blob: 4d7c5ef67217903a92a109202f07c48a1839d972 [file] [log] [blame]
//===- lib/Linker/IRMover.cpp ---------------------------------------------===//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#include "llvm/Linker/IRMover.h"
#include "LinkDiagnosticInfo.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/GVMaterializer.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/TypeFinder.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include <utility>
using namespace llvm;
// TypeMap implementation.
namespace {
class TypeMapTy : public ValueMapTypeRemapper {
/// This is a mapping from a source type to a destination type to use.
DenseMap<Type *, Type *> MappedTypes;
/// When checking to see if two subgraphs are isomorphic, we speculatively
/// add types to MappedTypes, but keep track of them here in case we need to
/// roll back.
SmallVector<Type *, 16> SpeculativeTypes;
SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
/// This is a list of non-opaque structs in the source module that are mapped
/// to an opaque struct in the destination module.
SmallVector<StructType *, 16> SrcDefinitionsToResolve;
/// This is the set of opaque types in the destination modules who are
/// getting a body from the source module.
SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
: DstStructTypesSet(DstStructTypesSet) {}
IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
/// Indicate that the specified type in the destination module is conceptually
/// equivalent to the specified type in the source module.
void addTypeMapping(Type *DstTy, Type *SrcTy);
/// Produce a body for an opaque type in the dest module from a type
/// definition in the source module.
void linkDefinedTypeBodies();
/// Return the mapped type to use for the specified input type from the
/// source module.
Type *get(Type *SrcTy);
Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
FunctionType *get(FunctionType *T) {
return cast<FunctionType>(get((Type *)T));
Type *remapType(Type *SrcTy) override { return get(SrcTy); }
bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
// Check to see if these types are recursively isomorphic and establish a
// mapping between them if so.
if (!areTypesIsomorphic(DstTy, SrcTy)) {
// Oops, they aren't isomorphic. Just discard this request by rolling out
// any speculative mappings we've established.
for (Type *Ty : SpeculativeTypes)
SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
for (StructType *Ty : SpeculativeDstOpaqueTypes)
} else {
// SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
// and all its descendants to lower amount of renaming in LLVM context
// Renaming occurs because we load all source modules to the same context
// and declaration with existing name gets renamed (i.e Foo -> Foo.42).
// As a result we may get several different types in the destination
// module, which are in fact the same.
for (Type *Ty : SpeculativeTypes)
if (auto *STy = dyn_cast<StructType>(Ty))
if (STy->hasName())
/// Recursively walk this pair of types, returning true if they are isomorphic,
/// false if they are not.
bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
// Two types with differing kinds are clearly not isomorphic.
if (DstTy->getTypeID() != SrcTy->getTypeID())
return false;
// If we have an entry in the MappedTypes table, then we have our answer.
Type *&Entry = MappedTypes[SrcTy];
if (Entry)
return Entry == DstTy;
// Two identical types are clearly isomorphic. Remember this
// non-speculatively.
if (DstTy == SrcTy) {
Entry = DstTy;
return true;
// Okay, we have two types with identical kinds that we haven't seen before.
// If this is an opaque struct type, special case it.
if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
// Mapping an opaque type to any struct, just keep the dest struct.
if (SSTy->isOpaque()) {
Entry = DstTy;
return true;
// Mapping a non-opaque source type to an opaque dest. If this is the first
// type that we're mapping onto this destination type then we succeed. Keep
// the dest, but fill it in later. If this is the second (different) type
// that we're trying to map onto the same opaque type then we fail.
if (cast<StructType>(DstTy)->isOpaque()) {
// We can only map one source type onto the opaque destination type.
if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
return false;
Entry = DstTy;
return true;
// If the number of subtypes disagree between the two types, then we fail.
if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
return false;
// Fail if any of the extra properties (e.g. array size) of the type disagree.
if (isa<IntegerType>(DstTy))
return false; // bitwidth disagrees.
if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
return false;
} else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
return false;
} else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
StructType *SSTy = cast<StructType>(SrcTy);
if (DSTy->isLiteral() != SSTy->isLiteral() ||
DSTy->isPacked() != SSTy->isPacked())
return false;
} else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
return false;
} else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
return false;
// Otherwise, we speculate that these two types will line up and recursively
// check the subelements.
Entry = DstTy;
for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
if (!areTypesIsomorphic(DstTy->getContainedType(I),
return false;
// If everything seems to have lined up, then everything is great.
return true;
void TypeMapTy::linkDefinedTypeBodies() {
SmallVector<Type *, 16> Elements;
for (StructType *SrcSTy : SrcDefinitionsToResolve) {
StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
// Map the body of the source type over to a new body for the dest type.
for (unsigned I = 0, E = Elements.size(); I != E; ++I)
Elements[I] = get(SrcSTy->getElementType(I));
DstSTy->setBody(Elements, SrcSTy->isPacked());
void TypeMapTy::finishType(StructType *DTy, StructType *STy,
ArrayRef<Type *> ETypes) {
DTy->setBody(ETypes, STy->isPacked());
// Steal STy's name.
if (STy->hasName()) {
SmallString<16> TmpName = STy->getName();
Type *TypeMapTy::get(Type *Ty) {
SmallPtrSet<StructType *, 8> Visited;
return get(Ty, Visited);
Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
// If we already have an entry for this type, return it.
Type **Entry = &MappedTypes[Ty];
if (*Entry)
return *Entry;
// These are types that LLVM itself will unique.
bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
if (!IsUniqued) {
#ifndef NDEBUG
for (auto &Pair : MappedTypes) {
assert(!(Pair.first != Ty && Pair.second == Ty) &&
"mapping to a source type");
if (!Visited.insert(cast<StructType>(Ty)).second) {
StructType *DTy = StructType::create(Ty->getContext());
return *Entry = DTy;
// If this is not a recursive type, then just map all of the elements and
// then rebuild the type from inside out.
SmallVector<Type *, 4> ElementTypes;
// If there are no element types to map, then the type is itself. This is
// true for the anonymous {} struct, things like 'float', integers, etc.
if (Ty->getNumContainedTypes() == 0 && IsUniqued)
return *Entry = Ty;
// Remap all of the elements, keeping track of whether any of them change.
bool AnyChange = false;
for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
ElementTypes[I] = get(Ty->getContainedType(I), Visited);
AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
// If we found our type while recursively processing stuff, just use it.
Entry = &MappedTypes[Ty];
if (*Entry) {
if (auto *DTy = dyn_cast<StructType>(*Entry)) {
if (DTy->isOpaque()) {
auto *STy = cast<StructType>(Ty);
finishType(DTy, STy, ElementTypes);
return *Entry;
// If all of the element types mapped directly over and the type is not
// a named struct, then the type is usable as-is.
if (!AnyChange && IsUniqued)
return *Entry = Ty;
// Otherwise, rebuild a modified type.
switch (Ty->getTypeID()) {
llvm_unreachable("unknown derived type to remap");
case Type::ArrayTyID:
return *Entry = ArrayType::get(ElementTypes[0],
case Type::ScalableVectorTyID:
// FIXME: handle scalable vectors
case Type::FixedVectorTyID:
return *Entry = FixedVectorType::get(
ElementTypes[0], cast<FixedVectorType>(Ty)->getNumElements());
case Type::PointerTyID:
return *Entry = PointerType::get(ElementTypes[0],
case Type::FunctionTyID:
return *Entry = FunctionType::get(ElementTypes[0],
case Type::StructTyID: {
auto *STy = cast<StructType>(Ty);
bool IsPacked = STy->isPacked();
if (IsUniqued)
return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
// If the type is opaque, we can just use it directly.
if (STy->isOpaque()) {
return *Entry = Ty;
if (StructType *OldT =
DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
return *Entry = OldT;
if (!AnyChange) {
return *Entry = Ty;
StructType *DTy = StructType::create(Ty->getContext());
finishType(DTy, STy, ElementTypes);
return *Entry = DTy;
LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
const Twine &Msg)
: DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
// IRLinker implementation.
namespace {
class IRLinker;
/// Creates prototypes for functions that are lazily linked on the fly. This
/// speeds up linking for modules with many/ lazily linked functions of which
/// few get used.
class GlobalValueMaterializer final : public ValueMaterializer {
IRLinker &TheIRLinker;
GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materialize(Value *V) override;
class LocalValueMaterializer final : public ValueMaterializer {
IRLinker &TheIRLinker;
LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
Value *materialize(Value *V) override;
/// Type of the Metadata map in \a ValueToValueMapTy.
typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
/// This is responsible for keeping track of the state used for moving data
/// from SrcM to DstM.
class IRLinker {
Module &DstM;
std::unique_ptr<Module> SrcM;
/// See IRMover::move().
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
TypeMapTy TypeMap;
GlobalValueMaterializer GValMaterializer;
LocalValueMaterializer LValMaterializer;
/// A metadata map that's shared between IRLinker instances.
MDMapT &SharedMDs;
/// Mapping of values from what they used to be in Src, to what they are now
/// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
/// due to the use of Value handles which the Linker doesn't actually need,
/// but this allows us to reuse the ValueMapper code.
ValueToValueMapTy ValueMap;
ValueToValueMapTy IndirectSymbolValueMap;
DenseSet<GlobalValue *> ValuesToLink;
std::vector<GlobalValue *> Worklist;
std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
void maybeAdd(GlobalValue *GV) {
if (ValuesToLink.insert(GV).second)
/// Whether we are importing globals for ThinLTO, as opposed to linking the
/// source module. If this flag is set, it means that we can rely on some
/// other object file to define any non-GlobalValue entities defined by the
/// source module. This currently causes us to not link retained types in
/// debug info metadata and module inline asm.
bool IsPerformingImport;
/// Set to true when all global value body linking is complete (including
/// lazy linking). Used to prevent metadata linking from creating new
/// references.
bool DoneLinkingBodies = false;
/// The Error encountered during materialization. We use an Optional here to
/// avoid needing to manage an unconsumed success value.
Optional<Error> FoundError;
void setError(Error E) {
if (E)
FoundError = std::move(E);
/// Most of the errors produced by this module are inconvertible StringErrors.
/// This convenience function lets us return one of those more easily.
Error stringErr(const Twine &T) {
return make_error<StringError>(T, inconvertibleErrorCode());
/// Entry point for mapping values and alternate context for mapping aliases.
ValueMapper Mapper;
unsigned IndirectSymbolMCID;
/// Handles cloning of a global values from the source module into
/// the destination module, including setting the attributes and visibility.
GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
void emitWarning(const Twine &Message) {
SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
/// Given a global in the source module, return the global in the
/// destination module that is being linked to, if any.
GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
// If the source has no name it can't link. If it has local linkage,
// there is no name match-up going on.
if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
return nullptr;
// Otherwise see if we have a match in the destination module's symtab.
GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
if (!DGV)
return nullptr;
// If we found a global with the same name in the dest module, but it has
// internal linkage, we are really not doing any linkage here.
if (DGV->hasLocalLinkage())
return nullptr;
// Otherwise, we do in fact link to the destination global.
return DGV;
void computeTypeMapping();
Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV);
/// Given the GlobaValue \p SGV in the source module, and the matching
/// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
/// into the destination module.
/// Note this code may call the client-provided \p AddLazyFor.
bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
bool ForIndirectSymbol);
Error linkModuleFlagsMetadata();
void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
Error linkFunctionBody(Function &Dst, Function &Src);
void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
GlobalIndirectSymbol &Src);
Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
/// Replace all types in the source AttributeList with the
/// corresponding destination type.
AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
/// Functions that take care of cloning a specific global value type
/// into the destination module.
GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
Function *copyFunctionProto(const Function *SF);
GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);
/// Perform "replace all uses with" operations. These work items need to be
/// performed as part of materialization, but we postpone them to happen after
/// materialization is done. The materializer called by ValueMapper is not
/// expected to delete constants, as ValueMapper is holding pointers to some
/// of them, but constant destruction may be indirectly triggered by RAUW.
/// Hence, the need to move this out of the materialization call chain.
void flushRAUWWorklist();
/// When importing for ThinLTO, prevent importing of types listed on
/// the DICompileUnit that we don't need a copy of in the importing
/// module.
void prepareCompileUnitsForImport();
void linkNamedMDNodes();
IRLinker(Module &DstM, MDMapT &SharedMDs,
IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
bool IsPerformingImport)
: DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
Mapper(ValueMap, RF_ReuseAndMutateDistinctMDs | RF_IgnoreMissingLocals,
&TypeMap, &GValMaterializer),
IndirectSymbolValueMap, &LValMaterializer)) {
ValueMap.getMDMap() = std::move(SharedMDs);
for (GlobalValue *GV : ValuesToLink)
if (IsPerformingImport)
~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
Error run();
Value *materialize(Value *V, bool ForIndirectSymbol);
/// The LLVM SymbolTable class autorenames globals that conflict in the symbol
/// table. This is good for all clients except for us. Go through the trouble
/// to force this back.
static void forceRenaming(GlobalValue *GV, StringRef Name) {
// If the global doesn't force its name or if it already has the right name,
// there is nothing for us to do.
if (GV->hasLocalLinkage() || GV->getName() == Name)
Module *M = GV->getParent();
// If there is a conflict, rename the conflict.
if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
} else {
GV->setName(Name); // Force the name back
Value *GlobalValueMaterializer::materialize(Value *SGV) {
return TheIRLinker.materialize(SGV, false);
Value *LocalValueMaterializer::materialize(Value *SGV) {
return TheIRLinker.materialize(SGV, true);
Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
auto *SGV = dyn_cast<GlobalValue>(V);
if (!SGV)
return nullptr;
// When linking a global from other modules than source & dest, skip
// materializing it because it would be mapped later when its containing
// module is linked. Linking it now would potentially pull in many types that
// may not be mapped properly.
if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
return nullptr;
Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
if (!NewProto) {
return nullptr;
if (!*NewProto)
return nullptr;
GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
if (!New)
return *NewProto;
// If we already created the body, just return.
if (auto *F = dyn_cast<Function>(New)) {
if (!F->isDeclaration())
return New;
} else if (auto *V = dyn_cast<GlobalVariable>(New)) {
if (V->hasInitializer() || V->hasAppendingLinkage())
return New;
} else {
auto *IS = cast<GlobalIndirectSymbol>(New);
if (IS->getIndirectSymbol())
return New;
// When linking a global for an indirect symbol, it will always be linked.
// However we need to check if it was not already scheduled to satisfy a
// reference from a regular global value initializer. We know if it has been
// schedule if the "New" GlobalValue that is mapped here for the indirect
// symbol is the same as the one already mapped. If there is an entry in the
// ValueMap but the value is different, it means that the value already had a
// definition in the destination module (linkonce for instance), but we need a
// new definition for the indirect symbol ("New" will be different.
if (ForIndirectSymbol && ValueMap.lookup(SGV) == New)
return New;
if (ForIndirectSymbol || shouldLink(New, *SGV))
setError(linkGlobalValueBody(*New, *SGV));
return New;
/// Loop through the global variables in the src module and merge them into the
/// dest module.
GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
// No linking to be performed or linking from the source: simply create an
// identical version of the symbol over in the dest module... the
// initializer will be filled in later by LinkGlobalInits.
GlobalVariable *NewDGV =
new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
SGVar->isConstant(), GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGVar->getName(),
/*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
return NewDGV;
AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
for (Attribute::AttrKind TypedAttr :
{Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) {
if (Attrs.hasAttribute(i, TypedAttr)) {
if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) {
Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, TypeMap.get(Ty));
return Attrs;
/// Link the function in the source module into the destination module if
/// needed, setting up mapping information.
Function *IRLinker::copyFunctionProto(const Function *SF) {
// If there is no linkage to be performed or we are linking from the source,
// bring SF over.
auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
SF->getAddressSpace(), SF->getName(), &DstM);
F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
return F;
/// Set up prototypes for any indirect symbols that come over from the source
/// module.
GlobalValue *
IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
// If there is no linkage to be performed or we're linking from the source,
// bring over SGA.
auto *Ty = TypeMap.get(SGIS->getValueType());
GlobalIndirectSymbol *GIS;
if (isa<GlobalAlias>(SGIS))
GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
GlobalValue::ExternalLinkage, SGIS->getName(),
GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
GlobalValue::ExternalLinkage, SGIS->getName(),
nullptr, &DstM);
return GIS;
GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
bool ForDefinition) {
GlobalValue *NewGV;
if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
NewGV = copyGlobalVariableProto(SGVar);
} else if (auto *SF = dyn_cast<Function>(SGV)) {
NewGV = copyFunctionProto(SF);
} else {
if (ForDefinition)
NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
else if (SGV->getValueType()->isFunctionTy())
NewGV =
GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
SGV->getName(), &DstM);
NewGV =
new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
/*isConstant*/ false, GlobalValue::ExternalLinkage,
/*init*/ nullptr, SGV->getName(),
/*insertbefore*/ nullptr,
SGV->getThreadLocalMode(), SGV->getAddressSpace());
if (ForDefinition)
else if (SGV->hasExternalWeakLinkage())
if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
// Metadata for global variables and function declarations is copied eagerly.
if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
// Remove these copied constants in case this stays a declaration, since
// they point to the source module. If the def is linked the values will
// be mapped in during linkFunctionBody.
if (auto *NewF = dyn_cast<Function>(NewGV)) {
return NewGV;
static StringRef getTypeNamePrefix(StringRef Name) {
size_t DotPos = Name.rfind('.');
return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
!isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
? Name
: Name.substr(0, DotPos);
/// Loop over all of the linked values to compute type mappings. For example,
/// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
/// types 'Foo' but one got renamed when the module was loaded into the same
/// LLVMContext.
void IRLinker::computeTypeMapping() {
for (GlobalValue &SGV : SrcM->globals()) {
GlobalValue *DGV = getLinkedToGlobal(&SGV);
if (!DGV)
if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
// Unify the element type of appending arrays.
ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
for (GlobalValue &SGV : *SrcM)
if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
if (DGV->getType() == SGV.getType()) {
// If the types of DGV and SGV are the same, it means that DGV is from
// the source module and got added to DstM from a shared metadata. We
// shouldn't map this type to itself in case the type's components get
// remapped to a new type from DstM (for instance, during the loop over
// SrcM->getIdentifiedStructTypes() below).
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
for (GlobalValue &SGV : SrcM->aliases())
if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
// Incorporate types by name, scanning all the types in the source module.
// At this point, the destination module may have a type "%foo = { i32 }" for
// example. When the source module got loaded into the same LLVMContext, if
// it had the same type, it would have been renamed to "%foo.42 = { i32 }".
std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
for (StructType *ST : Types) {
if (!ST->hasName())
if (TypeMap.DstStructTypesSet.hasType(ST)) {
// This is actually a type from the destination module.
// getIdentifiedStructTypes() can have found it by walking debug info
// metadata nodes, some of which get linked by name when ODR Type Uniquing
// is enabled on the Context, from the source to the destination module.
auto STTypePrefix = getTypeNamePrefix(ST->getName());
if (STTypePrefix.size() == ST->getName().size())
// Check to see if the destination module has a struct with the prefix name.
StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
if (!DST)
// Don't use it if this actually came from the source module. They're in
// the same LLVMContext after all. Also don't use it unless the type is
// actually used in the destination module. This can happen in situations
// like this:
// Module A Module B
// -------- --------
// %Z = type { %A } %B = type { %C.1 }
// %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
// %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
// %C = type { i8* } %B.3 = type { %C.1 }
// When we link Module B with Module A, the '%B' in Module B is
// used. However, that would then use '%C.1'. But when we process '%C.1',
// we prefer to take the '%C' version. So we are then left with both
// '%C.1' and '%C' being used for the same types. This leads to some
// variables using one type and some using the other.
if (TypeMap.DstStructTypesSet.hasType(DST))
TypeMap.addTypeMapping(DST, ST);
// Now that we have discovered all of the type equivalences, get a body for
// any 'opaque' types in the dest module that are now resolved.
static void getArrayElements(const Constant *C,
SmallVectorImpl<Constant *> &Dest) {
unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
for (unsigned i = 0; i != NumElements; ++i)
/// If there were any appending global variables, link them together now.
Expected<Constant *>
IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
const GlobalVariable *SrcGV) {
// Check that both variables have compatible properties.
if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
return stringErr(
"Linking globals named '" + SrcGV->getName() +
"': can only link appending global with another appending "
if (DstGV->isConstant() != SrcGV->isConstant())
return stringErr("Appending variables linked with different const'ness!");
if (DstGV->getAlignment() != SrcGV->getAlignment())
return stringErr(
"Appending variables with different alignment need to be linked!");
if (DstGV->getVisibility() != SrcGV->getVisibility())
return stringErr(
"Appending variables with different visibility need to be linked!");
if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
return stringErr(
"Appending variables with different unnamed_addr need to be linked!");
if (DstGV->getSection() != SrcGV->getSection())
return stringErr(
"Appending variables with different section name need to be linked!");
// Do not need to do anything if source is a declaration.
if (SrcGV->isDeclaration())
return DstGV;
Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
// FIXME: This upgrade is done during linking to support the C API. Once the
// old form is deprecated, we should move this upgrade to
// llvm::UpgradeGlobalVariable() and simplify the logic here and in
// Mapper::mapAppendingVariable() in ValueMapper.cpp.
StringRef Name = SrcGV->getName();
bool IsNewStructor = false;
bool IsOldStructor = false;
if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
if (cast<StructType>(EltTy)->getNumElements() == 3)
IsNewStructor = true;
IsOldStructor = true;
PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
if (IsOldStructor) {
auto &ST = *cast<StructType>(EltTy);
Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
EltTy = StructType::get(SrcGV->getContext(), Tys, false);
uint64_t DstNumElements = 0;
if (DstGV && !DstGV->isDeclaration()) {
ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
DstNumElements = DstTy->getNumElements();
// Check to see that they two arrays agree on type.
if (EltTy != DstTy->getElementType())
return stringErr("Appending variables with different element types!");
SmallVector<Constant *, 16> SrcElements;
getArrayElements(SrcGV->getInitializer(), SrcElements);
if (IsNewStructor) {
erase_if(SrcElements, [this](Constant *E) {
auto *Key =
if (!Key)
return false;
GlobalValue *DGV = getLinkedToGlobal(Key);
return !shouldLink(DGV, *Key);
uint64_t NewSize = DstNumElements + SrcElements.size();
ArrayType *NewType = ArrayType::get(EltTy, NewSize);
// Create the new global variable.
GlobalVariable *NG = new GlobalVariable(
DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
/*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
forceRenaming(NG, SrcGV->getName());
Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
(DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
IsOldStructor, SrcElements);
// Replace any uses of the two global variables with uses of the new
// global.
if (DstGV) {
std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
return Ret;
bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
return true;
if (DGV && !DGV->isDeclarationForLinker())
return false;
if (SGV.isDeclaration() || DoneLinkingBodies)
return false;
// Callback to the client to give a chance to lazily add the Global to the
// list of value to link.
bool LazilyAdded = false;
AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
LazilyAdded = true;
return LazilyAdded;
Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
bool ForIndirectSymbol) {
GlobalValue *DGV = getLinkedToGlobal(SGV);
bool ShouldLink = shouldLink(DGV, *SGV);
// just missing from map
if (ShouldLink) {
auto I = ValueMap.find(SGV);
if (I != ValueMap.end())
return cast<Constant>(I->second);
I = IndirectSymbolValueMap.find(SGV);
if (I != IndirectSymbolValueMap.end())
return cast<Constant>(I->second);
if (!ShouldLink && ForIndirectSymbol)
DGV = nullptr;
// Handle the ultra special appending linkage case first.
if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
GlobalValue *NewGV;
if (DGV && !ShouldLink) {
NewGV = DGV;
} else {
// If we are done linking global value bodies (i.e. we are performing
// metadata linking), don't link in the global value due to this
// reference, simply map it to null.
if (DoneLinkingBodies)
return nullptr;
NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
if (ShouldLink || !ForIndirectSymbol)
forceRenaming(NewGV, SGV->getName());
// Overloaded intrinsics have overloaded types names as part of their
// names. If we renamed overloaded types we should rename the intrinsic
// as well.
if (Function *F = dyn_cast<Function>(NewGV))
if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
NewGV = Remangled.getValue();
if (ShouldLink || ForIndirectSymbol) {
if (const Comdat *SC = SGV->getComdat()) {
if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
Comdat *DC = DstM.getOrInsertComdat(SC->getName());
if (!ShouldLink && ForIndirectSymbol)
Constant *C = NewGV;
// Only create a bitcast if necessary. In particular, with
// DebugTypeODRUniquing we may reach metadata in the destination module
// containing a GV from the source module, in which case SGV will be
// the same as DGV and NewGV, and TypeMap.get() will assert since it
// assumes it is being invoked on a type in the source module.
if (DGV && NewGV != SGV) {
C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
NewGV, TypeMap.get(SGV->getType()));
if (DGV && NewGV != DGV) {
// Schedule "replace all uses with" to happen after materializing is
// done. It is not safe to do it now, since ValueMapper may be holding
// pointers to constants that will get deleted if RAUW runs.
ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
return C;
/// Update the initializers in the Dest module now that all globals that may be
/// referenced are in Dest.
void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
// Figure out what the initializer looks like in the dest module.
Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
/// Copy the source function over into the dest function and fix up references
/// to values. At this point we know that Dest is an external function, and
/// that Src is not.
Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
assert(Dst.isDeclaration() && !Src.isDeclaration());
// Materialize if needed.
if (Error Err = Src.materialize())
return Err;
// Link in the operands without remapping.
if (Src.hasPrefixData())
if (Src.hasPrologueData())
if (Src.hasPersonalityFn())
// Copy over the metadata attachments without remapping.
Dst.copyMetadata(&Src, 0);
// Steal arguments and splice the body of Src into Dst.
Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
// Everything has been moved over. Remap it.
return Error::success();
void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
GlobalIndirectSymbol &Src) {
Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
if (auto *F = dyn_cast<Function>(&Src))
return linkFunctionBody(cast<Function>(Dst), *F);
if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
return Error::success();
linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
return Error::success();
void IRLinker::flushRAUWWorklist() {
for (const auto &Elem : RAUWWorklist) {
GlobalValue *Old;
Value *New;
std::tie(Old, New) = Elem;
void IRLinker::prepareCompileUnitsForImport() {
NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("");
if (!SrcCompileUnits)
// When importing for ThinLTO, prevent importing of types listed on
// the DICompileUnit that we don't need a copy of in the importing
// module. They will be emitted by the originating module.
for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
assert(CU && "Expected valid compile unit");
// Enums, macros, and retained types don't need to be listed on the
// imported DICompileUnit. This means they will only be imported
// if reached from the mapped IR.
// The original definition (or at least its debug info - if the variable is
// internalized and optimized away) will remain in the source module, so
// there's no need to import them.
// If LLVM ever does more advanced optimizations on global variables
// (removing/localizing write operations, for instance) that can track
// through debug info, this decision may need to be revisited - but do so
// with care when it comes to debug info size. Emitting small CUs containing
// only a few imported entities into every destination module may be very
// size inefficient.
// Imported entities only need to be mapped in if they have local
// scope, as those might correspond to an imported entity inside a
// function being imported (any locally scoped imported entities that
// don't end up referenced by an imported function will not be emitted
// into the object). Imported entities not in a local scope
// (e.g. on the namespace) only need to be emitted by the originating
// module. Create a list of the locally scoped imported entities, and
// replace the source CUs imported entity list with the new list, so
// only those are mapped in.
// FIXME: Locally-scoped imported entities could be moved to the
// functions they are local to instead of listing them on the CU, and
// we would naturally only link in those needed by function importing.
SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
bool ReplaceImportedEntities = false;
for (auto *IE : CU->getImportedEntities()) {
DIScope *Scope = IE->getScope();
assert(Scope && "Invalid Scope encoding!");
if (isa<DILocalScope>(Scope))
ReplaceImportedEntities = true;
if (ReplaceImportedEntities) {
if (!AllImportedModules.empty())
SmallVector<Metadata *, 16>(AllImportedModules.begin(),
// If there were no local scope imported entities, we can map
// the whole list to nullptr.
/// Insert all of the named MDNodes in Src into the Dest module.
void IRLinker::linkNamedMDNodes() {
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
for (const NamedMDNode &NMD : SrcM->named_metadata()) {
// Don't link module flags here. Do them separately.
if (&NMD == SrcModFlags)
NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
// Add Src elements into Dest node.
for (const MDNode *Op : NMD.operands())
/// Merge the linker flags in Src into the Dest module.
Error IRLinker::linkModuleFlagsMetadata() {
// If the source module has no module flags, we are done.
const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
if (!SrcModFlags)
return Error::success();
// If the destination module doesn't have module flags yet, then just copy
// over the source module's flags.
NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
if (DstModFlags->getNumOperands() == 0) {
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
return Error::success();
// First build a map of the existing module flags and requirements.
DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
SmallSetVector<MDNode *, 16> Requirements;
for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
MDNode *Op = DstModFlags->getOperand(I);
ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
MDString *ID = cast<MDString>(Op->getOperand(1));
if (Behavior->getZExtValue() == Module::Require) {
} else {
Flags[ID] = std::make_pair(Op, I);
// Merge in the flags from the source module, and also collect its set of
// requirements.
for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
MDNode *SrcOp = SrcModFlags->getOperand(I);
ConstantInt *SrcBehavior =
MDString *ID = cast<MDString>(SrcOp->getOperand(1));
MDNode *DstOp;
unsigned DstIndex;
std::tie(DstOp, DstIndex) = Flags.lookup(ID);
unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
// If this is a requirement, add it and continue.
if (SrcBehaviorValue == Module::Require) {
// If the destination module does not already have this requirement, add
// it.
if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
// If there is no existing flag with this ID, just add it.
if (!DstOp) {
Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
// Otherwise, perform a merge.
ConstantInt *DstBehavior =
unsigned DstBehaviorValue = DstBehavior->getZExtValue();
auto overrideDstValue = [&]() {
DstModFlags->setOperand(DstIndex, SrcOp);
Flags[ID].first = SrcOp;
// If either flag has override behavior, handle it first.
if (DstBehaviorValue == Module::Override) {
// Diagnose inconsistent flags which both have override behavior.
if (SrcBehaviorValue == Module::Override &&
SrcOp->getOperand(2) != DstOp->getOperand(2))
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting override values in '" +
SrcM->getModuleIdentifier() + "' and '" +
DstM.getModuleIdentifier() + "'");
} else if (SrcBehaviorValue == Module::Override) {
// Update the destination flag to that of the source.
// Diagnose inconsistent merge behavior types.
if (SrcBehaviorValue != DstBehaviorValue) {
bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
DstBehaviorValue == Module::Warning) ||
(DstBehaviorValue == Module::Max &&
SrcBehaviorValue == Module::Warning);
if (!MaxAndWarn)
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting behaviors in '" +
SrcM->getModuleIdentifier() + "' and '" +
DstM.getModuleIdentifier() + "'");
auto replaceDstValue = [&](MDNode *New) {
Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
// Emit a warning if the values differ and either source or destination
// request Warning behavior.
if ((DstBehaviorValue == Module::Warning ||
SrcBehaviorValue == Module::Warning) &&
SrcOp->getOperand(2) != DstOp->getOperand(2)) {
std::string Str;
<< "linking module flags '" << ID->getString()
<< "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
<< "' from " << SrcM->getModuleIdentifier() << " with '"
<< *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
<< ')';
// Choose the maximum if either source or destination request Max behavior.
if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
ConstantInt *DstValue =
ConstantInt *SrcValue =
// The resulting flag should have a Max behavior, and contain the maximum
// value from between the source and destination values.
Metadata *FlagOps[] = {
(DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
(SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
DstModFlags->setOperand(DstIndex, Flag);
Flags[ID].first = Flag;
// Perform the merge for standard behavior types.
switch (SrcBehaviorValue) {
case Module::Require:
case Module::Override:
llvm_unreachable("not possible");
case Module::Error: {
// Emit an error if the values differ.
if (SrcOp->getOperand(2) != DstOp->getOperand(2))
return stringErr("linking module flags '" + ID->getString() +
"': IDs have conflicting values in '" +
SrcM->getModuleIdentifier() + "' and '" +
DstM.getModuleIdentifier() + "'");
case Module::Warning: {
case Module::Max: {
case Module::Append: {
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
SmallVector<Metadata *, 8> MDs;
MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
MDs.append(DstValue->op_begin(), DstValue->op_end());
MDs.append(SrcValue->op_begin(), SrcValue->op_end());
replaceDstValue(MDNode::get(DstM.getContext(), MDs));
case Module::AppendUnique: {
SmallSetVector<Metadata *, 16> Elts;
MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
Elts.insert(DstValue->op_begin(), DstValue->op_end());
Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
makeArrayRef(Elts.begin(), Elts.end())));
// Check all of the requirements.
for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
MDNode *Requirement = Requirements[I];
MDString *Flag = cast<MDString>(Requirement->getOperand(0));
Metadata *ReqValue = Requirement->getOperand(1);
MDNode *Op = Flags[Flag].first;
if (!Op || Op->getOperand(2) != ReqValue)
return stringErr("linking module flags '" + Flag->getString() +
"': does not have the required value");
return Error::success();
/// Return InlineAsm adjusted with target-specific directives if required.
/// For ARM and Thumb, we have to add directives to select the appropriate ISA
/// to support mixing module-level inline assembly from ARM and Thumb modules.
static std::string adjustInlineAsm(const std::string &InlineAsm,
const Triple &Triple) {
if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
return ".text\n.balign 2\n.thumb\n" + InlineAsm;
if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
return ".text\n.balign 4\n.arm\n" + InlineAsm;
return InlineAsm;
Error IRLinker::run() {
// Ensure metadata materialized before value mapping.
if (SrcM->getMaterializer())
if (Error Err = SrcM->getMaterializer()->materializeMetadata())
return Err;
// Inherit the target data from the source module if the destination module
// doesn't have one already.
if (DstM.getDataLayout().isDefault())
if (SrcM->getDataLayout() != DstM.getDataLayout()) {
emitWarning("Linking two modules of different data layouts: '" +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getDataLayoutStr() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" +
DstM.getDataLayoutStr() + "'\n");
// Copy the target triple from the source to dest if the dest's is empty.
if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
if (!SrcM->getTargetTriple().empty()&&
emitWarning("Linking two modules of different target triples: '" +
SrcM->getModuleIdentifier() + "' is '" +
SrcM->getTargetTriple() + "' whereas '" +
DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
// Loop over all of the linked values to compute type mappings.
std::reverse(Worklist.begin(), Worklist.end());
while (!Worklist.empty()) {
GlobalValue *GV = Worklist.back();
// Already mapped.
if (ValueMap.find(GV) != ValueMap.end() ||
IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
if (FoundError)
return std::move(*FoundError);
// Note that we are done linking global value bodies. This prevents
// metadata linking from creating new references.
DoneLinkingBodies = true;
// Remap all of the named MDNodes in Src into the DstM module. We do this
// after linking GlobalValues so that MDNodes that reference GlobalValues
// are properly remapped.
if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
// Append the module inline asm string.
} else if (IsPerformingImport) {
// Import any symver directives for symbols in DstM.
[&](StringRef Name, StringRef Alias) {
if (DstM.getNamedValue(Name)) {
SmallString<256> S(".symver ");
S += Name;
S += ", ";
S += Alias;
// Merge the module flags into the DstM module.
return linkModuleFlagsMetadata();
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
: ETypes(E), IsPacked(P) {}
IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
: ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
return IsPacked == That.IsPacked && ETypes == That.ETypes;
bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
return !this->operator==(That);
StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
return DenseMapInfo<StructType *>::getEmptyKey();
StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
return DenseMapInfo<StructType *>::getTombstoneKey();
unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
return getHashValue(KeyTy(ST));
bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
return LHS == KeyTy(RHS);
bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
const StructType *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return LHS == RHS;
return KeyTy(LHS) == KeyTy(RHS);
void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
bool Removed = OpaqueStructTypes.erase(Ty);
void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
StructType *
IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
bool IsPacked) {
IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
auto I = NonOpaqueStructTypes.find_as(Key);
return I == NonOpaqueStructTypes.end() ? nullptr : *I;
bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
if (Ty->isOpaque())
return OpaqueStructTypes.count(Ty);
auto I = NonOpaqueStructTypes.find(Ty);
return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
IRMover::IRMover(Module &M) : Composite(M) {
TypeFinder StructTypes;, /* OnlyNamed */ false);
for (StructType *Ty : StructTypes) {
if (Ty->isOpaque())
// Self-map metadatas in the destination module. This is needed when
// DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
// destination module may be reached from the source module.
for (auto *MD : StructTypes.getVisitedMetadata()) {
SharedMDs[MD].reset(const_cast<MDNode *>(MD));
Error IRMover::move(
std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
bool IsPerformingImport) {
IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
std::move(Src), ValuesToLink, std::move(AddLazyFor),
Error E =;
return E;