blob: 4b2ec0118ec47380995e11526e9adbd492bd8e4c [file] [log] [blame]
//===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Implements the AMDGPU specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUSubtarget.h"
#include "AMDGPU.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "amdgpu-subtarget"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenSubtargetInfo.inc"
#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#undef AMDGPUSubtarget
#include "R600GenSubtargetInfo.inc"
static cl::opt<bool> DisablePowerSched(
"amdgpu-disable-power-sched",
cl::desc("Disable scheduling to minimize mAI power bursts"),
cl::init(false));
static cl::opt<bool> EnableVGPRIndexMode(
"amdgpu-vgpr-index-mode",
cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
cl::init(false));
static cl::opt<bool> EnableFlatScratch(
"amdgpu-enable-flat-scratch",
cl::desc("Use flat scratch instructions"),
cl::init(false));
static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen",
cl::desc("Enable the use of AA during codegen."),
cl::init(true));
GCNSubtarget::~GCNSubtarget() = default;
R600Subtarget &
R600Subtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
SmallString<256> FullFS("+promote-alloca,");
FullFS += FS;
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
HasMulU24 = getGeneration() >= EVERGREEN;
HasMulI24 = hasCaymanISA();
return *this;
}
GCNSubtarget &
GCNSubtarget::initializeSubtargetDependencies(const Triple &TT,
StringRef GPU, StringRef FS) {
// Determine default and user-specified characteristics
//
// We want to be able to turn these off, but making this a subtarget feature
// for SI has the unhelpful behavior that it unsets everything else if you
// disable it.
//
// Similarly we want enable-prt-strict-null to be on by default and not to
// unset everything else if it is disabled
SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,");
// Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default
if (isAmdHsaOS())
FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,";
FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS
// Disable mutually exclusive bits.
if (FS.find_lower("+wavefrontsize") != StringRef::npos) {
if (FS.find_lower("wavefrontsize16") == StringRef::npos)
FullFS += "-wavefrontsize16,";
if (FS.find_lower("wavefrontsize32") == StringRef::npos)
FullFS += "-wavefrontsize32,";
if (FS.find_lower("wavefrontsize64") == StringRef::npos)
FullFS += "-wavefrontsize64,";
}
FullFS += FS;
ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS);
// Implement the "generic" processors, which acts as the default when no
// generation features are enabled (e.g for -mcpu=''). HSA OS defaults to
// the first amdgcn target that supports flat addressing. Other OSes defaults
// to the first amdgcn target.
if (Gen == AMDGPUSubtarget::INVALID) {
Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS
: AMDGPUSubtarget::SOUTHERN_ISLANDS;
}
// We don't support FP64 for EG/NI atm.
assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS));
// Targets must either support 64-bit offsets for MUBUF instructions, and/or
// support flat operations, otherwise they cannot access a 64-bit global
// address space
assert(hasAddr64() || hasFlat());
// Unless +-flat-for-global is specified, turn on FlatForGlobal for targets
// that do not support ADDR64 variants of MUBUF instructions. Such targets
// cannot use a 64 bit offset with a MUBUF instruction to access the global
// address space
if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) {
ToggleFeature(AMDGPU::FeatureFlatForGlobal);
FlatForGlobal = true;
}
// Unless +-flat-for-global is specified, use MUBUF instructions for global
// address space access if flat operations are not available.
if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) {
ToggleFeature(AMDGPU::FeatureFlatForGlobal);
FlatForGlobal = false;
}
// Set defaults if needed.
if (MaxPrivateElementSize == 0)
MaxPrivateElementSize = 4;
if (LDSBankCount == 0)
LDSBankCount = 32;
if (TT.getArch() == Triple::amdgcn) {
if (LocalMemorySize == 0)
LocalMemorySize = 32768;
// Do something sensible for unspecified target.
if (!HasMovrel && !HasVGPRIndexMode)
HasMovrel = true;
}
// Don't crash on invalid devices.
if (WavefrontSizeLog2 == 0)
WavefrontSizeLog2 = 5;
HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS;
TargetID.setTargetIDFromFeaturesString(FS);
LLVM_DEBUG(dbgs() << "xnack setting for subtarget: "
<< TargetID.getXnackSetting() << '\n');
LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: "
<< TargetID.getSramEccSetting() << '\n');
return *this;
}
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) :
TargetTriple(TT),
GCN3Encoding(false),
Has16BitInsts(false),
HasMadMixInsts(false),
HasMadMacF32Insts(false),
HasDsSrc2Insts(false),
HasSDWA(false),
HasVOP3PInsts(false),
HasMulI24(true),
HasMulU24(true),
HasInv2PiInlineImm(false),
HasFminFmaxLegacy(true),
EnablePromoteAlloca(false),
HasTrigReducedRange(false),
MaxWavesPerEU(10),
LocalMemorySize(0),
WavefrontSizeLog2(0)
{ }
GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
const GCNTargetMachine &TM) :
AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS),
AMDGPUSubtarget(TT),
TargetTriple(TT),
TargetID(*this),
Gen(INVALID),
InstrItins(getInstrItineraryForCPU(GPU)),
LDSBankCount(0),
MaxPrivateElementSize(0),
FastFMAF32(false),
FastDenormalF32(false),
HalfRate64Ops(false),
FullRate64Ops(false),
FlatForGlobal(false),
AutoWaitcntBeforeBarrier(false),
UnalignedScratchAccess(false),
UnalignedAccessMode(false),
HasApertureRegs(false),
SupportsXNACK(false),
EnableXNACK(false),
EnableTgSplit(false),
EnableCuMode(false),
TrapHandler(false),
EnableLoadStoreOpt(false),
EnableUnsafeDSOffsetFolding(false),
EnableSIScheduler(false),
EnableDS128(false),
EnablePRTStrictNull(false),
DumpCode(false),
FP64(false),
CIInsts(false),
GFX8Insts(false),
GFX9Insts(false),
GFX90AInsts(false),
GFX10Insts(false),
GFX10_3Insts(false),
GFX7GFX8GFX9Insts(false),
SGPRInitBug(false),
HasSMemRealTime(false),
HasIntClamp(false),
HasFmaMixInsts(false),
HasMovrel(false),
HasVGPRIndexMode(false),
HasScalarStores(false),
HasScalarAtomics(false),
HasSDWAOmod(false),
HasSDWAScalar(false),
HasSDWASdst(false),
HasSDWAMac(false),
HasSDWAOutModsVOPC(false),
HasDPP(false),
HasDPP8(false),
Has64BitDPP(false),
HasPackedFP32Ops(false),
HasExtendedImageInsts(false),
HasR128A16(false),
HasGFX10A16(false),
HasG16(false),
HasNSAEncoding(false),
GFX10_BEncoding(false),
HasDLInsts(false),
HasDot1Insts(false),
HasDot2Insts(false),
HasDot3Insts(false),
HasDot4Insts(false),
HasDot5Insts(false),
HasDot6Insts(false),
HasDot7Insts(false),
HasMAIInsts(false),
HasPkFmacF16Inst(false),
HasAtomicFaddInsts(false),
SupportsSRAMECC(false),
EnableSRAMECC(false),
HasNoSdstCMPX(false),
HasVscnt(false),
HasGetWaveIdInst(false),
HasSMemTimeInst(false),
HasShaderCyclesRegister(false),
HasRegisterBanking(false),
HasVOP3Literal(false),
HasNoDataDepHazard(false),
FlatAddressSpace(false),
FlatInstOffsets(false),
FlatGlobalInsts(false),
FlatScratchInsts(false),
ScalarFlatScratchInsts(false),
AddNoCarryInsts(false),
HasUnpackedD16VMem(false),
LDSMisalignedBug(false),
HasMFMAInlineLiteralBug(false),
UnalignedBufferAccess(false),
UnalignedDSAccess(false),
HasPackedTID(false),
ScalarizeGlobal(false),
HasVcmpxPermlaneHazard(false),
HasVMEMtoScalarWriteHazard(false),
HasSMEMtoVectorWriteHazard(false),
HasInstFwdPrefetchBug(false),
HasVcmpxExecWARHazard(false),
HasLdsBranchVmemWARHazard(false),
HasNSAtoVMEMBug(false),
HasOffset3fBug(false),
HasFlatSegmentOffsetBug(false),
HasImageStoreD16Bug(false),
HasImageGather4D16Bug(false),
FeatureDisable(false),
InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)),
TLInfo(TM, *this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) {
MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this);
CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering()));
InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering()));
Legalizer.reset(new AMDGPULegalizerInfo(*this, TM));
RegBankInfo.reset(new AMDGPURegisterBankInfo(*this));
InstSelector.reset(new AMDGPUInstructionSelector(
*this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM));
}
bool GCNSubtarget::enableFlatScratch() const {
return EnableFlatScratch && hasFlatScratchInsts();
}
unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const {
if (getGeneration() < GFX10)
return 1;
switch (Opcode) {
case AMDGPU::V_LSHLREV_B64_e64:
case AMDGPU::V_LSHLREV_B64_gfx10:
case AMDGPU::V_LSHL_B64_e64:
case AMDGPU::V_LSHRREV_B64_e64:
case AMDGPU::V_LSHRREV_B64_gfx10:
case AMDGPU::V_LSHR_B64_e64:
case AMDGPU::V_ASHRREV_I64_e64:
case AMDGPU::V_ASHRREV_I64_gfx10:
case AMDGPU::V_ASHR_I64_e64:
return 1;
}
return 2;
}
unsigned AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves,
const Function &F) const {
if (NWaves == 1)
return getLocalMemorySize();
unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second;
unsigned WorkGroupsPerCu = getMaxWorkGroupsPerCU(WorkGroupSize);
if (!WorkGroupsPerCu)
return 0;
unsigned MaxWaves = getMaxWavesPerEU();
return getLocalMemorySize() * MaxWaves / WorkGroupsPerCu / NWaves;
}
// FIXME: Should return min,max range.
unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes,
const Function &F) const {
const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second;
const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize);
if (!MaxWorkGroupsPerCu)
return 0;
const unsigned WaveSize = getWavefrontSize();
// FIXME: Do we need to account for alignment requirement of LDS rounding the
// size up?
// Compute restriction based on LDS usage
unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u);
// This can be queried with more LDS than is possible, so just assume the
// worst.
if (NumGroups == 0)
return 1;
NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups);
// Round to the number of waves.
const unsigned MaxGroupNumWaves = (MaxWorkGroupSize + WaveSize - 1) / WaveSize;
unsigned MaxWaves = NumGroups * MaxGroupNumWaves;
// Clamp to the maximum possible number of waves.
MaxWaves = std::min(MaxWaves, getMaxWavesPerEU());
// FIXME: Needs to be a multiple of the group size?
//MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves);
assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() &&
"computed invalid occupancy");
return MaxWaves;
}
unsigned
AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const {
const auto *MFI = MF.getInfo<SIMachineFunctionInfo>();
return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction());
}
std::pair<unsigned, unsigned>
AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const {
switch (CC) {
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
return std::make_pair(1, getWavefrontSize());
default:
return std::make_pair(1u, getMaxFlatWorkGroupSize());
}
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes(
const Function &F) const {
// Default minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Default =
getDefaultFlatWorkGroupSize(F.getCallingConv());
// Requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-flat-work-group-size", Default);
// Make sure requested minimum is less than requested maximum.
if (Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinFlatWorkGroupSize())
return Default;
if (Requested.second > getMaxFlatWorkGroupSize())
return Default;
return Requested;
}
std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU(
const Function &F) const {
// Default minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU());
// Default/requested minimum/maximum flat work group sizes.
std::pair<unsigned, unsigned> FlatWorkGroupSizes = getFlatWorkGroupSizes(F);
// If minimum/maximum flat work group sizes were explicitly requested using
// "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum
// number of waves per execution unit to values implied by requested
// minimum/maximum flat work group sizes.
unsigned MinImpliedByFlatWorkGroupSize =
getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second);
Default.first = MinImpliedByFlatWorkGroupSize;
bool RequestedFlatWorkGroupSize =
F.hasFnAttribute("amdgpu-flat-work-group-size");
// Requested minimum/maximum number of waves per execution unit.
std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute(
F, "amdgpu-waves-per-eu", Default, true);
// Make sure requested minimum is less than requested maximum.
if (Requested.second && Requested.first > Requested.second)
return Default;
// Make sure requested values do not violate subtarget's specifications.
if (Requested.first < getMinWavesPerEU() ||
Requested.second > getMaxWavesPerEU())
return Default;
// Make sure requested values are compatible with values implied by requested
// minimum/maximum flat work group sizes.
if (RequestedFlatWorkGroupSize &&
Requested.first < MinImpliedByFlatWorkGroupSize)
return Default;
return Requested;
}
static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) {
auto Node = Kernel.getMetadata("reqd_work_group_size");
if (Node && Node->getNumOperands() == 3)
return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue();
return std::numeric_limits<unsigned>::max();
}
bool AMDGPUSubtarget::isMesaKernel(const Function &F) const {
return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv());
}
unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel,
unsigned Dimension) const {
unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension);
if (ReqdSize != std::numeric_limits<unsigned>::max())
return ReqdSize - 1;
return getFlatWorkGroupSizes(Kernel).second - 1;
}
bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const {
Function *Kernel = I->getParent()->getParent();
unsigned MinSize = 0;
unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second;
bool IdQuery = false;
// If reqd_work_group_size is present it narrows value down.
if (auto *CI = dyn_cast<CallInst>(I)) {
const Function *F = CI->getCalledFunction();
if (F) {
unsigned Dim = UINT_MAX;
switch (F->getIntrinsicID()) {
case Intrinsic::amdgcn_workitem_id_x:
case Intrinsic::r600_read_tidig_x:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_x:
Dim = 0;
break;
case Intrinsic::amdgcn_workitem_id_y:
case Intrinsic::r600_read_tidig_y:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_y:
Dim = 1;
break;
case Intrinsic::amdgcn_workitem_id_z:
case Intrinsic::r600_read_tidig_z:
IdQuery = true;
LLVM_FALLTHROUGH;
case Intrinsic::r600_read_local_size_z:
Dim = 2;
break;
default:
break;
}
if (Dim <= 3) {
unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim);
if (ReqdSize != std::numeric_limits<unsigned>::max())
MinSize = MaxSize = ReqdSize;
}
}
}
if (!MaxSize)
return false;
// Range metadata is [Lo, Hi). For ID query we need to pass max size
// as Hi. For size query we need to pass Hi + 1.
if (IdQuery)
MinSize = 0;
else
++MaxSize;
MDBuilder MDB(I->getContext());
MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize),
APInt(32, MaxSize));
I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
return true;
}
unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const {
if (isMesaKernel(F))
return 16;
return AMDGPU::getIntegerAttribute(F, "amdgpu-implicitarg-num-bytes", 0);
}
uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F,
Align &MaxAlign) const {
assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL ||
F.getCallingConv() == CallingConv::SPIR_KERNEL);
const DataLayout &DL = F.getParent()->getDataLayout();
uint64_t ExplicitArgBytes = 0;
MaxAlign = Align(1);
for (const Argument &Arg : F.args()) {
const bool IsByRef = Arg.hasByRefAttr();
Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
if (!Alignment)
Alignment = DL.getABITypeAlign(ArgTy);
uint64_t AllocSize = DL.getTypeAllocSize(ArgTy);
ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize;
MaxAlign = max(MaxAlign, Alignment);
}
return ExplicitArgBytes;
}
unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F,
Align &MaxAlign) const {
uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign);
unsigned ExplicitOffset = getExplicitKernelArgOffset(F);
uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes;
unsigned ImplicitBytes = getImplicitArgNumBytes(F);
if (ImplicitBytes != 0) {
const Align Alignment = getAlignmentForImplicitArgPtr();
TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes;
}
// Being able to dereference past the end is useful for emitting scalar loads.
return alignTo(TotalSize, 4);
}
AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const {
return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32
: AMDGPUDwarfFlavour::Wave64;
}
R600Subtarget::R600Subtarget(const Triple &TT, StringRef GPU, StringRef FS,
const TargetMachine &TM) :
R600GenSubtargetInfo(TT, GPU, /*TuneCPU*/GPU, FS),
AMDGPUSubtarget(TT),
InstrInfo(*this),
FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0),
FMA(false),
CaymanISA(false),
CFALUBug(false),
HasVertexCache(false),
R600ALUInst(false),
FP64(false),
TexVTXClauseSize(0),
Gen(R600),
TLInfo(TM, initializeSubtargetDependencies(TT, GPU, FS)),
InstrItins(getInstrItineraryForCPU(GPU)) { }
void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy,
unsigned NumRegionInstrs) const {
// Track register pressure so the scheduler can try to decrease
// pressure once register usage is above the threshold defined by
// SIRegisterInfo::getRegPressureSetLimit()
Policy.ShouldTrackPressure = true;
// Enabling both top down and bottom up scheduling seems to give us less
// register spills than just using one of these approaches on its own.
Policy.OnlyTopDown = false;
Policy.OnlyBottomUp = false;
// Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler.
if (!enableSIScheduler())
Policy.ShouldTrackLaneMasks = true;
}
bool GCNSubtarget::hasMadF16() const {
return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1;
}
bool GCNSubtarget::useVGPRIndexMode() const {
return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode());
}
bool GCNSubtarget::useAA() const { return UseAA; }
unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const {
if (getGeneration() >= AMDGPUSubtarget::GFX10)
return getMaxWavesPerEU();
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
if (SGPRs <= 80)
return 10;
if (SGPRs <= 88)
return 9;
if (SGPRs <= 100)
return 8;
return 7;
}
if (SGPRs <= 48)
return 10;
if (SGPRs <= 56)
return 9;
if (SGPRs <= 64)
return 8;
if (SGPRs <= 72)
return 7;
if (SGPRs <= 80)
return 6;
return 5;
}
unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned VGPRs) const {
unsigned MaxWaves = getMaxWavesPerEU();
unsigned Granule = getVGPRAllocGranule();
if (VGPRs < Granule)
return MaxWaves;
unsigned RoundedRegs = ((VGPRs + Granule - 1) / Granule) * Granule;
return std::min(std::max(getTotalNumVGPRs() / RoundedRegs, 1u), MaxWaves);
}
unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const {
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
if (getGeneration() >= AMDGPUSubtarget::GFX10)
return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs.
if (MFI.hasFlatScratchInit()) {
if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
return 6; // FLAT_SCRATCH, XNACK, VCC (in that order).
if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS)
return 4; // FLAT_SCRATCH, VCC (in that order).
}
if (isXNACKEnabled())
return 4; // XNACK, VCC (in that order).
return 2; // VCC.
}
unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize,
unsigned NumSGPRs,
unsigned NumVGPRs) const {
unsigned Occupancy =
std::min(getMaxWavesPerEU(),
getOccupancyWithLocalMemSize(LDSSize, F));
if (NumSGPRs)
Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs));
if (NumVGPRs)
Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs));
return Occupancy;
}
unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of SGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false);
unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true);
// Check if maximum number of SGPRs was explicitly requested using
// "amdgpu-num-sgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-sgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-sgpr", MaxNumSGPRs);
// Make sure requested value does not violate subtarget's specifications.
if (Requested && (Requested <= getReservedNumSGPRs(MF)))
Requested = 0;
// If more SGPRs are required to support the input user/system SGPRs,
// increase to accommodate them.
//
// FIXME: This really ends up using the requested number of SGPRs + number
// of reserved special registers in total. Theoretically you could re-use
// the last input registers for these special registers, but this would
// require a lot of complexity to deal with the weird aliasing.
unsigned InputNumSGPRs = MFI.getNumPreloadedSGPRs();
if (Requested && Requested < InputNumSGPRs)
Requested = InputNumSGPRs;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumSGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumSGPRs = Requested;
}
if (hasSGPRInitBug())
MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
return std::min(MaxNumSGPRs - getReservedNumSGPRs(MF),
MaxAddressableNumSGPRs);
}
unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const {
const Function &F = MF.getFunction();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
// Compute maximum number of VGPRs function can use using default/requested
// minimum number of waves per execution unit.
std::pair<unsigned, unsigned> WavesPerEU = MFI.getWavesPerEU();
unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first);
// Check if maximum number of VGPRs was explicitly requested using
// "amdgpu-num-vgpr" attribute.
if (F.hasFnAttribute("amdgpu-num-vgpr")) {
unsigned Requested = AMDGPU::getIntegerAttribute(
F, "amdgpu-num-vgpr", MaxNumVGPRs);
if (hasGFX90AInsts())
Requested *= 2;
// Make sure requested value is compatible with values implied by
// default/requested minimum/maximum number of waves per execution unit.
if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first))
Requested = 0;
if (WavesPerEU.second &&
Requested && Requested < getMinNumVGPRs(WavesPerEU.second))
Requested = 0;
if (Requested)
MaxNumVGPRs = Requested;
}
return MaxNumVGPRs;
}
void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use,
int UseOpIdx, SDep &Dep) const {
if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() ||
!Def->isInstr() || !Use->isInstr())
return;
MachineInstr *DefI = Def->getInstr();
MachineInstr *UseI = Use->getInstr();
if (DefI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(DefI->getIterator());
MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end());
unsigned Lat = 0;
for (++I; I != E && I->isBundledWithPred(); ++I) {
if (I->modifiesRegister(Reg, TRI))
Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I);
else if (Lat)
--Lat;
}
Dep.setLatency(Lat);
} else if (UseI->isBundle()) {
const SIRegisterInfo *TRI = getRegisterInfo();
auto Reg = Dep.getReg();
MachineBasicBlock::const_instr_iterator I(UseI->getIterator());
MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end());
unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI);
for (++I; I != E && I->isBundledWithPred() && Lat; ++I) {
if (I->readsRegister(Reg, TRI))
break;
--Lat;
}
Dep.setLatency(Lat);
}
}
namespace {
struct FillMFMAShadowMutation : ScheduleDAGMutation {
const SIInstrInfo *TII;
ScheduleDAGMI *DAG;
FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {}
bool isSALU(const SUnit *SU) const {
const MachineInstr *MI = SU->getInstr();
return MI && TII->isSALU(*MI) && !MI->isTerminator();
}
bool isVALU(const SUnit *SU) const {
const MachineInstr *MI = SU->getInstr();
return MI && TII->isVALU(*MI);
}
bool canAddEdge(const SUnit *Succ, const SUnit *Pred) const {
if (Pred->NodeNum < Succ->NodeNum)
return true;
SmallVector<const SUnit*, 64> Succs({Succ}), Preds({Pred});
for (unsigned I = 0; I < Succs.size(); ++I) {
for (const SDep &SI : Succs[I]->Succs) {
const SUnit *SU = SI.getSUnit();
if (SU != Succs[I] && !llvm::is_contained(Succs, SU))
Succs.push_back(SU);
}
}
SmallPtrSet<const SUnit*, 32> Visited;
while (!Preds.empty()) {
const SUnit *SU = Preds.pop_back_val();
if (llvm::is_contained(Succs, SU))
return false;
Visited.insert(SU);
for (const SDep &SI : SU->Preds)
if (SI.getSUnit() != SU && !Visited.count(SI.getSUnit()))
Preds.push_back(SI.getSUnit());
}
return true;
}
// Link as much SALU intructions in chain as possible. Return the size
// of the chain. Links up to MaxChain instructions.
unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain,
SmallPtrSetImpl<SUnit *> &Visited) const {
SmallVector<SUnit *, 8> Worklist({To});
unsigned Linked = 0;
while (!Worklist.empty() && MaxChain-- > 0) {
SUnit *SU = Worklist.pop_back_val();
if (!Visited.insert(SU).second)
continue;
LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From);
dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n');
if (SU->addPred(SDep(From, SDep::Artificial), false))
++Linked;
for (SDep &SI : From->Succs) {
SUnit *SUv = SI.getSUnit();
if (SUv != From && isVALU(SUv) && canAddEdge(SUv, SU))
SUv->addPred(SDep(SU, SDep::Artificial), false);
}
for (SDep &SI : SU->Succs) {
SUnit *Succ = SI.getSUnit();
if (Succ != SU && isSALU(Succ) && canAddEdge(From, Succ))
Worklist.push_back(Succ);
}
}
return Linked;
}
void apply(ScheduleDAGInstrs *DAGInstrs) override {
const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>();
if (!ST.hasMAIInsts() || DisablePowerSched)
return;
DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel();
if (!TSchedModel || DAG->SUnits.empty())
return;
// Scan for MFMA long latency instructions and try to add a dependency
// of available SALU instructions to give them a chance to fill MFMA
// shadow. That is desirable to fill MFMA shadow with SALU instructions
// rather than VALU to prevent power consumption bursts and throttle.
auto LastSALU = DAG->SUnits.begin();
auto E = DAG->SUnits.end();
SmallPtrSet<SUnit*, 32> Visited;
for (SUnit &SU : DAG->SUnits) {
MachineInstr &MAI = *SU.getInstr();
if (!TII->isMAI(MAI) ||
MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64)
continue;
unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1;
LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU);
dbgs() << "Need " << Lat
<< " instructions to cover latency.\n");
// Find up to Lat independent scalar instructions as early as
// possible such that they can be scheduled after this MFMA.
for ( ; Lat && LastSALU != E; ++LastSALU) {
if (Visited.count(&*LastSALU))
continue;
if (!isSALU(&*LastSALU) || !canAddEdge(&*LastSALU, &SU))
continue;
Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited);
}
}
}
};
} // namespace
void GCNSubtarget::getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo));
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) {
if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn)
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>());
else
return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>());
}
const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) {
if (TM.getTargetTriple().getArch() == Triple::amdgcn)
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F));
else
return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F));
}