto ExponentLoBit = MIRBuilder.buildConstant(SrcTy, 23); |
| |
| auto AndExpMask = MIRBuilder.buildAnd(SrcTy, Src, ExponentMask); |
| auto ExponentBits = MIRBuilder.buildLShr(SrcTy, AndExpMask, ExponentLoBit); |
| |
| auto SignMask = MIRBuilder.buildConstant(SrcTy, |
| APInt::getSignMask(SrcEltBits)); |
| auto AndSignMask = MIRBuilder.buildAnd(SrcTy, Src, SignMask); |
| auto SignLowBit = MIRBuilder.buildConstant(SrcTy, SrcEltBits - 1); |
| auto Sign = MIRBuilder.buildAShr(SrcTy, AndSignMask, SignLowBit); |
| Sign = MIRBuilder.buildSExt(DstTy, Sign); |
| |
| auto MantissaMask = MIRBuilder.buildConstant(SrcTy, 0x007FFFFF); |
| auto AndMantissaMask = MIRBuilder.buildAnd(SrcTy, Src, MantissaMask); |
| auto K = MIRBuilder.buildConstant(SrcTy, 0x00800000); |
| |
| auto R = MIRBuilder.buildOr(SrcTy, AndMantissaMask, K); |
| R = MIRBuilder.buildZExt(DstTy, R); |
| |
| auto Bias = MIRBuilder.buildConstant(SrcTy, 127); |
| auto Exponent = MIRBuilder.buildSub(SrcTy, ExponentBits, Bias); |
| auto SubExponent = MIRBuilder.buildSub(SrcTy, Exponent, ExponentLoBit); |
| auto ExponentSub = MIRBuilder.buildSub(SrcTy, ExponentLoBit, Exponent); |
| |
| auto Shl = MIRBuilder.buildShl(DstTy, R, SubExponent); |
| auto Srl = MIRBuilder.buildLShr(DstTy, R, ExponentSub); |
| |
| const LLT S1 = LLT::scalar(1); |
| auto CmpGt = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, |
| S1, Exponent, ExponentLoBit); |
| |
| R = MIRBuilder.buildSelect(DstTy, CmpGt, Shl, Srl); |
| |
| auto XorSign = MIRBuilder.buildXor(DstTy, R, Sign); |
| auto Ret = MIRBuilder.buildSub(DstTy, XorSign, Sign); |
| |
| auto ZeroSrcTy = MIRBuilder.buildConstant(SrcTy, 0); |
| |
| auto ExponentLt0 = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, |
| S1, Exponent, ZeroSrcTy); |
| |
| auto ZeroDstTy = MIRBuilder.buildConstant(DstTy, 0); |
| MIRBuilder.buildSelect(Dst, ExponentLt0, ZeroDstTy, Ret); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // f64 -> f16 conversion using round-to-nearest-even rounding mode. |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFPTRUNC_F64_TO_F16(MachineInstr &MI) { |
| const LLT S1 = LLT::scalar(1); |
| const LLT S32 = LLT::scalar(32); |
| |
| auto [Dst, Src] = MI.getFirst2Regs(); |
| assert(MRI.getType(Dst).getScalarType() == LLT::scalar(16) && |
| MRI.getType(Src).getScalarType() == LLT::scalar(64)); |
| |
| if (MRI.getType(Src).isVector()) // TODO: Handle vectors directly. |
| return UnableToLegalize; |
| |
| if (MIRBuilder.getMF().getTarget().Options.UnsafeFPMath) { |
| unsigned Flags = MI.getFlags(); |
| auto Src32 = MIRBuilder.buildFPTrunc(S32, Src, Flags); |
| MIRBuilder.buildFPTrunc(Dst, Src32, Flags); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| const unsigned ExpMask = 0x7ff; |
| const unsigned ExpBiasf64 = 1023; |
| const unsigned ExpBiasf16 = 15; |
| |
| auto Unmerge = MIRBuilder.buildUnmerge(S32, Src); |
| Register U = Unmerge.getReg(0); |
| Register UH = Unmerge.getReg(1); |
| |
| auto E = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 20)); |
| E = MIRBuilder.buildAnd(S32, E, MIRBuilder.buildConstant(S32, ExpMask)); |
| |
| // Subtract the fp64 exponent bias (1023) to get the real exponent and |
| // add the f16 bias (15) to get the biased exponent for the f16 format. |
| E = MIRBuilder.buildAdd( |
| S32, E, MIRBuilder.buildConstant(S32, -ExpBiasf64 + ExpBiasf16)); |
| |
| auto M = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 8)); |
| M = MIRBuilder.buildAnd(S32, M, MIRBuilder.buildConstant(S32, 0xffe)); |
| |
| auto MaskedSig = MIRBuilder.buildAnd(S32, UH, |
| MIRBuilder.buildConstant(S32, 0x1ff)); |
| MaskedSig = MIRBuilder.buildOr(S32, MaskedSig, U); |
| |
| auto Zero = MIRBuilder.buildConstant(S32, 0); |
| auto SigCmpNE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, MaskedSig, Zero); |
| auto Lo40Set = MIRBuilder.buildZExt(S32, SigCmpNE0); |
| M = MIRBuilder.buildOr(S32, M, Lo40Set); |
| |
| // (M != 0 ? 0x0200 : 0) | 0x7c00; |
| auto Bits0x200 = MIRBuilder.buildConstant(S32, 0x0200); |
| auto CmpM_NE0 = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, M, Zero); |
| auto SelectCC = MIRBuilder.buildSelect(S32, CmpM_NE0, Bits0x200, Zero); |
| |
| auto Bits0x7c00 = MIRBuilder.buildConstant(S32, 0x7c00); |
| auto I = MIRBuilder.buildOr(S32, SelectCC, Bits0x7c00); |
| |
| // N = M | (E << 12); |
| auto EShl12 = MIRBuilder.buildShl(S32, E, MIRBuilder.buildConstant(S32, 12)); |
| auto N = MIRBuilder.buildOr(S32, M, EShl12); |
| |
| // B = clamp(1-E, 0, 13); |
| auto One = MIRBuilder.buildConstant(S32, 1); |
| auto OneSubExp = MIRBuilder.buildSub(S32, One, E); |
| auto B = MIRBuilder.buildSMax(S32, OneSubExp, Zero); |
| B = MIRBuilder.buildSMin(S32, B, MIRBuilder.buildConstant(S32, 13)); |
| |
| auto SigSetHigh = MIRBuilder.buildOr(S32, M, |
| MIRBuilder.buildConstant(S32, 0x1000)); |
| |
| auto D = MIRBuilder.buildLShr(S32, SigSetHigh, B); |
| auto D0 = MIRBuilder.buildShl(S32, D, B); |
| |
| auto D0_NE_SigSetHigh = MIRBuilder.buildICmp(CmpInst::ICMP_NE, S1, |
| D0, SigSetHigh); |
| auto D1 = MIRBuilder.buildZExt(S32, D0_NE_SigSetHigh); |
| D = MIRBuilder.buildOr(S32, D, D1); |
| |
| auto CmpELtOne = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, S1, E, One); |
| auto V = MIRBuilder.buildSelect(S32, CmpELtOne, D, N); |
| |
| auto VLow3 = MIRBuilder.buildAnd(S32, V, MIRBuilder.buildConstant(S32, 7)); |
| V = MIRBuilder.buildLShr(S32, V, MIRBuilder.buildConstant(S32, 2)); |
| |
| auto VLow3Eq3 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, VLow3, |
| MIRBuilder.buildConstant(S32, 3)); |
| auto V0 = MIRBuilder.buildZExt(S32, VLow3Eq3); |
| |
| auto VLow3Gt5 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, VLow3, |
| MIRBuilder.buildConstant(S32, 5)); |
| auto V1 = MIRBuilder.buildZExt(S32, VLow3Gt5); |
| |
| V1 = MIRBuilder.buildOr(S32, V0, V1); |
| V = MIRBuilder.buildAdd(S32, V, V1); |
| |
| auto CmpEGt30 = MIRBuilder.buildICmp(CmpInst::ICMP_SGT, S1, |
| E, MIRBuilder.buildConstant(S32, 30)); |
| V = MIRBuilder.buildSelect(S32, CmpEGt30, |
| MIRBuilder.buildConstant(S32, 0x7c00), V); |
| |
| auto CmpEGt1039 = MIRBuilder.buildICmp(CmpInst::ICMP_EQ, S1, |
| E, MIRBuilder.buildConstant(S32, 1039)); |
| V = MIRBuilder.buildSelect(S32, CmpEGt1039, I, V); |
| |
| // Extract the sign bit. |
| auto Sign = MIRBuilder.buildLShr(S32, UH, MIRBuilder.buildConstant(S32, 16)); |
| Sign = MIRBuilder.buildAnd(S32, Sign, MIRBuilder.buildConstant(S32, 0x8000)); |
| |
| // Insert the sign bit |
| V = MIRBuilder.buildOr(S32, Sign, V); |
| |
| MIRBuilder.buildTrunc(Dst, V); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFPTRUNC(MachineInstr &MI) { |
| auto [DstTy, SrcTy] = MI.getFirst2LLTs(); |
| const LLT S64 = LLT::scalar(64); |
| const LLT S16 = LLT::scalar(16); |
| |
| if (DstTy.getScalarType() == S16 && SrcTy.getScalarType() == S64) |
| return lowerFPTRUNC_F64_TO_F16(MI); |
| |
| return UnableToLegalize; |
| } |
| |
| // TODO: If RHS is a constant SelectionDAGBuilder expands this into a |
| // multiplication tree. |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerFPOWI(MachineInstr &MI) { |
| auto [Dst, Src0, Src1] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Dst); |
| |
| auto CvtSrc1 = MIRBuilder.buildSITOFP(Ty, Src1); |
| MIRBuilder.buildFPow(Dst, Src0, CvtSrc1, MI.getFlags()); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| static CmpInst::Predicate minMaxToCompare(unsigned Opc) { |
| switch (Opc) { |
| case TargetOpcode::G_SMIN: |
| return CmpInst::ICMP_SLT; |
| case TargetOpcode::G_SMAX: |
| return CmpInst::ICMP_SGT; |
| case TargetOpcode::G_UMIN: |
| return CmpInst::ICMP_ULT; |
| case TargetOpcode::G_UMAX: |
| return CmpInst::ICMP_UGT; |
| default: |
| llvm_unreachable("not in integer min/max"); |
| } |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerMinMax(MachineInstr &MI) { |
| auto [Dst, Src0, Src1] = MI.getFirst3Regs(); |
| |
| const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode()); |
| LLT CmpType = MRI.getType(Dst).changeElementSize(1); |
| |
| auto Cmp = MIRBuilder.buildICmp(Pred, CmpType, Src0, Src1); |
| MIRBuilder.buildSelect(Dst, Cmp, Src0, Src1); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFCopySign(MachineInstr &MI) { |
| auto [Dst, DstTy, Src0, Src0Ty, Src1, Src1Ty] = MI.getFirst3RegLLTs(); |
| const int Src0Size = Src0Ty.getScalarSizeInBits(); |
| const int Src1Size = Src1Ty.getScalarSizeInBits(); |
| |
| auto SignBitMask = MIRBuilder.buildConstant( |
| Src0Ty, APInt::getSignMask(Src0Size)); |
| |
| auto NotSignBitMask = MIRBuilder.buildConstant( |
| Src0Ty, APInt::getLowBitsSet(Src0Size, Src0Size - 1)); |
| |
| Register And0 = MIRBuilder.buildAnd(Src0Ty, Src0, NotSignBitMask).getReg(0); |
| Register And1; |
| if (Src0Ty == Src1Ty) { |
| And1 = MIRBuilder.buildAnd(Src1Ty, Src1, SignBitMask).getReg(0); |
| } else if (Src0Size > Src1Size) { |
| auto ShiftAmt = MIRBuilder.buildConstant(Src0Ty, Src0Size - Src1Size); |
| auto Zext = MIRBuilder.buildZExt(Src0Ty, Src1); |
| auto Shift = MIRBuilder.buildShl(Src0Ty, Zext, ShiftAmt); |
| And1 = MIRBuilder.buildAnd(Src0Ty, Shift, SignBitMask).getReg(0); |
| } else { |
| auto ShiftAmt = MIRBuilder.buildConstant(Src1Ty, Src1Size - Src0Size); |
| auto Shift = MIRBuilder.buildLShr(Src1Ty, Src1, ShiftAmt); |
| auto Trunc = MIRBuilder.buildTrunc(Src0Ty, Shift); |
| And1 = MIRBuilder.buildAnd(Src0Ty, Trunc, SignBitMask).getReg(0); |
| } |
| |
| // Be careful about setting nsz/nnan/ninf on every instruction, since the |
| // constants are a nan and -0.0, but the final result should preserve |
| // everything. |
| unsigned Flags = MI.getFlags(); |
| MIRBuilder.buildOr(Dst, And0, And1, Flags); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerFMinNumMaxNum(MachineInstr &MI) { |
| unsigned NewOp = MI.getOpcode() == TargetOpcode::G_FMINNUM ? |
| TargetOpcode::G_FMINNUM_IEEE : TargetOpcode::G_FMAXNUM_IEEE; |
| |
| auto [Dst, Src0, Src1] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Dst); |
| |
| if (!MI.getFlag(MachineInstr::FmNoNans)) { |
| // Insert canonicalizes if it's possible we need to quiet to get correct |
| // sNaN behavior. |
| |
| // Note this must be done here, and not as an optimization combine in the |
| // absence of a dedicate quiet-snan instruction as we're using an |
| // omni-purpose G_FCANONICALIZE. |
| if (!isKnownNeverSNaN(Src0, MRI)) |
| Src0 = MIRBuilder.buildFCanonicalize(Ty, Src0, MI.getFlags()).getReg(0); |
| |
| if (!isKnownNeverSNaN(Src1, MRI)) |
| Src1 = MIRBuilder.buildFCanonicalize(Ty, Src1, MI.getFlags()).getReg(0); |
| } |
| |
| // If there are no nans, it's safe to simply replace this with the non-IEEE |
| // version. |
| MIRBuilder.buildInstr(NewOp, {Dst}, {Src0, Src1}, MI.getFlags()); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerFMad(MachineInstr &MI) { |
| // Expand G_FMAD a, b, c -> G_FADD (G_FMUL a, b), c |
| Register DstReg = MI.getOperand(0).getReg(); |
| LLT Ty = MRI.getType(DstReg); |
| unsigned Flags = MI.getFlags(); |
| |
| auto Mul = MIRBuilder.buildFMul(Ty, MI.getOperand(1), MI.getOperand(2), |
| Flags); |
| MIRBuilder.buildFAdd(DstReg, Mul, MI.getOperand(3), Flags); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerIntrinsicRound(MachineInstr &MI) { |
| auto [DstReg, X] = MI.getFirst2Regs(); |
| const unsigned Flags = MI.getFlags(); |
| const LLT Ty = MRI.getType(DstReg); |
| const LLT CondTy = Ty.changeElementSize(1); |
| |
| // round(x) => |
| // t = trunc(x); |
| // d = fabs(x - t); |
| // o = copysign(d >= 0.5 ? 1.0 : 0.0, x); |
| // return t + o; |
| |
| auto T = MIRBuilder.buildIntrinsicTrunc(Ty, X, Flags); |
| |
| auto Diff = MIRBuilder.buildFSub(Ty, X, T, Flags); |
| auto AbsDiff = MIRBuilder.buildFAbs(Ty, Diff, Flags); |
| |
| auto Half = MIRBuilder.buildFConstant(Ty, 0.5); |
| auto Cmp = |
| MIRBuilder.buildFCmp(CmpInst::FCMP_OGE, CondTy, AbsDiff, Half, Flags); |
| |
| // Could emit G_UITOFP instead |
| auto One = MIRBuilder.buildFConstant(Ty, 1.0); |
| auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); |
| auto BoolFP = MIRBuilder.buildSelect(Ty, Cmp, One, Zero); |
| auto SignedOffset = MIRBuilder.buildFCopysign(Ty, BoolFP, X); |
| |
| MIRBuilder.buildFAdd(DstReg, T, SignedOffset, Flags); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerFFloor(MachineInstr &MI) { |
| auto [DstReg, SrcReg] = MI.getFirst2Regs(); |
| unsigned Flags = MI.getFlags(); |
| LLT Ty = MRI.getType(DstReg); |
| const LLT CondTy = Ty.changeElementSize(1); |
| |
| // result = trunc(src); |
| // if (src < 0.0 && src != result) |
| // result += -1.0. |
| |
| auto Trunc = MIRBuilder.buildIntrinsicTrunc(Ty, SrcReg, Flags); |
| auto Zero = MIRBuilder.buildFConstant(Ty, 0.0); |
| |
| auto Lt0 = MIRBuilder.buildFCmp(CmpInst::FCMP_OLT, CondTy, |
| SrcReg, Zero, Flags); |
| auto NeTrunc = MIRBuilder.buildFCmp(CmpInst::FCMP_ONE, CondTy, |
| SrcReg, Trunc, Flags); |
| auto And = MIRBuilder.buildAnd(CondTy, Lt0, NeTrunc); |
| auto AddVal = MIRBuilder.buildSITOFP(Ty, And); |
| |
| MIRBuilder.buildFAdd(DstReg, Trunc, AddVal, Flags); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMergeValues(MachineInstr &MI) { |
| const unsigned NumOps = MI.getNumOperands(); |
| auto [DstReg, DstTy, Src0Reg, Src0Ty] = MI.getFirst2RegLLTs(); |
| unsigned PartSize = Src0Ty.getSizeInBits(); |
| |
| LLT WideTy = LLT::scalar(DstTy.getSizeInBits()); |
| Register ResultReg = MIRBuilder.buildZExt(WideTy, Src0Reg).getReg(0); |
| |
| for (unsigned I = 2; I != NumOps; ++I) { |
| const unsigned Offset = (I - 1) * PartSize; |
| |
| Register SrcReg = MI.getOperand(I).getReg(); |
| auto ZextInput = MIRBuilder.buildZExt(WideTy, SrcReg); |
| |
| Register NextResult = I + 1 == NumOps && WideTy == DstTy ? DstReg : |
| MRI.createGenericVirtualRegister(WideTy); |
| |
| auto ShiftAmt = MIRBuilder.buildConstant(WideTy, Offset); |
| auto Shl = MIRBuilder.buildShl(WideTy, ZextInput, ShiftAmt); |
| MIRBuilder.buildOr(NextResult, ResultReg, Shl); |
| ResultReg = NextResult; |
| } |
| |
| if (DstTy.isPointer()) { |
| if (MIRBuilder.getDataLayout().isNonIntegralAddressSpace( |
| DstTy.getAddressSpace())) { |
| LLVM_DEBUG(dbgs() << "Not casting nonintegral address space\n"); |
| return UnableToLegalize; |
| } |
| |
| MIRBuilder.buildIntToPtr(DstReg, ResultReg); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerUnmergeValues(MachineInstr &MI) { |
| const unsigned NumDst = MI.getNumOperands() - 1; |
| Register SrcReg = MI.getOperand(NumDst).getReg(); |
| Register Dst0Reg = MI.getOperand(0).getReg(); |
| LLT DstTy = MRI.getType(Dst0Reg); |
| if (DstTy.isPointer()) |
| return UnableToLegalize; // TODO |
| |
| SrcReg = coerceToScalar(SrcReg); |
| if (!SrcReg) |
| return UnableToLegalize; |
| |
| // Expand scalarizing unmerge as bitcast to integer and shift. |
| LLT IntTy = MRI.getType(SrcReg); |
| |
| MIRBuilder.buildTrunc(Dst0Reg, SrcReg); |
| |
| const unsigned DstSize = DstTy.getSizeInBits(); |
| unsigned Offset = DstSize; |
| for (unsigned I = 1; I != NumDst; ++I, Offset += DstSize) { |
| auto ShiftAmt = MIRBuilder.buildConstant(IntTy, Offset); |
| auto Shift = MIRBuilder.buildLShr(IntTy, SrcReg, ShiftAmt); |
| MIRBuilder.buildTrunc(MI.getOperand(I), Shift); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| /// Lower a vector extract or insert by writing the vector to a stack temporary |
| /// and reloading the element or vector. |
| /// |
| /// %dst = G_EXTRACT_VECTOR_ELT %vec, %idx |
| /// => |
| /// %stack_temp = G_FRAME_INDEX |
| /// G_STORE %vec, %stack_temp |
| /// %idx = clamp(%idx, %vec.getNumElements()) |
| /// %element_ptr = G_PTR_ADD %stack_temp, %idx |
| /// %dst = G_LOAD %element_ptr |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerExtractInsertVectorElt(MachineInstr &MI) { |
| Register DstReg = MI.getOperand(0).getReg(); |
| Register SrcVec = MI.getOperand(1).getReg(); |
| Register InsertVal; |
| if (MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) |
| InsertVal = MI.getOperand(2).getReg(); |
| |
| Register Idx = MI.getOperand(MI.getNumOperands() - 1).getReg(); |
| |
| LLT VecTy = MRI.getType(SrcVec); |
| LLT EltTy = VecTy.getElementType(); |
| unsigned NumElts = VecTy.getNumElements(); |
| |
| int64_t IdxVal; |
| if (mi_match(Idx, MRI, m_ICst(IdxVal)) && IdxVal <= NumElts) { |
| SmallVector<Register, 8> SrcRegs; |
| extractParts(SrcVec, EltTy, NumElts, SrcRegs); |
| |
| if (InsertVal) { |
| SrcRegs[IdxVal] = MI.getOperand(2).getReg(); |
| MIRBuilder.buildMergeLikeInstr(DstReg, SrcRegs); |
| } else { |
| MIRBuilder.buildCopy(DstReg, SrcRegs[IdxVal]); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| if (!EltTy.isByteSized()) { // Not implemented. |
| LLVM_DEBUG(dbgs() << "Can't handle non-byte element vectors yet\n"); |
| return UnableToLegalize; |
| } |
| |
| unsigned EltBytes = EltTy.getSizeInBytes(); |
| Align VecAlign = getStackTemporaryAlignment(VecTy); |
| Align EltAlign; |
| |
| MachinePointerInfo PtrInfo; |
| auto StackTemp = createStackTemporary(TypeSize::Fixed(VecTy.getSizeInBytes()), |
| VecAlign, PtrInfo); |
| MIRBuilder.buildStore(SrcVec, StackTemp, PtrInfo, VecAlign); |
| |
| // Get the pointer to the element, and be sure not to hit undefined behavior |
| // if the index is out of bounds. |
| Register EltPtr = getVectorElementPointer(StackTemp.getReg(0), VecTy, Idx); |
| |
| if (mi_match(Idx, MRI, m_ICst(IdxVal))) { |
| int64_t Offset = IdxVal * EltBytes; |
| PtrInfo = PtrInfo.getWithOffset(Offset); |
| EltAlign = commonAlignment(VecAlign, Offset); |
| } else { |
| // We lose information with a variable offset. |
| EltAlign = getStackTemporaryAlignment(EltTy); |
| PtrInfo = MachinePointerInfo(MRI.getType(EltPtr).getAddressSpace()); |
| } |
| |
| if (InsertVal) { |
| // Write the inserted element |
| MIRBuilder.buildStore(InsertVal, EltPtr, PtrInfo, EltAlign); |
| |
| // Reload the whole vector. |
| MIRBuilder.buildLoad(DstReg, StackTemp, PtrInfo, VecAlign); |
| } else { |
| MIRBuilder.buildLoad(DstReg, EltPtr, PtrInfo, EltAlign); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerShuffleVector(MachineInstr &MI) { |
| auto [DstReg, DstTy, Src0Reg, Src0Ty, Src1Reg, Src1Ty] = |
| MI.getFirst3RegLLTs(); |
| LLT IdxTy = LLT::scalar(32); |
| |
| ArrayRef<int> Mask = MI.getOperand(3).getShuffleMask(); |
| Register Undef; |
| SmallVector<Register, 32> BuildVec; |
| LLT EltTy = DstTy.getScalarType(); |
| |
| for (int Idx : Mask) { |
| if (Idx < 0) { |
| if (!Undef.isValid()) |
| Undef = MIRBuilder.buildUndef(EltTy).getReg(0); |
| BuildVec.push_back(Undef); |
| continue; |
| } |
| |
| if (Src0Ty.isScalar()) { |
| BuildVec.push_back(Idx == 0 ? Src0Reg : Src1Reg); |
| } else { |
| int NumElts = Src0Ty.getNumElements(); |
| Register SrcVec = Idx < NumElts ? Src0Reg : Src1Reg; |
| int ExtractIdx = Idx < NumElts ? Idx : Idx - NumElts; |
| auto IdxK = MIRBuilder.buildConstant(IdxTy, ExtractIdx); |
| auto Extract = MIRBuilder.buildExtractVectorElement(EltTy, SrcVec, IdxK); |
| BuildVec.push_back(Extract.getReg(0)); |
| } |
| } |
| |
| if (DstTy.isScalar()) |
| MIRBuilder.buildCopy(DstReg, BuildVec[0]); |
| else |
| MIRBuilder.buildBuildVector(DstReg, BuildVec); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerDynStackAlloc(MachineInstr &MI) { |
| const auto &MF = *MI.getMF(); |
| const auto &TFI = *MF.getSubtarget().getFrameLowering(); |
| if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsUp) |
| return UnableToLegalize; |
| |
| Register Dst = MI.getOperand(0).getReg(); |
| Register AllocSize = MI.getOperand(1).getReg(); |
| Align Alignment = assumeAligned(MI.getOperand(2).getImm()); |
| |
| LLT PtrTy = MRI.getType(Dst); |
| LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); |
| |
| Register SPReg = TLI.getStackPointerRegisterToSaveRestore(); |
| auto SPTmp = MIRBuilder.buildCopy(PtrTy, SPReg); |
| SPTmp = MIRBuilder.buildCast(IntPtrTy, SPTmp); |
| |
| // Subtract the final alloc from the SP. We use G_PTRTOINT here so we don't |
| // have to generate an extra instruction to negate the alloc and then use |
| // G_PTR_ADD to add the negative offset. |
| auto Alloc = MIRBuilder.buildSub(IntPtrTy, SPTmp, AllocSize); |
| if (Alignment > Align(1)) { |
| APInt AlignMask(IntPtrTy.getSizeInBits(), Alignment.value(), true); |
| AlignMask.negate(); |
| auto AlignCst = MIRBuilder.buildConstant(IntPtrTy, AlignMask); |
| Alloc = MIRBuilder.buildAnd(IntPtrTy, Alloc, AlignCst); |
| } |
| |
| SPTmp = MIRBuilder.buildCast(PtrTy, Alloc); |
| MIRBuilder.buildCopy(SPReg, SPTmp); |
| MIRBuilder.buildCopy(Dst, SPTmp); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerStackSave(MachineInstr &MI) { |
| Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); |
| if (!StackPtr) |
| return UnableToLegalize; |
| |
| MIRBuilder.buildCopy(MI.getOperand(0), StackPtr); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerStackRestore(MachineInstr &MI) { |
| Register StackPtr = TLI.getStackPointerRegisterToSaveRestore(); |
| if (!StackPtr) |
| return UnableToLegalize; |
| |
| MIRBuilder.buildCopy(StackPtr, MI.getOperand(0)); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerExtract(MachineInstr &MI) { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| unsigned Offset = MI.getOperand(2).getImm(); |
| |
| // Extract sub-vector or one element |
| if (SrcTy.isVector()) { |
| unsigned SrcEltSize = SrcTy.getElementType().getSizeInBits(); |
| unsigned DstSize = DstTy.getSizeInBits(); |
| |
| if ((Offset % SrcEltSize == 0) && (DstSize % SrcEltSize == 0) && |
| (Offset + DstSize <= SrcTy.getSizeInBits())) { |
| // Unmerge and allow access to each Src element for the artifact combiner. |
| auto Unmerge = MIRBuilder.buildUnmerge(SrcTy.getElementType(), SrcReg); |
| |
| // Take element(s) we need to extract and copy it (merge them). |
| SmallVector<Register, 8> SubVectorElts; |
| for (unsigned Idx = Offset / SrcEltSize; |
| Idx < (Offset + DstSize) / SrcEltSize; ++Idx) { |
| SubVectorElts.push_back(Unmerge.getReg(Idx)); |
| } |
| if (SubVectorElts.size() == 1) |
| MIRBuilder.buildCopy(DstReg, SubVectorElts[0]); |
| else |
| MIRBuilder.buildMergeLikeInstr(DstReg, SubVectorElts); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| } |
| |
| if (DstTy.isScalar() && |
| (SrcTy.isScalar() || |
| (SrcTy.isVector() && DstTy == SrcTy.getElementType()))) { |
| LLT SrcIntTy = SrcTy; |
| if (!SrcTy.isScalar()) { |
| SrcIntTy = LLT::scalar(SrcTy.getSizeInBits()); |
| SrcReg = MIRBuilder.buildBitcast(SrcIntTy, SrcReg).getReg(0); |
| } |
| |
| if (Offset == 0) |
| MIRBuilder.buildTrunc(DstReg, SrcReg); |
| else { |
| auto ShiftAmt = MIRBuilder.buildConstant(SrcIntTy, Offset); |
| auto Shr = MIRBuilder.buildLShr(SrcIntTy, SrcReg, ShiftAmt); |
| MIRBuilder.buildTrunc(DstReg, Shr); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| return UnableToLegalize; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerInsert(MachineInstr &MI) { |
| auto [Dst, Src, InsertSrc] = MI.getFirst3Regs(); |
| uint64_t Offset = MI.getOperand(3).getImm(); |
| |
| LLT DstTy = MRI.getType(Src); |
| LLT InsertTy = MRI.getType(InsertSrc); |
| |
| // Insert sub-vector or one element |
| if (DstTy.isVector() && !InsertTy.isPointer()) { |
| LLT EltTy = DstTy.getElementType(); |
| unsigned EltSize = EltTy.getSizeInBits(); |
| unsigned InsertSize = InsertTy.getSizeInBits(); |
| |
| if ((Offset % EltSize == 0) && (InsertSize % EltSize == 0) && |
| (Offset + InsertSize <= DstTy.getSizeInBits())) { |
| auto UnmergeSrc = MIRBuilder.buildUnmerge(EltTy, Src); |
| SmallVector<Register, 8> DstElts; |
| unsigned Idx = 0; |
| // Elements from Src before insert start Offset |
| for (; Idx < Offset / EltSize; ++Idx) { |
| DstElts.push_back(UnmergeSrc.getReg(Idx)); |
| } |
| |
| // Replace elements in Src with elements from InsertSrc |
| if (InsertTy.getSizeInBits() > EltSize) { |
| auto UnmergeInsertSrc = MIRBuilder.buildUnmerge(EltTy, InsertSrc); |
| for (unsigned i = 0; Idx < (Offset + InsertSize) / EltSize; |
| ++Idx, ++i) { |
| DstElts.push_back(UnmergeInsertSrc.getReg(i)); |
| } |
| } else { |
| DstElts.push_back(InsertSrc); |
| ++Idx; |
| } |
| |
| // Remaining elements from Src after insert |
| for (; Idx < DstTy.getNumElements(); ++Idx) { |
| DstElts.push_back(UnmergeSrc.getReg(Idx)); |
| } |
| |
| MIRBuilder.buildMergeLikeInstr(Dst, DstElts); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| } |
| |
| if (InsertTy.isVector() || |
| (DstTy.isVector() && DstTy.getElementType() != InsertTy)) |
| return UnableToLegalize; |
| |
| const DataLayout &DL = MIRBuilder.getDataLayout(); |
| if ((DstTy.isPointer() && |
| DL.isNonIntegralAddressSpace(DstTy.getAddressSpace())) || |
| (InsertTy.isPointer() && |
| DL.isNonIntegralAddressSpace(InsertTy.getAddressSpace()))) { |
| LLVM_DEBUG(dbgs() << "Not casting non-integral address space integer\n"); |
| return UnableToLegalize; |
| } |
| |
| LLT IntDstTy = DstTy; |
| |
| if (!DstTy.isScalar()) { |
| IntDstTy = LLT::scalar(DstTy.getSizeInBits()); |
| Src = MIRBuilder.buildCast(IntDstTy, Src).getReg(0); |
| } |
| |
| if (!InsertTy.isScalar()) { |
| const LLT IntInsertTy = LLT::scalar(InsertTy.getSizeInBits()); |
| InsertSrc = MIRBuilder.buildPtrToInt(IntInsertTy, InsertSrc).getReg(0); |
| } |
| |
| Register ExtInsSrc = MIRBuilder.buildZExt(IntDstTy, InsertSrc).getReg(0); |
| if (Offset != 0) { |
| auto ShiftAmt = MIRBuilder.buildConstant(IntDstTy, Offset); |
| ExtInsSrc = MIRBuilder.buildShl(IntDstTy, ExtInsSrc, ShiftAmt).getReg(0); |
| } |
| |
| APInt MaskVal = APInt::getBitsSetWithWrap( |
| DstTy.getSizeInBits(), Offset + InsertTy.getSizeInBits(), Offset); |
| |
| auto Mask = MIRBuilder.buildConstant(IntDstTy, MaskVal); |
| auto MaskedSrc = MIRBuilder.buildAnd(IntDstTy, Src, Mask); |
| auto Or = MIRBuilder.buildOr(IntDstTy, MaskedSrc, ExtInsSrc); |
| |
| MIRBuilder.buildCast(Dst, Or); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerSADDO_SSUBO(MachineInstr &MI) { |
| auto [Dst0, Dst0Ty, Dst1, Dst1Ty, LHS, LHSTy, RHS, RHSTy] = |
| MI.getFirst4RegLLTs(); |
| const bool IsAdd = MI.getOpcode() == TargetOpcode::G_SADDO; |
| |
| LLT Ty = Dst0Ty; |
| LLT BoolTy = Dst1Ty; |
| |
| if (IsAdd) |
| MIRBuilder.buildAdd(Dst0, LHS, RHS); |
| else |
| MIRBuilder.buildSub(Dst0, LHS, RHS); |
| |
| // TODO: If SADDSAT/SSUBSAT is legal, compare results to detect overflow. |
| |
| auto Zero = MIRBuilder.buildConstant(Ty, 0); |
| |
| // For an addition, the result should be less than one of the operands (LHS) |
| // if and only if the other operand (RHS) is negative, otherwise there will |
| // be overflow. |
| // For a subtraction, the result should be less than one of the operands |
| // (LHS) if and only if the other operand (RHS) is (non-zero) positive, |
| // otherwise there will be overflow. |
| auto ResultLowerThanLHS = |
| MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, Dst0, LHS); |
| auto ConditionRHS = MIRBuilder.buildICmp( |
| IsAdd ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGT, BoolTy, RHS, Zero); |
| |
| MIRBuilder.buildXor(Dst1, ConditionRHS, ResultLowerThanLHS); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerAddSubSatToMinMax(MachineInstr &MI) { |
| auto [Res, LHS, RHS] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Res); |
| bool IsSigned; |
| bool IsAdd; |
| unsigned BaseOp; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("unexpected addsat/subsat opcode"); |
| case TargetOpcode::G_UADDSAT: |
| IsSigned = false; |
| IsAdd = true; |
| BaseOp = TargetOpcode::G_ADD; |
| break; |
| case TargetOpcode::G_SADDSAT: |
| IsSigned = true; |
| IsAdd = true; |
| BaseOp = TargetOpcode::G_ADD; |
| break; |
| case TargetOpcode::G_USUBSAT: |
| IsSigned = false; |
| IsAdd = false; |
| BaseOp = TargetOpcode::G_SUB; |
| break; |
| case TargetOpcode::G_SSUBSAT: |
| IsSigned = true; |
| IsAdd = false; |
| BaseOp = TargetOpcode::G_SUB; |
| break; |
| } |
| |
| if (IsSigned) { |
| // sadd.sat(a, b) -> |
| // hi = 0x7fffffff - smax(a, 0) |
| // lo = 0x80000000 - smin(a, 0) |
| // a + smin(smax(lo, b), hi) |
| // ssub.sat(a, b) -> |
| // lo = smax(a, -1) - 0x7fffffff |
| // hi = smin(a, -1) - 0x80000000 |
| // a - smin(smax(lo, b), hi) |
| // TODO: AMDGPU can use a "median of 3" instruction here: |
| // a +/- med3(lo, b, hi) |
| uint64_t NumBits = Ty.getScalarSizeInBits(); |
| auto MaxVal = |
| MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(NumBits)); |
| auto MinVal = |
| MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); |
| MachineInstrBuilder Hi, Lo; |
| if (IsAdd) { |
| auto Zero = MIRBuilder.buildConstant(Ty, 0); |
| Hi = MIRBuilder.buildSub(Ty, MaxVal, MIRBuilder.buildSMax(Ty, LHS, Zero)); |
| Lo = MIRBuilder.buildSub(Ty, MinVal, MIRBuilder.buildSMin(Ty, LHS, Zero)); |
| } else { |
| auto NegOne = MIRBuilder.buildConstant(Ty, -1); |
| Lo = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMax(Ty, LHS, NegOne), |
| MaxVal); |
| Hi = MIRBuilder.buildSub(Ty, MIRBuilder.buildSMin(Ty, LHS, NegOne), |
| MinVal); |
| } |
| auto RHSClamped = |
| MIRBuilder.buildSMin(Ty, MIRBuilder.buildSMax(Ty, Lo, RHS), Hi); |
| MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, RHSClamped}); |
| } else { |
| // uadd.sat(a, b) -> a + umin(~a, b) |
| // usub.sat(a, b) -> a - umin(a, b) |
| Register Not = IsAdd ? MIRBuilder.buildNot(Ty, LHS).getReg(0) : LHS; |
| auto Min = MIRBuilder.buildUMin(Ty, Not, RHS); |
| MIRBuilder.buildInstr(BaseOp, {Res}, {LHS, Min}); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerAddSubSatToAddoSubo(MachineInstr &MI) { |
| auto [Res, LHS, RHS] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Res); |
| LLT BoolTy = Ty.changeElementSize(1); |
| bool IsSigned; |
| bool IsAdd; |
| unsigned OverflowOp; |
| switch (MI.getOpcode()) { |
| default: |
| llvm_unreachable("unexpected addsat/subsat opcode"); |
| case TargetOpcode::G_UADDSAT: |
| IsSigned = false; |
| IsAdd = true; |
| OverflowOp = TargetOpcode::G_UADDO; |
| break; |
| case TargetOpcode::G_SADDSAT: |
| IsSigned = true; |
| IsAdd = true; |
| OverflowOp = TargetOpcode::G_SADDO; |
| break; |
| case TargetOpcode::G_USUBSAT: |
| IsSigned = false; |
| IsAdd = false; |
| OverflowOp = TargetOpcode::G_USUBO; |
| break; |
| case TargetOpcode::G_SSUBSAT: |
| IsSigned = true; |
| IsAdd = false; |
| OverflowOp = TargetOpcode::G_SSUBO; |
| break; |
| } |
| |
| auto OverflowRes = |
| MIRBuilder.buildInstr(OverflowOp, {Ty, BoolTy}, {LHS, RHS}); |
| Register Tmp = OverflowRes.getReg(0); |
| Register Ov = OverflowRes.getReg(1); |
| MachineInstrBuilder Clamp; |
| if (IsSigned) { |
| // sadd.sat(a, b) -> |
| // {tmp, ov} = saddo(a, b) |
| // ov ? (tmp >>s 31) + 0x80000000 : r |
| // ssub.sat(a, b) -> |
| // {tmp, ov} = ssubo(a, b) |
| // ov ? (tmp >>s 31) + 0x80000000 : r |
| uint64_t NumBits = Ty.getScalarSizeInBits(); |
| auto ShiftAmount = MIRBuilder.buildConstant(Ty, NumBits - 1); |
| auto Sign = MIRBuilder.buildAShr(Ty, Tmp, ShiftAmount); |
| auto MinVal = |
| MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(NumBits)); |
| Clamp = MIRBuilder.buildAdd(Ty, Sign, MinVal); |
| } else { |
| // uadd.sat(a, b) -> |
| // {tmp, ov} = uaddo(a, b) |
| // ov ? 0xffffffff : tmp |
| // usub.sat(a, b) -> |
| // {tmp, ov} = usubo(a, b) |
| // ov ? 0 : tmp |
| Clamp = MIRBuilder.buildConstant(Ty, IsAdd ? -1 : 0); |
| } |
| MIRBuilder.buildSelect(Res, Ov, Clamp, Tmp); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerShlSat(MachineInstr &MI) { |
| assert((MI.getOpcode() == TargetOpcode::G_SSHLSAT || |
| MI.getOpcode() == TargetOpcode::G_USHLSAT) && |
| "Expected shlsat opcode!"); |
| bool IsSigned = MI.getOpcode() == TargetOpcode::G_SSHLSAT; |
| auto [Res, LHS, RHS] = MI.getFirst3Regs(); |
| LLT Ty = MRI.getType(Res); |
| LLT BoolTy = Ty.changeElementSize(1); |
| |
| unsigned BW = Ty.getScalarSizeInBits(); |
| auto Result = MIRBuilder.buildShl(Ty, LHS, RHS); |
| auto Orig = IsSigned ? MIRBuilder.buildAShr(Ty, Result, RHS) |
| : MIRBuilder.buildLShr(Ty, Result, RHS); |
| |
| MachineInstrBuilder SatVal; |
| if (IsSigned) { |
| auto SatMin = MIRBuilder.buildConstant(Ty, APInt::getSignedMinValue(BW)); |
| auto SatMax = MIRBuilder.buildConstant(Ty, APInt::getSignedMaxValue(BW)); |
| auto Cmp = MIRBuilder.buildICmp(CmpInst::ICMP_SLT, BoolTy, LHS, |
| MIRBuilder.buildConstant(Ty, 0)); |
| SatVal = MIRBuilder.buildSelect(Ty, Cmp, SatMin, SatMax); |
| } else { |
| SatVal = MIRBuilder.buildConstant(Ty, APInt::getMaxValue(BW)); |
| } |
| auto Ov = MIRBuilder.buildICmp(CmpInst::ICMP_NE, BoolTy, LHS, Orig); |
| MIRBuilder.buildSelect(Res, Ov, SatVal, Result); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerBswap(MachineInstr &MI) { |
| auto [Dst, Src] = MI.getFirst2Regs(); |
| const LLT Ty = MRI.getType(Src); |
| unsigned SizeInBytes = (Ty.getScalarSizeInBits() + 7) / 8; |
| unsigned BaseShiftAmt = (SizeInBytes - 1) * 8; |
| |
| // Swap most and least significant byte, set remaining bytes in Res to zero. |
| auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt); |
| auto LSByteShiftedLeft = MIRBuilder.buildShl(Ty, Src, ShiftAmt); |
| auto MSByteShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); |
| auto Res = MIRBuilder.buildOr(Ty, MSByteShiftedRight, LSByteShiftedLeft); |
| |
| // Set i-th high/low byte in Res to i-th low/high byte from Src. |
| for (unsigned i = 1; i < SizeInBytes / 2; ++i) { |
| // AND with Mask leaves byte i unchanged and sets remaining bytes to 0. |
| APInt APMask(SizeInBytes * 8, 0xFF << (i * 8)); |
| auto Mask = MIRBuilder.buildConstant(Ty, APMask); |
| auto ShiftAmt = MIRBuilder.buildConstant(Ty, BaseShiftAmt - 16 * i); |
| // Low byte shifted left to place of high byte: (Src & Mask) << ShiftAmt. |
| auto LoByte = MIRBuilder.buildAnd(Ty, Src, Mask); |
| auto LoShiftedLeft = MIRBuilder.buildShl(Ty, LoByte, ShiftAmt); |
| Res = MIRBuilder.buildOr(Ty, Res, LoShiftedLeft); |
| // High byte shifted right to place of low byte: (Src >> ShiftAmt) & Mask. |
| auto SrcShiftedRight = MIRBuilder.buildLShr(Ty, Src, ShiftAmt); |
| auto HiShiftedRight = MIRBuilder.buildAnd(Ty, SrcShiftedRight, Mask); |
| Res = MIRBuilder.buildOr(Ty, Res, HiShiftedRight); |
| } |
| Res.getInstr()->getOperand(0).setReg(Dst); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| //{ (Src & Mask) >> N } | { (Src << N) & Mask } |
| static MachineInstrBuilder SwapN(unsigned N, DstOp Dst, MachineIRBuilder &B, |
| MachineInstrBuilder Src, APInt Mask) { |
| const LLT Ty = Dst.getLLTTy(*B.getMRI()); |
| MachineInstrBuilder C_N = B.buildConstant(Ty, N); |
| MachineInstrBuilder MaskLoNTo0 = B.buildConstant(Ty, Mask); |
| auto LHS = B.buildLShr(Ty, B.buildAnd(Ty, Src, MaskLoNTo0), C_N); |
| auto RHS = B.buildAnd(Ty, B.buildShl(Ty, Src, C_N), MaskLoNTo0); |
| return B.buildOr(Dst, LHS, RHS); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerBitreverse(MachineInstr &MI) { |
| auto [Dst, Src] = MI.getFirst2Regs(); |
| const LLT Ty = MRI.getType(Src); |
| unsigned Size = Ty.getSizeInBits(); |
| |
| MachineInstrBuilder BSWAP = |
| MIRBuilder.buildInstr(TargetOpcode::G_BSWAP, {Ty}, {Src}); |
| |
| // swap high and low 4 bits in 8 bit blocks 7654|3210 -> 3210|7654 |
| // [(val & 0xF0F0F0F0) >> 4] | [(val & 0x0F0F0F0F) << 4] |
| // -> [(val & 0xF0F0F0F0) >> 4] | [(val << 4) & 0xF0F0F0F0] |
| MachineInstrBuilder Swap4 = |
| SwapN(4, Ty, MIRBuilder, BSWAP, APInt::getSplat(Size, APInt(8, 0xF0))); |
| |
| // swap high and low 2 bits in 4 bit blocks 32|10 76|54 -> 10|32 54|76 |
| // [(val & 0xCCCCCCCC) >> 2] & [(val & 0x33333333) << 2] |
| // -> [(val & 0xCCCCCCCC) >> 2] & [(val << 2) & 0xCCCCCCCC] |
| MachineInstrBuilder Swap2 = |
| SwapN(2, Ty, MIRBuilder, Swap4, APInt::getSplat(Size, APInt(8, 0xCC))); |
| |
| // swap high and low 1 bit in 2 bit blocks 1|0 3|2 5|4 7|6 -> 0|1 2|3 4|5 6|7 |
| // [(val & 0xAAAAAAAA) >> 1] & [(val & 0x55555555) << 1] |
| // -> [(val & 0xAAAAAAAA) >> 1] & [(val << 1) & 0xAAAAAAAA] |
| SwapN(1, Dst, MIRBuilder, Swap2, APInt::getSplat(Size, APInt(8, 0xAA))); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerReadWriteRegister(MachineInstr &MI) { |
| MachineFunction &MF = MIRBuilder.getMF(); |
| |
| bool IsRead = MI.getOpcode() == TargetOpcode::G_READ_REGISTER; |
| int NameOpIdx = IsRead ? 1 : 0; |
| int ValRegIndex = IsRead ? 0 : 1; |
| |
| Register ValReg = MI.getOperand(ValRegIndex).getReg(); |
| const LLT Ty = MRI.getType(ValReg); |
| const MDString *RegStr = cast<MDString>( |
| cast<MDNode>(MI.getOperand(NameOpIdx).getMetadata())->getOperand(0)); |
| |
| Register PhysReg = TLI.getRegisterByName(RegStr->getString().data(), Ty, MF); |
| if (!PhysReg.isValid()) |
| return UnableToLegalize; |
| |
| if (IsRead) |
| MIRBuilder.buildCopy(ValReg, PhysReg); |
| else |
| MIRBuilder.buildCopy(PhysReg, ValReg); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerSMULH_UMULH(MachineInstr &MI) { |
| bool IsSigned = MI.getOpcode() == TargetOpcode::G_SMULH; |
| unsigned ExtOp = IsSigned ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; |
| Register Result = MI.getOperand(0).getReg(); |
| LLT OrigTy = MRI.getType(Result); |
| auto SizeInBits = OrigTy.getScalarSizeInBits(); |
| LLT WideTy = OrigTy.changeElementSize(SizeInBits * 2); |
| |
| auto LHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(1)}); |
| auto RHS = MIRBuilder.buildInstr(ExtOp, {WideTy}, {MI.getOperand(2)}); |
| auto Mul = MIRBuilder.buildMul(WideTy, LHS, RHS); |
| unsigned ShiftOp = IsSigned ? TargetOpcode::G_ASHR : TargetOpcode::G_LSHR; |
| |
| auto ShiftAmt = MIRBuilder.buildConstant(WideTy, SizeInBits); |
| auto Shifted = MIRBuilder.buildInstr(ShiftOp, {WideTy}, {Mul, ShiftAmt}); |
| MIRBuilder.buildTrunc(Result, Shifted); |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerISFPCLASS(MachineInstr &MI) { |
| auto [DstReg, DstTy, SrcReg, SrcTy] = MI.getFirst2RegLLTs(); |
| FPClassTest Mask = static_cast<FPClassTest>(MI.getOperand(2).getImm()); |
| |
| if (Mask == fcNone) { |
| MIRBuilder.buildConstant(DstReg, 0); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| if (Mask == fcAllFlags) { |
| MIRBuilder.buildConstant(DstReg, 1); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| // TODO: Try inverting the test with getInvertedFPClassTest like the DAG |
| // version |
| |
| unsigned BitSize = SrcTy.getScalarSizeInBits(); |
| const fltSemantics &Semantics = getFltSemanticForLLT(SrcTy.getScalarType()); |
| |
| LLT IntTy = LLT::scalar(BitSize); |
| if (SrcTy.isVector()) |
| IntTy = LLT::vector(SrcTy.getElementCount(), IntTy); |
| auto AsInt = MIRBuilder.buildCopy(IntTy, SrcReg); |
| |
| // Various masks. |
| APInt SignBit = APInt::getSignMask(BitSize); |
| APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. |
| APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. |
| APInt ExpMask = Inf; |
| APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; |
| APInt QNaNBitMask = |
| APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); |
| APInt InvertionMask = APInt::getAllOnes(DstTy.getScalarSizeInBits()); |
| |
| auto SignBitC = MIRBuilder.buildConstant(IntTy, SignBit); |
| auto ValueMaskC = MIRBuilder.buildConstant(IntTy, ValueMask); |
| auto InfC = MIRBuilder.buildConstant(IntTy, Inf); |
| auto ExpMaskC = MIRBuilder.buildConstant(IntTy, ExpMask); |
| auto ZeroC = MIRBuilder.buildConstant(IntTy, 0); |
| |
| auto Abs = MIRBuilder.buildAnd(IntTy, AsInt, ValueMaskC); |
| auto Sign = |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_NE, DstTy, AsInt, Abs); |
| |
| auto Res = MIRBuilder.buildConstant(DstTy, 0); |
| // Clang doesn't support capture of structured bindings: |
| LLT DstTyCopy = DstTy; |
| const auto appendToRes = [&](MachineInstrBuilder ToAppend) { |
| Res = MIRBuilder.buildOr(DstTyCopy, Res, ToAppend); |
| }; |
| |
| // Tests that involve more than one class should be processed first. |
| if ((Mask & fcFinite) == fcFinite) { |
| // finite(V) ==> abs(V) u< exp_mask |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, |
| ExpMaskC)); |
| Mask &= ~fcFinite; |
| } else if ((Mask & fcFinite) == fcPosFinite) { |
| // finite(V) && V > 0 ==> V u< exp_mask |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, AsInt, |
| ExpMaskC)); |
| Mask &= ~fcPosFinite; |
| } else if ((Mask & fcFinite) == fcNegFinite) { |
| // finite(V) && V < 0 ==> abs(V) u< exp_mask && signbit == 1 |
| auto Cmp = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, Abs, |
| ExpMaskC); |
| auto And = MIRBuilder.buildAnd(DstTy, Cmp, Sign); |
| appendToRes(And); |
| Mask &= ~fcNegFinite; |
| } |
| |
| if (FPClassTest PartialCheck = Mask & (fcZero | fcSubnormal)) { |
| // fcZero | fcSubnormal => test all exponent bits are 0 |
| // TODO: Handle sign bit specific cases |
| // TODO: Handle inverted case |
| if (PartialCheck == (fcZero | fcSubnormal)) { |
| auto ExpBits = MIRBuilder.buildAnd(IntTy, AsInt, ExpMaskC); |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, |
| ExpBits, ZeroC)); |
| Mask &= ~PartialCheck; |
| } |
| } |
| |
| // Check for individual classes. |
| if (FPClassTest PartialCheck = Mask & fcZero) { |
| if (PartialCheck == fcPosZero) |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, |
| AsInt, ZeroC)); |
| else if (PartialCheck == fcZero) |
| appendToRes( |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, ZeroC)); |
| else // fcNegZero |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, |
| AsInt, SignBitC)); |
| } |
| |
| if (FPClassTest PartialCheck = Mask & fcSubnormal) { |
| // issubnormal(V) ==> unsigned(abs(V) - 1) u< (all mantissa bits set) |
| // issubnormal(V) && V>0 ==> unsigned(V - 1) u< (all mantissa bits set) |
| auto V = (PartialCheck == fcPosSubnormal) ? AsInt : Abs; |
| auto OneC = MIRBuilder.buildConstant(IntTy, 1); |
| auto VMinusOne = MIRBuilder.buildSub(IntTy, V, OneC); |
| auto SubnormalRes = |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, VMinusOne, |
| MIRBuilder.buildConstant(IntTy, AllOneMantissa)); |
| if (PartialCheck == fcNegSubnormal) |
| SubnormalRes = MIRBuilder.buildAnd(DstTy, SubnormalRes, Sign); |
| appendToRes(SubnormalRes); |
| } |
| |
| if (FPClassTest PartialCheck = Mask & fcInf) { |
| if (PartialCheck == fcPosInf) |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, |
| AsInt, InfC)); |
| else if (PartialCheck == fcInf) |
| appendToRes( |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, Abs, InfC)); |
| else { // fcNegInf |
| APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); |
| auto NegInfC = MIRBuilder.buildConstant(IntTy, NegInf); |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_EQ, DstTy, |
| AsInt, NegInfC)); |
| } |
| } |
| |
| if (FPClassTest PartialCheck = Mask & fcNan) { |
| auto InfWithQnanBitC = MIRBuilder.buildConstant(IntTy, Inf | QNaNBitMask); |
| if (PartialCheck == fcNan) { |
| // isnan(V) ==> abs(V) u> int(inf) |
| appendToRes( |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC)); |
| } else if (PartialCheck == fcQNan) { |
| // isquiet(V) ==> abs(V) u>= (unsigned(Inf) | quiet_bit) |
| appendToRes(MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGE, DstTy, Abs, |
| InfWithQnanBitC)); |
| } else { // fcSNan |
| // issignaling(V) ==> abs(V) u> unsigned(Inf) && |
| // abs(V) u< (unsigned(Inf) | quiet_bit) |
| auto IsNan = |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_UGT, DstTy, Abs, InfC); |
| auto IsNotQnan = MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, |
| Abs, InfWithQnanBitC); |
| appendToRes(MIRBuilder.buildAnd(DstTy, IsNan, IsNotQnan)); |
| } |
| } |
| |
| if (FPClassTest PartialCheck = Mask & fcNormal) { |
| // isnormal(V) ==> (0 u< exp u< max_exp) ==> (unsigned(exp-1) u< |
| // (max_exp-1)) |
| APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); |
| auto ExpMinusOne = MIRBuilder.buildSub( |
| IntTy, Abs, MIRBuilder.buildConstant(IntTy, ExpLSB)); |
| APInt MaxExpMinusOne = ExpMask - ExpLSB; |
| auto NormalRes = |
| MIRBuilder.buildICmp(CmpInst::Predicate::ICMP_ULT, DstTy, ExpMinusOne, |
| MIRBuilder.buildConstant(IntTy, MaxExpMinusOne)); |
| if (PartialCheck == fcNegNormal) |
| NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, Sign); |
| else if (PartialCheck == fcPosNormal) { |
| auto PosSign = MIRBuilder.buildXor( |
| DstTy, Sign, MIRBuilder.buildConstant(DstTy, InvertionMask)); |
| NormalRes = MIRBuilder.buildAnd(DstTy, NormalRes, PosSign); |
| } |
| appendToRes(NormalRes); |
| } |
| |
| MIRBuilder.buildCopy(DstReg, Res); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerSelect(MachineInstr &MI) { |
| // Implement vector G_SELECT in terms of XOR, AND, OR. |
| auto [DstReg, DstTy, MaskReg, MaskTy, Op1Reg, Op1Ty, Op2Reg, Op2Ty] = |
| MI.getFirst4RegLLTs(); |
| if (!DstTy.isVector()) |
| return UnableToLegalize; |
| |
| bool IsEltPtr = DstTy.getElementType().isPointer(); |
| if (IsEltPtr) { |
| LLT ScalarPtrTy = LLT::scalar(DstTy.getScalarSizeInBits()); |
| LLT NewTy = DstTy.changeElementType(ScalarPtrTy); |
| Op1Reg = MIRBuilder.buildPtrToInt(NewTy, Op1Reg).getReg(0); |
| Op2Reg = MIRBuilder.buildPtrToInt(NewTy, Op2Reg).getReg(0); |
| DstTy = NewTy; |
| } |
| |
| if (MaskTy.isScalar()) { |
| // Turn the scalar condition into a vector condition mask. |
| |
| Register MaskElt = MaskReg; |
| |
| // The condition was potentially zero extended before, but we want a sign |
| // extended boolean. |
| if (MaskTy != LLT::scalar(1)) |
| MaskElt = MIRBuilder.buildSExtInReg(MaskTy, MaskElt, 1).getReg(0); |
| |
| // Continue the sign extension (or truncate) to match the data type. |
| MaskElt = MIRBuilder.buildSExtOrTrunc(DstTy.getElementType(), |
| MaskElt).getReg(0); |
| |
| // Generate a vector splat idiom. |
| auto ShufSplat = MIRBuilder.buildShuffleSplat(DstTy, MaskElt); |
| MaskReg = ShufSplat.getReg(0); |
| MaskTy = DstTy; |
| } |
| |
| if (MaskTy.getSizeInBits() != DstTy.getSizeInBits()) { |
| return UnableToLegalize; |
| } |
| |
| auto NotMask = MIRBuilder.buildNot(MaskTy, MaskReg); |
| auto NewOp1 = MIRBuilder.buildAnd(MaskTy, Op1Reg, MaskReg); |
| auto NewOp2 = MIRBuilder.buildAnd(MaskTy, Op2Reg, NotMask); |
| if (IsEltPtr) { |
| auto Or = MIRBuilder.buildOr(DstTy, NewOp1, NewOp2); |
| MIRBuilder.buildIntToPtr(DstReg, Or); |
| } else { |
| MIRBuilder.buildOr(DstReg, NewOp1, NewOp2); |
| } |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult LegalizerHelper::lowerDIVREM(MachineInstr &MI) { |
| // Split DIVREM into individual instructions. |
| unsigned Opcode = MI.getOpcode(); |
| |
| MIRBuilder.buildInstr( |
| Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SDIV |
| : TargetOpcode::G_UDIV, |
| {MI.getOperand(0).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); |
| MIRBuilder.buildInstr( |
| Opcode == TargetOpcode::G_SDIVREM ? TargetOpcode::G_SREM |
| : TargetOpcode::G_UREM, |
| {MI.getOperand(1).getReg()}, {MI.getOperand(2), MI.getOperand(3)}); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerAbsToAddXor(MachineInstr &MI) { |
| // Expand %res = G_ABS %a into: |
| // %v1 = G_ASHR %a, scalar_size-1 |
| // %v2 = G_ADD %a, %v1 |
| // %res = G_XOR %v2, %v1 |
| LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); |
| Register OpReg = MI.getOperand(1).getReg(); |
| auto ShiftAmt = |
| MIRBuilder.buildConstant(DstTy, DstTy.getScalarSizeInBits() - 1); |
| auto Shift = MIRBuilder.buildAShr(DstTy, OpReg, ShiftAmt); |
| auto Add = MIRBuilder.buildAdd(DstTy, OpReg, Shift); |
| MIRBuilder.buildXor(MI.getOperand(0).getReg(), Add, Shift); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerAbsToMaxNeg(MachineInstr &MI) { |
| // Expand %res = G_ABS %a into: |
| // %v1 = G_CONSTANT 0 |
| // %v2 = G_SUB %v1, %a |
| // %res = G_SMAX %a, %v2 |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT Ty = MRI.getType(SrcReg); |
| auto Zero = MIRBuilder.buildConstant(Ty, 0).getReg(0); |
| auto Sub = MIRBuilder.buildSub(Ty, Zero, SrcReg).getReg(0); |
| MIRBuilder.buildSMax(MI.getOperand(0), SrcReg, Sub); |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerVectorReduction(MachineInstr &MI) { |
| Register SrcReg = MI.getOperand(1).getReg(); |
| LLT SrcTy = MRI.getType(SrcReg); |
| LLT DstTy = MRI.getType(SrcReg); |
| |
| // The source could be a scalar if the IR type was <1 x sN>. |
| if (SrcTy.isScalar()) { |
| if (DstTy.getSizeInBits() > SrcTy.getSizeInBits()) |
| return UnableToLegalize; // FIXME: handle extension. |
| // This can be just a plain copy. |
| Observer.changingInstr(MI); |
| MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::COPY)); |
| Observer.changedInstr(MI); |
| return Legalized; |
| } |
| return UnableToLegalize; |
| } |
| |
| static bool shouldLowerMemFuncForSize(const MachineFunction &MF) { |
| // On Darwin, -Os means optimize for size without hurting performance, so |
| // only really optimize for size when -Oz (MinSize) is used. |
| if (MF.getTarget().getTargetTriple().isOSDarwin()) |
| return MF.getFunction().hasMinSize(); |
| return MF.getFunction().hasOptSize(); |
| } |
| |
| // Returns a list of types to use for memory op lowering in MemOps. A partial |
| // port of findOptimalMemOpLowering in TargetLowering. |
| static bool findGISelOptimalMemOpLowering(std::vector<LLT> &MemOps, |
| unsigned Limit, const MemOp &Op, |
| unsigned DstAS, unsigned SrcAS, |
| const AttributeList &FuncAttributes, |
| const TargetLowering &TLI) { |
| if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) |
| return false; |
| |
| LLT Ty = TLI.getOptimalMemOpLLT(Op, FuncAttributes); |
| |
| if (Ty == LLT()) { |
| // Use the largest scalar type whose alignment constraints are satisfied. |
| // We only need to check DstAlign here as SrcAlign is always greater or |
| // equal to DstAlign (or zero). |
| Ty = LLT::scalar(64); |
| if (Op.isFixedDstAlign()) |
| while (Op.getDstAlign() < Ty.getSizeInBytes() && |
| !TLI.allowsMisalignedMemoryAccesses(Ty, DstAS, Op.getDstAlign())) |
| Ty = LLT::scalar(Ty.getSizeInBytes()); |
| assert(Ty.getSizeInBits() > 0 && "Could not find valid type"); |
| // FIXME: check for the largest legal type we can load/store to. |
| } |
| |
| unsigned NumMemOps = 0; |
| uint64_t Size = Op.size(); |
| while (Size) { |
| unsigned TySize = Ty.getSizeInBytes(); |
| while (TySize > Size) { |
| // For now, only use non-vector load / store's for the left-over pieces. |
| LLT NewTy = Ty; |
| // FIXME: check for mem op safety and legality of the types. Not all of |
| // SDAGisms map cleanly to GISel concepts. |
| if (NewTy.isVector()) |
| NewTy = NewTy.getSizeInBits() > 64 ? LLT::scalar(64) : LLT::scalar(32); |
| NewTy = LLT::scalar(llvm::bit_floor(NewTy.getSizeInBits() - 1)); |
| unsigned NewTySize = NewTy.getSizeInBytes(); |
| assert(NewTySize > 0 && "Could not find appropriate type"); |
| |
| // If the new LLT cannot cover all of the remaining bits, then consider |
| // issuing a (or a pair of) unaligned and overlapping load / store. |
| unsigned Fast; |
| // Need to get a VT equivalent for allowMisalignedMemoryAccesses(). |
| MVT VT = getMVTForLLT(Ty); |
| if (NumMemOps && Op.allowOverlap() && NewTySize < Size && |
| TLI.allowsMisalignedMemoryAccesses( |
| VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), |
| MachineMemOperand::MONone, &Fast) && |
| Fast) |
| TySize = Size; |
| else { |
| Ty = NewTy; |
| TySize = NewTySize; |
| } |
| } |
| |
| if (++NumMemOps > Limit) |
| return false; |
| |
| MemOps.push_back(Ty); |
| Size -= TySize; |
| } |
| |
| return true; |
| } |
| |
| static Type *getTypeForLLT(LLT Ty, LLVMContext &C) { |
| if (Ty.isVector()) |
| return FixedVectorType::get(IntegerType::get(C, Ty.getScalarSizeInBits()), |
| Ty.getNumElements()); |
| return IntegerType::get(C, Ty.getSizeInBits()); |
| } |
| |
| // Get a vectorized representation of the memset value operand, GISel edition. |
| static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { |
| MachineRegisterInfo &MRI = *MIB.getMRI(); |
| unsigned NumBits = Ty.getScalarSizeInBits(); |
| auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); |
| if (!Ty.isVector() && ValVRegAndVal) { |
| APInt Scalar = ValVRegAndVal->Value.trunc(8); |
| APInt SplatVal = APInt::getSplat(NumBits, Scalar); |
| return MIB.buildConstant(Ty, SplatVal).getReg(0); |
| } |
| |
| // Extend the byte value to the larger type, and then multiply by a magic |
| // value 0x010101... in order to replicate it across every byte. |
| // Unless it's zero, in which case just emit a larger G_CONSTANT 0. |
| if (ValVRegAndVal && ValVRegAndVal->Value == 0) { |
| return MIB.buildConstant(Ty, 0).getReg(0); |
| } |
| |
| LLT ExtType = Ty.getScalarType(); |
| auto ZExt = MIB.buildZExtOrTrunc(ExtType, Val); |
| if (NumBits > 8) { |
| APInt Magic = APInt::getSplat(NumBits, APInt(8, 0x01)); |
| auto MagicMI = MIB.buildConstant(ExtType, Magic); |
| Val = MIB.buildMul(ExtType, ZExt, MagicMI).getReg(0); |
| } |
| |
| // For vector types create a G_BUILD_VECTOR. |
| if (Ty.isVector()) |
| Val = MIB.buildSplatVector(Ty, Val).getReg(0); |
| |
| return Val; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemset(MachineInstr &MI, Register Dst, Register Val, |
| uint64_t KnownLen, Align Alignment, |
| bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memset length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| unsigned Limit = TLI.getMaxStoresPerMemset(OptSize); |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| |
| auto ValVRegAndVal = getIConstantVRegValWithLookThrough(Val, MRI); |
| bool IsZeroVal = ValVRegAndVal && ValVRegAndVal->Value == 0; |
| |
| if (!findGISelOptimalMemOpLowering(MemOps, Limit, |
| MemOp::Set(KnownLen, DstAlignCanChange, |
| Alignment, |
| /*IsZeroMemset=*/IsZeroVal, |
| /*IsVolatile=*/IsVolatile), |
| DstPtrInfo.getAddrSpace(), ~0u, |
| MF.getFunction().getAttributes(), TLI)) |
| return UnableToLegalize; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| MachineIRBuilder MIB(MI); |
| // Find the largest store and generate the bit pattern for it. |
| LLT LargestTy = MemOps[0]; |
| for (unsigned i = 1; i < MemOps.size(); i++) |
| if (MemOps[i].getSizeInBits() > LargestTy.getSizeInBits()) |
| LargestTy = MemOps[i]; |
| |
| // The memset stored value is always defined as an s8, so in order to make it |
| // work with larger store types we need to repeat the bit pattern across the |
| // wider type. |
| Register MemSetValue = getMemsetValue(Val, LargestTy, MIB); |
| |
| if (!MemSetValue) |
| return UnableToLegalize; |
| |
| // Generate the stores. For each store type in the list, we generate the |
| // matching store of that type to the destination address. |
| LLT PtrTy = MRI.getType(Dst); |
| unsigned DstOff = 0; |
| unsigned Size = KnownLen; |
| for (unsigned I = 0; I < MemOps.size(); I++) { |
| LLT Ty = MemOps[I]; |
| unsigned TySize = Ty.getSizeInBytes(); |
| if (TySize > Size) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| assert(I == MemOps.size() - 1 && I != 0); |
| DstOff -= TySize - Size; |
| } |
| |
| // If this store is smaller than the largest store see whether we can get |
| // the smaller value for free with a truncate. |
| Register Value = MemSetValue; |
| if (Ty.getSizeInBits() < LargestTy.getSizeInBits()) { |
| MVT VT = getMVTForLLT(Ty); |
| MVT LargestVT = getMVTForLLT(LargestTy); |
| if (!LargestTy.isVector() && !Ty.isVector() && |
| TLI.isTruncateFree(LargestVT, VT)) |
| Value = MIB.buildTrunc(Ty, MemSetValue).getReg(0); |
| else |
| Value = getMemsetValue(Val, Ty, MIB); |
| if (!Value) |
| return UnableToLegalize; |
| } |
| |
| auto *StoreMMO = MF.getMachineMemOperand(&DstMMO, DstOff, Ty); |
| |
| Register Ptr = Dst; |
| if (DstOff != 0) { |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(PtrTy.getSizeInBits()), DstOff); |
| Ptr = MIB.buildPtrAdd(PtrTy, Dst, Offset).getReg(0); |
| } |
| |
| MIB.buildStore(Value, Ptr, *StoreMMO); |
| DstOff += Ty.getSizeInBytes(); |
| Size -= TySize; |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemcpyInline(MachineInstr &MI) { |
| assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); |
| |
| auto [Dst, Src, Len] = MI.getFirst3Regs(); |
| |
| const auto *MMOIt = MI.memoperands_begin(); |
| const MachineMemOperand *MemOp = *MMOIt; |
| bool IsVolatile = MemOp->isVolatile(); |
| |
| // See if this is a constant length copy |
| auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); |
| // FIXME: support dynamically sized G_MEMCPY_INLINE |
| assert(LenVRegAndVal && |
| "inline memcpy with dynamic size is not yet supported"); |
| uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); |
| if (KnownLen == 0) { |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| const auto &SrcMMO = **std::next(MI.memoperands_begin()); |
| Align DstAlign = DstMMO.getBaseAlign(); |
| Align SrcAlign = SrcMMO.getBaseAlign(); |
| |
| return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, |
| IsVolatile); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemcpyInline(MachineInstr &MI, Register Dst, Register Src, |
| uint64_t KnownLen, Align DstAlign, |
| Align SrcAlign, bool IsVolatile) { |
| assert(MI.getOpcode() == TargetOpcode::G_MEMCPY_INLINE); |
| return lowerMemcpy(MI, Dst, Src, KnownLen, |
| std::numeric_limits<uint64_t>::max(), DstAlign, SrcAlign, |
| IsVolatile); |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemcpy(MachineInstr &MI, Register Dst, Register Src, |
| uint64_t KnownLen, uint64_t Limit, Align DstAlign, |
| Align SrcAlign, bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memcpy length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| Align Alignment = std::min(DstAlign, SrcAlign); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| // FIXME: infer better src pointer alignment like SelectionDAG does here. |
| // FIXME: also use the equivalent of isMemSrcFromConstant and alwaysinlining |
| // if the memcpy is in a tail call position. |
| |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| const auto &SrcMMO = **std::next(MI.memoperands_begin()); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); |
| |
| if (!findGISelOptimalMemOpLowering( |
| MemOps, Limit, |
| MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, |
| IsVolatile), |
| DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), |
| MF.getFunction().getAttributes(), TLI)) |
| return UnableToLegalize; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TRI->hasStackRealignment(MF)) |
| while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign = NewAlign.previous(); |
| |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Inlining memcpy: " << MI << " into loads & stores\n"); |
| |
| MachineIRBuilder MIB(MI); |
| // Now we need to emit a pair of load and stores for each of the types we've |
| // collected. I.e. for each type, generate a load from the source pointer of |
| // that type width, and then generate a corresponding store to the dest buffer |
| // of that value loaded. This can result in a sequence of loads and stores |
| // mixed types, depending on what the target specifies as good types to use. |
| unsigned CurrOffset = 0; |
| unsigned Size = KnownLen; |
| for (auto CopyTy : MemOps) { |
| // Issuing an unaligned load / store pair that overlaps with the previous |
| // pair. Adjust the offset accordingly. |
| if (CopyTy.getSizeInBytes() > Size) |
| CurrOffset -= CopyTy.getSizeInBytes() - Size; |
| |
| // Construct MMOs for the accesses. |
| auto *LoadMMO = |
| MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| auto *StoreMMO = |
| MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| // Create the load. |
| Register LoadPtr = Src; |
| Register Offset; |
| if (CurrOffset != 0) { |
| LLT SrcTy = MRI.getType(Src); |
| Offset = MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset) |
| .getReg(0); |
| LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); |
| } |
| auto LdVal = MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO); |
| |
| // Create the store. |
| Register StorePtr = Dst; |
| if (CurrOffset != 0) { |
| LLT DstTy = MRI.getType(Dst); |
| StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); |
| } |
| MIB.buildStore(LdVal, StorePtr, *StoreMMO); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| Size -= CopyTy.getSizeInBytes(); |
| } |
| |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemmove(MachineInstr &MI, Register Dst, Register Src, |
| uint64_t KnownLen, Align DstAlign, Align SrcAlign, |
| bool IsVolatile) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| auto &DL = MF.getDataLayout(); |
| LLVMContext &C = MF.getFunction().getContext(); |
| |
| assert(KnownLen != 0 && "Have a zero length memmove length!"); |
| |
| bool DstAlignCanChange = false; |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| Align Alignment = std::min(DstAlign, SrcAlign); |
| |
| MachineInstr *FIDef = getOpcodeDef(TargetOpcode::G_FRAME_INDEX, Dst, MRI); |
| if (FIDef && !MFI.isFixedObjectIndex(FIDef->getOperand(1).getIndex())) |
| DstAlignCanChange = true; |
| |
| unsigned Limit = TLI.getMaxStoresPerMemmove(OptSize); |
| std::vector<LLT> MemOps; |
| |
| const auto &DstMMO = **MI.memoperands_begin(); |
| const auto &SrcMMO = **std::next(MI.memoperands_begin()); |
| MachinePointerInfo DstPtrInfo = DstMMO.getPointerInfo(); |
| MachinePointerInfo SrcPtrInfo = SrcMMO.getPointerInfo(); |
| |
| // FIXME: SelectionDAG always passes false for 'AllowOverlap', apparently due |
| // to a bug in it's findOptimalMemOpLowering implementation. For now do the |
| // same thing here. |
| if (!findGISelOptimalMemOpLowering( |
| MemOps, Limit, |
| MemOp::Copy(KnownLen, DstAlignCanChange, Alignment, SrcAlign, |
| /*IsVolatile*/ true), |
| DstPtrInfo.getAddrSpace(), SrcPtrInfo.getAddrSpace(), |
| MF.getFunction().getAttributes(), TLI)) |
| return UnableToLegalize; |
| |
| if (DstAlignCanChange) { |
| // Get an estimate of the type from the LLT. |
| Type *IRTy = getTypeForLLT(MemOps[0], C); |
| Align NewAlign = DL.getABITypeAlign(IRTy); |
| |
| // Don't promote to an alignment that would require dynamic stack |
| // realignment. |
| const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); |
| if (!TRI->hasStackRealignment(MF)) |
| while (NewAlign > Alignment && DL.exceedsNaturalStackAlignment(NewAlign)) |
| NewAlign = NewAlign.previous(); |
| |
| if (NewAlign > Alignment) { |
| Alignment = NewAlign; |
| unsigned FI = FIDef->getOperand(1).getIndex(); |
| // Give the stack frame object a larger alignment if needed. |
| if (MFI.getObjectAlign(FI) < Alignment) |
| MFI.setObjectAlignment(FI, Alignment); |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Inlining memmove: " << MI << " into loads & stores\n"); |
| |
| MachineIRBuilder MIB(MI); |
| // Memmove requires that we perform the loads first before issuing the stores. |
| // Apart from that, this loop is pretty much doing the same thing as the |
| // memcpy codegen function. |
| unsigned CurrOffset = 0; |
| SmallVector<Register, 16> LoadVals; |
| for (auto CopyTy : MemOps) { |
| // Construct MMO for the load. |
| auto *LoadMMO = |
| MF.getMachineMemOperand(&SrcMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| // Create the load. |
| Register LoadPtr = Src; |
| if (CurrOffset != 0) { |
| LLT SrcTy = MRI.getType(Src); |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(SrcTy.getSizeInBits()), CurrOffset); |
| LoadPtr = MIB.buildPtrAdd(SrcTy, Src, Offset).getReg(0); |
| } |
| LoadVals.push_back(MIB.buildLoad(CopyTy, LoadPtr, *LoadMMO).getReg(0)); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| } |
| |
| CurrOffset = 0; |
| for (unsigned I = 0; I < MemOps.size(); ++I) { |
| LLT CopyTy = MemOps[I]; |
| // Now store the values loaded. |
| auto *StoreMMO = |
| MF.getMachineMemOperand(&DstMMO, CurrOffset, CopyTy.getSizeInBytes()); |
| |
| Register StorePtr = Dst; |
| if (CurrOffset != 0) { |
| LLT DstTy = MRI.getType(Dst); |
| auto Offset = |
| MIB.buildConstant(LLT::scalar(DstTy.getSizeInBits()), CurrOffset); |
| StorePtr = MIB.buildPtrAdd(DstTy, Dst, Offset).getReg(0); |
| } |
| MIB.buildStore(LoadVals[I], StorePtr, *StoreMMO); |
| CurrOffset += CopyTy.getSizeInBytes(); |
| } |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| LegalizerHelper::LegalizeResult |
| LegalizerHelper::lowerMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { |
| const unsigned Opc = MI.getOpcode(); |
| // This combine is fairly complex so it's not written with a separate |
| // matcher function. |
| assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || |
| Opc == TargetOpcode::G_MEMSET) && |
| "Expected memcpy like instruction"); |
| |
| auto MMOIt = MI.memoperands_begin(); |
| const MachineMemOperand *MemOp = *MMOIt; |
| |
| Align DstAlign = MemOp->getBaseAlign(); |
| Align SrcAlign; |
| auto [Dst, Src, Len] = MI.getFirst3Regs(); |
| |
| if (Opc != TargetOpcode::G_MEMSET) { |
| assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); |
| MemOp = *(++MMOIt); |
| SrcAlign = MemOp->getBaseAlign(); |
| } |
| |
| // See if this is a constant length copy |
| auto LenVRegAndVal = getIConstantVRegValWithLookThrough(Len, MRI); |
| if (!LenVRegAndVal) |
| return UnableToLegalize; |
| uint64_t KnownLen = LenVRegAndVal->Value.getZExtValue(); |
| |
| if (KnownLen == 0) { |
| MI.eraseFromParent(); |
| return Legalized; |
| } |
| |
| bool IsVolatile = MemOp->isVolatile(); |
| if (Opc == TargetOpcode::G_MEMCPY_INLINE) |
| return lowerMemcpyInline(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, |
| IsVolatile); |
| |
| // Don't try to optimize volatile. |
| if (IsVolatile) |
| return UnableToLegalize; |
| |
| if (MaxLen && KnownLen > MaxLen) |
| return UnableToLegalize; |
| |
| if (Opc == TargetOpcode::G_MEMCPY) { |
| auto &MF = *MI.getParent()->getParent(); |
| const auto &TLI = *MF.getSubtarget().getTargetLowering(); |
| bool OptSize = shouldLowerMemFuncForSize(MF); |
| uint64_t Limit = TLI.getMaxStoresPerMemcpy(OptSize); |
| return lowerMemcpy(MI, Dst, Src, KnownLen, Limit, DstAlign, SrcAlign, |
| IsVolatile); |
| } |
| if (Opc == TargetOpcode::G_MEMMOVE) |
| return lowerMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); |
| if (Opc == TargetOpcode::G_MEMSET) |
| return lowerMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); |
| return UnableToLegalize; |
| } |