blob: fda044ad7c89fe23e7798abcedb67b5699477cba [file] [log] [blame]
//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates LDS uses from non-kernel functions.
//
// The strategy is to create a new struct with a field for each LDS variable
// and allocate that struct at the same address for every kernel. Uses of the
// original LDS variables are then replaced with compile time offsets from that
// known address. AMDGPUMachineFunction allocates the LDS global.
//
// Local variables with constant annotation or non-undef initializer are passed
// through unchanged for simplication or error diagnostics in later passes.
//
// To reduce the memory overhead variables that are only used by kernels are
// excluded from this transform. The analysis to determine whether a variable
// is only used by a kernel is cheap and conservative so this may allocate
// a variable in every kernel when it was not strictly necessary to do so.
//
// A possible future refinement is to specialise the structure per-kernel, so
// that fields can be elided based on more expensive analysis.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <algorithm>
#include <vector>
#define DEBUG_TYPE "amdgpu-lower-module-lds"
using namespace llvm;
namespace {
class AMDGPULowerModuleLDS : public ModulePass {
static bool isKernelCC(Function *Func) {
return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
}
static Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
static bool
userRequiresLowering(const SmallPtrSetImpl<GlobalValue *> &UsedList,
User *InitialUser) {
// Any LDS variable can be lowered by moving into the created struct
// Each variable so lowered is allocated in every kernel, so variables
// whose users are all known to be safe to lower without the transform
// are left unchanged.
SmallPtrSet<User *, 8> Visited;
SmallVector<User *, 16> Stack;
Stack.push_back(InitialUser);
while (!Stack.empty()) {
User *V = Stack.pop_back_val();
Visited.insert(V);
if (auto *G = dyn_cast<GlobalValue>(V->stripPointerCasts())) {
if (UsedList.contains(G)) {
continue;
}
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (isKernelCC(I->getFunction())) {
continue;
}
}
if (auto *E = dyn_cast<ConstantExpr>(V)) {
for (Value::user_iterator EU = E->user_begin(); EU != E->user_end();
++EU) {
if (Visited.insert(*EU).second) {
Stack.push_back(*EU);
}
}
continue;
}
// Unknown user, conservatively lower the variable
return true;
}
return false;
}
static std::vector<GlobalVariable *>
findVariablesToLower(Module &M,
const SmallPtrSetImpl<GlobalValue *> &UsedList) {
std::vector<llvm::GlobalVariable *> LocalVars;
for (auto &GV : M.globals()) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
continue;
}
if (!GV.hasInitializer()) {
// addrspace(3) without initializer implies cuda/hip extern __shared__
// the semantics for such a variable appears to be that all extern
// __shared__ variables alias one another, in which case this transform
// is not required
continue;
}
if (!isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for local address space.
// Leave such variables in place for consistent error reporting.
continue;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
continue;
}
if (std::none_of(GV.user_begin(), GV.user_end(), [&](User *U) {
return userRequiresLowering(UsedList, U);
})) {
continue;
}
LocalVars.push_back(&GV);
}
return LocalVars;
}
static void removeFromUsedList(Module &M, StringRef Name,
SmallPtrSetImpl<Constant *> &ToRemove) {
GlobalVariable *GV = M.getGlobalVariable(Name);
if (!GV || ToRemove.empty()) {
return;
}
SmallVector<Constant *, 16> Init;
auto *CA = cast<ConstantArray>(GV->getInitializer());
for (auto &Op : CA->operands()) {
// ModuleUtils::appendToUsed only inserts Constants
Constant *C = cast<Constant>(Op);
if (!ToRemove.contains(C->stripPointerCasts())) {
Init.push_back(C);
}
}
if (Init.size() == CA->getNumOperands()) {
return; // none to remove
}
GV->eraseFromParent();
if (!Init.empty()) {
ArrayType *ATy =
ArrayType::get(Type::getInt8PtrTy(M.getContext()), Init.size());
GV =
new llvm::GlobalVariable(M, ATy, false, GlobalValue::AppendingLinkage,
ConstantArray::get(ATy, Init), Name);
GV->setSection("llvm.metadata");
}
}
static void
removeFromUsedLists(Module &M,
const std::vector<GlobalVariable *> &LocalVars) {
SmallPtrSet<Constant *, 32> LocalVarsSet;
for (size_t I = 0; I < LocalVars.size(); I++) {
if (Constant *C = dyn_cast<Constant>(LocalVars[I]->stripPointerCasts())) {
LocalVarsSet.insert(C);
}
}
removeFromUsedList(M, "llvm.used", LocalVarsSet);
removeFromUsedList(M, "llvm.compiler.used", LocalVarsSet);
}
static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
GlobalVariable *SGV) {
// The llvm.amdgcn.module.lds instance is implicitly used by all kernels
// that might call a function which accesses a field within it. This is
// presently approximated to 'all kernels' if there are any such functions
// in the module. This implicit use is reified as an explicit use here so
// that later passes, specifically PromoteAlloca, account for the required
// memory without any knowledge of this transform.
// An operand bundle on llvm.donothing works because the call instruction
// survives until after the last pass that needs to account for LDS. It is
// better than inline asm as the latter survives until the end of codegen. A
// totally robust solution would be a function with the same semantics as
// llvm.donothing that takes a pointer to the instance and is lowered to a
// no-op after LDS is allocated, but that is not presently necessary.
LLVMContext &Ctx = Func->getContext();
Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
Function *Decl =
Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
Builder.CreateCall(FTy, Decl, {},
{OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
"");
}
static SmallPtrSet<GlobalValue *, 32> getUsedList(Module &M) {
SmallPtrSet<GlobalValue *, 32> UsedList;
SmallVector<GlobalValue *, 32> TmpVec;
collectUsedGlobalVariables(M, TmpVec, true);
UsedList.insert(TmpVec.begin(), TmpVec.end());
TmpVec.clear();
collectUsedGlobalVariables(M, TmpVec, false);
UsedList.insert(TmpVec.begin(), TmpVec.end());
return UsedList;
}
public:
static char ID;
AMDGPULowerModuleLDS() : ModulePass(ID) {
initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
}
bool runOnModule(Module &M) override {
LLVMContext &Ctx = M.getContext();
const DataLayout &DL = M.getDataLayout();
SmallPtrSet<GlobalValue *, 32> UsedList = getUsedList(M);
// Find variables to move into new struct instance
std::vector<GlobalVariable *> FoundLocalVars =
findVariablesToLower(M, UsedList);
if (FoundLocalVars.empty()) {
// No variables to rewrite, no changes made.
return false;
}
// Sort by alignment, descending, to minimise padding.
// On ties, sort by size, descending, then by name, lexicographical.
llvm::stable_sort(
FoundLocalVars,
[&](const GlobalVariable *LHS, const GlobalVariable *RHS) -> bool {
Align ALHS = getAlign(DL, LHS);
Align ARHS = getAlign(DL, RHS);
if (ALHS != ARHS) {
return ALHS > ARHS;
}
TypeSize SLHS = DL.getTypeAllocSize(LHS->getValueType());
TypeSize SRHS = DL.getTypeAllocSize(RHS->getValueType());
if (SLHS != SRHS) {
return SLHS > SRHS;
}
// By variable name on tie for predictable order in test cases.
return LHS->getName() < RHS->getName();
});
std::vector<GlobalVariable *> LocalVars;
LocalVars.reserve(FoundLocalVars.size()); // will be at least this large
{
// This usually won't need to insert any padding, perhaps avoid the alloc
uint64_t CurrentOffset = 0;
for (size_t I = 0; I < FoundLocalVars.size(); I++) {
GlobalVariable *FGV = FoundLocalVars[I];
Align DataAlign = getAlign(DL, FGV);
uint64_t DataAlignV = DataAlign.value();
if (uint64_t Rem = CurrentOffset % DataAlignV) {
uint64_t Padding = DataAlignV - Rem;
// Append an array of padding bytes to meet alignment requested
// Note (o + (a - (o % a)) ) % a == 0
// (offset + Padding ) % align == 0
Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
LocalVars.push_back(new GlobalVariable(
M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
"", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
false));
CurrentOffset += Padding;
}
LocalVars.push_back(FGV);
CurrentOffset += DL.getTypeAllocSize(FGV->getValueType());
}
}
std::vector<Type *> LocalVarTypes;
LocalVarTypes.reserve(LocalVars.size());
std::transform(
LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
[](const GlobalVariable *V) -> Type * { return V->getValueType(); });
StructType *LDSTy = StructType::create(
Ctx, LocalVarTypes, llvm::StringRef("llvm.amdgcn.module.lds.t"));
Align MaxAlign = getAlign(DL, LocalVars[0]); // was sorted on alignment
Constant *InstanceAddress = Constant::getIntegerValue(
PointerType::get(LDSTy, AMDGPUAS::LOCAL_ADDRESS), APInt(32, 0));
GlobalVariable *SGV = new GlobalVariable(
M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
"llvm.amdgcn.module.lds", nullptr, GlobalValue::NotThreadLocal,
AMDGPUAS::LOCAL_ADDRESS, false);
SGV->setAlignment(MaxAlign);
appendToCompilerUsed(
M, {static_cast<GlobalValue *>(
ConstantExpr::getPointerBitCastOrAddrSpaceCast(
cast<Constant>(SGV), Type::getInt8PtrTy(Ctx)))});
// The verifier rejects used lists containing an inttoptr of a constant
// so remove the variables from these lists before replaceAllUsesWith
removeFromUsedLists(M, LocalVars);
// Replace uses of ith variable with a constantexpr to the ith field of the
// instance that will be allocated by AMDGPUMachineFunction
Type *I32 = Type::getInt32Ty(Ctx);
for (size_t I = 0; I < LocalVars.size(); I++) {
GlobalVariable *GV = LocalVars[I];
Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
GV->replaceAllUsesWith(
ConstantExpr::getGetElementPtr(LDSTy, InstanceAddress, GEPIdx));
GV->eraseFromParent();
}
// Mark kernels with asm that reads the address of the allocated structure
// This is not necessary for lowering. This lets other passes, specifically
// PromoteAlloca, accurately calculate how much LDS will be used by the
// kernel after lowering.
{
IRBuilder<> Builder(Ctx);
SmallPtrSet<Function *, 32> Kernels;
for (auto &I : M.functions()) {
Function *Func = &I;
if (isKernelCC(Func) && !Kernels.contains(Func)) {
markUsedByKernel(Builder, Func, SGV);
Kernels.insert(Func);
}
}
}
return true;
}
};
} // namespace
char AMDGPULowerModuleLDS::ID = 0;
char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,
"Lower uses of LDS variables from non-kernel functions", false,
false)
ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
return new AMDGPULowerModuleLDS();
}
PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
ModuleAnalysisManager &) {
return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}