| //===- VPlan.cpp - Vectorizer Plan ----------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This is the LLVM vectorization plan. It represents a candidate for |
| /// vectorization, allowing to plan and optimize how to vectorize a given loop |
| /// before generating LLVM-IR. |
| /// The vectorizer uses vectorization plans to estimate the costs of potential |
| /// candidates and if profitable to execute the desired plan, generating vector |
| /// LLVM-IR code. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "VPlan.h" |
| #include "VPlanCFG.h" |
| #include "VPlanDominatorTree.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/GenericDomTreeConstruction.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/LoopVersioning.h" |
| #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
| #include <cassert> |
| #include <string> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| namespace llvm { |
| extern cl::opt<bool> EnableVPlanNativePath; |
| } |
| |
| #define DEBUG_TYPE "vplan" |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| raw_ostream &llvm::operator<<(raw_ostream &OS, const VPValue &V) { |
| const VPInstruction *Instr = dyn_cast<VPInstruction>(&V); |
| VPSlotTracker SlotTracker( |
| (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| V.print(OS, SlotTracker); |
| return OS; |
| } |
| #endif |
| |
| Value *VPLane::getAsRuntimeExpr(IRBuilderBase &Builder, |
| const ElementCount &VF) const { |
| switch (LaneKind) { |
| case VPLane::Kind::ScalableLast: |
| // Lane = RuntimeVF - VF.getKnownMinValue() + Lane |
| return Builder.CreateSub(getRuntimeVF(Builder, Builder.getInt32Ty(), VF), |
| Builder.getInt32(VF.getKnownMinValue() - Lane)); |
| case VPLane::Kind::First: |
| return Builder.getInt32(Lane); |
| } |
| llvm_unreachable("Unknown lane kind"); |
| } |
| |
| VPValue::VPValue(const unsigned char SC, Value *UV, VPDef *Def) |
| : SubclassID(SC), UnderlyingVal(UV), Def(Def) { |
| if (Def) |
| Def->addDefinedValue(this); |
| } |
| |
| VPValue::~VPValue() { |
| assert(Users.empty() && "trying to delete a VPValue with remaining users"); |
| if (Def) |
| Def->removeDefinedValue(this); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void VPValue::print(raw_ostream &OS, VPSlotTracker &SlotTracker) const { |
| if (const VPRecipeBase *R = dyn_cast_or_null<VPRecipeBase>(Def)) |
| R->print(OS, "", SlotTracker); |
| else |
| printAsOperand(OS, SlotTracker); |
| } |
| |
| void VPValue::dump() const { |
| const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this->Def); |
| VPSlotTracker SlotTracker( |
| (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| print(dbgs(), SlotTracker); |
| dbgs() << "\n"; |
| } |
| |
| void VPDef::dump() const { |
| const VPRecipeBase *Instr = dyn_cast_or_null<VPRecipeBase>(this); |
| VPSlotTracker SlotTracker( |
| (Instr && Instr->getParent()) ? Instr->getParent()->getPlan() : nullptr); |
| print(dbgs(), "", SlotTracker); |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| VPRecipeBase *VPValue::getDefiningRecipe() { |
| return cast_or_null<VPRecipeBase>(Def); |
| } |
| |
| const VPRecipeBase *VPValue::getDefiningRecipe() const { |
| return cast_or_null<VPRecipeBase>(Def); |
| } |
| |
| // Get the top-most entry block of \p Start. This is the entry block of the |
| // containing VPlan. This function is templated to support both const and non-const blocks |
| template <typename T> static T *getPlanEntry(T *Start) { |
| T *Next = Start; |
| T *Current = Start; |
| while ((Next = Next->getParent())) |
| Current = Next; |
| |
| SmallSetVector<T *, 8> WorkList; |
| WorkList.insert(Current); |
| |
| for (unsigned i = 0; i < WorkList.size(); i++) { |
| T *Current = WorkList[i]; |
| if (Current->getNumPredecessors() == 0) |
| return Current; |
| auto &Predecessors = Current->getPredecessors(); |
| WorkList.insert(Predecessors.begin(), Predecessors.end()); |
| } |
| |
| llvm_unreachable("VPlan without any entry node without predecessors"); |
| } |
| |
| VPlan *VPBlockBase::getPlan() { return getPlanEntry(this)->Plan; } |
| |
| const VPlan *VPBlockBase::getPlan() const { return getPlanEntry(this)->Plan; } |
| |
| /// \return the VPBasicBlock that is the entry of Block, possibly indirectly. |
| const VPBasicBlock *VPBlockBase::getEntryBasicBlock() const { |
| const VPBlockBase *Block = this; |
| while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| Block = Region->getEntry(); |
| return cast<VPBasicBlock>(Block); |
| } |
| |
| VPBasicBlock *VPBlockBase::getEntryBasicBlock() { |
| VPBlockBase *Block = this; |
| while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| Block = Region->getEntry(); |
| return cast<VPBasicBlock>(Block); |
| } |
| |
| void VPBlockBase::setPlan(VPlan *ParentPlan) { |
| assert( |
| (ParentPlan->getEntry() == this || ParentPlan->getPreheader() == this) && |
| "Can only set plan on its entry or preheader block."); |
| Plan = ParentPlan; |
| } |
| |
| /// \return the VPBasicBlock that is the exit of Block, possibly indirectly. |
| const VPBasicBlock *VPBlockBase::getExitingBasicBlock() const { |
| const VPBlockBase *Block = this; |
| while (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| Block = Region->getExiting(); |
| return cast<VPBasicBlock>(Block); |
| } |
| |
| VPBasicBlock *VPBlockBase::getExitingBasicBlock() { |
| VPBlockBase *Block = this; |
| while (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| Block = Region->getExiting(); |
| return cast<VPBasicBlock>(Block); |
| } |
| |
| VPBlockBase *VPBlockBase::getEnclosingBlockWithSuccessors() { |
| if (!Successors.empty() || !Parent) |
| return this; |
| assert(Parent->getExiting() == this && |
| "Block w/o successors not the exiting block of its parent."); |
| return Parent->getEnclosingBlockWithSuccessors(); |
| } |
| |
| VPBlockBase *VPBlockBase::getEnclosingBlockWithPredecessors() { |
| if (!Predecessors.empty() || !Parent) |
| return this; |
| assert(Parent->getEntry() == this && |
| "Block w/o predecessors not the entry of its parent."); |
| return Parent->getEnclosingBlockWithPredecessors(); |
| } |
| |
| void VPBlockBase::deleteCFG(VPBlockBase *Entry) { |
| for (VPBlockBase *Block : to_vector(vp_depth_first_shallow(Entry))) |
| delete Block; |
| } |
| |
| VPBasicBlock::iterator VPBasicBlock::getFirstNonPhi() { |
| iterator It = begin(); |
| while (It != end() && It->isPhi()) |
| It++; |
| return It; |
| } |
| |
| Value *VPTransformState::get(VPValue *Def, const VPIteration &Instance) { |
| if (Def->isLiveIn()) |
| return Def->getLiveInIRValue(); |
| |
| if (hasScalarValue(Def, Instance)) { |
| return Data |
| .PerPartScalars[Def][Instance.Part][Instance.Lane.mapToCacheIndex(VF)]; |
| } |
| |
| assert(hasVectorValue(Def, Instance.Part)); |
| auto *VecPart = Data.PerPartOutput[Def][Instance.Part]; |
| if (!VecPart->getType()->isVectorTy()) { |
| assert(Instance.Lane.isFirstLane() && "cannot get lane > 0 for scalar"); |
| return VecPart; |
| } |
| // TODO: Cache created scalar values. |
| Value *Lane = Instance.Lane.getAsRuntimeExpr(Builder, VF); |
| auto *Extract = Builder.CreateExtractElement(VecPart, Lane); |
| // set(Def, Extract, Instance); |
| return Extract; |
| } |
| BasicBlock *VPTransformState::CFGState::getPreheaderBBFor(VPRecipeBase *R) { |
| VPRegionBlock *LoopRegion = R->getParent()->getEnclosingLoopRegion(); |
| return VPBB2IRBB[LoopRegion->getPreheaderVPBB()]; |
| } |
| |
| void VPTransformState::addNewMetadata(Instruction *To, |
| const Instruction *Orig) { |
| // If the loop was versioned with memchecks, add the corresponding no-alias |
| // metadata. |
| if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) |
| LVer->annotateInstWithNoAlias(To, Orig); |
| } |
| |
| void VPTransformState::addMetadata(Instruction *To, Instruction *From) { |
| // No source instruction to transfer metadata from? |
| if (!From) |
| return; |
| |
| propagateMetadata(To, From); |
| addNewMetadata(To, From); |
| } |
| |
| void VPTransformState::addMetadata(ArrayRef<Value *> To, Instruction *From) { |
| // No source instruction to transfer metadata from? |
| if (!From) |
| return; |
| |
| for (Value *V : To) { |
| if (Instruction *I = dyn_cast<Instruction>(V)) |
| addMetadata(I, From); |
| } |
| } |
| |
| void VPTransformState::setDebugLocFromInst(const Value *V) { |
| const Instruction *Inst = dyn_cast<Instruction>(V); |
| if (!Inst) { |
| Builder.SetCurrentDebugLocation(DebugLoc()); |
| return; |
| } |
| |
| const DILocation *DIL = Inst->getDebugLoc(); |
| // When a FSDiscriminator is enabled, we don't need to add the multiply |
| // factors to the discriminators. |
| if (DIL && Inst->getFunction()->shouldEmitDebugInfoForProfiling() && |
| !Inst->isDebugOrPseudoInst() && !EnableFSDiscriminator) { |
| // FIXME: For scalable vectors, assume vscale=1. |
| auto NewDIL = |
| DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); |
| if (NewDIL) |
| Builder.SetCurrentDebugLocation(*NewDIL); |
| else |
| LLVM_DEBUG(dbgs() << "Failed to create new discriminator: " |
| << DIL->getFilename() << " Line: " << DIL->getLine()); |
| } else |
| Builder.SetCurrentDebugLocation(DIL); |
| } |
| |
| BasicBlock * |
| VPBasicBlock::createEmptyBasicBlock(VPTransformState::CFGState &CFG) { |
| // BB stands for IR BasicBlocks. VPBB stands for VPlan VPBasicBlocks. |
| // Pred stands for Predessor. Prev stands for Previous - last visited/created. |
| BasicBlock *PrevBB = CFG.PrevBB; |
| BasicBlock *NewBB = BasicBlock::Create(PrevBB->getContext(), getName(), |
| PrevBB->getParent(), CFG.ExitBB); |
| LLVM_DEBUG(dbgs() << "LV: created " << NewBB->getName() << '\n'); |
| |
| // Hook up the new basic block to its predecessors. |
| for (VPBlockBase *PredVPBlock : getHierarchicalPredecessors()) { |
| VPBasicBlock *PredVPBB = PredVPBlock->getExitingBasicBlock(); |
| auto &PredVPSuccessors = PredVPBB->getHierarchicalSuccessors(); |
| BasicBlock *PredBB = CFG.VPBB2IRBB[PredVPBB]; |
| |
| assert(PredBB && "Predecessor basic-block not found building successor."); |
| auto *PredBBTerminator = PredBB->getTerminator(); |
| LLVM_DEBUG(dbgs() << "LV: draw edge from" << PredBB->getName() << '\n'); |
| |
| auto *TermBr = dyn_cast<BranchInst>(PredBBTerminator); |
| if (isa<UnreachableInst>(PredBBTerminator)) { |
| assert(PredVPSuccessors.size() == 1 && |
| "Predecessor ending w/o branch must have single successor."); |
| DebugLoc DL = PredBBTerminator->getDebugLoc(); |
| PredBBTerminator->eraseFromParent(); |
| auto *Br = BranchInst::Create(NewBB, PredBB); |
| Br->setDebugLoc(DL); |
| } else if (TermBr && !TermBr->isConditional()) { |
| TermBr->setSuccessor(0, NewBB); |
| } else { |
| // Set each forward successor here when it is created, excluding |
| // backedges. A backward successor is set when the branch is created. |
| unsigned idx = PredVPSuccessors.front() == this ? 0 : 1; |
| assert(!TermBr->getSuccessor(idx) && |
| "Trying to reset an existing successor block."); |
| TermBr->setSuccessor(idx, NewBB); |
| } |
| } |
| return NewBB; |
| } |
| |
| void VPBasicBlock::execute(VPTransformState *State) { |
| bool Replica = State->Instance && !State->Instance->isFirstIteration(); |
| VPBasicBlock *PrevVPBB = State->CFG.PrevVPBB; |
| VPBlockBase *SingleHPred = nullptr; |
| BasicBlock *NewBB = State->CFG.PrevBB; // Reuse it if possible. |
| |
| auto IsLoopRegion = [](VPBlockBase *BB) { |
| auto *R = dyn_cast<VPRegionBlock>(BB); |
| return R && !R->isReplicator(); |
| }; |
| |
| // 1. Create an IR basic block, or reuse the last one or ExitBB if possible. |
| if (getPlan()->getVectorLoopRegion()->getSingleSuccessor() == this) { |
| // ExitBB can be re-used for the exit block of the Plan. |
| NewBB = State->CFG.ExitBB; |
| State->CFG.PrevBB = NewBB; |
| |
| // Update the branch instruction in the predecessor to branch to ExitBB. |
| VPBlockBase *PredVPB = getSingleHierarchicalPredecessor(); |
| VPBasicBlock *ExitingVPBB = PredVPB->getExitingBasicBlock(); |
| assert(PredVPB->getSingleSuccessor() == this && |
| "predecessor must have the current block as only successor"); |
| BasicBlock *ExitingBB = State->CFG.VPBB2IRBB[ExitingVPBB]; |
| // The Exit block of a loop is always set to be successor 0 of the Exiting |
| // block. |
| cast<BranchInst>(ExitingBB->getTerminator())->setSuccessor(0, NewBB); |
| } else if (PrevVPBB && /* A */ |
| !((SingleHPred = getSingleHierarchicalPredecessor()) && |
| SingleHPred->getExitingBasicBlock() == PrevVPBB && |
| PrevVPBB->getSingleHierarchicalSuccessor() && |
| (SingleHPred->getParent() == getEnclosingLoopRegion() && |
| !IsLoopRegion(SingleHPred))) && /* B */ |
| !(Replica && getPredecessors().empty())) { /* C */ |
| // The last IR basic block is reused, as an optimization, in three cases: |
| // A. the first VPBB reuses the loop pre-header BB - when PrevVPBB is null; |
| // B. when the current VPBB has a single (hierarchical) predecessor which |
| // is PrevVPBB and the latter has a single (hierarchical) successor which |
| // both are in the same non-replicator region; and |
| // C. when the current VPBB is an entry of a region replica - where PrevVPBB |
| // is the exiting VPBB of this region from a previous instance, or the |
| // predecessor of this region. |
| |
| NewBB = createEmptyBasicBlock(State->CFG); |
| State->Builder.SetInsertPoint(NewBB); |
| // Temporarily terminate with unreachable until CFG is rewired. |
| UnreachableInst *Terminator = State->Builder.CreateUnreachable(); |
| // Register NewBB in its loop. In innermost loops its the same for all |
| // BB's. |
| if (State->CurrentVectorLoop) |
| State->CurrentVectorLoop->addBasicBlockToLoop(NewBB, *State->LI); |
| State->Builder.SetInsertPoint(Terminator); |
| State->CFG.PrevBB = NewBB; |
| } |
| |
| // 2. Fill the IR basic block with IR instructions. |
| LLVM_DEBUG(dbgs() << "LV: vectorizing VPBB:" << getName() |
| << " in BB:" << NewBB->getName() << '\n'); |
| |
| State->CFG.VPBB2IRBB[this] = NewBB; |
| State->CFG.PrevVPBB = this; |
| |
| for (VPRecipeBase &Recipe : Recipes) |
| Recipe.execute(*State); |
| |
| LLVM_DEBUG(dbgs() << "LV: filled BB:" << *NewBB); |
| } |
| |
| void VPBasicBlock::dropAllReferences(VPValue *NewValue) { |
| for (VPRecipeBase &R : Recipes) { |
| for (auto *Def : R.definedValues()) |
| Def->replaceAllUsesWith(NewValue); |
| |
| for (unsigned I = 0, E = R.getNumOperands(); I != E; I++) |
| R.setOperand(I, NewValue); |
| } |
| } |
| |
| VPBasicBlock *VPBasicBlock::splitAt(iterator SplitAt) { |
| assert((SplitAt == end() || SplitAt->getParent() == this) && |
| "can only split at a position in the same block"); |
| |
| SmallVector<VPBlockBase *, 2> Succs(successors()); |
| // First, disconnect the current block from its successors. |
| for (VPBlockBase *Succ : Succs) |
| VPBlockUtils::disconnectBlocks(this, Succ); |
| |
| // Create new empty block after the block to split. |
| auto *SplitBlock = new VPBasicBlock(getName() + ".split"); |
| VPBlockUtils::insertBlockAfter(SplitBlock, this); |
| |
| // Add successors for block to split to new block. |
| for (VPBlockBase *Succ : Succs) |
| VPBlockUtils::connectBlocks(SplitBlock, Succ); |
| |
| // Finally, move the recipes starting at SplitAt to new block. |
| for (VPRecipeBase &ToMove : |
| make_early_inc_range(make_range(SplitAt, this->end()))) |
| ToMove.moveBefore(*SplitBlock, SplitBlock->end()); |
| |
| return SplitBlock; |
| } |
| |
| VPRegionBlock *VPBasicBlock::getEnclosingLoopRegion() { |
| VPRegionBlock *P = getParent(); |
| if (P && P->isReplicator()) { |
| P = P->getParent(); |
| assert(!cast<VPRegionBlock>(P)->isReplicator() && |
| "unexpected nested replicate regions"); |
| } |
| return P; |
| } |
| |
| static bool hasConditionalTerminator(const VPBasicBlock *VPBB) { |
| if (VPBB->empty()) { |
| assert( |
| VPBB->getNumSuccessors() < 2 && |
| "block with multiple successors doesn't have a recipe as terminator"); |
| return false; |
| } |
| |
| const VPRecipeBase *R = &VPBB->back(); |
| auto *VPI = dyn_cast<VPInstruction>(R); |
| bool IsCondBranch = |
| isa<VPBranchOnMaskRecipe>(R) || |
| (VPI && (VPI->getOpcode() == VPInstruction::BranchOnCond || |
| VPI->getOpcode() == VPInstruction::BranchOnCount)); |
| (void)IsCondBranch; |
| |
| if (VPBB->getNumSuccessors() >= 2 || VPBB->isExiting()) { |
| assert(IsCondBranch && "block with multiple successors not terminated by " |
| "conditional branch recipe"); |
| |
| return true; |
| } |
| |
| assert( |
| !IsCondBranch && |
| "block with 0 or 1 successors terminated by conditional branch recipe"); |
| return false; |
| } |
| |
| VPRecipeBase *VPBasicBlock::getTerminator() { |
| if (hasConditionalTerminator(this)) |
| return &back(); |
| return nullptr; |
| } |
| |
| const VPRecipeBase *VPBasicBlock::getTerminator() const { |
| if (hasConditionalTerminator(this)) |
| return &back(); |
| return nullptr; |
| } |
| |
| bool VPBasicBlock::isExiting() const { |
| return getParent()->getExitingBasicBlock() == this; |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void VPBlockBase::printSuccessors(raw_ostream &O, const Twine &Indent) const { |
| if (getSuccessors().empty()) { |
| O << Indent << "No successors\n"; |
| } else { |
| O << Indent << "Successor(s): "; |
| ListSeparator LS; |
| for (auto *Succ : getSuccessors()) |
| O << LS << Succ->getName(); |
| O << '\n'; |
| } |
| } |
| |
| void VPBasicBlock::print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const { |
| O << Indent << getName() << ":\n"; |
| |
| auto RecipeIndent = Indent + " "; |
| for (const VPRecipeBase &Recipe : *this) { |
| Recipe.print(O, RecipeIndent, SlotTracker); |
| O << '\n'; |
| } |
| |
| printSuccessors(O, Indent); |
| } |
| #endif |
| |
| void VPRegionBlock::dropAllReferences(VPValue *NewValue) { |
| for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) |
| // Drop all references in VPBasicBlocks and replace all uses with |
| // DummyValue. |
| Block->dropAllReferences(NewValue); |
| } |
| |
| void VPRegionBlock::execute(VPTransformState *State) { |
| ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> |
| RPOT(Entry); |
| |
| if (!isReplicator()) { |
| // Create and register the new vector loop. |
| Loop *PrevLoop = State->CurrentVectorLoop; |
| State->CurrentVectorLoop = State->LI->AllocateLoop(); |
| BasicBlock *VectorPH = State->CFG.VPBB2IRBB[getPreheaderVPBB()]; |
| Loop *ParentLoop = State->LI->getLoopFor(VectorPH); |
| |
| // Insert the new loop into the loop nest and register the new basic blocks |
| // before calling any utilities such as SCEV that require valid LoopInfo. |
| if (ParentLoop) |
| ParentLoop->addChildLoop(State->CurrentVectorLoop); |
| else |
| State->LI->addTopLevelLoop(State->CurrentVectorLoop); |
| |
| // Visit the VPBlocks connected to "this", starting from it. |
| for (VPBlockBase *Block : RPOT) { |
| LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
| Block->execute(State); |
| } |
| |
| State->CurrentVectorLoop = PrevLoop; |
| return; |
| } |
| |
| assert(!State->Instance && "Replicating a Region with non-null instance."); |
| |
| // Enter replicating mode. |
| State->Instance = VPIteration(0, 0); |
| |
| for (unsigned Part = 0, UF = State->UF; Part < UF; ++Part) { |
| State->Instance->Part = Part; |
| assert(!State->VF.isScalable() && "VF is assumed to be non scalable."); |
| for (unsigned Lane = 0, VF = State->VF.getKnownMinValue(); Lane < VF; |
| ++Lane) { |
| State->Instance->Lane = VPLane(Lane, VPLane::Kind::First); |
| // Visit the VPBlocks connected to \p this, starting from it. |
| for (VPBlockBase *Block : RPOT) { |
| LLVM_DEBUG(dbgs() << "LV: VPBlock in RPO " << Block->getName() << '\n'); |
| Block->execute(State); |
| } |
| } |
| } |
| |
| // Exit replicating mode. |
| State->Instance.reset(); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void VPRegionBlock::print(raw_ostream &O, const Twine &Indent, |
| VPSlotTracker &SlotTracker) const { |
| O << Indent << (isReplicator() ? "<xVFxUF> " : "<x1> ") << getName() << ": {"; |
| auto NewIndent = Indent + " "; |
| for (auto *BlockBase : vp_depth_first_shallow(Entry)) { |
| O << '\n'; |
| BlockBase->print(O, NewIndent, SlotTracker); |
| } |
| O << Indent << "}\n"; |
| |
| printSuccessors(O, Indent); |
| } |
| #endif |
| |
| VPlan::~VPlan() { |
| for (auto &KV : LiveOuts) |
| delete KV.second; |
| LiveOuts.clear(); |
| |
| if (Entry) { |
| VPValue DummyValue; |
| for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) |
| Block->dropAllReferences(&DummyValue); |
| |
| VPBlockBase::deleteCFG(Entry); |
| |
| Preheader->dropAllReferences(&DummyValue); |
| delete Preheader; |
| } |
| for (VPValue *VPV : VPLiveInsToFree) |
| delete VPV; |
| if (BackedgeTakenCount) |
| delete BackedgeTakenCount; |
| } |
| |
| VPlanPtr VPlan::createInitialVPlan(const SCEV *TripCount, ScalarEvolution &SE) { |
| VPBasicBlock *Preheader = new VPBasicBlock("ph"); |
| VPBasicBlock *VecPreheader = new VPBasicBlock("vector.ph"); |
| auto Plan = std::make_unique<VPlan>(Preheader, VecPreheader); |
| Plan->TripCount = |
| vputils::getOrCreateVPValueForSCEVExpr(*Plan, TripCount, SE); |
| return Plan; |
| } |
| |
| VPActiveLaneMaskPHIRecipe *VPlan::getActiveLaneMaskPhi() { |
| VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); |
| for (VPRecipeBase &R : Header->phis()) { |
| if (isa<VPActiveLaneMaskPHIRecipe>(&R)) |
| return cast<VPActiveLaneMaskPHIRecipe>(&R); |
| } |
| return nullptr; |
| } |
| |
| void VPlan::prepareToExecute(Value *TripCountV, Value *VectorTripCountV, |
| Value *CanonicalIVStartValue, |
| VPTransformState &State, |
| bool IsEpilogueVectorization) { |
| // Check if the backedge taken count is needed, and if so build it. |
| if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
| IRBuilder<> Builder(State.CFG.PrevBB->getTerminator()); |
| auto *TCMO = Builder.CreateSub(TripCountV, |
| ConstantInt::get(TripCountV->getType(), 1), |
| "trip.count.minus.1"); |
| auto VF = State.VF; |
| Value *VTCMO = |
| VF.isScalar() ? TCMO : Builder.CreateVectorSplat(VF, TCMO, "broadcast"); |
| for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) |
| State.set(BackedgeTakenCount, VTCMO, Part); |
| } |
| |
| for (unsigned Part = 0, UF = State.UF; Part < UF; ++Part) |
| State.set(&VectorTripCount, VectorTripCountV, Part); |
| |
| // When vectorizing the epilogue loop, the canonical induction start value |
| // needs to be changed from zero to the value after the main vector loop. |
| // FIXME: Improve modeling for canonical IV start values in the epilogue loop. |
| if (CanonicalIVStartValue) { |
| VPValue *VPV = getVPValueOrAddLiveIn(CanonicalIVStartValue); |
| auto *IV = getCanonicalIV(); |
| assert(all_of(IV->users(), |
| [](const VPUser *U) { |
| if (isa<VPScalarIVStepsRecipe>(U) || |
| isa<VPDerivedIVRecipe>(U)) |
| return true; |
| auto *VPI = cast<VPInstruction>(U); |
| return VPI->getOpcode() == |
| VPInstruction::CanonicalIVIncrement || |
| VPI->getOpcode() == |
| VPInstruction::CanonicalIVIncrementNUW; |
| }) && |
| "the canonical IV should only be used by its increments or " |
| "ScalarIVSteps when resetting the start value"); |
| IV->setOperand(0, VPV); |
| } |
| } |
| |
| /// Generate the code inside the preheader and body of the vectorized loop. |
| /// Assumes a single pre-header basic-block was created for this. Introduce |
| /// additional basic-blocks as needed, and fill them all. |
| void VPlan::execute(VPTransformState *State) { |
| // Set the reverse mapping from VPValues to Values for code generation. |
| for (auto &Entry : Value2VPValue) |
| State->VPValue2Value[Entry.second] = Entry.first; |
| |
| // Initialize CFG state. |
| State->CFG.PrevVPBB = nullptr; |
| State->CFG.ExitBB = State->CFG.PrevBB->getSingleSuccessor(); |
| BasicBlock *VectorPreHeader = State->CFG.PrevBB; |
| State->Builder.SetInsertPoint(VectorPreHeader->getTerminator()); |
| |
| // Generate code in the loop pre-header and body. |
| for (VPBlockBase *Block : vp_depth_first_shallow(Entry)) |
| Block->execute(State); |
| |
| VPBasicBlock *LatchVPBB = getVectorLoopRegion()->getExitingBasicBlock(); |
| BasicBlock *VectorLatchBB = State->CFG.VPBB2IRBB[LatchVPBB]; |
| |
| // Fix the latch value of canonical, reduction and first-order recurrences |
| // phis in the vector loop. |
| VPBasicBlock *Header = getVectorLoopRegion()->getEntryBasicBlock(); |
| for (VPRecipeBase &R : Header->phis()) { |
| // Skip phi-like recipes that generate their backedege values themselves. |
| if (isa<VPWidenPHIRecipe>(&R)) |
| continue; |
| |
| if (isa<VPWidenPointerInductionRecipe>(&R) || |
| isa<VPWidenIntOrFpInductionRecipe>(&R)) { |
| PHINode *Phi = nullptr; |
| if (isa<VPWidenIntOrFpInductionRecipe>(&R)) { |
| Phi = cast<PHINode>(State->get(R.getVPSingleValue(), 0)); |
| } else { |
| auto *WidenPhi = cast<VPWidenPointerInductionRecipe>(&R); |
| // TODO: Split off the case that all users of a pointer phi are scalar |
| // from the VPWidenPointerInductionRecipe. |
| if (WidenPhi->onlyScalarsGenerated(State->VF)) |
| continue; |
| |
| auto *GEP = cast<GetElementPtrInst>(State->get(WidenPhi, 0)); |
| Phi = cast<PHINode>(GEP->getPointerOperand()); |
| } |
| |
| Phi->setIncomingBlock(1, VectorLatchBB); |
| |
| // Move the last step to the end of the latch block. This ensures |
| // consistent placement of all induction updates. |
| Instruction *Inc = cast<Instruction>(Phi->getIncomingValue(1)); |
| Inc->moveBefore(VectorLatchBB->getTerminator()->getPrevNode()); |
| continue; |
| } |
| |
| auto *PhiR = cast<VPHeaderPHIRecipe>(&R); |
| // For canonical IV, first-order recurrences and in-order reduction phis, |
| // only a single part is generated, which provides the last part from the |
| // previous iteration. For non-ordered reductions all UF parts are |
| // generated. |
| bool SinglePartNeeded = isa<VPCanonicalIVPHIRecipe>(PhiR) || |
| isa<VPFirstOrderRecurrencePHIRecipe>(PhiR) || |
| (isa<VPReductionPHIRecipe>(PhiR) && |
| cast<VPReductionPHIRecipe>(PhiR)->isOrdered()); |
| unsigned LastPartForNewPhi = SinglePartNeeded ? 1 : State->UF; |
| |
| for (unsigned Part = 0; Part < LastPartForNewPhi; ++Part) { |
| Value *Phi = State->get(PhiR, Part); |
| Value *Val = State->get(PhiR->getBackedgeValue(), |
| SinglePartNeeded ? State->UF - 1 : Part); |
| cast<PHINode>(Phi)->addIncoming(Val, VectorLatchBB); |
| } |
| } |
| |
| // We do not attempt to preserve DT for outer loop vectorization currently. |
| if (!EnableVPlanNativePath) { |
| BasicBlock *VectorHeaderBB = State->CFG.VPBB2IRBB[Header]; |
| State->DT->addNewBlock(VectorHeaderBB, VectorPreHeader); |
| updateDominatorTree(State->DT, VectorHeaderBB, VectorLatchBB, |
| State->CFG.ExitBB); |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD |
| void VPlan::print(raw_ostream &O) const { |
| VPSlotTracker SlotTracker(this); |
| |
| O << "VPlan '" << getName() << "' {"; |
| |
| if (VectorTripCount.getNumUsers() > 0) { |
| O << "\nLive-in "; |
| VectorTripCount.printAsOperand(O, SlotTracker); |
| O << " = vector-trip-count"; |
| } |
| |
| if (BackedgeTakenCount && BackedgeTakenCount->getNumUsers()) { |
| O << "\nLive-in "; |
| BackedgeTakenCount->printAsOperand(O, SlotTracker); |
| O << " = backedge-taken count"; |
| } |
| |
| O << "\n"; |
| if (TripCount->isLiveIn()) |
| O << "Live-in "; |
| TripCount->printAsOperand(O, SlotTracker); |
| O << " = original trip-count"; |
| O << "\n"; |
| |
| if (!getPreheader()->empty()) { |
| O << "\n"; |
| getPreheader()->print(O, "", SlotTracker); |
| } |
| |
| for (const VPBlockBase *Block : vp_depth_first_shallow(getEntry())) { |
| O << '\n'; |
| Block->print(O, "", SlotTracker); |
| } |
| |
| if (!LiveOuts.empty()) |
| O << "\n"; |
| for (const auto &KV : LiveOuts) { |
| KV.second->print(O, SlotTracker); |
| } |
| |
| O << "}\n"; |
| } |
| |
| std::string VPlan::getName() const { |
| std::string Out; |
| raw_string_ostream RSO(Out); |
| RSO << Name << " for "; |
| if (!VFs.empty()) { |
| RSO << "VF={" << VFs[0]; |
| for (ElementCount VF : drop_begin(VFs)) |
| RSO << "," << VF; |
| RSO << "},"; |
| } |
| |
| if (UFs.empty()) { |
| RSO << "UF>=1"; |
| } else { |
| RSO << "UF={" << UFs[0]; |
| for (unsigned UF : drop_begin(UFs)) |
| RSO << "," << UF; |
| RSO << "}"; |
| } |
| |
| return Out; |
| } |
| |
| LLVM_DUMP_METHOD |
| void VPlan::printDOT(raw_ostream &O) const { |
| VPlanPrinter Printer(O, *this); |
| Printer.dump(); |
| } |
| |
| LLVM_DUMP_METHOD |
| void VPlan::dump() const { print(dbgs()); } |
| #endif |
| |
| void VPlan::addLiveOut(PHINode *PN, VPValue *V) { |
| assert(LiveOuts.count(PN) == 0 && "an exit value for PN already exists"); |
| LiveOuts.insert({PN, new VPLiveOut(PN, V)}); |
| } |
| |
| void VPlan::updateDominatorTree(DominatorTree *DT, BasicBlock *LoopHeaderBB, |
| BasicBlock *LoopLatchBB, |
| BasicBlock *LoopExitBB) { |
| // The vector body may be more than a single basic-block by this point. |
| // Update the dominator tree information inside the vector body by propagating |
| // it from header to latch, expecting only triangular control-flow, if any. |
| BasicBlock *PostDomSucc = nullptr; |
| for (auto *BB = LoopHeaderBB; BB != LoopLatchBB; BB = PostDomSucc) { |
| // Get the list of successors of this block. |
| std::vector<BasicBlock *> Succs(succ_begin(BB), succ_end(BB)); |
| assert(Succs.size() <= 2 && |
| "Basic block in vector loop has more than 2 successors."); |
| PostDomSucc = Succs[0]; |
| if (Succs.size() == 1) { |
| assert(PostDomSucc->getSinglePredecessor() && |
| "PostDom successor has more than one predecessor."); |
| DT->addNewBlock(PostDomSucc, BB); |
| continue; |
| } |
| BasicBlock *InterimSucc = Succs[1]; |
| if (PostDomSucc->getSingleSuccessor() == InterimSucc) { |
| PostDomSucc = Succs[1]; |
| InterimSucc = Succs[0]; |
| } |
| assert(InterimSucc->getSingleSuccessor() == PostDomSucc && |
| "One successor of a basic block does not lead to the other."); |
| assert(InterimSucc->getSinglePredecessor() && |
| "Interim successor has more than one predecessor."); |
| assert(PostDomSucc->hasNPredecessors(2) && |
| "PostDom successor has more than two predecessors."); |
| DT->addNewBlock(InterimSucc, BB); |
| DT->addNewBlock(PostDomSucc, BB); |
| } |
| // Latch block is a new dominator for the loop exit. |
| DT->changeImmediateDominator(LoopExitBB, LoopLatchBB); |
| assert(DT->verify(DominatorTree::VerificationLevel::Fast)); |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| |
| Twine VPlanPrinter::getUID(const VPBlockBase *Block) { |
| return (isa<VPRegionBlock>(Block) ? "cluster_N" : "N") + |
| Twine(getOrCreateBID(Block)); |
| } |
| |
| Twine VPlanPrinter::getOrCreateName(const VPBlockBase *Block) { |
| const std::string &Name = Block->getName(); |
| if (!Name.empty()) |
| return Name; |
| return "VPB" + Twine(getOrCreateBID(Block)); |
| } |
| |
| void VPlanPrinter::dump() { |
| Depth = 1; |
| bumpIndent(0); |
| OS << "digraph VPlan {\n"; |
| OS << "graph [labelloc=t, fontsize=30; label=\"Vectorization Plan"; |
| if (!Plan.getName().empty()) |
| OS << "\\n" << DOT::EscapeString(Plan.getName()); |
| if (Plan.BackedgeTakenCount) { |
| OS << ", where:\\n"; |
| Plan.BackedgeTakenCount->print(OS, SlotTracker); |
| OS << " := BackedgeTakenCount"; |
| } |
| OS << "\"]\n"; |
| OS << "node [shape=rect, fontname=Courier, fontsize=30]\n"; |
| OS << "edge [fontname=Courier, fontsize=30]\n"; |
| OS << "compound=true\n"; |
| |
| dumpBlock(Plan.getPreheader()); |
| |
| for (const VPBlockBase *Block : vp_depth_first_shallow(Plan.getEntry())) |
| dumpBlock(Block); |
| |
| OS << "}\n"; |
| } |
| |
| void VPlanPrinter::dumpBlock(const VPBlockBase *Block) { |
| if (const VPBasicBlock *BasicBlock = dyn_cast<VPBasicBlock>(Block)) |
| dumpBasicBlock(BasicBlock); |
| else if (const VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| dumpRegion(Region); |
| else |
| llvm_unreachable("Unsupported kind of VPBlock."); |
| } |
| |
| void VPlanPrinter::drawEdge(const VPBlockBase *From, const VPBlockBase *To, |
| bool Hidden, const Twine &Label) { |
| // Due to "dot" we print an edge between two regions as an edge between the |
| // exiting basic block and the entry basic of the respective regions. |
| const VPBlockBase *Tail = From->getExitingBasicBlock(); |
| const VPBlockBase *Head = To->getEntryBasicBlock(); |
| OS << Indent << getUID(Tail) << " -> " << getUID(Head); |
| OS << " [ label=\"" << Label << '\"'; |
| if (Tail != From) |
| OS << " ltail=" << getUID(From); |
| if (Head != To) |
| OS << " lhead=" << getUID(To); |
| if (Hidden) |
| OS << "; splines=none"; |
| OS << "]\n"; |
| } |
| |
| void VPlanPrinter::dumpEdges(const VPBlockBase *Block) { |
| auto &Successors = Block->getSuccessors(); |
| if (Successors.size() == 1) |
| drawEdge(Block, Successors.front(), false, ""); |
| else if (Successors.size() == 2) { |
| drawEdge(Block, Successors.front(), false, "T"); |
| drawEdge(Block, Successors.back(), false, "F"); |
| } else { |
| unsigned SuccessorNumber = 0; |
| for (auto *Successor : Successors) |
| drawEdge(Block, Successor, false, Twine(SuccessorNumber++)); |
| } |
| } |
| |
| void VPlanPrinter::dumpBasicBlock(const VPBasicBlock *BasicBlock) { |
| // Implement dot-formatted dump by performing plain-text dump into the |
| // temporary storage followed by some post-processing. |
| OS << Indent << getUID(BasicBlock) << " [label =\n"; |
| bumpIndent(1); |
| std::string Str; |
| raw_string_ostream SS(Str); |
| // Use no indentation as we need to wrap the lines into quotes ourselves. |
| BasicBlock->print(SS, "", SlotTracker); |
| |
| // We need to process each line of the output separately, so split |
| // single-string plain-text dump. |
| SmallVector<StringRef, 0> Lines; |
| StringRef(Str).rtrim('\n').split(Lines, "\n"); |
| |
| auto EmitLine = [&](StringRef Line, StringRef Suffix) { |
| OS << Indent << '"' << DOT::EscapeString(Line.str()) << "\\l\"" << Suffix; |
| }; |
| |
| // Don't need the "+" after the last line. |
| for (auto Line : make_range(Lines.begin(), Lines.end() - 1)) |
| EmitLine(Line, " +\n"); |
| EmitLine(Lines.back(), "\n"); |
| |
| bumpIndent(-1); |
| OS << Indent << "]\n"; |
| |
| dumpEdges(BasicBlock); |
| } |
| |
| void VPlanPrinter::dumpRegion(const VPRegionBlock *Region) { |
| OS << Indent << "subgraph " << getUID(Region) << " {\n"; |
| bumpIndent(1); |
| OS << Indent << "fontname=Courier\n" |
| << Indent << "label=\"" |
| << DOT::EscapeString(Region->isReplicator() ? "<xVFxUF> " : "<x1> ") |
| << DOT::EscapeString(Region->getName()) << "\"\n"; |
| // Dump the blocks of the region. |
| assert(Region->getEntry() && "Region contains no inner blocks."); |
| for (const VPBlockBase *Block : vp_depth_first_shallow(Region->getEntry())) |
| dumpBlock(Block); |
| bumpIndent(-1); |
| OS << Indent << "}\n"; |
| dumpEdges(Region); |
| } |
| |
| void VPlanIngredient::print(raw_ostream &O) const { |
| if (auto *Inst = dyn_cast<Instruction>(V)) { |
| if (!Inst->getType()->isVoidTy()) { |
| Inst->printAsOperand(O, false); |
| O << " = "; |
| } |
| O << Inst->getOpcodeName() << " "; |
| unsigned E = Inst->getNumOperands(); |
| if (E > 0) { |
| Inst->getOperand(0)->printAsOperand(O, false); |
| for (unsigned I = 1; I < E; ++I) |
| Inst->getOperand(I)->printAsOperand(O << ", ", false); |
| } |
| } else // !Inst |
| V->printAsOperand(O, false); |
| } |
| |
| #endif |
| |
| template void DomTreeBuilder::Calculate<VPDominatorTree>(VPDominatorTree &DT); |
| |
| void VPValue::replaceAllUsesWith(VPValue *New) { |
| for (unsigned J = 0; J < getNumUsers();) { |
| VPUser *User = Users[J]; |
| unsigned NumUsers = getNumUsers(); |
| for (unsigned I = 0, E = User->getNumOperands(); I < E; ++I) |
| if (User->getOperand(I) == this) |
| User->setOperand(I, New); |
| // If a user got removed after updating the current user, the next user to |
| // update will be moved to the current position, so we only need to |
| // increment the index if the number of users did not change. |
| if (NumUsers == getNumUsers()) |
| J++; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| void VPValue::printAsOperand(raw_ostream &OS, VPSlotTracker &Tracker) const { |
| if (const Value *UV = getUnderlyingValue()) { |
| OS << "ir<"; |
| UV->printAsOperand(OS, false); |
| OS << ">"; |
| return; |
| } |
| |
| unsigned Slot = Tracker.getSlot(this); |
| if (Slot == unsigned(-1)) |
| OS << "<badref>"; |
| else |
| OS << "vp<%" << Tracker.getSlot(this) << ">"; |
| } |
| |
| void VPUser::printOperands(raw_ostream &O, VPSlotTracker &SlotTracker) const { |
| interleaveComma(operands(), O, [&O, &SlotTracker](VPValue *Op) { |
| Op->printAsOperand(O, SlotTracker); |
| }); |
| } |
| #endif |
| |
| void VPInterleavedAccessInfo::visitRegion(VPRegionBlock *Region, |
| Old2NewTy &Old2New, |
| InterleavedAccessInfo &IAI) { |
| ReversePostOrderTraversal<VPBlockShallowTraversalWrapper<VPBlockBase *>> |
| RPOT(Region->getEntry()); |
| for (VPBlockBase *Base : RPOT) { |
| visitBlock(Base, Old2New, IAI); |
| } |
| } |
| |
| void VPInterleavedAccessInfo::visitBlock(VPBlockBase *Block, Old2NewTy &Old2New, |
| InterleavedAccessInfo &IAI) { |
| if (VPBasicBlock *VPBB = dyn_cast<VPBasicBlock>(Block)) { |
| for (VPRecipeBase &VPI : *VPBB) { |
| if (isa<VPHeaderPHIRecipe>(&VPI)) |
| continue; |
| assert(isa<VPInstruction>(&VPI) && "Can only handle VPInstructions"); |
| auto *VPInst = cast<VPInstruction>(&VPI); |
| |
| auto *Inst = dyn_cast_or_null<Instruction>(VPInst->getUnderlyingValue()); |
| if (!Inst) |
| continue; |
| auto *IG = IAI.getInterleaveGroup(Inst); |
| if (!IG) |
| continue; |
| |
| auto NewIGIter = Old2New.find(IG); |
| if (NewIGIter == Old2New.end()) |
| Old2New[IG] = new InterleaveGroup<VPInstruction>( |
| IG->getFactor(), IG->isReverse(), IG->getAlign()); |
| |
| if (Inst == IG->getInsertPos()) |
| Old2New[IG]->setInsertPos(VPInst); |
| |
| InterleaveGroupMap[VPInst] = Old2New[IG]; |
| InterleaveGroupMap[VPInst]->insertMember( |
| VPInst, IG->getIndex(Inst), |
| Align(IG->isReverse() ? (-1) * int(IG->getFactor()) |
| : IG->getFactor())); |
| } |
| } else if (VPRegionBlock *Region = dyn_cast<VPRegionBlock>(Block)) |
| visitRegion(Region, Old2New, IAI); |
| else |
| llvm_unreachable("Unsupported kind of VPBlock."); |
| } |
| |
| VPInterleavedAccessInfo::VPInterleavedAccessInfo(VPlan &Plan, |
| InterleavedAccessInfo &IAI) { |
| Old2NewTy Old2New; |
| visitRegion(Plan.getVectorLoopRegion(), Old2New, IAI); |
| } |
| |
| void VPSlotTracker::assignSlot(const VPValue *V) { |
| assert(!Slots.contains(V) && "VPValue already has a slot!"); |
| Slots[V] = NextSlot++; |
| } |
| |
| void VPSlotTracker::assignSlots(const VPlan &Plan) { |
| assignSlot(&Plan.VectorTripCount); |
| if (Plan.BackedgeTakenCount) |
| assignSlot(Plan.BackedgeTakenCount); |
| assignSlots(Plan.getPreheader()); |
| |
| ReversePostOrderTraversal<VPBlockDeepTraversalWrapper<const VPBlockBase *>> |
| RPOT(VPBlockDeepTraversalWrapper<const VPBlockBase *>(Plan.getEntry())); |
| for (const VPBasicBlock *VPBB : |
| VPBlockUtils::blocksOnly<const VPBasicBlock>(RPOT)) |
| assignSlots(VPBB); |
| } |
| |
| void VPSlotTracker::assignSlots(const VPBasicBlock *VPBB) { |
| for (const VPRecipeBase &Recipe : *VPBB) |
| for (VPValue *Def : Recipe.definedValues()) |
| assignSlot(Def); |
| } |
| |
| bool vputils::onlyFirstLaneUsed(VPValue *Def) { |
| return all_of(Def->users(), |
| [Def](VPUser *U) { return U->onlyFirstLaneUsed(Def); }); |
| } |
| |
| VPValue *vputils::getOrCreateVPValueForSCEVExpr(VPlan &Plan, const SCEV *Expr, |
| ScalarEvolution &SE) { |
| if (auto *Expanded = Plan.getSCEVExpansion(Expr)) |
| return Expanded; |
| VPValue *Expanded = nullptr; |
| if (auto *E = dyn_cast<SCEVConstant>(Expr)) |
| Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); |
| else if (auto *E = dyn_cast<SCEVUnknown>(Expr)) |
| Expanded = Plan.getVPValueOrAddLiveIn(E->getValue()); |
| else { |
| Expanded = new VPExpandSCEVRecipe(Expr, SE); |
| Plan.getPreheader()->appendRecipe(Expanded->getDefiningRecipe()); |
| } |
| Plan.addSCEVExpansion(Expr, Expanded); |
| return Expanded; |
| } |