| //===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Support/Casting.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "gtest/gtest.h" |
| #include <cstdlib> |
| |
| namespace llvm { |
| // Used to test illegal cast. If a cast doesn't match any of the "real" ones, |
| // it will match this one. |
| struct IllegalCast; |
| template <typename T> IllegalCast *cast(...) { return nullptr; } |
| |
| // set up two example classes |
| // with conversion facility |
| // |
| struct bar { |
| bar() {} |
| struct foo *baz(); |
| struct foo *caz(); |
| struct foo *daz(); |
| struct foo *naz(); |
| |
| private: |
| bar(const bar &); |
| }; |
| struct foo { |
| foo(const bar &) {} |
| void ext() const; |
| }; |
| |
| struct base { |
| virtual ~base() {} |
| }; |
| |
| struct derived : public base { |
| static bool classof(const base *B) { return true; } |
| }; |
| |
| template <> struct isa_impl<foo, bar> { |
| static inline bool doit(const bar &Val) { |
| dbgs() << "Classof: " << &Val << "\n"; |
| return true; |
| } |
| }; |
| |
| // Note for the future - please don't do this. isa_impl is an internal template |
| // for the implementation of `isa` and should not be exposed this way. |
| // Completely unrelated types *should* result in compiler errors if you try to |
| // cast between them. |
| template <typename T> struct isa_impl<foo, T> { |
| static inline bool doit(const T &Val) { return false; } |
| }; |
| |
| foo *bar::baz() { return cast<foo>(this); } |
| |
| foo *bar::caz() { return cast_or_null<foo>(this); } |
| |
| foo *bar::daz() { return dyn_cast<foo>(this); } |
| |
| foo *bar::naz() { return dyn_cast_or_null<foo>(this); } |
| |
| bar *fub(); |
| |
| template <> struct simplify_type<foo> { |
| typedef int SimpleType; |
| static SimpleType getSimplifiedValue(foo &Val) { return 0; } |
| }; |
| |
| struct T1 {}; |
| |
| struct T2 { |
| T2(const T1 &x) {} |
| static bool classof(const T1 *x) { return true; } |
| }; |
| |
| template <> struct CastInfo<T2, T1> : public OptionalValueCast<T2, T1> {}; |
| |
| struct T3 { |
| T3(const T1 *x) : hasValue(x != nullptr) {} |
| |
| static bool classof(const T1 *x) { return true; } |
| bool hasValue = false; |
| }; |
| |
| // T3 is convertible from a pointer to T1. |
| template <> struct CastInfo<T3, T1 *> : public ValueFromPointerCast<T3, T1> {}; |
| |
| struct T4 { |
| T4() : hasValue(false) {} |
| T4(const T3 &x) : hasValue(true) {} |
| |
| static bool classof(const T3 *x) { return true; } |
| bool hasValue = false; |
| }; |
| |
| template <> struct ValueIsPresent<T3> { |
| using UnwrappedType = T3; |
| static inline bool isPresent(const T3 &t) { return t.hasValue; } |
| static inline const T3 &unwrapValue(const T3 &t) { return t; } |
| }; |
| |
| template <> struct CastInfo<T4, T3> { |
| using CastResultType = T4; |
| static inline CastResultType doCast(const T3 &t) { return T4(t); } |
| static inline CastResultType castFailed() { return CastResultType(); } |
| static inline CastResultType doCastIfPossible(const T3 &f) { |
| return doCast(f); |
| } |
| }; |
| |
| } // namespace llvm |
| |
| using namespace llvm; |
| |
| // Test the peculiar behavior of Use in simplify_type. |
| static_assert(std::is_same_v<simplify_type<Use>::SimpleType, Value *>, |
| "Use doesn't simplify correctly!"); |
| static_assert(std::is_same_v<simplify_type<Use *>::SimpleType, Value *>, |
| "Use doesn't simplify correctly!"); |
| |
| // Test that a regular class behaves as expected. |
| static_assert(std::is_same_v<simplify_type<foo>::SimpleType, int>, |
| "Unexpected simplify_type result!"); |
| static_assert(std::is_same_v<simplify_type<foo *>::SimpleType, foo *>, |
| "Unexpected simplify_type result!"); |
| |
| namespace { |
| |
| const foo *null_foo = nullptr; |
| |
| bar B; |
| extern bar &B1; |
| bar &B1 = B; |
| extern const bar *B2; |
| // test various configurations of const |
| const bar &B3 = B1; |
| const bar *const B4 = B2; |
| |
| TEST(CastingTest, isa) { |
| EXPECT_TRUE(isa<foo>(B1)); |
| EXPECT_TRUE(isa<foo>(B2)); |
| EXPECT_TRUE(isa<foo>(B3)); |
| EXPECT_TRUE(isa<foo>(B4)); |
| } |
| |
| TEST(CastingTest, isa_and_nonnull) { |
| EXPECT_TRUE(isa_and_nonnull<foo>(B2)); |
| EXPECT_TRUE(isa_and_nonnull<foo>(B4)); |
| EXPECT_FALSE(isa_and_nonnull<foo>(fub())); |
| } |
| |
| TEST(CastingTest, cast) { |
| foo &F1 = cast<foo>(B1); |
| EXPECT_NE(&F1, null_foo); |
| const foo *F3 = cast<foo>(B2); |
| EXPECT_NE(F3, null_foo); |
| const foo *F4 = cast<foo>(B2); |
| EXPECT_NE(F4, null_foo); |
| const foo &F5 = cast<foo>(B3); |
| EXPECT_NE(&F5, null_foo); |
| const foo *F6 = cast<foo>(B4); |
| EXPECT_NE(F6, null_foo); |
| // Can't pass null pointer to cast<>. |
| // foo *F7 = cast<foo>(fub()); |
| // EXPECT_EQ(F7, null_foo); |
| foo *F8 = B1.baz(); |
| EXPECT_NE(F8, null_foo); |
| |
| std::unique_ptr<const bar> BP(B2); |
| auto FP = cast<foo>(std::move(BP)); |
| static_assert(std::is_same_v<std::unique_ptr<const foo>, decltype(FP)>, |
| "Incorrect deduced return type!"); |
| EXPECT_NE(FP.get(), null_foo); |
| FP.release(); |
| } |
| |
| TEST(CastingTest, cast_or_null) { |
| const foo *F11 = cast_or_null<foo>(B2); |
| EXPECT_NE(F11, null_foo); |
| const foo *F12 = cast_or_null<foo>(B2); |
| EXPECT_NE(F12, null_foo); |
| const foo *F13 = cast_or_null<foo>(B4); |
| EXPECT_NE(F13, null_foo); |
| const foo *F14 = cast_or_null<foo>(fub()); // Shouldn't print. |
| EXPECT_EQ(F14, null_foo); |
| foo *F15 = B1.caz(); |
| EXPECT_NE(F15, null_foo); |
| |
| std::unique_ptr<const bar> BP(fub()); |
| auto FP = cast_or_null<foo>(std::move(BP)); |
| EXPECT_EQ(FP.get(), null_foo); |
| } |
| |
| TEST(CastingTest, dyn_cast) { |
| const foo *F1 = dyn_cast<foo>(B2); |
| EXPECT_NE(F1, null_foo); |
| const foo *F2 = dyn_cast<foo>(B2); |
| EXPECT_NE(F2, null_foo); |
| const foo *F3 = dyn_cast<foo>(B4); |
| EXPECT_NE(F3, null_foo); |
| // Can't pass null pointer to dyn_cast<>. |
| // foo *F4 = dyn_cast<foo>(fub()); |
| // EXPECT_EQ(F4, null_foo); |
| foo *F5 = B1.daz(); |
| EXPECT_NE(F5, null_foo); |
| } |
| |
| // All these tests forward to dyn_cast_if_present, so they also provde an |
| // effective test for its use cases. |
| TEST(CastingTest, dyn_cast_or_null) { |
| const foo *F1 = dyn_cast_or_null<foo>(B2); |
| EXPECT_NE(F1, null_foo); |
| const foo *F2 = dyn_cast_or_null<foo>(B2); |
| EXPECT_NE(F2, null_foo); |
| const foo *F3 = dyn_cast_or_null<foo>(B4); |
| EXPECT_NE(F3, null_foo); |
| foo *F4 = dyn_cast_or_null<foo>(fub()); |
| EXPECT_EQ(F4, null_foo); |
| foo *F5 = B1.naz(); |
| EXPECT_NE(F5, null_foo); |
| // dyn_cast_if_present should have exactly the same behavior as |
| // dyn_cast_or_null. |
| const foo *F6 = dyn_cast_if_present<foo>(B2); |
| EXPECT_EQ(F6, F2); |
| } |
| |
| TEST(CastingTest, dyn_cast_value_types) { |
| T1 t1; |
| std::optional<T2> t2 = dyn_cast<T2>(t1); |
| EXPECT_TRUE(t2); |
| |
| T2 *t2ptr = dyn_cast<T2>(&t1); |
| EXPECT_TRUE(t2ptr != nullptr); |
| |
| T3 t3 = dyn_cast<T3>(&t1); |
| EXPECT_TRUE(t3.hasValue); |
| } |
| |
| TEST(CastingTest, dyn_cast_if_present) { |
| std::optional<T1> empty{}; |
| std::optional<T2> F1 = dyn_cast_if_present<T2>(empty); |
| EXPECT_FALSE(F1.has_value()); |
| |
| T1 t1; |
| std::optional<T2> F2 = dyn_cast_if_present<T2>(t1); |
| EXPECT_TRUE(F2.has_value()); |
| |
| T1 *t1Null = nullptr; |
| |
| // T3 should have hasValue == false because t1Null is nullptr. |
| T3 t3 = dyn_cast_if_present<T3>(t1Null); |
| EXPECT_FALSE(t3.hasValue); |
| |
| // Now because of that, T4 should receive the castFailed implementation of its |
| // FallibleCastTraits, which default-constructs a T4, which has no value. |
| T4 t4 = dyn_cast_if_present<T4>(t3); |
| EXPECT_FALSE(t4.hasValue); |
| } |
| |
| std::unique_ptr<derived> newd() { return std::make_unique<derived>(); } |
| std::unique_ptr<base> newb() { return std::make_unique<derived>(); } |
| |
| TEST(CastingTest, unique_dyn_cast) { |
| derived *OrigD = nullptr; |
| auto D = std::make_unique<derived>(); |
| OrigD = D.get(); |
| |
| // Converting from D to itself is valid, it should return a new unique_ptr |
| // and the old one should become nullptr. |
| auto NewD = unique_dyn_cast<derived>(D); |
| ASSERT_EQ(OrigD, NewD.get()); |
| ASSERT_EQ(nullptr, D); |
| |
| // Converting from D to B is valid, B should have a value and D should be |
| // nullptr. |
| auto B = unique_dyn_cast<base>(NewD); |
| ASSERT_EQ(OrigD, B.get()); |
| ASSERT_EQ(nullptr, NewD); |
| |
| // Converting from B to itself is valid, it should return a new unique_ptr |
| // and the old one should become nullptr. |
| auto NewB = unique_dyn_cast<base>(B); |
| ASSERT_EQ(OrigD, NewB.get()); |
| ASSERT_EQ(nullptr, B); |
| |
| // Converting from B to D is valid, D should have a value and B should be |
| // nullptr; |
| D = unique_dyn_cast<derived>(NewB); |
| ASSERT_EQ(OrigD, D.get()); |
| ASSERT_EQ(nullptr, NewB); |
| |
| // This is a very contrived test, casting between completely unrelated types |
| // should generally fail to compile. See the classof shenanigans we have in |
| // the definition of `foo` above. |
| auto F = unique_dyn_cast<foo>(D); |
| ASSERT_EQ(nullptr, F); |
| ASSERT_EQ(OrigD, D.get()); |
| |
| // All of the above should also hold for temporaries. |
| auto D2 = unique_dyn_cast<derived>(newd()); |
| EXPECT_NE(nullptr, D2); |
| |
| auto B2 = unique_dyn_cast<derived>(newb()); |
| EXPECT_NE(nullptr, B2); |
| |
| auto B3 = unique_dyn_cast<base>(newb()); |
| EXPECT_NE(nullptr, B3); |
| |
| // This is a very contrived test, casting between completely unrelated types |
| // should generally fail to compile. See the classof shenanigans we have in |
| // the definition of `foo` above. |
| auto F2 = unique_dyn_cast<foo>(newb()); |
| EXPECT_EQ(nullptr, F2); |
| } |
| |
| // These lines are errors... |
| // foo *F20 = cast<foo>(B2); // Yields const foo* |
| // foo &F21 = cast<foo>(B3); // Yields const foo& |
| // foo *F22 = cast<foo>(B4); // Yields const foo* |
| // foo &F23 = cast_or_null<foo>(B1); |
| // const foo &F24 = cast_or_null<foo>(B3); |
| |
| const bar *B2 = &B; |
| } // anonymous namespace |
| |
| bar *llvm::fub() { return nullptr; } |
| |
| namespace { |
| namespace inferred_upcasting { |
| // This test case verifies correct behavior of inferred upcasts when the |
| // types are statically known to be OK to upcast. This is the case when, |
| // for example, Derived inherits from Base, and we do `isa<Base>(Derived)`. |
| |
| // Note: This test will actually fail to compile without inferred |
| // upcasting. |
| |
| class Base { |
| public: |
| // No classof. We are testing that the upcast is inferred. |
| Base() {} |
| }; |
| |
| class Derived : public Base { |
| public: |
| Derived() {} |
| }; |
| |
| // Even with no explicit classof() in Base, we should still be able to cast |
| // Derived to its base class. |
| TEST(CastingTest, UpcastIsInferred) { |
| Derived D; |
| EXPECT_TRUE(isa<Base>(D)); |
| Base *BP = dyn_cast<Base>(&D); |
| EXPECT_NE(BP, nullptr); |
| } |
| |
| // This test verifies that the inferred upcast takes precedence over an |
| // explicitly written one. This is important because it verifies that the |
| // dynamic check gets optimized away. |
| class UseInferredUpcast { |
| public: |
| int Dummy; |
| static bool classof(const UseInferredUpcast *) { return false; } |
| }; |
| |
| TEST(CastingTest, InferredUpcastTakesPrecedence) { |
| UseInferredUpcast UIU; |
| // Since the explicit classof() returns false, this will fail if the |
| // explicit one is used. |
| EXPECT_TRUE(isa<UseInferredUpcast>(&UIU)); |
| } |
| |
| } // end namespace inferred_upcasting |
| } // end anonymous namespace |
| |
| namespace { |
| namespace pointer_wrappers { |
| |
| struct Base { |
| bool IsDerived; |
| Base(bool IsDerived = false) : IsDerived(IsDerived) {} |
| }; |
| |
| struct Derived : Base { |
| Derived() : Base(true) {} |
| static bool classof(const Base *B) { return B->IsDerived; } |
| }; |
| |
| class PTy { |
| Base *B; |
| |
| public: |
| PTy(Base *B) : B(B) {} |
| explicit operator bool() const { return get(); } |
| Base *get() const { return B; } |
| }; |
| |
| } // end namespace pointer_wrappers |
| } // end namespace |
| |
| namespace llvm { |
| |
| template <> struct ValueIsPresent<pointer_wrappers::PTy> { |
| using UnwrappedType = pointer_wrappers::PTy; |
| static inline bool isPresent(const pointer_wrappers::PTy &P) { |
| return P.get() != nullptr; |
| } |
| static UnwrappedType &unwrapValue(pointer_wrappers::PTy &P) { return P; } |
| }; |
| |
| template <> struct ValueIsPresent<const pointer_wrappers::PTy> { |
| using UnwrappedType = pointer_wrappers::PTy; |
| static inline bool isPresent(const pointer_wrappers::PTy &P) { |
| return P.get() != nullptr; |
| } |
| |
| static UnwrappedType &unwrapValue(const pointer_wrappers::PTy &P) { |
| return const_cast<UnwrappedType &>(P); |
| } |
| }; |
| |
| template <> struct simplify_type<pointer_wrappers::PTy> { |
| typedef pointer_wrappers::Base *SimpleType; |
| static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) { |
| return P.get(); |
| } |
| }; |
| template <> struct simplify_type<const pointer_wrappers::PTy> { |
| typedef pointer_wrappers::Base *SimpleType; |
| static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) { |
| return P.get(); |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| namespace { |
| namespace pointer_wrappers { |
| |
| // Some objects. |
| pointer_wrappers::Base B; |
| pointer_wrappers::Derived D; |
| |
| // Mutable "smart" pointers. |
| pointer_wrappers::PTy MN(nullptr); |
| pointer_wrappers::PTy MB(&B); |
| pointer_wrappers::PTy MD(&D); |
| |
| // Const "smart" pointers. |
| const pointer_wrappers::PTy CN(nullptr); |
| const pointer_wrappers::PTy CB(&B); |
| const pointer_wrappers::PTy CD(&D); |
| |
| TEST(CastingTest, smart_isa) { |
| EXPECT_TRUE(!isa<pointer_wrappers::Derived>(MB)); |
| EXPECT_TRUE(!isa<pointer_wrappers::Derived>(CB)); |
| EXPECT_TRUE(isa<pointer_wrappers::Derived>(MD)); |
| EXPECT_TRUE(isa<pointer_wrappers::Derived>(CD)); |
| } |
| |
| TEST(CastingTest, smart_cast) { |
| EXPECT_EQ(cast<pointer_wrappers::Derived>(MD), &D); |
| EXPECT_EQ(cast<pointer_wrappers::Derived>(CD), &D); |
| } |
| |
| TEST(CastingTest, smart_cast_or_null) { |
| EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MN), nullptr); |
| EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CN), nullptr); |
| EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MD), &D); |
| EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CD), &D); |
| } |
| |
| TEST(CastingTest, smart_dyn_cast) { |
| EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MB), nullptr); |
| EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CB), nullptr); |
| EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MD), &D); |
| EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CD), &D); |
| } |
| |
| TEST(CastingTest, smart_dyn_cast_or_null) { |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MN), nullptr); |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CN), nullptr); |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MB), nullptr); |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CB), nullptr); |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MD), &D); |
| EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CD), &D); |
| } |
| |
| } // end namespace pointer_wrappers |
| |
| #ifndef NDEBUG |
| namespace assertion_checks { |
| struct Base { |
| virtual ~Base() {} |
| }; |
| |
| struct Derived : public Base { |
| static bool classof(const Base *B) { return false; } |
| }; |
| |
| TEST(CastingTest, assertion_check_const_ref) { |
| const Base B; |
| EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type") |
| << "Invalid cast of const ref did not cause an abort()"; |
| } |
| |
| TEST(CastingTest, assertion_check_ref) { |
| Base B; |
| EXPECT_DEATH((void)cast<Derived>(B), "argument of incompatible type") |
| << "Invalid cast of const ref did not cause an abort()"; |
| } |
| |
| TEST(CastingTest, assertion_check_ptr) { |
| Base B; |
| EXPECT_DEATH((void)cast<Derived>(&B), "argument of incompatible type") |
| << "Invalid cast of const ref did not cause an abort()"; |
| } |
| |
| TEST(CastingTest, assertion_check_unique_ptr) { |
| auto B = std::make_unique<Base>(); |
| EXPECT_DEATH((void)cast<Derived>(std::move(B)), |
| "argument of incompatible type") |
| << "Invalid cast of const ref did not cause an abort()"; |
| } |
| |
| } // end namespace assertion_checks |
| #endif |
| } // end namespace |