blob: 019ece9c172597b0521c4dd8c38b85380d1dd715 [file] [log] [blame]
//===- llvm/unittest/Support/AllocatorTest.cpp - BumpPtrAllocator tests ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Memory.h"
#include "llvm/Support/Process.h"
#include "gtest/gtest.h"
#include <cassert>
#include <cstdlib>
#if defined(__NetBSD__)
// clang-format off
#include <sys/param.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <err.h>
#include <unistd.h>
// clang-format on
#endif
using namespace llvm;
using namespace sys;
namespace {
bool IsMPROTECT() {
#if defined(__NetBSD__)
int mib[3];
int paxflags;
size_t len = sizeof(paxflags);
mib[0] = CTL_PROC;
mib[1] = getpid();
mib[2] = PROC_PID_PAXFLAGS;
if (sysctl(mib, 3, &paxflags, &len, NULL, 0) != 0)
err(EXIT_FAILURE, "sysctl");
return !!(paxflags & CTL_PROC_PAXFLAGS_MPROTECT);
#elif defined(__APPLE__) && defined(__aarch64__)
return true;
#else
return false;
#endif
}
class MappedMemoryTest : public ::testing::TestWithParam<unsigned> {
public:
MappedMemoryTest() {
Flags = GetParam();
PageSize = sys::Process::getPageSizeEstimate();
}
protected:
// Adds RW flags to permit testing of the resulting memory
unsigned getTestableEquivalent(unsigned RequestedFlags) {
switch (RequestedFlags) {
case Memory::MF_READ:
case Memory::MF_WRITE:
case Memory::MF_READ|Memory::MF_WRITE:
return Memory::MF_READ|Memory::MF_WRITE;
case Memory::MF_READ|Memory::MF_EXEC:
case Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC:
case Memory::MF_EXEC:
return Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC;
}
// Default in case values are added to the enum, as required by some compilers
return Memory::MF_READ|Memory::MF_WRITE;
}
// Returns true if the memory blocks overlap
bool doesOverlap(MemoryBlock M1, MemoryBlock M2) {
if (M1.base() == M2.base())
return true;
if (M1.base() > M2.base())
return (unsigned char *)M2.base() + M2.allocatedSize() > M1.base();
return (unsigned char *)M1.base() + M1.allocatedSize() > M2.base();
}
unsigned Flags;
size_t PageSize;
};
// MPROTECT prevents W+X mmaps
#define CHECK_UNSUPPORTED() \
do { \
if ((Flags & Memory::MF_WRITE) && (Flags & Memory::MF_EXEC) && \
IsMPROTECT()) \
GTEST_SKIP(); \
} while (0)
TEST_P(MappedMemoryTest, AllocAndRelease) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), nullptr, Flags,EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(sizeof(int), M1.allocatedSize());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, AllocAndReleaseHuge) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(
sizeof(int), nullptr, Flags | Memory::MF_HUGE_HINT, EC);
EXPECT_EQ(std::error_code(), EC);
// Test large/huge memory pages. In the worst case, 4kb pages should be
// returned, if large pages aren't available.
EXPECT_NE((void *)nullptr, M1.base());
EXPECT_LE(sizeof(int), M1.allocatedSize());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleAllocAndRelease) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(16U, M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(64U, M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(32U, M3.allocatedSize());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(16, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M4.base());
EXPECT_LE(16U, M4.allocatedSize());
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, BasicWrite) {
// This test applies only to readable and writeable combinations
if (Flags &&
!((Flags & Memory::MF_READ) && (Flags & Memory::MF_WRITE)))
GTEST_SKIP();
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), nullptr, Flags,EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(sizeof(int), M1.allocatedSize());
int *a = (int*)M1.base();
*a = 1;
EXPECT_EQ(1, *a);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
TEST_P(MappedMemoryTest, MultipleWrite) {
// This test applies only to readable and writeable combinations
if (Flags &&
!((Flags & Memory::MF_READ) && (Flags & Memory::MF_WRITE)))
GTEST_SKIP();
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(1U * sizeof(int), M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(8U * sizeof(int), M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(4U * sizeof(int), M3.allocatedSize());
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
MemoryBlock M4 = Memory::allocateMappedMemory(64 * sizeof(int), nullptr,
Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M4.base());
EXPECT_LE(64U * sizeof(int), M4.allocatedSize());
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
// Verify that M2 remains unaffected by other activity
for (int i = 0; i < 8; i++) {
EXPECT_EQ(i, y[i]);
}
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, EnabledWrite) {
// MPROTECT prevents W+X, and since this test always adds W we need
// to block any variant with X.
if ((Flags & Memory::MF_EXEC) && IsMPROTECT())
GTEST_SKIP();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(2 * sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(8 * sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(4 * sizeof(int), nullptr, Flags,
EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(2U * sizeof(int), M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(8U * sizeof(int), M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(4U * sizeof(int), M3.allocatedSize());
EXPECT_FALSE(Memory::protectMappedMemory(M1, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M2, getTestableEquivalent(Flags)));
EXPECT_FALSE(Memory::protectMappedMemory(M3, getTestableEquivalent(Flags)));
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
int *x = (int*)M1.base();
*x = 1;
int *y = (int*)M2.base();
for (unsigned int i = 0; i < 8; i++) {
y[i] = i;
}
int *z = (int*)M3.base();
*z = 42;
EXPECT_EQ(1, *x);
EXPECT_EQ(7, y[7]);
EXPECT_EQ(42, *z);
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_EQ(6, y[6]);
MemoryBlock M4 = Memory::allocateMappedMemory(16, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M4.base());
EXPECT_LE(16U, M4.allocatedSize());
EXPECT_EQ(std::error_code(),
Memory::protectMappedMemory(M4, getTestableEquivalent(Flags)));
x = (int*)M4.base();
*x = 4;
EXPECT_EQ(4, *x);
EXPECT_FALSE(Memory::releaseMappedMemory(M4));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, SuccessiveNear) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock M1 = Memory::allocateMappedMemory(16, nullptr, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &M1, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &M2, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(16U, M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(64U, M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(32U, M3.allocatedSize());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, DuplicateNear) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock Near((void*)(3*PageSize), 16);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(16U, M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(64U, M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(32U, M3.allocatedSize());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroNear) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock Near(nullptr, 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(16U, M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(64U, M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(32U, M3.allocatedSize());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, ZeroSizeNear) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock Near((void*)(4*PageSize), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(16, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M2 = Memory::allocateMappedMemory(64, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
MemoryBlock M3 = Memory::allocateMappedMemory(32, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(16U, M1.allocatedSize());
EXPECT_NE((void*)nullptr, M2.base());
EXPECT_LE(64U, M2.allocatedSize());
EXPECT_NE((void*)nullptr, M3.base());
EXPECT_LE(32U, M3.allocatedSize());
EXPECT_FALSE(doesOverlap(M1, M2));
EXPECT_FALSE(doesOverlap(M2, M3));
EXPECT_FALSE(doesOverlap(M1, M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
EXPECT_FALSE(Memory::releaseMappedMemory(M3));
EXPECT_FALSE(Memory::releaseMappedMemory(M2));
}
TEST_P(MappedMemoryTest, UnalignedNear) {
CHECK_UNSUPPORTED();
std::error_code EC;
MemoryBlock Near((void*)(2*PageSize+5), 0);
MemoryBlock M1 = Memory::allocateMappedMemory(15, &Near, Flags, EC);
EXPECT_EQ(std::error_code(), EC);
EXPECT_NE((void*)nullptr, M1.base());
EXPECT_LE(sizeof(int), M1.allocatedSize());
EXPECT_FALSE(Memory::releaseMappedMemory(M1));
}
// Note that Memory::MF_WRITE is not supported exclusively across
// operating systems and architectures and can imply MF_READ|MF_WRITE
unsigned MemoryFlags[] = {
Memory::MF_READ,
Memory::MF_WRITE,
Memory::MF_READ|Memory::MF_WRITE,
Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_EXEC,
Memory::MF_READ|Memory::MF_WRITE|Memory::MF_EXEC
};
INSTANTIATE_TEST_SUITE_P(AllocationTests, MappedMemoryTest,
::testing::ValuesIn(MemoryFlags));
} // anonymous namespace