blob: a42095d8718a338406ef274135d873efc93f14a6 [file] [log] [blame]
//===----- TypePromotion.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This is an opcode based type promotion pass for small types that would
/// otherwise be promoted during legalisation. This works around the limitations
/// of selection dag for cyclic regions. The search begins from icmp
/// instructions operands where a tree, consisting of non-wrapping or safe
/// wrapping instructions, is built, checked and promoted if possible.
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "type-promotion"
#define PASS_NAME "Type Promotion"
using namespace llvm;
static cl::opt<bool>
DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
cl::desc("Disable type promotion pass"));
// The goal of this pass is to enable more efficient code generation for
// operations on narrow types (i.e. types with < 32-bits) and this is a
// motivating IR code example:
//
// define hidden i32 @cmp(i8 zeroext) {
// %2 = add i8 %0, -49
// %3 = icmp ult i8 %2, 3
// ..
// }
//
// The issue here is that i8 is type-legalized to i32 because i8 is not a
// legal type. Thus, arithmetic is done in integer-precision, but then the
// byte value is masked out as follows:
//
// t19: i32 = add t4, Constant:i32<-49>
// t24: i32 = and t19, Constant:i32<255>
//
// Consequently, we generate code like this:
//
// subs r0, #49
// uxtb r1, r0
// cmp r1, #3
//
// This shows that masking out the byte value results in generation of
// the UXTB instruction. This is not optimal as r0 already contains the byte
// value we need, and so instead we can just generate:
//
// sub.w r1, r0, #49
// cmp r1, #3
//
// We achieve this by type promoting the IR to i32 like so for this example:
//
// define i32 @cmp(i8 zeroext %c) {
// %0 = zext i8 %c to i32
// %c.off = add i32 %0, -49
// %1 = icmp ult i32 %c.off, 3
// ..
// }
//
// For this to be valid and legal, we need to prove that the i32 add is
// producing the same value as the i8 addition, and that e.g. no overflow
// happens.
//
// A brief sketch of the algorithm and some terminology.
// We pattern match interesting IR patterns:
// - which have "sources": instructions producing narrow values (i8, i16), and
// - they have "sinks": instructions consuming these narrow values.
//
// We collect all instruction connecting sources and sinks in a worklist, so
// that we can mutate these instruction and perform type promotion when it is
// legal to do so.
namespace {
class IRPromoter {
LLVMContext &Ctx;
IntegerType *OrigTy = nullptr;
unsigned PromotedWidth = 0;
SetVector<Value*> &Visited;
SetVector<Value*> &Sources;
SetVector<Instruction*> &Sinks;
SmallVectorImpl<Instruction*> &SafeWrap;
IntegerType *ExtTy = nullptr;
SmallPtrSet<Value*, 8> NewInsts;
SmallPtrSet<Instruction*, 4> InstsToRemove;
DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
SmallPtrSet<Value*, 8> Promoted;
void ReplaceAllUsersOfWith(Value *From, Value *To);
void PrepareWrappingAdds(void);
void ExtendSources(void);
void ConvertTruncs(void);
void PromoteTree(void);
void TruncateSinks(void);
void Cleanup(void);
public:
IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
SetVector<Value*> &visited, SetVector<Value*> &sources,
SetVector<Instruction*> &sinks,
SmallVectorImpl<Instruction*> &wrap) :
Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
Sources(sources), Sinks(sinks), SafeWrap(wrap) {
ExtTy = IntegerType::get(Ctx, PromotedWidth);
assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() <
ExtTy->getPrimitiveSizeInBits().getFixedSize() &&
"Original type not smaller than extended type");
}
void Mutate();
};
class TypePromotion : public FunctionPass {
unsigned TypeSize = 0;
LLVMContext *Ctx = nullptr;
unsigned RegisterBitWidth = 0;
SmallPtrSet<Value*, 16> AllVisited;
SmallPtrSet<Instruction*, 8> SafeToPromote;
SmallVector<Instruction*, 4> SafeWrap;
// Does V have the same size result type as TypeSize.
bool EqualTypeSize(Value *V);
// Does V have the same size, or narrower, result type as TypeSize.
bool LessOrEqualTypeSize(Value *V);
// Does V have a result type that is wider than TypeSize.
bool GreaterThanTypeSize(Value *V);
// Does V have a result type that is narrower than TypeSize.
bool LessThanTypeSize(Value *V);
// Should V be a leaf in the promote tree?
bool isSource(Value *V);
// Should V be a root in the promotion tree?
bool isSink(Value *V);
// Should we change the result type of V? It will result in the users of V
// being visited.
bool shouldPromote(Value *V);
// Is I an add or a sub, which isn't marked as nuw, but where a wrapping
// result won't affect the computation?
bool isSafeWrap(Instruction *I);
// Can V have its integer type promoted, or can the type be ignored.
bool isSupportedType(Value *V);
// Is V an instruction with a supported opcode or another value that we can
// handle, such as constants and basic blocks.
bool isSupportedValue(Value *V);
// Is V an instruction thats result can trivially promoted, or has safe
// wrapping.
bool isLegalToPromote(Value *V);
bool TryToPromote(Value *V, unsigned PromotedWidth);
public:
static char ID;
TypePromotion() : FunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
}
StringRef getPassName() const override { return PASS_NAME; }
bool runOnFunction(Function &F) override;
};
}
static bool GenerateSignBits(Value *V) {
if (!isa<Instruction>(V))
return false;
unsigned Opc = cast<Instruction>(V)->getOpcode();
return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
Opc == Instruction::SRem || Opc == Instruction::SExt;
}
bool TypePromotion::EqualTypeSize(Value *V) {
return V->getType()->getScalarSizeInBits() == TypeSize;
}
bool TypePromotion::LessOrEqualTypeSize(Value *V) {
return V->getType()->getScalarSizeInBits() <= TypeSize;
}
bool TypePromotion::GreaterThanTypeSize(Value *V) {
return V->getType()->getScalarSizeInBits() > TypeSize;
}
bool TypePromotion::LessThanTypeSize(Value *V) {
return V->getType()->getScalarSizeInBits() < TypeSize;
}
/// Return true if the given value is a source in the use-def chain, producing
/// a narrow 'TypeSize' value. These values will be zext to start the promotion
/// of the tree to i32. We guarantee that these won't populate the upper bits
/// of the register. ZExt on the loads will be free, and the same for call
/// return values because we only accept ones that guarantee a zeroext ret val.
/// Many arguments will have the zeroext attribute too, so those would be free
/// too.
bool TypePromotion::isSource(Value *V) {
if (!isa<IntegerType>(V->getType()))
return false;
// TODO Allow zext to be sources.
if (isa<Argument>(V))
return true;
else if (isa<LoadInst>(V))
return true;
else if (isa<BitCastInst>(V))
return true;
else if (auto *Call = dyn_cast<CallInst>(V))
return Call->hasRetAttr(Attribute::AttrKind::ZExt);
else if (auto *Trunc = dyn_cast<TruncInst>(V))
return EqualTypeSize(Trunc);
return false;
}
/// Return true if V will require any promoted values to be truncated for the
/// the IR to remain valid. We can't mutate the value type of these
/// instructions.
bool TypePromotion::isSink(Value *V) {
// TODO The truncate also isn't actually necessary because we would already
// proved that the data value is kept within the range of the original data
// type.
// Sinks are:
// - points where the value in the register is being observed, such as an
// icmp, switch or store.
// - points where value types have to match, such as calls and returns.
// - zext are included to ease the transformation and are generally removed
// later on.
if (auto *Store = dyn_cast<StoreInst>(V))
return LessOrEqualTypeSize(Store->getValueOperand());
if (auto *Return = dyn_cast<ReturnInst>(V))
return LessOrEqualTypeSize(Return->getReturnValue());
if (auto *ZExt = dyn_cast<ZExtInst>(V))
return GreaterThanTypeSize(ZExt);
if (auto *Switch = dyn_cast<SwitchInst>(V))
return LessThanTypeSize(Switch->getCondition());
if (auto *ICmp = dyn_cast<ICmpInst>(V))
return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
return isa<CallInst>(V);
}
/// Return whether this instruction can safely wrap.
bool TypePromotion::isSafeWrap(Instruction *I) {
// We can support a, potentially, wrapping instruction (I) if:
// - It is only used by an unsigned icmp.
// - The icmp uses a constant.
// - The wrapping value (I) is decreasing, i.e would underflow - wrapping
// around zero to become a larger number than before.
// - The wrapping instruction (I) also uses a constant.
//
// We can then use the two constants to calculate whether the result would
// wrap in respect to itself in the original bitwidth. If it doesn't wrap,
// just underflows the range, the icmp would give the same result whether the
// result has been truncated or not. We calculate this by:
// - Zero extending both constants, if needed, to 32-bits.
// - Take the absolute value of I's constant, adding this to the icmp const.
// - Check that this value is not out of range for small type. If it is, it
// means that it has underflowed enough to wrap around the icmp constant.
//
// For example:
//
// %sub = sub i8 %a, 2
// %cmp = icmp ule i8 %sub, 254
//
// If %a = 0, %sub = -2 == FE == 254
// But if this is evalulated as a i32
// %sub = -2 == FF FF FF FE == 4294967294
// So the unsigned compares (i8 and i32) would not yield the same result.
//
// Another way to look at it is:
// %a - 2 <= 254
// %a + 2 <= 254 + 2
// %a <= 256
// And we can't represent 256 in the i8 format, so we don't support it.
//
// Whereas:
//
// %sub i8 %a, 1
// %cmp = icmp ule i8 %sub, 254
//
// If %a = 0, %sub = -1 == FF == 255
// As i32:
// %sub = -1 == FF FF FF FF == 4294967295
//
// In this case, the unsigned compare results would be the same and this
// would also be true for ult, uge and ugt:
// - (255 < 254) == (0xFFFFFFFF < 254) == false
// - (255 <= 254) == (0xFFFFFFFF <= 254) == false
// - (255 > 254) == (0xFFFFFFFF > 254) == true
// - (255 >= 254) == (0xFFFFFFFF >= 254) == true
//
// To demonstrate why we can't handle increasing values:
//
// %add = add i8 %a, 2
// %cmp = icmp ult i8 %add, 127
//
// If %a = 254, %add = 256 == (i8 1)
// As i32:
// %add = 256
//
// (1 < 127) != (256 < 127)
unsigned Opc = I->getOpcode();
if (Opc != Instruction::Add && Opc != Instruction::Sub)
return false;
if (!I->hasOneUse() ||
!isa<ICmpInst>(*I->user_begin()) ||
!isa<ConstantInt>(I->getOperand(1)))
return false;
ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
bool NegImm = OverflowConst->isNegative();
bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
((Opc == Instruction::Add) && NegImm);
if (!IsDecreasing)
return false;
// Don't support an icmp that deals with sign bits.
auto *CI = cast<ICmpInst>(*I->user_begin());
if (CI->isSigned() || CI->isEquality())
return false;
ConstantInt *ICmpConst = nullptr;
if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
ICmpConst = Const;
else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
ICmpConst = Const;
else
return false;
// Now check that the result can't wrap on itself.
APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
ICmpConst->getValue().zext(32) : ICmpConst->getValue();
Total += OverflowConst->getValue().getBitWidth() < 32 ?
OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
if (Total.getBitWidth() > Max.getBitWidth()) {
if (Total.ugt(Max.zext(Total.getBitWidth())))
return false;
} else if (Max.getBitWidth() > Total.getBitWidth()) {
if (Total.zext(Max.getBitWidth()).ugt(Max))
return false;
} else if (Total.ugt(Max))
return false;
LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
<< *I << "\n");
SafeWrap.push_back(I);
return true;
}
bool TypePromotion::shouldPromote(Value *V) {
if (!isa<IntegerType>(V->getType()) || isSink(V))
return false;
if (isSource(V))
return true;
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (isa<ICmpInst>(I))
return false;
return true;
}
/// Return whether we can safely mutate V's type to ExtTy without having to be
/// concerned with zero extending or truncation.
static bool isPromotedResultSafe(Value *V) {
if (GenerateSignBits(V))
return false;
if (!isa<Instruction>(V))
return true;
if (!isa<OverflowingBinaryOperator>(V))
return true;
return cast<Instruction>(V)->hasNoUnsignedWrap();
}
void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
SmallVector<Instruction*, 4> Users;
Instruction *InstTo = dyn_cast<Instruction>(To);
bool ReplacedAll = true;
LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
<< "\n");
for (Use &U : From->uses()) {
auto *User = cast<Instruction>(U.getUser());
if (InstTo && User->isIdenticalTo(InstTo)) {
ReplacedAll = false;
continue;
}
Users.push_back(User);
}
for (auto *U : Users)
U->replaceUsesOfWith(From, To);
if (ReplacedAll)
if (auto *I = dyn_cast<Instruction>(From))
InstsToRemove.insert(I);
}
void IRPromoter::PrepareWrappingAdds() {
LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
IRBuilder<> Builder{Ctx};
// For adds that safely wrap and use a negative immediate as operand 1, we
// create an equivalent instruction using a positive immediate.
// That positive immediate can then be zext along with all the other
// immediates later.
for (auto *I : SafeWrap) {
if (I->getOpcode() != Instruction::Add)
continue;
LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
assert((isa<ConstantInt>(I->getOperand(1)) &&
cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
"Wrapping should have a negative immediate as the second operand");
auto Const = cast<ConstantInt>(I->getOperand(1));
auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
Builder.SetInsertPoint(I);
Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
NewInst->copyIRFlags(I);
NewInsts.insert(NewInst);
}
InstsToRemove.insert(I);
I->replaceAllUsesWith(NewVal);
LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
}
for (auto *I : NewInsts)
Visited.insert(I);
}
void IRPromoter::ExtendSources() {
IRBuilder<> Builder{Ctx};
auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
assert(V->getType() != ExtTy && "zext already extends to i32");
LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
Builder.SetInsertPoint(InsertPt);
if (auto *I = dyn_cast<Instruction>(V))
Builder.SetCurrentDebugLocation(I->getDebugLoc());
Value *ZExt = Builder.CreateZExt(V, ExtTy);
if (auto *I = dyn_cast<Instruction>(ZExt)) {
if (isa<Argument>(V))
I->moveBefore(InsertPt);
else
I->moveAfter(InsertPt);
NewInsts.insert(I);
}
ReplaceAllUsersOfWith(V, ZExt);
};
// Now, insert extending instructions between the sources and their users.
LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
for (auto V : Sources) {
LLVM_DEBUG(dbgs() << " - " << *V << "\n");
if (auto *I = dyn_cast<Instruction>(V))
InsertZExt(I, I);
else if (auto *Arg = dyn_cast<Argument>(V)) {
BasicBlock &BB = Arg->getParent()->front();
InsertZExt(Arg, &*BB.getFirstInsertionPt());
} else {
llvm_unreachable("unhandled source that needs extending");
}
Promoted.insert(V);
}
}
void IRPromoter::PromoteTree() {
LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
IRBuilder<> Builder{Ctx};
// Mutate the types of the instructions within the tree. Here we handle
// constant operands.
for (auto *V : Visited) {
if (Sources.count(V))
continue;
auto *I = cast<Instruction>(V);
if (Sinks.count(I))
continue;
for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
Value *Op = I->getOperand(i);
if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
continue;
if (auto *Const = dyn_cast<ConstantInt>(Op)) {
Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
I->setOperand(i, NewConst);
} else if (isa<UndefValue>(Op))
I->setOperand(i, UndefValue::get(ExtTy));
}
// Mutate the result type, unless this is an icmp.
if (!isa<ICmpInst>(I)) {
I->mutateType(ExtTy);
Promoted.insert(I);
}
}
}
void IRPromoter::TruncateSinks() {
LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
IRBuilder<> Builder{Ctx};
auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
return nullptr;
if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
return nullptr;
LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
<< *V << "\n");
Builder.SetInsertPoint(cast<Instruction>(V));
auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
if (Trunc)
NewInsts.insert(Trunc);
return Trunc;
};
// Fix up any stores or returns that use the results of the promoted
// chain.
for (auto I : Sinks) {
LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
// Handle calls separately as we need to iterate over arg operands.
if (auto *Call = dyn_cast<CallInst>(I)) {
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
Value *Arg = Call->getArgOperand(i);
Type *Ty = TruncTysMap[Call][i];
if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
Trunc->moveBefore(Call);
Call->setArgOperand(i, Trunc);
}
}
continue;
}
// Special case switches because we need to truncate the condition.
if (auto *Switch = dyn_cast<SwitchInst>(I)) {
Type *Ty = TruncTysMap[Switch][0];
if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
Trunc->moveBefore(Switch);
Switch->setCondition(Trunc);
}
continue;
}
// Now handle the others.
for (unsigned i = 0; i < I->getNumOperands(); ++i) {
Type *Ty = TruncTysMap[I][i];
if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
Trunc->moveBefore(I);
I->setOperand(i, Trunc);
}
}
}
}
void IRPromoter::Cleanup() {
LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
// Some zexts will now have become redundant, along with their trunc
// operands, so remove them
for (auto V : Visited) {
if (!isa<ZExtInst>(V))
continue;
auto ZExt = cast<ZExtInst>(V);
if (ZExt->getDestTy() != ExtTy)
continue;
Value *Src = ZExt->getOperand(0);
if (ZExt->getSrcTy() == ZExt->getDestTy()) {
LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
<< "\n");
ReplaceAllUsersOfWith(ZExt, Src);
continue;
}
// Unless they produce a value that is narrower than ExtTy, we can
// replace the result of the zext with the input of a newly inserted
// trunc.
if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
Src->getType() == OrigTy) {
auto *Trunc = cast<TruncInst>(Src);
assert(Trunc->getOperand(0)->getType() == ExtTy &&
"expected inserted trunc to be operating on i32");
ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
}
}
for (auto *I : InstsToRemove) {
LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
I->dropAllReferences();
I->eraseFromParent();
}
}
void IRPromoter::ConvertTruncs() {
LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
IRBuilder<> Builder{Ctx};
for (auto *V : Visited) {
if (!isa<TruncInst>(V) || Sources.count(V))
continue;
auto *Trunc = cast<TruncInst>(V);
Builder.SetInsertPoint(Trunc);
IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
unsigned NumBits = DestTy->getScalarSizeInBits();
ConstantInt *Mask =
ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
if (auto *I = dyn_cast<Instruction>(Masked))
NewInsts.insert(I);
ReplaceAllUsersOfWith(Trunc, Masked);
}
}
void IRPromoter::Mutate() {
LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
<< OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
// Cache original types of the values that will likely need truncating
for (auto *I : Sinks) {
if (auto *Call = dyn_cast<CallInst>(I)) {
for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
Value *Arg = Call->getArgOperand(i);
TruncTysMap[Call].push_back(Arg->getType());
}
} else if (auto *Switch = dyn_cast<SwitchInst>(I))
TruncTysMap[I].push_back(Switch->getCondition()->getType());
else {
for (unsigned i = 0; i < I->getNumOperands(); ++i)
TruncTysMap[I].push_back(I->getOperand(i)->getType());
}
}
for (auto *V : Visited) {
if (!isa<TruncInst>(V) || Sources.count(V))
continue;
auto *Trunc = cast<TruncInst>(V);
TruncTysMap[Trunc].push_back(Trunc->getDestTy());
}
// Convert adds using negative immediates to equivalent instructions that use
// positive constants.
PrepareWrappingAdds();
// Insert zext instructions between sources and their users.
ExtendSources();
// Promote visited instructions, mutating their types in place.
PromoteTree();
// Convert any truncs, that aren't sources, into AND masks.
ConvertTruncs();
// Insert trunc instructions for use by calls, stores etc...
TruncateSinks();
// Finally, remove unecessary zexts and truncs, delete old instructions and
// clear the data structures.
Cleanup();
LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
}
/// We disallow booleans to make life easier when dealing with icmps but allow
/// any other integer that fits in a scalar register. Void types are accepted
/// so we can handle switches.
bool TypePromotion::isSupportedType(Value *V) {
Type *Ty = V->getType();
// Allow voids and pointers, these won't be promoted.
if (Ty->isVoidTy() || Ty->isPointerTy())
return true;
if (!isa<IntegerType>(Ty) ||
cast<IntegerType>(Ty)->getBitWidth() == 1 ||
cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
return false;
return LessOrEqualTypeSize(V);
}
/// We accept most instructions, as well as Arguments and ConstantInsts. We
/// Disallow casts other than zext and truncs and only allow calls if their
/// return value is zeroext. We don't allow opcodes that can introduce sign
/// bits.
bool TypePromotion::isSupportedValue(Value *V) {
if (auto *I = dyn_cast<Instruction>(V)) {
switch (I->getOpcode()) {
default:
return isa<BinaryOperator>(I) && isSupportedType(I) &&
!GenerateSignBits(I);
case Instruction::GetElementPtr:
case Instruction::Store:
case Instruction::Br:
case Instruction::Switch:
return true;
case Instruction::PHI:
case Instruction::Select:
case Instruction::Ret:
case Instruction::Load:
case Instruction::Trunc:
case Instruction::BitCast:
return isSupportedType(I);
case Instruction::ZExt:
return isSupportedType(I->getOperand(0));
case Instruction::ICmp:
// Now that we allow small types than TypeSize, only allow icmp of
// TypeSize because they will require a trunc to be legalised.
// TODO: Allow icmp of smaller types, and calculate at the end
// whether the transform would be beneficial.
if (isa<PointerType>(I->getOperand(0)->getType()))
return true;
return EqualTypeSize(I->getOperand(0));
case Instruction::Call: {
// Special cases for calls as we need to check for zeroext
// TODO We should accept calls even if they don't have zeroext, as they
// can still be sinks.
auto *Call = cast<CallInst>(I);
return isSupportedType(Call) &&
Call->hasRetAttr(Attribute::AttrKind::ZExt);
}
}
} else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
return isSupportedType(V);
} else if (isa<Argument>(V))
return isSupportedType(V);
return isa<BasicBlock>(V);
}
/// Check that the type of V would be promoted and that the original type is
/// smaller than the targeted promoted type. Check that we're not trying to
/// promote something larger than our base 'TypeSize' type.
bool TypePromotion::isLegalToPromote(Value *V) {
auto *I = dyn_cast<Instruction>(V);
if (!I)
return true;
if (SafeToPromote.count(I))
return true;
if (isPromotedResultSafe(V) || isSafeWrap(I)) {
SafeToPromote.insert(I);
return true;
}
return false;
}
bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
Type *OrigTy = V->getType();
TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
SafeToPromote.clear();
SafeWrap.clear();
if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
return false;
LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
<< TypeSize << " bits to " << PromotedWidth << "\n");
SetVector<Value*> WorkList;
SetVector<Value*> Sources;
SetVector<Instruction*> Sinks;
SetVector<Value*> CurrentVisited;
WorkList.insert(V);
// Return true if V was added to the worklist as a supported instruction,
// if it was already visited, or if we don't need to explore it (e.g.
// pointer values and GEPs), and false otherwise.
auto AddLegalInst = [&](Value *V) {
if (CurrentVisited.count(V))
return true;
// Ignore GEPs because they don't need promoting and the constant indices
// will prevent the transformation.
if (isa<GetElementPtrInst>(V))
return true;
if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
return false;
}
WorkList.insert(V);
return true;
};
// Iterate through, and add to, a tree of operands and users in the use-def.
while (!WorkList.empty()) {
Value *V = WorkList.pop_back_val();
if (CurrentVisited.count(V))
continue;
// Ignore non-instructions, other than arguments.
if (!isa<Instruction>(V) && !isSource(V))
continue;
// If we've already visited this value from somewhere, bail now because
// the tree has already been explored.
// TODO: This could limit the transform, ie if we try to promote something
// from an i8 and fail first, before trying an i16.
if (AllVisited.count(V))
return false;
CurrentVisited.insert(V);
AllVisited.insert(V);
// Calls can be both sources and sinks.
if (isSink(V))
Sinks.insert(cast<Instruction>(V));
if (isSource(V))
Sources.insert(V);
if (!isSink(V) && !isSource(V)) {
if (auto *I = dyn_cast<Instruction>(V)) {
// Visit operands of any instruction visited.
for (auto &U : I->operands()) {
if (!AddLegalInst(U))
return false;
}
}
}
// Don't visit users of a node which isn't going to be mutated unless its a
// source.
if (isSource(V) || shouldPromote(V)) {
for (Use &U : V->uses()) {
if (!AddLegalInst(U.getUser()))
return false;
}
}
}
LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
for (auto *I : CurrentVisited)
I->dump();
);
unsigned ToPromote = 0;
unsigned NonFreeArgs = 0;
SmallPtrSet<BasicBlock*, 4> Blocks;
for (auto *V : CurrentVisited) {
if (auto *I = dyn_cast<Instruction>(V))
Blocks.insert(I->getParent());
if (Sources.count(V)) {
if (auto *Arg = dyn_cast<Argument>(V))
if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
++NonFreeArgs;
continue;
}
if (Sinks.count(cast<Instruction>(V)))
continue;
++ToPromote;
}
// DAG optimizations should be able to handle these cases better, especially
// for function arguments.
if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
return false;
if (ToPromote < 2)
return false;
IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
CurrentVisited, Sources, Sinks, SafeWrap);
Promoter.Mutate();
return true;
}
bool TypePromotion::runOnFunction(Function &F) {
if (skipFunction(F) || DisablePromotion)
return false;
LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
if (!TPC)
return false;
AllVisited.clear();
SafeToPromote.clear();
SafeWrap.clear();
bool MadeChange = false;
const DataLayout &DL = F.getParent()->getDataLayout();
const TargetMachine &TM = TPC->getTM<TargetMachine>();
const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
const TargetTransformInfo &TII =
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
RegisterBitWidth = TII.getRegisterBitWidth(false);
Ctx = &F.getParent()->getContext();
// Search up from icmps to try to promote their operands.
for (BasicBlock &BB : F) {
for (auto &I : BB) {
if (AllVisited.count(&I))
continue;
if (!isa<ICmpInst>(&I))
continue;
auto *ICmp = cast<ICmpInst>(&I);
// Skip signed or pointer compares
if (ICmp->isSigned() ||
!isa<IntegerType>(ICmp->getOperand(0)->getType()))
continue;
LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
for (auto &Op : ICmp->operands()) {
if (auto *I = dyn_cast<Instruction>(Op)) {
EVT SrcVT = TLI->getValueType(DL, I->getType());
if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
break;
if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
TargetLowering::TypePromoteInteger)
break;
EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
<< "for promoted type\n");
break;
}
MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
break;
}
}
}
LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
dbgs() << F;
report_fatal_error("Broken function after type promotion");
});
}
if (MadeChange)
LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
AllVisited.clear();
SafeToPromote.clear();
SafeWrap.clear();
return MadeChange;
}
INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
char TypePromotion::ID = 0;
FunctionPass *llvm::createTypePromotionPass() {
return new TypePromotion();
}