blob: 4ff73f9356cb58011f4c784d0c858611241a2ec7 [file] [log] [blame]
//===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "llvm/Object/IRSymtab.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Object/SymbolicFile.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/VCSRevision.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
using namespace irsymtab;
static const char *LibcallRoutineNames[] = {
#define HANDLE_LIBCALL(code, name) name,
#include "llvm/IR/RuntimeLibcalls.def"
namespace {
const char *getExpectedProducerName() {
static char DefaultName[] = LLVM_VERSION_STRING
// Allows for testing of the irsymtab writer and upgrade mechanism. This
// environment variable should not be set by users.
if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
return OverrideName;
return DefaultName;
const char *kExpectedProducerName = getExpectedProducerName();
/// Stores the temporary state that is required to build an IR symbol table.
struct Builder {
SmallVector<char, 0> &Symtab;
StringTableBuilder &StrtabBuilder;
StringSaver Saver;
// This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
// The StringTableBuilder does not create a copy of any strings added to it,
// so this provides somewhere to store any strings that we create.
Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
BumpPtrAllocator &Alloc)
: Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
DenseMap<const Comdat *, int> ComdatMap;
Mangler Mang;
Triple TT;
std::vector<storage::Comdat> Comdats;
std::vector<storage::Module> Mods;
std::vector<storage::Symbol> Syms;
std::vector<storage::Uncommon> Uncommons;
std::string COFFLinkerOpts;
raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
std::vector<storage::Str> DependentLibraries;
void setStr(storage::Str &S, StringRef Value) {
S.Offset = StrtabBuilder.add(Value);
S.Size = Value.size();
template <typename T>
void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
R.Offset = Symtab.size();
R.Size = Objs.size();
Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(,
reinterpret_cast<const char *>( + Objs.size()));
Expected<int> getComdatIndex(const Comdat *C, const Module *M);
Error addModule(Module *M);
Error addSymbol(const ModuleSymbolTable &Msymtab,
const SmallPtrSet<GlobalValue *, 4> &Used,
ModuleSymbolTable::Symbol Sym);
Error build(ArrayRef<Module *> Mods);
Error Builder::addModule(Module *M) {
if (M->getDataLayoutStr().empty())
return make_error<StringError>("input module has no datalayout",
// Symbols in the llvm.used list will get the FB_Used bit and will not be
// internalized. We do this for llvm.compiler.used as well:
// IR symbol table tracks module-level asm symbol references but not inline
// asm. A symbol only referenced by inline asm is not in the IR symbol table,
// so we may not know that the definition (in another translation unit) is
// referenced. That definition may have __attribute__((used)) (which lowers to
// llvm.compiler.used on ELF targets) to communicate to the compiler that it
// may be used by inline asm. The usage is perfectly fine, so we treat
// llvm.compiler.used conservatively as llvm.used to work around our own
// limitation.
SmallVector<GlobalValue *, 4> UsedV;
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
ModuleSymbolTable Msymtab;
storage::Module Mod;
Mod.Begin = Syms.size();
Mod.End = Syms.size() + Msymtab.symbols().size();
Mod.UncBegin = Uncommons.size();
if (TT.isOSBinFormatCOFF()) {
if (auto E = M->materializeMetadata())
return E;
if (NamedMDNode *LinkerOptions =
M->getNamedMetadata("llvm.linker.options")) {
for (MDNode *MDOptions : LinkerOptions->operands())
for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
if (TT.isOSBinFormatELF()) {
if (auto E = M->materializeMetadata())
return E;
if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
for (MDNode *MDOptions : N->operands()) {
const auto OperandStr =
storage::Str Specifier;
setStr(Specifier, OperandStr);
for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
if (Error Err = addSymbol(Msymtab, Used, Msym))
return Err;
return Error::success();
Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
if (P.second) {
std::string Name;
if (TT.isOSBinFormatCOFF()) {
const GlobalValue *GV = M->getNamedValue(C->getName());
if (!GV)
return make_error<StringError>("Could not find leader",
// Internal leaders do not affect symbol resolution, therefore they do not
// appear in the symbol table.
if (GV->hasLocalLinkage()) {
P.first->second = -1;
return -1;
llvm::raw_string_ostream OS(Name);
Mang.getNameWithPrefix(OS, GV, false);
} else {
Name = std::string(C->getName());
storage::Comdat Comdat;
return P.first->second;
Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
const SmallPtrSet<GlobalValue *, 4> &Used,
ModuleSymbolTable::Symbol Msym) {
storage::Symbol &Sym = Syms.back();
Sym = {};
storage::Uncommon *Unc = nullptr;
auto Uncommon = [&]() -> storage::Uncommon & {
if (Unc)
return *Unc;
Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
Unc = &Uncommons.back();
*Unc = {};
setStr(Unc->COFFWeakExternFallbackName, "");
setStr(Unc->SectionName, "");
return *Unc;
SmallString<64> Name;
raw_svector_ostream OS(Name);
Msymtab.printSymbolName(OS, Msym);
auto Flags = Msymtab.getSymbolFlags(Msym);
if (Flags & object::BasicSymbolRef::SF_Undefined)
Sym.Flags |= 1 << storage::Symbol::FB_undefined;
if (Flags & object::BasicSymbolRef::SF_Weak)
Sym.Flags |= 1 << storage::Symbol::FB_weak;
if (Flags & object::BasicSymbolRef::SF_Common)
Sym.Flags |= 1 << storage::Symbol::FB_common;
if (Flags & object::BasicSymbolRef::SF_Indirect)
Sym.Flags |= 1 << storage::Symbol::FB_indirect;
if (Flags & object::BasicSymbolRef::SF_Global)
Sym.Flags |= 1 << storage::Symbol::FB_global;
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
if (Flags & object::BasicSymbolRef::SF_Executable)
Sym.Flags |= 1 << storage::Symbol::FB_executable;
Sym.ComdatIndex = -1;
auto *GV = Msym.dyn_cast<GlobalValue *>();
if (!GV) {
// Undefined module asm symbols act as GC roots and are implicitly used.
if (Flags & object::BasicSymbolRef::SF_Undefined)
Sym.Flags |= 1 << storage::Symbol::FB_used;
setStr(Sym.IRName, "");
return Error::success();
setStr(Sym.IRName, GV->getName());
bool IsBuiltinFunc = llvm::is_contained(LibcallRoutineNames, GV->getName());
if (Used.count(GV) || IsBuiltinFunc)
Sym.Flags |= 1 << storage::Symbol::FB_used;
if (GV->isThreadLocal())
Sym.Flags |= 1 << storage::Symbol::FB_tls;
if (GV->hasGlobalUnnamedAddr())
Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
if (GV->canBeOmittedFromSymbolTable())
Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
if (Flags & object::BasicSymbolRef::SF_Common) {
auto *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar)
return make_error<StringError>("Only variables can have common linkage!",
Uncommon().CommonSize = GV->getParent()->getDataLayout().getTypeAllocSize(
Uncommon().CommonAlign = GVar->getAlignment();
const GlobalObject *Base = GV->getBaseObject();
if (!Base)
return make_error<StringError>("Unable to determine comdat of alias!",
if (const Comdat *C = Base->getComdat()) {
Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
if (!ComdatIndexOrErr)
return ComdatIndexOrErr.takeError();
Sym.ComdatIndex = *ComdatIndexOrErr;
if (TT.isOSBinFormatCOFF()) {
emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
if ((Flags & object::BasicSymbolRef::SF_Weak) &&
(Flags & object::BasicSymbolRef::SF_Indirect)) {
auto *Fallback = dyn_cast<GlobalValue>(
if (!Fallback)
return make_error<StringError>("Invalid weak external",
std::string FallbackName;
raw_string_ostream OS(FallbackName);
Msymtab.printSymbolName(OS, Fallback);
if (!Base->getSection().empty())
return Error::success();
Error Builder::build(ArrayRef<Module *> IRMods) {
storage::Header Hdr;
Hdr.Version = storage::Header::kCurrentVersion;
setStr(Hdr.Producer, kExpectedProducerName);
setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
TT = Triple(IRMods[0]->getTargetTriple());
for (auto *M : IRMods)
if (Error Err = addModule(M))
return Err;
// We are about to fill in the header's range fields, so reserve space for it
// and copy it in afterwards.
writeRange(Hdr.Modules, Mods);
writeRange(Hdr.Comdats, Comdats);
writeRange(Hdr.Symbols, Syms);
writeRange(Hdr.Uncommons, Uncommons);
writeRange(Hdr.DependentLibraries, DependentLibraries);
*reinterpret_cast<storage::Header *>( = Hdr;
return Error::success();
} // end anonymous namespace
Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
StringTableBuilder &StrtabBuilder,
BumpPtrAllocator &Alloc) {
return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
// Upgrade a vector of bitcode modules created by an old version of LLVM by
// creating an irsymtab for them in the current format.
static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
FileContents FC;
LLVMContext Ctx;
std::vector<Module *> Mods;
std::vector<std::unique_ptr<Module>> OwnedMods;
for (auto BM : BMs) {
Expected<std::unique_ptr<Module>> MOrErr =
BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
/*IsImporting*/ false);
if (!MOrErr)
return MOrErr.takeError();
StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
BumpPtrAllocator Alloc;
if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
return std::move(E);
StrtabBuilder.write((uint8_t *);
FC.TheReader = {{, FC.Symtab.size()},
{, FC.Strtab.size()}};
return std::move(FC);
Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
if (BFC.Mods.empty())
return make_error<StringError>("Bitcode file does not contain any modules",
if (BFC.StrtabForSymtab.empty() ||
BFC.Symtab.size() < sizeof(storage::Header))
return upgrade(BFC.Mods);
// We cannot use the regular reader to read the version and producer, because
// it will expect the header to be in the current format. The only thing we
// can rely on is that the version and producer will be present as the first
// struct elements.
auto *Hdr = reinterpret_cast<const storage::Header *>(;
unsigned Version = Hdr->Version;
StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
if (Version != storage::Header::kCurrentVersion ||
Producer != kExpectedProducerName)
return upgrade(BFC.Mods);
FileContents FC;
FC.TheReader = {{, BFC.Symtab.size()},
{, BFC.StrtabForSymtab.size()}};
// Finally, make sure that the number of modules in the symbol table matches
// the number of modules in the bitcode file. If they differ, it may mean that
// the bitcode file was created by binary concatenation, so we need to create
// a new symbol table from scratch.
if (FC.TheReader.getNumModules() != BFC.Mods.size())
return upgrade(std::move(BFC.Mods));
return std::move(FC);