| //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass implements the Bottom Up SLP vectorizer. It detects consecutive |
| // stores that can be put together into vector-stores. Next, it attempts to |
| // construct vectorizable tree using the use-def chains. If a profitable tree |
| // was found, the SLP vectorizer performs vectorization on the tree. |
| // |
| // The pass is inspired by the work described in the paper: |
| // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Vectorize/SLPVectorizer.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/PriorityQueue.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CodeMetrics.h" |
| #include "llvm/Analysis/DemandedBits.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/IVDescriptors.h" |
| #include "llvm/Analysis/LoopAccessAnalysis.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #ifdef EXPENSIVE_CHECKS |
| #include "llvm/IR/Verifier.h" |
| #endif |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/DOTGraphTraits.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/GraphWriter.h" |
| #include "llvm/Support/InstructionCost.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/InjectTLIMappings.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <iterator> |
| #include <memory> |
| #include <optional> |
| #include <set> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| using namespace slpvectorizer; |
| |
| #define SV_NAME "slp-vectorizer" |
| #define DEBUG_TYPE "SLP" |
| |
| STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); |
| |
| cl::opt<bool> RunSLPVectorization("vectorize-slp", cl::init(true), cl::Hidden, |
| cl::desc("Run the SLP vectorization passes")); |
| |
| static cl::opt<int> |
| SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, |
| cl::desc("Only vectorize if you gain more than this " |
| "number ")); |
| |
| static cl::opt<bool> |
| ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, |
| cl::desc("Attempt to vectorize horizontal reductions")); |
| |
| static cl::opt<bool> ShouldStartVectorizeHorAtStore( |
| "slp-vectorize-hor-store", cl::init(false), cl::Hidden, |
| cl::desc( |
| "Attempt to vectorize horizontal reductions feeding into a store")); |
| |
| // NOTE: If AllowHorRdxIdenityOptimization is true, the optimization will run |
| // even if we match a reduction but do not vectorize in the end. |
| static cl::opt<bool> AllowHorRdxIdenityOptimization( |
| "slp-optimize-identity-hor-reduction-ops", cl::init(true), cl::Hidden, |
| cl::desc("Allow optimization of original scalar identity operations on " |
| "matched horizontal reductions.")); |
| |
| static cl::opt<int> |
| MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, |
| cl::desc("Attempt to vectorize for this register size in bits")); |
| |
| static cl::opt<unsigned> |
| MaxVFOption("slp-max-vf", cl::init(0), cl::Hidden, |
| cl::desc("Maximum SLP vectorization factor (0=unlimited)")); |
| |
| static cl::opt<int> |
| MaxStoreLookup("slp-max-store-lookup", cl::init(32), cl::Hidden, |
| cl::desc("Maximum depth of the lookup for consecutive stores.")); |
| |
| /// Limits the size of scheduling regions in a block. |
| /// It avoid long compile times for _very_ large blocks where vector |
| /// instructions are spread over a wide range. |
| /// This limit is way higher than needed by real-world functions. |
| static cl::opt<int> |
| ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, |
| cl::desc("Limit the size of the SLP scheduling region per block")); |
| |
| static cl::opt<int> MinVectorRegSizeOption( |
| "slp-min-reg-size", cl::init(128), cl::Hidden, |
| cl::desc("Attempt to vectorize for this register size in bits")); |
| |
| static cl::opt<unsigned> RecursionMaxDepth( |
| "slp-recursion-max-depth", cl::init(12), cl::Hidden, |
| cl::desc("Limit the recursion depth when building a vectorizable tree")); |
| |
| static cl::opt<unsigned> MinTreeSize( |
| "slp-min-tree-size", cl::init(3), cl::Hidden, |
| cl::desc("Only vectorize small trees if they are fully vectorizable")); |
| |
| // The maximum depth that the look-ahead score heuristic will explore. |
| // The higher this value, the higher the compilation time overhead. |
| static cl::opt<int> LookAheadMaxDepth( |
| "slp-max-look-ahead-depth", cl::init(2), cl::Hidden, |
| cl::desc("The maximum look-ahead depth for operand reordering scores")); |
| |
| // The maximum depth that the look-ahead score heuristic will explore |
| // when it probing among candidates for vectorization tree roots. |
| // The higher this value, the higher the compilation time overhead but unlike |
| // similar limit for operands ordering this is less frequently used, hence |
| // impact of higher value is less noticeable. |
| static cl::opt<int> RootLookAheadMaxDepth( |
| "slp-max-root-look-ahead-depth", cl::init(2), cl::Hidden, |
| cl::desc("The maximum look-ahead depth for searching best rooting option")); |
| |
| static cl::opt<bool> |
| ViewSLPTree("view-slp-tree", cl::Hidden, |
| cl::desc("Display the SLP trees with Graphviz")); |
| |
| // Limit the number of alias checks. The limit is chosen so that |
| // it has no negative effect on the llvm benchmarks. |
| static const unsigned AliasedCheckLimit = 10; |
| |
| // Another limit for the alias checks: The maximum distance between load/store |
| // instructions where alias checks are done. |
| // This limit is useful for very large basic blocks. |
| static const unsigned MaxMemDepDistance = 160; |
| |
| /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling |
| /// regions to be handled. |
| static const int MinScheduleRegionSize = 16; |
| |
| /// Predicate for the element types that the SLP vectorizer supports. |
| /// |
| /// The most important thing to filter here are types which are invalid in LLVM |
| /// vectors. We also filter target specific types which have absolutely no |
| /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just |
| /// avoids spending time checking the cost model and realizing that they will |
| /// be inevitably scalarized. |
| static bool isValidElementType(Type *Ty) { |
| return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && |
| !Ty->isPPC_FP128Ty(); |
| } |
| |
| /// \returns True if the value is a constant (but not globals/constant |
| /// expressions). |
| static bool isConstant(Value *V) { |
| return isa<Constant>(V) && !isa<ConstantExpr, GlobalValue>(V); |
| } |
| |
| /// Checks if \p V is one of vector-like instructions, i.e. undef, |
| /// insertelement/extractelement with constant indices for fixed vector type or |
| /// extractvalue instruction. |
| static bool isVectorLikeInstWithConstOps(Value *V) { |
| if (!isa<InsertElementInst, ExtractElementInst>(V) && |
| !isa<ExtractValueInst, UndefValue>(V)) |
| return false; |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I || isa<ExtractValueInst>(I)) |
| return true; |
| if (!isa<FixedVectorType>(I->getOperand(0)->getType())) |
| return false; |
| if (isa<ExtractElementInst>(I)) |
| return isConstant(I->getOperand(1)); |
| assert(isa<InsertElementInst>(V) && "Expected only insertelement."); |
| return isConstant(I->getOperand(2)); |
| } |
| |
| /// \returns true if all of the instructions in \p VL are in the same block or |
| /// false otherwise. |
| static bool allSameBlock(ArrayRef<Value *> VL) { |
| Instruction *I0 = dyn_cast<Instruction>(VL[0]); |
| if (!I0) |
| return false; |
| if (all_of(VL, isVectorLikeInstWithConstOps)) |
| return true; |
| |
| BasicBlock *BB = I0->getParent(); |
| for (int I = 1, E = VL.size(); I < E; I++) { |
| auto *II = dyn_cast<Instruction>(VL[I]); |
| if (!II) |
| return false; |
| |
| if (BB != II->getParent()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \returns True if all of the values in \p VL are constants (but not |
| /// globals/constant expressions). |
| static bool allConstant(ArrayRef<Value *> VL) { |
| // Constant expressions and globals can't be vectorized like normal integer/FP |
| // constants. |
| return all_of(VL, isConstant); |
| } |
| |
| /// \returns True if all of the values in \p VL are identical or some of them |
| /// are UndefValue. |
| static bool isSplat(ArrayRef<Value *> VL) { |
| Value *FirstNonUndef = nullptr; |
| for (Value *V : VL) { |
| if (isa<UndefValue>(V)) |
| continue; |
| if (!FirstNonUndef) { |
| FirstNonUndef = V; |
| continue; |
| } |
| if (V != FirstNonUndef) |
| return false; |
| } |
| return FirstNonUndef != nullptr; |
| } |
| |
| /// \returns True if \p I is commutative, handles CmpInst and BinaryOperator. |
| static bool isCommutative(Instruction *I) { |
| if (auto *Cmp = dyn_cast<CmpInst>(I)) |
| return Cmp->isCommutative(); |
| if (auto *BO = dyn_cast<BinaryOperator>(I)) |
| return BO->isCommutative(); |
| // TODO: This should check for generic Instruction::isCommutative(), but |
| // we need to confirm that the caller code correctly handles Intrinsics |
| // for example (does not have 2 operands). |
| return false; |
| } |
| |
| /// \returns inserting index of InsertElement or InsertValue instruction, |
| /// using Offset as base offset for index. |
| static std::optional<unsigned> getInsertIndex(const Value *InsertInst, |
| unsigned Offset = 0) { |
| int Index = Offset; |
| if (const auto *IE = dyn_cast<InsertElementInst>(InsertInst)) { |
| const auto *VT = dyn_cast<FixedVectorType>(IE->getType()); |
| if (!VT) |
| return std::nullopt; |
| const auto *CI = dyn_cast<ConstantInt>(IE->getOperand(2)); |
| if (!CI) |
| return std::nullopt; |
| if (CI->getValue().uge(VT->getNumElements())) |
| return std::nullopt; |
| Index *= VT->getNumElements(); |
| Index += CI->getZExtValue(); |
| return Index; |
| } |
| |
| const auto *IV = cast<InsertValueInst>(InsertInst); |
| Type *CurrentType = IV->getType(); |
| for (unsigned I : IV->indices()) { |
| if (const auto *ST = dyn_cast<StructType>(CurrentType)) { |
| Index *= ST->getNumElements(); |
| CurrentType = ST->getElementType(I); |
| } else if (const auto *AT = dyn_cast<ArrayType>(CurrentType)) { |
| Index *= AT->getNumElements(); |
| CurrentType = AT->getElementType(); |
| } else { |
| return std::nullopt; |
| } |
| Index += I; |
| } |
| return Index; |
| } |
| |
| namespace { |
| /// Specifies the way the mask should be analyzed for undefs/poisonous elements |
| /// in the shuffle mask. |
| enum class UseMask { |
| FirstArg, ///< The mask is expected to be for permutation of 1-2 vectors, |
| ///< check for the mask elements for the first argument (mask |
| ///< indices are in range [0:VF)). |
| SecondArg, ///< The mask is expected to be for permutation of 2 vectors, check |
| ///< for the mask elements for the second argument (mask indices |
| ///< are in range [VF:2*VF)) |
| UndefsAsMask ///< Consider undef mask elements (-1) as placeholders for |
| ///< future shuffle elements and mark them as ones as being used |
| ///< in future. Non-undef elements are considered as unused since |
| ///< they're already marked as used in the mask. |
| }; |
| } // namespace |
| |
| /// Prepares a use bitset for the given mask either for the first argument or |
| /// for the second. |
| static SmallBitVector buildUseMask(int VF, ArrayRef<int> Mask, |
| UseMask MaskArg) { |
| SmallBitVector UseMask(VF, true); |
| for (auto [Idx, Value] : enumerate(Mask)) { |
| if (Value == PoisonMaskElem) { |
| if (MaskArg == UseMask::UndefsAsMask) |
| UseMask.reset(Idx); |
| continue; |
| } |
| if (MaskArg == UseMask::FirstArg && Value < VF) |
| UseMask.reset(Value); |
| else if (MaskArg == UseMask::SecondArg && Value >= VF) |
| UseMask.reset(Value - VF); |
| } |
| return UseMask; |
| } |
| |
| /// Checks if the given value is actually an undefined constant vector. |
| /// Also, if the \p UseMask is not empty, tries to check if the non-masked |
| /// elements actually mask the insertelement buildvector, if any. |
| template <bool IsPoisonOnly = false> |
| static SmallBitVector isUndefVector(const Value *V, |
| const SmallBitVector &UseMask = {}) { |
| SmallBitVector Res(UseMask.empty() ? 1 : UseMask.size(), true); |
| using T = std::conditional_t<IsPoisonOnly, PoisonValue, UndefValue>; |
| if (isa<T>(V)) |
| return Res; |
| auto *VecTy = dyn_cast<FixedVectorType>(V->getType()); |
| if (!VecTy) |
| return Res.reset(); |
| auto *C = dyn_cast<Constant>(V); |
| if (!C) { |
| if (!UseMask.empty()) { |
| const Value *Base = V; |
| while (auto *II = dyn_cast<InsertElementInst>(Base)) { |
| Base = II->getOperand(0); |
| if (isa<T>(II->getOperand(1))) |
| continue; |
| std::optional<unsigned> Idx = getInsertIndex(II); |
| if (!Idx) |
| continue; |
| if (*Idx < UseMask.size() && !UseMask.test(*Idx)) |
| Res.reset(*Idx); |
| } |
| // TODO: Add analysis for shuffles here too. |
| if (V == Base) { |
| Res.reset(); |
| } else { |
| SmallBitVector SubMask(UseMask.size(), false); |
| Res &= isUndefVector<IsPoisonOnly>(Base, SubMask); |
| } |
| } else { |
| Res.reset(); |
| } |
| return Res; |
| } |
| for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) { |
| if (Constant *Elem = C->getAggregateElement(I)) |
| if (!isa<T>(Elem) && |
| (UseMask.empty() || (I < UseMask.size() && !UseMask.test(I)))) |
| Res.reset(I); |
| } |
| return Res; |
| } |
| |
| /// Checks if the vector of instructions can be represented as a shuffle, like: |
| /// %x0 = extractelement <4 x i8> %x, i32 0 |
| /// %x3 = extractelement <4 x i8> %x, i32 3 |
| /// %y1 = extractelement <4 x i8> %y, i32 1 |
| /// %y2 = extractelement <4 x i8> %y, i32 2 |
| /// %x0x0 = mul i8 %x0, %x0 |
| /// %x3x3 = mul i8 %x3, %x3 |
| /// %y1y1 = mul i8 %y1, %y1 |
| /// %y2y2 = mul i8 %y2, %y2 |
| /// %ins1 = insertelement <4 x i8> poison, i8 %x0x0, i32 0 |
| /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1 |
| /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2 |
| /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3 |
| /// ret <4 x i8> %ins4 |
| /// can be transformed into: |
| /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5, |
| /// i32 6> |
| /// %2 = mul <4 x i8> %1, %1 |
| /// ret <4 x i8> %2 |
| /// We convert this initially to something like: |
| /// %x0 = extractelement <4 x i8> %x, i32 0 |
| /// %x3 = extractelement <4 x i8> %x, i32 3 |
| /// %y1 = extractelement <4 x i8> %y, i32 1 |
| /// %y2 = extractelement <4 x i8> %y, i32 2 |
| /// %1 = insertelement <4 x i8> poison, i8 %x0, i32 0 |
| /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1 |
| /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2 |
| /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3 |
| /// %5 = mul <4 x i8> %4, %4 |
| /// %6 = extractelement <4 x i8> %5, i32 0 |
| /// %ins1 = insertelement <4 x i8> poison, i8 %6, i32 0 |
| /// %7 = extractelement <4 x i8> %5, i32 1 |
| /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1 |
| /// %8 = extractelement <4 x i8> %5, i32 2 |
| /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2 |
| /// %9 = extractelement <4 x i8> %5, i32 3 |
| /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3 |
| /// ret <4 x i8> %ins4 |
| /// InstCombiner transforms this into a shuffle and vector mul |
| /// Mask will return the Shuffle Mask equivalent to the extracted elements. |
| /// TODO: Can we split off and reuse the shuffle mask detection from |
| /// ShuffleVectorInst/getShuffleCost? |
| static std::optional<TargetTransformInfo::ShuffleKind> |
| isFixedVectorShuffle(ArrayRef<Value *> VL, SmallVectorImpl<int> &Mask) { |
| const auto *It = |
| find_if(VL, [](Value *V) { return isa<ExtractElementInst>(V); }); |
| if (It == VL.end()) |
| return std::nullopt; |
| auto *EI0 = cast<ExtractElementInst>(*It); |
| if (isa<ScalableVectorType>(EI0->getVectorOperandType())) |
| return std::nullopt; |
| unsigned Size = |
| cast<FixedVectorType>(EI0->getVectorOperandType())->getNumElements(); |
| Value *Vec1 = nullptr; |
| Value *Vec2 = nullptr; |
| enum ShuffleMode { Unknown, Select, Permute }; |
| ShuffleMode CommonShuffleMode = Unknown; |
| Mask.assign(VL.size(), PoisonMaskElem); |
| for (unsigned I = 0, E = VL.size(); I < E; ++I) { |
| // Undef can be represented as an undef element in a vector. |
| if (isa<UndefValue>(VL[I])) |
| continue; |
| auto *EI = cast<ExtractElementInst>(VL[I]); |
| if (isa<ScalableVectorType>(EI->getVectorOperandType())) |
| return std::nullopt; |
| auto *Vec = EI->getVectorOperand(); |
| // We can extractelement from undef or poison vector. |
| if (isUndefVector(Vec).all()) |
| continue; |
| // All vector operands must have the same number of vector elements. |
| if (cast<FixedVectorType>(Vec->getType())->getNumElements() != Size) |
| return std::nullopt; |
| if (isa<UndefValue>(EI->getIndexOperand())) |
| continue; |
| auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand()); |
| if (!Idx) |
| return std::nullopt; |
| // Undefined behavior if Idx is negative or >= Size. |
| if (Idx->getValue().uge(Size)) |
| continue; |
| unsigned IntIdx = Idx->getValue().getZExtValue(); |
| Mask[I] = IntIdx; |
| // For correct shuffling we have to have at most 2 different vector operands |
| // in all extractelement instructions. |
| if (!Vec1 || Vec1 == Vec) { |
| Vec1 = Vec; |
| } else if (!Vec2 || Vec2 == Vec) { |
| Vec2 = Vec; |
| Mask[I] += Size; |
| } else { |
| return std::nullopt; |
| } |
| if (CommonShuffleMode == Permute) |
| continue; |
| // If the extract index is not the same as the operation number, it is a |
| // permutation. |
| if (IntIdx != I) { |
| CommonShuffleMode = Permute; |
| continue; |
| } |
| CommonShuffleMode = Select; |
| } |
| // If we're not crossing lanes in different vectors, consider it as blending. |
| if (CommonShuffleMode == Select && Vec2) |
| return TargetTransformInfo::SK_Select; |
| // If Vec2 was never used, we have a permutation of a single vector, otherwise |
| // we have permutation of 2 vectors. |
| return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc |
| : TargetTransformInfo::SK_PermuteSingleSrc; |
| } |
| |
| /// \returns True if Extract{Value,Element} instruction extracts element Idx. |
| static std::optional<unsigned> getExtractIndex(Instruction *E) { |
| unsigned Opcode = E->getOpcode(); |
| assert((Opcode == Instruction::ExtractElement || |
| Opcode == Instruction::ExtractValue) && |
| "Expected extractelement or extractvalue instruction."); |
| if (Opcode == Instruction::ExtractElement) { |
| auto *CI = dyn_cast<ConstantInt>(E->getOperand(1)); |
| if (!CI) |
| return std::nullopt; |
| return CI->getZExtValue(); |
| } |
| auto *EI = cast<ExtractValueInst>(E); |
| if (EI->getNumIndices() != 1) |
| return std::nullopt; |
| return *EI->idx_begin(); |
| } |
| |
| /// Tries to find extractelement instructions with constant indices from fixed |
| /// vector type and gather such instructions into a bunch, which highly likely |
| /// might be detected as a shuffle of 1 or 2 input vectors. If this attempt was |
| /// successful, the matched scalars are replaced by poison values in \p VL for |
| /// future analysis. |
| static std::optional<TTI::ShuffleKind> |
| tryToGatherExtractElements(SmallVectorImpl<Value *> &VL, |
| SmallVectorImpl<int> &Mask) { |
| // Scan list of gathered scalars for extractelements that can be represented |
| // as shuffles. |
| MapVector<Value *, SmallVector<int>> VectorOpToIdx; |
| SmallVector<int> UndefVectorExtracts; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| auto *EI = dyn_cast<ExtractElementInst>(VL[I]); |
| if (!EI) { |
| if (isa<UndefValue>(VL[I])) |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| auto *VecTy = dyn_cast<FixedVectorType>(EI->getVectorOperandType()); |
| if (!VecTy || !isa<ConstantInt, UndefValue>(EI->getIndexOperand())) |
| continue; |
| std::optional<unsigned> Idx = getExtractIndex(EI); |
| // Undefined index. |
| if (!Idx) { |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| SmallBitVector ExtractMask(VecTy->getNumElements(), true); |
| ExtractMask.reset(*Idx); |
| if (isUndefVector(EI->getVectorOperand(), ExtractMask).all()) { |
| UndefVectorExtracts.push_back(I); |
| continue; |
| } |
| VectorOpToIdx[EI->getVectorOperand()].push_back(I); |
| } |
| // Sort the vector operands by the maximum number of uses in extractelements. |
| MapVector<unsigned, SmallVector<Value *>> VFToVector; |
| for (const auto &Data : VectorOpToIdx) |
| VFToVector[cast<FixedVectorType>(Data.first->getType())->getNumElements()] |
| .push_back(Data.first); |
| for (auto &Data : VFToVector) { |
| stable_sort(Data.second, [&VectorOpToIdx](Value *V1, Value *V2) { |
| return VectorOpToIdx.find(V1)->second.size() > |
| VectorOpToIdx.find(V2)->second.size(); |
| }); |
| } |
| // Find the best pair of the vectors with the same number of elements or a |
| // single vector. |
| const int UndefSz = UndefVectorExtracts.size(); |
| unsigned SingleMax = 0; |
| Value *SingleVec = nullptr; |
| unsigned PairMax = 0; |
| std::pair<Value *, Value *> PairVec(nullptr, nullptr); |
| for (auto &Data : VFToVector) { |
| Value *V1 = Data.second.front(); |
| if (SingleMax < VectorOpToIdx[V1].size() + UndefSz) { |
| SingleMax = VectorOpToIdx[V1].size() + UndefSz; |
| SingleVec = V1; |
| } |
| Value *V2 = nullptr; |
| if (Data.second.size() > 1) |
| V2 = *std::next(Data.second.begin()); |
| if (V2 && PairMax < VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() + |
| UndefSz) { |
| PairMax = VectorOpToIdx[V1].size() + VectorOpToIdx[V2].size() + UndefSz; |
| PairVec = std::make_pair(V1, V2); |
| } |
| } |
| if (SingleMax == 0 && PairMax == 0 && UndefSz == 0) |
| return std::nullopt; |
| // Check if better to perform a shuffle of 2 vectors or just of a single |
| // vector. |
| SmallVector<Value *> SavedVL(VL.begin(), VL.end()); |
| SmallVector<Value *> GatheredExtracts( |
| VL.size(), PoisonValue::get(VL.front()->getType())); |
| if (SingleMax >= PairMax && SingleMax) { |
| for (int Idx : VectorOpToIdx[SingleVec]) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| } else { |
| for (Value *V : {PairVec.first, PairVec.second}) |
| for (int Idx : VectorOpToIdx[V]) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| } |
| // Add extracts from undefs too. |
| for (int Idx : UndefVectorExtracts) |
| std::swap(GatheredExtracts[Idx], VL[Idx]); |
| // Check that gather of extractelements can be represented as just a |
| // shuffle of a single/two vectors the scalars are extracted from. |
| std::optional<TTI::ShuffleKind> Res = |
| isFixedVectorShuffle(GatheredExtracts, Mask); |
| if (!Res) { |
| // TODO: try to check other subsets if possible. |
| // Restore the original VL if attempt was not successful. |
| VL.swap(SavedVL); |
| return std::nullopt; |
| } |
| // Restore unused scalars from mask, if some of the extractelements were not |
| // selected for shuffle. |
| for (int I = 0, E = GatheredExtracts.size(); I < E; ++I) { |
| auto *EI = dyn_cast<ExtractElementInst>(VL[I]); |
| if (!EI || !isa<FixedVectorType>(EI->getVectorOperandType()) || |
| !isa<ConstantInt, UndefValue>(EI->getIndexOperand()) || |
| is_contained(UndefVectorExtracts, I)) |
| continue; |
| if (Mask[I] == PoisonMaskElem && !isa<PoisonValue>(GatheredExtracts[I])) |
| std::swap(VL[I], GatheredExtracts[I]); |
| } |
| return Res; |
| } |
| |
| namespace { |
| |
| /// Main data required for vectorization of instructions. |
| struct InstructionsState { |
| /// The very first instruction in the list with the main opcode. |
| Value *OpValue = nullptr; |
| |
| /// The main/alternate instruction. |
| Instruction *MainOp = nullptr; |
| Instruction *AltOp = nullptr; |
| |
| /// The main/alternate opcodes for the list of instructions. |
| unsigned getOpcode() const { |
| return MainOp ? MainOp->getOpcode() : 0; |
| } |
| |
| unsigned getAltOpcode() const { |
| return AltOp ? AltOp->getOpcode() : 0; |
| } |
| |
| /// Some of the instructions in the list have alternate opcodes. |
| bool isAltShuffle() const { return AltOp != MainOp; } |
| |
| bool isOpcodeOrAlt(Instruction *I) const { |
| unsigned CheckedOpcode = I->getOpcode(); |
| return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode; |
| } |
| |
| InstructionsState() = delete; |
| InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp) |
| : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Chooses the correct key for scheduling data. If \p Op has the same (or |
| /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p |
| /// OpValue. |
| static Value *isOneOf(const InstructionsState &S, Value *Op) { |
| auto *I = dyn_cast<Instruction>(Op); |
| if (I && S.isOpcodeOrAlt(I)) |
| return Op; |
| return S.OpValue; |
| } |
| |
| /// \returns true if \p Opcode is allowed as part of of the main/alternate |
| /// instruction for SLP vectorization. |
| /// |
| /// Example of unsupported opcode is SDIV that can potentially cause UB if the |
| /// "shuffled out" lane would result in division by zero. |
| static bool isValidForAlternation(unsigned Opcode) { |
| if (Instruction::isIntDivRem(Opcode)) |
| return false; |
| |
| return true; |
| } |
| |
| static InstructionsState getSameOpcode(ArrayRef<Value *> VL, |
| const TargetLibraryInfo &TLI, |
| unsigned BaseIndex = 0); |
| |
| /// Checks if the provided operands of 2 cmp instructions are compatible, i.e. |
| /// compatible instructions or constants, or just some other regular values. |
| static bool areCompatibleCmpOps(Value *BaseOp0, Value *BaseOp1, Value *Op0, |
| Value *Op1, const TargetLibraryInfo &TLI) { |
| return (isConstant(BaseOp0) && isConstant(Op0)) || |
| (isConstant(BaseOp1) && isConstant(Op1)) || |
| (!isa<Instruction>(BaseOp0) && !isa<Instruction>(Op0) && |
| !isa<Instruction>(BaseOp1) && !isa<Instruction>(Op1)) || |
| BaseOp0 == Op0 || BaseOp1 == Op1 || |
| getSameOpcode({BaseOp0, Op0}, TLI).getOpcode() || |
| getSameOpcode({BaseOp1, Op1}, TLI).getOpcode(); |
| } |
| |
| /// \returns true if a compare instruction \p CI has similar "look" and |
| /// same predicate as \p BaseCI, "as is" or with its operands and predicate |
| /// swapped, false otherwise. |
| static bool isCmpSameOrSwapped(const CmpInst *BaseCI, const CmpInst *CI, |
| const TargetLibraryInfo &TLI) { |
| assert(BaseCI->getOperand(0)->getType() == CI->getOperand(0)->getType() && |
| "Assessing comparisons of different types?"); |
| CmpInst::Predicate BasePred = BaseCI->getPredicate(); |
| CmpInst::Predicate Pred = CI->getPredicate(); |
| CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(Pred); |
| |
| Value *BaseOp0 = BaseCI->getOperand(0); |
| Value *BaseOp1 = BaseCI->getOperand(1); |
| Value *Op0 = CI->getOperand(0); |
| Value *Op1 = CI->getOperand(1); |
| |
| return (BasePred == Pred && |
| areCompatibleCmpOps(BaseOp0, BaseOp1, Op0, Op1, TLI)) || |
| (BasePred == SwappedPred && |
| areCompatibleCmpOps(BaseOp0, BaseOp1, Op1, Op0, TLI)); |
| } |
| |
| /// \returns analysis of the Instructions in \p VL described in |
| /// InstructionsState, the Opcode that we suppose the whole list |
| /// could be vectorized even if its structure is diverse. |
| static InstructionsState getSameOpcode(ArrayRef<Value *> VL, |
| const TargetLibraryInfo &TLI, |
| unsigned BaseIndex) { |
| // Make sure these are all Instructions. |
| if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); })) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| |
| bool IsCastOp = isa<CastInst>(VL[BaseIndex]); |
| bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]); |
| bool IsCmpOp = isa<CmpInst>(VL[BaseIndex]); |
| CmpInst::Predicate BasePred = |
| IsCmpOp ? cast<CmpInst>(VL[BaseIndex])->getPredicate() |
| : CmpInst::BAD_ICMP_PREDICATE; |
| unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode(); |
| unsigned AltOpcode = Opcode; |
| unsigned AltIndex = BaseIndex; |
| |
| // Check for one alternate opcode from another BinaryOperator. |
| // TODO - generalize to support all operators (types, calls etc.). |
| auto *IBase = cast<Instruction>(VL[BaseIndex]); |
| Intrinsic::ID BaseID = 0; |
| SmallVector<VFInfo> BaseMappings; |
| if (auto *CallBase = dyn_cast<CallInst>(IBase)) { |
| BaseID = getVectorIntrinsicIDForCall(CallBase, &TLI); |
| BaseMappings = VFDatabase(*CallBase).getMappings(*CallBase); |
| if (!isTriviallyVectorizable(BaseID) && BaseMappings.empty()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) { |
| auto *I = cast<Instruction>(VL[Cnt]); |
| unsigned InstOpcode = I->getOpcode(); |
| if (IsBinOp && isa<BinaryOperator>(I)) { |
| if (InstOpcode == Opcode || InstOpcode == AltOpcode) |
| continue; |
| if (Opcode == AltOpcode && isValidForAlternation(InstOpcode) && |
| isValidForAlternation(Opcode)) { |
| AltOpcode = InstOpcode; |
| AltIndex = Cnt; |
| continue; |
| } |
| } else if (IsCastOp && isa<CastInst>(I)) { |
| Value *Op0 = IBase->getOperand(0); |
| Type *Ty0 = Op0->getType(); |
| Value *Op1 = I->getOperand(0); |
| Type *Ty1 = Op1->getType(); |
| if (Ty0 == Ty1) { |
| if (InstOpcode == Opcode || InstOpcode == AltOpcode) |
| continue; |
| if (Opcode == AltOpcode) { |
| assert(isValidForAlternation(Opcode) && |
| isValidForAlternation(InstOpcode) && |
| "Cast isn't safe for alternation, logic needs to be updated!"); |
| AltOpcode = InstOpcode; |
| AltIndex = Cnt; |
| continue; |
| } |
| } |
| } else if (auto *Inst = dyn_cast<CmpInst>(VL[Cnt]); Inst && IsCmpOp) { |
| auto *BaseInst = cast<CmpInst>(VL[BaseIndex]); |
| Type *Ty0 = BaseInst->getOperand(0)->getType(); |
| Type *Ty1 = Inst->getOperand(0)->getType(); |
| if (Ty0 == Ty1) { |
| assert(InstOpcode == Opcode && "Expected same CmpInst opcode."); |
| // Check for compatible operands. If the corresponding operands are not |
| // compatible - need to perform alternate vectorization. |
| CmpInst::Predicate CurrentPred = Inst->getPredicate(); |
| CmpInst::Predicate SwappedCurrentPred = |
| CmpInst::getSwappedPredicate(CurrentPred); |
| |
| if (E == 2 && |
| (BasePred == CurrentPred || BasePred == SwappedCurrentPred)) |
| continue; |
| |
| if (isCmpSameOrSwapped(BaseInst, Inst, TLI)) |
| continue; |
| auto *AltInst = cast<CmpInst>(VL[AltIndex]); |
| if (AltIndex != BaseIndex) { |
| if (isCmpSameOrSwapped(AltInst, Inst, TLI)) |
| continue; |
| } else if (BasePred != CurrentPred) { |
| assert( |
| isValidForAlternation(InstOpcode) && |
| "CmpInst isn't safe for alternation, logic needs to be updated!"); |
| AltIndex = Cnt; |
| continue; |
| } |
| CmpInst::Predicate AltPred = AltInst->getPredicate(); |
| if (BasePred == CurrentPred || BasePred == SwappedCurrentPred || |
| AltPred == CurrentPred || AltPred == SwappedCurrentPred) |
| continue; |
| } |
| } else if (InstOpcode == Opcode || InstOpcode == AltOpcode) { |
| if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { |
| if (Gep->getNumOperands() != 2 || |
| Gep->getOperand(0)->getType() != IBase->getOperand(0)->getType()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *EI = dyn_cast<ExtractElementInst>(I)) { |
| if (!isVectorLikeInstWithConstOps(EI)) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *LI = dyn_cast<LoadInst>(I)) { |
| auto *BaseLI = cast<LoadInst>(IBase); |
| if (!LI->isSimple() || !BaseLI->isSimple()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } else if (auto *Call = dyn_cast<CallInst>(I)) { |
| auto *CallBase = cast<CallInst>(IBase); |
| if (Call->getCalledFunction() != CallBase->getCalledFunction()) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| if (Call->hasOperandBundles() && |
| !std::equal(Call->op_begin() + Call->getBundleOperandsStartIndex(), |
| Call->op_begin() + Call->getBundleOperandsEndIndex(), |
| CallBase->op_begin() + |
| CallBase->getBundleOperandsStartIndex())) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, &TLI); |
| if (ID != BaseID) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| if (!ID) { |
| SmallVector<VFInfo> Mappings = VFDatabase(*Call).getMappings(*Call); |
| if (Mappings.size() != BaseMappings.size() || |
| Mappings.front().ISA != BaseMappings.front().ISA || |
| Mappings.front().ScalarName != BaseMappings.front().ScalarName || |
| Mappings.front().VectorName != BaseMappings.front().VectorName || |
| Mappings.front().Shape.VF != BaseMappings.front().Shape.VF || |
| Mappings.front().Shape.Parameters != |
| BaseMappings.front().Shape.Parameters) |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| } |
| continue; |
| } |
| return InstructionsState(VL[BaseIndex], nullptr, nullptr); |
| } |
| |
| return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]), |
| cast<Instruction>(VL[AltIndex])); |
| } |
| |
| /// \returns true if all of the values in \p VL have the same type or false |
| /// otherwise. |
| static bool allSameType(ArrayRef<Value *> VL) { |
| Type *Ty = VL[0]->getType(); |
| for (int i = 1, e = VL.size(); i < e; i++) |
| if (VL[i]->getType() != Ty) |
| return false; |
| |
| return true; |
| } |
| |
| /// \returns True if in-tree use also needs extract. This refers to |
| /// possible scalar operand in vectorized instruction. |
| static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, |
| TargetLibraryInfo *TLI) { |
| unsigned Opcode = UserInst->getOpcode(); |
| switch (Opcode) { |
| case Instruction::Load: { |
| LoadInst *LI = cast<LoadInst>(UserInst); |
| return (LI->getPointerOperand() == Scalar); |
| } |
| case Instruction::Store: { |
| StoreInst *SI = cast<StoreInst>(UserInst); |
| return (SI->getPointerOperand() == Scalar); |
| } |
| case Instruction::Call: { |
| CallInst *CI = cast<CallInst>(UserInst); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) |
| return (CI->getArgOperand(i) == Scalar); |
| } |
| [[fallthrough]]; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| /// \returns the AA location that is being access by the instruction. |
| static MemoryLocation getLocation(Instruction *I) { |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return MemoryLocation::get(SI); |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return MemoryLocation::get(LI); |
| return MemoryLocation(); |
| } |
| |
| /// \returns True if the instruction is not a volatile or atomic load/store. |
| static bool isSimple(Instruction *I) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| return LI->isSimple(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) |
| return SI->isSimple(); |
| if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) |
| return !MI->isVolatile(); |
| return true; |
| } |
| |
| /// Shuffles \p Mask in accordance with the given \p SubMask. |
| /// \param ExtendingManyInputs Supports reshuffling of the mask with not only |
| /// one but two input vectors. |
| static void addMask(SmallVectorImpl<int> &Mask, ArrayRef<int> SubMask, |
| bool ExtendingManyInputs = false) { |
| if (SubMask.empty()) |
| return; |
| assert((!ExtendingManyInputs || SubMask.size() > Mask.size()) && |
| "SubMask with many inputs support must be larger than the mask."); |
| if (Mask.empty()) { |
| Mask.append(SubMask.begin(), SubMask.end()); |
| return; |
| } |
| SmallVector<int> NewMask(SubMask.size(), PoisonMaskElem); |
| int TermValue = std::min(Mask.size(), SubMask.size()); |
| for (int I = 0, E = SubMask.size(); I < E; ++I) { |
| if (SubMask[I] == PoisonMaskElem || |
| (!ExtendingManyInputs && |
| (SubMask[I] >= TermValue || Mask[SubMask[I]] >= TermValue))) |
| continue; |
| NewMask[I] = Mask[SubMask[I]]; |
| } |
| Mask.swap(NewMask); |
| } |
| |
| /// Order may have elements assigned special value (size) which is out of |
| /// bounds. Such indices only appear on places which correspond to undef values |
| /// (see canReuseExtract for details) and used in order to avoid undef values |
| /// have effect on operands ordering. |
| /// The first loop below simply finds all unused indices and then the next loop |
| /// nest assigns these indices for undef values positions. |
| /// As an example below Order has two undef positions and they have assigned |
| /// values 3 and 7 respectively: |
| /// before: 6 9 5 4 9 2 1 0 |
| /// after: 6 3 5 4 7 2 1 0 |
| static void fixupOrderingIndices(SmallVectorImpl<unsigned> &Order) { |
| const unsigned Sz = Order.size(); |
| SmallBitVector UnusedIndices(Sz, /*t=*/true); |
| SmallBitVector MaskedIndices(Sz); |
| for (unsigned I = 0; I < Sz; ++I) { |
| if (Order[I] < Sz) |
| UnusedIndices.reset(Order[I]); |
| else |
| MaskedIndices.set(I); |
| } |
| if (MaskedIndices.none()) |
| return; |
| assert(UnusedIndices.count() == MaskedIndices.count() && |
| "Non-synced masked/available indices."); |
| int Idx = UnusedIndices.find_first(); |
| int MIdx = MaskedIndices.find_first(); |
| while (MIdx >= 0) { |
| assert(Idx >= 0 && "Indices must be synced."); |
| Order[MIdx] = Idx; |
| Idx = UnusedIndices.find_next(Idx); |
| MIdx = MaskedIndices.find_next(MIdx); |
| } |
| } |
| |
| namespace llvm { |
| |
| static void inversePermutation(ArrayRef<unsigned> Indices, |
| SmallVectorImpl<int> &Mask) { |
| Mask.clear(); |
| const unsigned E = Indices.size(); |
| Mask.resize(E, PoisonMaskElem); |
| for (unsigned I = 0; I < E; ++I) |
| Mask[Indices[I]] = I; |
| } |
| |
| /// Reorders the list of scalars in accordance with the given \p Mask. |
| static void reorderScalars(SmallVectorImpl<Value *> &Scalars, |
| ArrayRef<int> Mask) { |
| assert(!Mask.empty() && "Expected non-empty mask."); |
| SmallVector<Value *> Prev(Scalars.size(), |
| UndefValue::get(Scalars.front()->getType())); |
| Prev.swap(Scalars); |
| for (unsigned I = 0, E = Prev.size(); I < E; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Scalars[Mask[I]] = Prev[I]; |
| } |
| |
| /// Checks if the provided value does not require scheduling. It does not |
| /// require scheduling if this is not an instruction or it is an instruction |
| /// that does not read/write memory and all operands are either not instructions |
| /// or phi nodes or instructions from different blocks. |
| static bool areAllOperandsNonInsts(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| return !mayHaveNonDefUseDependency(*I) && |
| all_of(I->operands(), [I](Value *V) { |
| auto *IO = dyn_cast<Instruction>(V); |
| if (!IO) |
| return true; |
| return isa<PHINode>(IO) || IO->getParent() != I->getParent(); |
| }); |
| } |
| |
| /// Checks if the provided value does not require scheduling. It does not |
| /// require scheduling if this is not an instruction or it is an instruction |
| /// that does not read/write memory and all users are phi nodes or instructions |
| /// from the different blocks. |
| static bool isUsedOutsideBlock(Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| // Limits the number of uses to save compile time. |
| constexpr int UsesLimit = 8; |
| return !I->mayReadOrWriteMemory() && !I->hasNUsesOrMore(UsesLimit) && |
| all_of(I->users(), [I](User *U) { |
| auto *IU = dyn_cast<Instruction>(U); |
| if (!IU) |
| return true; |
| return IU->getParent() != I->getParent() || isa<PHINode>(IU); |
| }); |
| } |
| |
| /// Checks if the specified value does not require scheduling. It does not |
| /// require scheduling if all operands and all users do not need to be scheduled |
| /// in the current basic block. |
| static bool doesNotNeedToBeScheduled(Value *V) { |
| return areAllOperandsNonInsts(V) && isUsedOutsideBlock(V); |
| } |
| |
| /// Checks if the specified array of instructions does not require scheduling. |
| /// It is so if all either instructions have operands that do not require |
| /// scheduling or their users do not require scheduling since they are phis or |
| /// in other basic blocks. |
| static bool doesNotNeedToSchedule(ArrayRef<Value *> VL) { |
| return !VL.empty() && |
| (all_of(VL, isUsedOutsideBlock) || all_of(VL, areAllOperandsNonInsts)); |
| } |
| |
| namespace slpvectorizer { |
| |
| /// Bottom Up SLP Vectorizer. |
| class BoUpSLP { |
| struct TreeEntry; |
| struct ScheduleData; |
| class ShuffleCostEstimator; |
| class ShuffleInstructionBuilder; |
| |
| public: |
| using ValueList = SmallVector<Value *, 8>; |
| using InstrList = SmallVector<Instruction *, 16>; |
| using ValueSet = SmallPtrSet<Value *, 16>; |
| using StoreList = SmallVector<StoreInst *, 8>; |
| using ExtraValueToDebugLocsMap = |
| MapVector<Value *, SmallVector<Instruction *, 2>>; |
| using OrdersType = SmallVector<unsigned, 4>; |
| |
| BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, |
| TargetLibraryInfo *TLi, AAResults *Aa, LoopInfo *Li, |
| DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, |
| const DataLayout *DL, OptimizationRemarkEmitter *ORE) |
| : BatchAA(*Aa), F(Func), SE(Se), TTI(Tti), TLI(TLi), LI(Li), |
| DT(Dt), AC(AC), DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) { |
| CodeMetrics::collectEphemeralValues(F, AC, EphValues); |
| // Use the vector register size specified by the target unless overridden |
| // by a command-line option. |
| // TODO: It would be better to limit the vectorization factor based on |
| // data type rather than just register size. For example, x86 AVX has |
| // 256-bit registers, but it does not support integer operations |
| // at that width (that requires AVX2). |
| if (MaxVectorRegSizeOption.getNumOccurrences()) |
| MaxVecRegSize = MaxVectorRegSizeOption; |
| else |
| MaxVecRegSize = |
| TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector) |
| .getFixedValue(); |
| |
| if (MinVectorRegSizeOption.getNumOccurrences()) |
| MinVecRegSize = MinVectorRegSizeOption; |
| else |
| MinVecRegSize = TTI->getMinVectorRegisterBitWidth(); |
| } |
| |
| /// Vectorize the tree that starts with the elements in \p VL. |
| /// Returns the vectorized root. |
| Value *vectorizeTree(); |
| |
| /// Vectorize the tree but with the list of externally used values \p |
| /// ExternallyUsedValues. Values in this MapVector can be replaced but the |
| /// generated extractvalue instructions. |
| /// \param ReplacedExternals containd list of replaced external values |
| /// {scalar, replace} after emitting extractelement for external uses. |
| Value * |
| vectorizeTree(const ExtraValueToDebugLocsMap &ExternallyUsedValues, |
| SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals, |
| Instruction *ReductionRoot = nullptr); |
| |
| /// \returns the cost incurred by unwanted spills and fills, caused by |
| /// holding live values over call sites. |
| InstructionCost getSpillCost() const; |
| |
| /// \returns the vectorization cost of the subtree that starts at \p VL. |
| /// A negative number means that this is profitable. |
| InstructionCost getTreeCost(ArrayRef<Value *> VectorizedVals = std::nullopt); |
| |
| /// Construct a vectorizable tree that starts at \p Roots, ignoring users for |
| /// the purpose of scheduling and extraction in the \p UserIgnoreLst. |
| void buildTree(ArrayRef<Value *> Roots, |
| const SmallDenseSet<Value *> &UserIgnoreLst); |
| |
| /// Construct a vectorizable tree that starts at \p Roots. |
| void buildTree(ArrayRef<Value *> Roots); |
| |
| /// Returns whether the root node has in-tree uses. |
| bool doesRootHaveInTreeUses() const { |
| return !VectorizableTree.empty() && |
| !VectorizableTree.front()->UserTreeIndices.empty(); |
| } |
| |
| /// Return the scalars of the root node. |
| ArrayRef<Value *> getRootNodeScalars() const { |
| assert(!VectorizableTree.empty() && "No graph to get the first node from"); |
| return VectorizableTree.front()->Scalars; |
| } |
| |
| /// Builds external uses of the vectorized scalars, i.e. the list of |
| /// vectorized scalars to be extracted, their lanes and their scalar users. \p |
| /// ExternallyUsedValues contains additional list of external uses to handle |
| /// vectorization of reductions. |
| void |
| buildExternalUses(const ExtraValueToDebugLocsMap &ExternallyUsedValues = {}); |
| |
| /// Clear the internal data structures that are created by 'buildTree'. |
| void deleteTree() { |
| VectorizableTree.clear(); |
| ScalarToTreeEntry.clear(); |
| MustGather.clear(); |
| EntryToLastInstruction.clear(); |
| ExternalUses.clear(); |
| for (auto &Iter : BlocksSchedules) { |
| BlockScheduling *BS = Iter.second.get(); |
| BS->clear(); |
| } |
| MinBWs.clear(); |
| InstrElementSize.clear(); |
| UserIgnoreList = nullptr; |
| PostponedGathers.clear(); |
| ValueToGatherNodes.clear(); |
| } |
| |
| unsigned getTreeSize() const { return VectorizableTree.size(); } |
| |
| /// Perform LICM and CSE on the newly generated gather sequences. |
| void optimizeGatherSequence(); |
| |
| /// Checks if the specified gather tree entry \p TE can be represented as a |
| /// shuffled vector entry + (possibly) permutation with other gathers. It |
| /// implements the checks only for possibly ordered scalars (Loads, |
| /// ExtractElement, ExtractValue), which can be part of the graph. |
| std::optional<OrdersType> findReusedOrderedScalars(const TreeEntry &TE); |
| |
| /// Sort loads into increasing pointers offsets to allow greater clustering. |
| std::optional<OrdersType> findPartiallyOrderedLoads(const TreeEntry &TE); |
| |
| /// Gets reordering data for the given tree entry. If the entry is vectorized |
| /// - just return ReorderIndices, otherwise check if the scalars can be |
| /// reordered and return the most optimal order. |
| /// \return std::nullopt if ordering is not important, empty order, if |
| /// identity order is important, or the actual order. |
| /// \param TopToBottom If true, include the order of vectorized stores and |
| /// insertelement nodes, otherwise skip them. |
| std::optional<OrdersType> getReorderingData(const TreeEntry &TE, |
| bool TopToBottom); |
| |
| /// Reorders the current graph to the most profitable order starting from the |
| /// root node to the leaf nodes. The best order is chosen only from the nodes |
| /// of the same size (vectorization factor). Smaller nodes are considered |
| /// parts of subgraph with smaller VF and they are reordered independently. We |
| /// can make it because we still need to extend smaller nodes to the wider VF |
| /// and we can merge reordering shuffles with the widening shuffles. |
| void reorderTopToBottom(); |
| |
| /// Reorders the current graph to the most profitable order starting from |
| /// leaves to the root. It allows to rotate small subgraphs and reduce the |
| /// number of reshuffles if the leaf nodes use the same order. In this case we |
| /// can merge the orders and just shuffle user node instead of shuffling its |
| /// operands. Plus, even the leaf nodes have different orders, it allows to |
| /// sink reordering in the graph closer to the root node and merge it later |
| /// during analysis. |
| void reorderBottomToTop(bool IgnoreReorder = false); |
| |
| /// \return The vector element size in bits to use when vectorizing the |
| /// expression tree ending at \p V. If V is a store, the size is the width of |
| /// the stored value. Otherwise, the size is the width of the largest loaded |
| /// value reaching V. This method is used by the vectorizer to calculate |
| /// vectorization factors. |
| unsigned getVectorElementSize(Value *V); |
| |
| /// Compute the minimum type sizes required to represent the entries in a |
| /// vectorizable tree. |
| void computeMinimumValueSizes(); |
| |
| // \returns maximum vector register size as set by TTI or overridden by cl::opt. |
| unsigned getMaxVecRegSize() const { |
| return MaxVecRegSize; |
| } |
| |
| // \returns minimum vector register size as set by cl::opt. |
| unsigned getMinVecRegSize() const { |
| return MinVecRegSize; |
| } |
| |
| unsigned getMinVF(unsigned Sz) const { |
| return std::max(2U, getMinVecRegSize() / Sz); |
| } |
| |
| unsigned getMaximumVF(unsigned ElemWidth, unsigned Opcode) const { |
| unsigned MaxVF = MaxVFOption.getNumOccurrences() ? |
| MaxVFOption : TTI->getMaximumVF(ElemWidth, Opcode); |
| return MaxVF ? MaxVF : UINT_MAX; |
| } |
| |
| /// Check if homogeneous aggregate is isomorphic to some VectorType. |
| /// Accepts homogeneous multidimensional aggregate of scalars/vectors like |
| /// {[4 x i16], [4 x i16]}, { <2 x float>, <2 x float> }, |
| /// {{{i16, i16}, {i16, i16}}, {{i16, i16}, {i16, i16}}} and so on. |
| /// |
| /// \returns number of elements in vector if isomorphism exists, 0 otherwise. |
| unsigned canMapToVector(Type *T, const DataLayout &DL) const; |
| |
| /// \returns True if the VectorizableTree is both tiny and not fully |
| /// vectorizable. We do not vectorize such trees. |
| bool isTreeTinyAndNotFullyVectorizable(bool ForReduction = false) const; |
| |
| /// Assume that a legal-sized 'or'-reduction of shifted/zexted loaded values |
| /// can be load combined in the backend. Load combining may not be allowed in |
| /// the IR optimizer, so we do not want to alter the pattern. For example, |
| /// partially transforming a scalar bswap() pattern into vector code is |
| /// effectively impossible for the backend to undo. |
| /// TODO: If load combining is allowed in the IR optimizer, this analysis |
| /// may not be necessary. |
| bool isLoadCombineReductionCandidate(RecurKind RdxKind) const; |
| |
| /// Assume that a vector of stores of bitwise-or/shifted/zexted loaded values |
| /// can be load combined in the backend. Load combining may not be allowed in |
| /// the IR optimizer, so we do not want to alter the pattern. For example, |
| /// partially transforming a scalar bswap() pattern into vector code is |
| /// effectively impossible for the backend to undo. |
| /// TODO: If load combining is allowed in the IR optimizer, this analysis |
| /// may not be necessary. |
| bool isLoadCombineCandidate() const; |
| |
| OptimizationRemarkEmitter *getORE() { return ORE; } |
| |
| /// This structure holds any data we need about the edges being traversed |
| /// during buildTree_rec(). We keep track of: |
| /// (i) the user TreeEntry index, and |
| /// (ii) the index of the edge. |
| struct EdgeInfo { |
| EdgeInfo() = default; |
| EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx) |
| : UserTE(UserTE), EdgeIdx(EdgeIdx) {} |
| /// The user TreeEntry. |
| TreeEntry *UserTE = nullptr; |
| /// The operand index of the use. |
| unsigned EdgeIdx = UINT_MAX; |
| #ifndef NDEBUG |
| friend inline raw_ostream &operator<<(raw_ostream &OS, |
| const BoUpSLP::EdgeInfo &EI) { |
| EI.dump(OS); |
| return OS; |
| } |
| /// Debug print. |
| void dump(raw_ostream &OS) const { |
| OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null") |
| << " EdgeIdx:" << EdgeIdx << "}"; |
| } |
| LLVM_DUMP_METHOD void dump() const { dump(dbgs()); } |
| #endif |
| }; |
| |
| /// A helper class used for scoring candidates for two consecutive lanes. |
| class LookAheadHeuristics { |
| const TargetLibraryInfo &TLI; |
| const DataLayout &DL; |
| ScalarEvolution &SE; |
| const BoUpSLP &R; |
| int NumLanes; // Total number of lanes (aka vectorization factor). |
| int MaxLevel; // The maximum recursion depth for accumulating score. |
| |
| public: |
| LookAheadHeuristics(const TargetLibraryInfo &TLI, const DataLayout &DL, |
| ScalarEvolution &SE, const BoUpSLP &R, int NumLanes, |
| int MaxLevel) |
| : TLI(TLI), DL(DL), SE(SE), R(R), NumLanes(NumLanes), |
| MaxLevel(MaxLevel) {} |
| |
| // The hard-coded scores listed here are not very important, though it shall |
| // be higher for better matches to improve the resulting cost. When |
| // computing the scores of matching one sub-tree with another, we are |
| // basically counting the number of values that are matching. So even if all |
| // scores are set to 1, we would still get a decent matching result. |
| // However, sometimes we have to break ties. For example we may have to |
| // choose between matching loads vs matching opcodes. This is what these |
| // scores are helping us with: they provide the order of preference. Also, |
| // this is important if the scalar is externally used or used in another |
| // tree entry node in the different lane. |
| |
| /// Loads from consecutive memory addresses, e.g. load(A[i]), load(A[i+1]). |
| static const int ScoreConsecutiveLoads = 4; |
| /// The same load multiple times. This should have a better score than |
| /// `ScoreSplat` because it in x86 for a 2-lane vector we can represent it |
| /// with `movddup (%reg), xmm0` which has a throughput of 0.5 versus 0.5 for |
| /// a vector load and 1.0 for a broadcast. |
| static const int ScoreSplatLoads = 3; |
| /// Loads from reversed memory addresses, e.g. load(A[i+1]), load(A[i]). |
| static const int ScoreReversedLoads = 3; |
| /// A load candidate for masked gather. |
| static const int ScoreMaskedGatherCandidate = 1; |
| /// ExtractElementInst from same vector and consecutive indexes. |
| static const int ScoreConsecutiveExtracts = 4; |
| /// ExtractElementInst from same vector and reversed indices. |
| static const int ScoreReversedExtracts = 3; |
| /// Constants. |
| static const int ScoreConstants = 2; |
| /// Instructions with the same opcode. |
| static const int ScoreSameOpcode = 2; |
| /// Instructions with alt opcodes (e.g, add + sub). |
| static const int ScoreAltOpcodes = 1; |
| /// Identical instructions (a.k.a. splat or broadcast). |
| static const int ScoreSplat = 1; |
| /// Matching with an undef is preferable to failing. |
| static const int ScoreUndef = 1; |
| /// Score for failing to find a decent match. |
| static const int ScoreFail = 0; |
| /// Score if all users are vectorized. |
| static const int ScoreAllUserVectorized = 1; |
| |
| /// \returns the score of placing \p V1 and \p V2 in consecutive lanes. |
| /// \p U1 and \p U2 are the users of \p V1 and \p V2. |
| /// Also, checks if \p V1 and \p V2 are compatible with instructions in \p |
| /// MainAltOps. |
| int getShallowScore(Value *V1, Value *V2, Instruction *U1, Instruction *U2, |
| ArrayRef<Value *> MainAltOps) const { |
| if (!isValidElementType(V1->getType()) || |
| !isValidElementType(V2->getType())) |
| return LookAheadHeuristics::ScoreFail; |
| |
| if (V1 == V2) { |
| if (isa<LoadInst>(V1)) { |
| // Retruns true if the users of V1 and V2 won't need to be extracted. |
| auto AllUsersAreInternal = [U1, U2, this](Value *V1, Value *V2) { |
| // Bail out if we have too many uses to save compilation time. |
| static constexpr unsigned Limit = 8; |
| if (V1->hasNUsesOrMore(Limit) || V2->hasNUsesOrMore(Limit)) |
| return false; |
| |
| auto AllUsersVectorized = [U1, U2, this](Value *V) { |
| return llvm::all_of(V->users(), [U1, U2, this](Value *U) { |
| return U == U1 || U == U2 || R.getTreeEntry(U) != nullptr; |
| }); |
| }; |
| return AllUsersVectorized(V1) && AllUsersVectorized(V2); |
| }; |
| // A broadcast of a load can be cheaper on some targets. |
| if (R.TTI->isLegalBroadcastLoad(V1->getType(), |
| ElementCount::getFixed(NumLanes)) && |
| ((int)V1->getNumUses() == NumLanes || |
| AllUsersAreInternal(V1, V2))) |
| return LookAheadHeuristics::ScoreSplatLoads; |
| } |
| return LookAheadHeuristics::ScoreSplat; |
| } |
| |
| auto *LI1 = dyn_cast<LoadInst>(V1); |
| auto *LI2 = dyn_cast<LoadInst>(V2); |
| if (LI1 && LI2) { |
| if (LI1->getParent() != LI2->getParent() || !LI1->isSimple() || |
| !LI2->isSimple()) |
| return LookAheadHeuristics::ScoreFail; |
| |
| std::optional<int> Dist = getPointersDiff( |
| LI1->getType(), LI1->getPointerOperand(), LI2->getType(), |
| LI2->getPointerOperand(), DL, SE, /*StrictCheck=*/true); |
| if (!Dist || *Dist == 0) { |
| if (getUnderlyingObject(LI1->getPointerOperand()) == |
| getUnderlyingObject(LI2->getPointerOperand()) && |
| R.TTI->isLegalMaskedGather( |
| FixedVectorType::get(LI1->getType(), NumLanes), |
| LI1->getAlign())) |
| return LookAheadHeuristics::ScoreMaskedGatherCandidate; |
| return LookAheadHeuristics::ScoreFail; |
| } |
| // The distance is too large - still may be profitable to use masked |
| // loads/gathers. |
| if (std::abs(*Dist) > NumLanes / 2) |
| return LookAheadHeuristics::ScoreMaskedGatherCandidate; |
| // This still will detect consecutive loads, but we might have "holes" |
| // in some cases. It is ok for non-power-2 vectorization and may produce |
| // better results. It should not affect current vectorization. |
| return (*Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveLoads |
| : LookAheadHeuristics::ScoreReversedLoads; |
| } |
| |
| auto *C1 = dyn_cast<Constant>(V1); |
| auto *C2 = dyn_cast<Constant>(V2); |
| if (C1 && C2) |
| return LookAheadHeuristics::ScoreConstants; |
| |
| // Extracts from consecutive indexes of the same vector better score as |
| // the extracts could be optimized away. |
| Value *EV1; |
| ConstantInt *Ex1Idx; |
| if (match(V1, m_ExtractElt(m_Value(EV1), m_ConstantInt(Ex1Idx)))) { |
| // Undefs are always profitable for extractelements. |
| // Compiler can easily combine poison and extractelement <non-poison> or |
| // undef and extractelement <poison>. But combining undef + |
| // extractelement <non-poison-but-may-produce-poison> requires some |
| // extra operations. |
| if (isa<UndefValue>(V2)) |
| return (isa<PoisonValue>(V2) || isUndefVector(EV1).all()) |
| ? LookAheadHeuristics::ScoreConsecutiveExtracts |
| : LookAheadHeuristics::ScoreSameOpcode; |
| Value *EV2 = nullptr; |
| ConstantInt *Ex2Idx = nullptr; |
| if (match(V2, |
| m_ExtractElt(m_Value(EV2), m_CombineOr(m_ConstantInt(Ex2Idx), |
| m_Undef())))) { |
| // Undefs are always profitable for extractelements. |
| if (!Ex2Idx) |
| return LookAheadHeuristics::ScoreConsecutiveExtracts; |
| if (isUndefVector(EV2).all() && EV2->getType() == EV1->getType()) |
| return LookAheadHeuristics::ScoreConsecutiveExtracts; |
| if (EV2 == EV1) { |
| int Idx1 = Ex1Idx->getZExtValue(); |
| int Idx2 = Ex2Idx->getZExtValue(); |
| int Dist = Idx2 - Idx1; |
| // The distance is too large - still may be profitable to use |
| // shuffles. |
| if (std::abs(Dist) == 0) |
| return LookAheadHeuristics::ScoreSplat; |
| if (std::abs(Dist) > NumLanes / 2) |
| return LookAheadHeuristics::ScoreSameOpcode; |
| return (Dist > 0) ? LookAheadHeuristics::ScoreConsecutiveExtracts |
| : LookAheadHeuristics::ScoreReversedExtracts; |
| } |
| return LookAheadHeuristics::ScoreAltOpcodes; |
| } |
| return LookAheadHeuristics::ScoreFail; |
| } |
| |
| auto *I1 = dyn_cast<Instruction>(V1); |
| auto *I2 = dyn_cast<Instruction>(V2); |
| if (I1 && I2) { |
| if (I1->getParent() != I2->getParent()) |
| return LookAheadHeuristics::ScoreFail; |
| SmallVector<Value *, 4> Ops(MainAltOps.begin(), MainAltOps.end()); |
| Ops.push_back(I1); |
| Ops.push_back(I2); |
| InstructionsState S = getSameOpcode(Ops, TLI); |
| // Note: Only consider instructions with <= 2 operands to avoid |
| // complexity explosion. |
| if (S.getOpcode() && |
| (S.MainOp->getNumOperands() <= 2 || !MainAltOps.empty() || |
| !S.isAltShuffle()) && |
| all_of(Ops, [&S](Value *V) { |
| return cast<Instruction>(V)->getNumOperands() == |
| S.MainOp->getNumOperands(); |
| })) |
| return S.isAltShuffle() ? LookAheadHeuristics::ScoreAltOpcodes |
| : LookAheadHeuristics::ScoreSameOpcode; |
| } |
| |
| if (isa<UndefValue>(V2)) |
| return LookAheadHeuristics::ScoreUndef; |
| |
| return LookAheadHeuristics::ScoreFail; |
| } |
| |
| /// Go through the operands of \p LHS and \p RHS recursively until |
| /// MaxLevel, and return the cummulative score. \p U1 and \p U2 are |
| /// the users of \p LHS and \p RHS (that is \p LHS and \p RHS are operands |
| /// of \p U1 and \p U2), except at the beginning of the recursion where |
| /// these are set to nullptr. |
| /// |
| /// For example: |
| /// \verbatim |
| /// A[0] B[0] A[1] B[1] C[0] D[0] B[1] A[1] |
| /// \ / \ / \ / \ / |
| /// + + + + |
| /// G1 G2 G3 G4 |
| /// \endverbatim |
| /// The getScoreAtLevelRec(G1, G2) function will try to match the nodes at |
| /// each level recursively, accumulating the score. It starts from matching |
| /// the additions at level 0, then moves on to the loads (level 1). The |
| /// score of G1 and G2 is higher than G1 and G3, because {A[0],A[1]} and |
| /// {B[0],B[1]} match with LookAheadHeuristics::ScoreConsecutiveLoads, while |
| /// {A[0],C[0]} has a score of LookAheadHeuristics::ScoreFail. |
| /// Please note that the order of the operands does not matter, as we |
| /// evaluate the score of all profitable combinations of operands. In |
| /// other words the score of G1 and G4 is the same as G1 and G2. This |
| /// heuristic is based on ideas described in: |
| /// Look-ahead SLP: Auto-vectorization in the presence of commutative |
| /// operations, CGO 2018 by Vasileios Porpodas, Rodrigo C. O. Rocha, |
| /// LuÃs F. W. Góes |
| int getScoreAtLevelRec(Value *LHS, Value *RHS, Instruction *U1, |
| Instruction *U2, int CurrLevel, |
| ArrayRef<Value *> MainAltOps) const { |
| |
| // Get the shallow score of V1 and V2. |
| int ShallowScoreAtThisLevel = |
| getShallowScore(LHS, RHS, U1, U2, MainAltOps); |
| |
| // If reached MaxLevel, |
| // or if V1 and V2 are not instructions, |
| // or if they are SPLAT, |
| // or if they are not consecutive, |
| // or if profitable to vectorize loads or extractelements, early return |
| // the current cost. |
| auto *I1 = dyn_cast<Instruction>(LHS); |
| auto *I2 = dyn_cast<Instruction>(RHS); |
| if (CurrLevel == MaxLevel || !(I1 && I2) || I1 == I2 || |
| ShallowScoreAtThisLevel == LookAheadHeuristics::ScoreFail || |
| (((isa<LoadInst>(I1) && isa<LoadInst>(I2)) || |
| (I1->getNumOperands() > 2 && I2->getNumOperands() > 2) || |
| (isa<ExtractElementInst>(I1) && isa<ExtractElementInst>(I2))) && |
| ShallowScoreAtThisLevel)) |
| return ShallowScoreAtThisLevel; |
| assert(I1 && I2 && "Should have early exited."); |
| |
| // Contains the I2 operand indexes that got matched with I1 operands. |
| SmallSet<unsigned, 4> Op2Used; |
| |
| // Recursion towards the operands of I1 and I2. We are trying all possible |
| // operand pairs, and keeping track of the best score. |
| for (unsigned OpIdx1 = 0, NumOperands1 = I1->getNumOperands(); |
| OpIdx1 != NumOperands1; ++OpIdx1) { |
| // Try to pair op1I with the best operand of I2. |
| int MaxTmpScore = 0; |
| unsigned MaxOpIdx2 = 0; |
| bool FoundBest = false; |
| // If I2 is commutative try all combinations. |
| unsigned FromIdx = isCommutative(I2) ? 0 : OpIdx1; |
| unsigned ToIdx = isCommutative(I2) |
| ? I2->getNumOperands() |
| : std::min(I2->getNumOperands(), OpIdx1 + 1); |
| assert(FromIdx <= ToIdx && "Bad index"); |
| for (unsigned OpIdx2 = FromIdx; OpIdx2 != ToIdx; ++OpIdx2) { |
| // Skip operands already paired with OpIdx1. |
| if (Op2Used.count(OpIdx2)) |
| continue; |
| // Recursively calculate the cost at each level |
| int TmpScore = |
| getScoreAtLevelRec(I1->getOperand(OpIdx1), I2->getOperand(OpIdx2), |
| I1, I2, CurrLevel + 1, std::nullopt); |
| // Look for the best score. |
| if (TmpScore > LookAheadHeuristics::ScoreFail && |
| TmpScore > MaxTmpScore) { |
| MaxTmpScore = TmpScore; |
| MaxOpIdx2 = OpIdx2; |
| FoundBest = true; |
| } |
| } |
| if (FoundBest) { |
| // Pair {OpIdx1, MaxOpIdx2} was found to be best. Never revisit it. |
| Op2Used.insert(MaxOpIdx2); |
| ShallowScoreAtThisLevel += MaxTmpScore; |
| } |
| } |
| return ShallowScoreAtThisLevel; |
| } |
| }; |
| /// A helper data structure to hold the operands of a vector of instructions. |
| /// This supports a fixed vector length for all operand vectors. |
| class VLOperands { |
| /// For each operand we need (i) the value, and (ii) the opcode that it |
| /// would be attached to if the expression was in a left-linearized form. |
| /// This is required to avoid illegal operand reordering. |
| /// For example: |
| /// \verbatim |
| /// 0 Op1 |
| /// |/ |
| /// Op1 Op2 Linearized + Op2 |
| /// \ / ----------> |/ |
| /// - - |
| /// |
| /// Op1 - Op2 (0 + Op1) - Op2 |
| /// \endverbatim |
| /// |
| /// Value Op1 is attached to a '+' operation, and Op2 to a '-'. |
| /// |
| /// Another way to think of this is to track all the operations across the |
| /// path from the operand all the way to the root of the tree and to |
| /// calculate the operation that corresponds to this path. For example, the |
| /// path from Op2 to the root crosses the RHS of the '-', therefore the |
| /// corresponding operation is a '-' (which matches the one in the |
| /// linearized tree, as shown above). |
| /// |
| /// For lack of a better term, we refer to this operation as Accumulated |
| /// Path Operation (APO). |
| struct OperandData { |
| OperandData() = default; |
| OperandData(Value *V, bool APO, bool IsUsed) |
| : V(V), APO(APO), IsUsed(IsUsed) {} |
| /// The operand value. |
| Value *V = nullptr; |
| /// TreeEntries only allow a single opcode, or an alternate sequence of |
| /// them (e.g, +, -). Therefore, we can safely use a boolean value for the |
| /// APO. It is set to 'true' if 'V' is attached to an inverse operation |
| /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise |
| /// (e.g., Add/Mul) |
| bool APO = false; |
| /// Helper data for the reordering function. |
| bool IsUsed = false; |
| }; |
| |
| /// During operand reordering, we are trying to select the operand at lane |
| /// that matches best with the operand at the neighboring lane. Our |
| /// selection is based on the type of value we are looking for. For example, |
| /// if the neighboring lane has a load, we need to look for a load that is |
| /// accessing a consecutive address. These strategies are summarized in the |
| /// 'ReorderingMode' enumerator. |
| enum class ReorderingMode { |
| Load, ///< Matching loads to consecutive memory addresses |
| Opcode, ///< Matching instructions based on opcode (same or alternate) |
| Constant, ///< Matching constants |
| Splat, ///< Matching the same instruction multiple times (broadcast) |
| Failed, ///< We failed to create a vectorizable group |
| }; |
| |
| using OperandDataVec = SmallVector<OperandData, 2>; |
| |
| /// A vector of operand vectors. |
| SmallVector<OperandDataVec, 4> OpsVec; |
| |
| const TargetLibraryInfo &TLI; |
| const DataLayout &DL; |
| ScalarEvolution &SE; |
| const BoUpSLP &R; |
| |
| /// \returns the operand data at \p OpIdx and \p Lane. |
| OperandData &getData(unsigned OpIdx, unsigned Lane) { |
| return OpsVec[OpIdx][Lane]; |
| } |
| |
| /// \returns the operand data at \p OpIdx and \p Lane. Const version. |
| const OperandData &getData(unsigned OpIdx, unsigned Lane) const { |
| return OpsVec[OpIdx][Lane]; |
| } |
| |
| /// Clears the used flag for all entries. |
| void clearUsed() { |
| for (unsigned OpIdx = 0, NumOperands = getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) |
| for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes; |
| ++Lane) |
| OpsVec[OpIdx][Lane].IsUsed = false; |
| } |
| |
| /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2. |
| void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) { |
| std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]); |
| } |
| |
| /// \param Lane lane of the operands under analysis. |
| /// \param OpIdx operand index in \p Lane lane we're looking the best |
| /// candidate for. |
| /// \param Idx operand index of the current candidate value. |
| /// \returns The additional score due to possible broadcasting of the |
| /// elements in the lane. It is more profitable to have power-of-2 unique |
| /// elements in the lane, it will be vectorized with higher probability |
| /// after removing duplicates. Currently the SLP vectorizer supports only |
| /// vectorization of the power-of-2 number of unique scalars. |
| int getSplatScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { |
| Value *IdxLaneV = getData(Idx, Lane).V; |
| if (!isa<Instruction>(IdxLaneV) || IdxLaneV == getData(OpIdx, Lane).V) |
| return 0; |
| SmallPtrSet<Value *, 4> Uniques; |
| for (unsigned Ln = 0, E = getNumLanes(); Ln < E; ++Ln) { |
| if (Ln == Lane) |
| continue; |
| Value *OpIdxLnV = getData(OpIdx, Ln).V; |
| if (!isa<Instruction>(OpIdxLnV)) |
| return 0; |
| Uniques.insert(OpIdxLnV); |
| } |
| int UniquesCount = Uniques.size(); |
| int UniquesCntWithIdxLaneV = |
| Uniques.contains(IdxLaneV) ? UniquesCount : UniquesCount + 1; |
| Value *OpIdxLaneV = getData(OpIdx, Lane).V; |
| int UniquesCntWithOpIdxLaneV = |
| Uniques.contains(OpIdxLaneV) ? UniquesCount : UniquesCount + 1; |
| if (UniquesCntWithIdxLaneV == UniquesCntWithOpIdxLaneV) |
| return 0; |
| return (PowerOf2Ceil(UniquesCntWithOpIdxLaneV) - |
| UniquesCntWithOpIdxLaneV) - |
| (PowerOf2Ceil(UniquesCntWithIdxLaneV) - UniquesCntWithIdxLaneV); |
| } |
| |
| /// \param Lane lane of the operands under analysis. |
| /// \param OpIdx operand index in \p Lane lane we're looking the best |
| /// candidate for. |
| /// \param Idx operand index of the current candidate value. |
| /// \returns The additional score for the scalar which users are all |
| /// vectorized. |
| int getExternalUseScore(unsigned Lane, unsigned OpIdx, unsigned Idx) const { |
| Value *IdxLaneV = getData(Idx, Lane).V; |
| Value *OpIdxLaneV = getData(OpIdx, Lane).V; |
| // Do not care about number of uses for vector-like instructions |
| // (extractelement/extractvalue with constant indices), they are extracts |
| // themselves and already externally used. Vectorization of such |
| // instructions does not add extra extractelement instruction, just may |
| // remove it. |
| if (isVectorLikeInstWithConstOps(IdxLaneV) && |
| isVectorLikeInstWithConstOps(OpIdxLaneV)) |
| return LookAheadHeuristics::ScoreAllUserVectorized; |
| auto *IdxLaneI = dyn_cast<Instruction>(IdxLaneV); |
| if (!IdxLaneI || !isa<Instruction>(OpIdxLaneV)) |
| return 0; |
| return R.areAllUsersVectorized(IdxLaneI, std::nullopt) |
| ? LookAheadHeuristics::ScoreAllUserVectorized |
| : 0; |
| } |
| |
| /// Score scaling factor for fully compatible instructions but with |
| /// different number of external uses. Allows better selection of the |
| /// instructions with less external uses. |
| static const int ScoreScaleFactor = 10; |
| |
| /// \Returns the look-ahead score, which tells us how much the sub-trees |
| /// rooted at \p LHS and \p RHS match, the more they match the higher the |
| /// score. This helps break ties in an informed way when we cannot decide on |
| /// the order of the operands by just considering the immediate |
| /// predecessors. |
| int getLookAheadScore(Value *LHS, Value *RHS, ArrayRef<Value *> MainAltOps, |
| int Lane, unsigned OpIdx, unsigned Idx, |
| bool &IsUsed) { |
| LookAheadHeuristics LookAhead(TLI, DL, SE, R, getNumLanes(), |
| LookAheadMaxDepth); |
| // Keep track of the instruction stack as we recurse into the operands |
| // during the look-ahead score exploration. |
| int Score = |
| LookAhead.getScoreAtLevelRec(LHS, RHS, /*U1=*/nullptr, /*U2=*/nullptr, |
| /*CurrLevel=*/1, MainAltOps); |
| if (Score) { |
| int SplatScore = getSplatScore(Lane, OpIdx, Idx); |
| if (Score <= -SplatScore) { |
| // Set the minimum score for splat-like sequence to avoid setting |
| // failed state. |
| Score = 1; |
| } else { |
| Score += SplatScore; |
| // Scale score to see the difference between different operands |
| // and similar operands but all vectorized/not all vectorized |
| // uses. It does not affect actual selection of the best |
| // compatible operand in general, just allows to select the |
| // operand with all vectorized uses. |
| Score *= ScoreScaleFactor; |
| Score += getExternalUseScore(Lane, OpIdx, Idx); |
| IsUsed = true; |
| } |
| } |
| return Score; |
| } |
| |
| /// Best defined scores per lanes between the passes. Used to choose the |
| /// best operand (with the highest score) between the passes. |
| /// The key - {Operand Index, Lane}. |
| /// The value - the best score between the passes for the lane and the |
| /// operand. |
| SmallDenseMap<std::pair<unsigned, unsigned>, unsigned, 8> |
| BestScoresPerLanes; |
| |
| // Search all operands in Ops[*][Lane] for the one that matches best |
| // Ops[OpIdx][LastLane] and return its opreand index. |
| // If no good match can be found, return std::nullopt. |
| std::optional<unsigned> |
| getBestOperand(unsigned OpIdx, int Lane, int LastLane, |
| ArrayRef<ReorderingMode> ReorderingModes, |
| ArrayRef<Value *> MainAltOps) { |
| unsigned NumOperands = getNumOperands(); |
| |
| // The operand of the previous lane at OpIdx. |
| Value *OpLastLane = getData(OpIdx, LastLane).V; |
| |
| // Our strategy mode for OpIdx. |
| ReorderingMode RMode = ReorderingModes[OpIdx]; |
| if (RMode == ReorderingMode::Failed) |
| return std::nullopt; |
| |
| // The linearized opcode of the operand at OpIdx, Lane. |
| bool OpIdxAPO = getData(OpIdx, Lane).APO; |
| |
| // The best operand index and its score. |
| // Sometimes we have more than one option (e.g., Opcode and Undefs), so we |
| // are using the score to differentiate between the two. |
| struct BestOpData { |
| std::optional<unsigned> Idx; |
| unsigned Score = 0; |
| } BestOp; |
| BestOp.Score = |
| BestScoresPerLanes.try_emplace(std::make_pair(OpIdx, Lane), 0) |
| .first->second; |
| |
| // Track if the operand must be marked as used. If the operand is set to |
| // Score 1 explicitly (because of non power-of-2 unique scalars, we may |
| // want to reestimate the operands again on the following iterations). |
| bool IsUsed = |
| RMode == ReorderingMode::Splat || RMode == ReorderingMode::Constant; |
| // Iterate through all unused operands and look for the best. |
| for (unsigned Idx = 0; Idx != NumOperands; ++Idx) { |
| // Get the operand at Idx and Lane. |
| OperandData &OpData = getData(Idx, Lane); |
| Value *Op = OpData.V; |
| bool OpAPO = OpData.APO; |
| |
| // Skip already selected operands. |
| if (OpData.IsUsed) |
| continue; |
| |
| // Skip if we are trying to move the operand to a position with a |
| // different opcode in the linearized tree form. This would break the |
| // semantics. |
| if (OpAPO != OpIdxAPO) |
| continue; |
| |
| // Look for an operand that matches the current mode. |
| switch (RMode) { |
| case ReorderingMode::Load: |
| case ReorderingMode::Constant: |
| case ReorderingMode::Opcode: { |
| bool LeftToRight = Lane > LastLane; |
| Value *OpLeft = (LeftToRight) ? OpLastLane : Op; |
| Value *OpRight = (LeftToRight) ? Op : OpLastLane; |
| int Score = getLookAheadScore(OpLeft, OpRight, MainAltOps, Lane, |
| OpIdx, Idx, IsUsed); |
| if (Score > static_cast<int>(BestOp.Score)) { |
| BestOp.Idx = Idx; |
| BestOp.Score = Score; |
| BestScoresPerLanes[std::make_pair(OpIdx, Lane)] = Score; |
| } |
| break; |
| } |
| case ReorderingMode::Splat: |
| if (Op == OpLastLane) |
| BestOp.Idx = Idx; |
| break; |
| case ReorderingMode::Failed: |
| llvm_unreachable("Not expected Failed reordering mode."); |
| } |
| } |
| |
| if (BestOp.Idx) { |
| getData(*BestOp.Idx, Lane).IsUsed = IsUsed; |
| return BestOp.Idx; |
| } |
| // If we could not find a good match return std::nullopt. |
| return std::nullopt; |
| } |
| |
| /// Helper for reorderOperandVecs. |
| /// \returns the lane that we should start reordering from. This is the one |
| /// which has the least number of operands that can freely move about or |
| /// less profitable because it already has the most optimal set of operands. |
| unsigned getBestLaneToStartReordering() const { |
| unsigned Min = UINT_MAX; |
| unsigned SameOpNumber = 0; |
| // std::pair<unsigned, unsigned> is used to implement a simple voting |
| // algorithm and choose the lane with the least number of operands that |
| // can freely move about or less profitable because it already has the |
| // most optimal set of operands. The first unsigned is a counter for |
| // voting, the second unsigned is the counter of lanes with instructions |
| // with same/alternate opcodes and same parent basic block. |
| MapVector<unsigned, std::pair<unsigned, unsigned>> HashMap; |
| // Try to be closer to the original results, if we have multiple lanes |
| // with same cost. If 2 lanes have the same cost, use the one with the |
| // lowest index. |
| for (int I = getNumLanes(); I > 0; --I) { |
| unsigned Lane = I - 1; |
| OperandsOrderData NumFreeOpsHash = |
| getMaxNumOperandsThatCanBeReordered(Lane); |
| // Compare the number of operands that can move and choose the one with |
| // the least number. |
| if (NumFreeOpsHash.NumOfAPOs < Min) { |
| Min = NumFreeOpsHash.NumOfAPOs; |
| SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; |
| HashMap.clear(); |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| } else if (NumFreeOpsHash.NumOfAPOs == Min && |
| NumFreeOpsHash.NumOpsWithSameOpcodeParent < SameOpNumber) { |
| // Select the most optimal lane in terms of number of operands that |
| // should be moved around. |
| SameOpNumber = NumFreeOpsHash.NumOpsWithSameOpcodeParent; |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| } else if (NumFreeOpsHash.NumOfAPOs == Min && |
| NumFreeOpsHash.NumOpsWithSameOpcodeParent == SameOpNumber) { |
| auto It = HashMap.find(NumFreeOpsHash.Hash); |
| if (It == HashMap.end()) |
| HashMap[NumFreeOpsHash.Hash] = std::make_pair(1, Lane); |
| else |
| ++It->second.first; |
| } |
| } |
| // Select the lane with the minimum counter. |
| unsigned BestLane = 0; |
| unsigned CntMin = UINT_MAX; |
| for (const auto &Data : reverse(HashMap)) { |
| if (Data.second.first < CntMin) { |
| CntMin = Data.second.first; |
| BestLane = Data.second.second; |
| } |
| } |
| return BestLane; |
| } |
| |
| /// Data structure that helps to reorder operands. |
| struct OperandsOrderData { |
| /// The best number of operands with the same APOs, which can be |
| /// reordered. |
| unsigned NumOfAPOs = UINT_MAX; |
| /// Number of operands with the same/alternate instruction opcode and |
| /// parent. |
| unsigned NumOpsWithSameOpcodeParent = 0; |
| /// Hash for the actual operands ordering. |
| /// Used to count operands, actually their position id and opcode |
| /// value. It is used in the voting mechanism to find the lane with the |
| /// least number of operands that can freely move about or less profitable |
| /// because it already has the most optimal set of operands. Can be |
| /// replaced with SmallVector<unsigned> instead but hash code is faster |
| /// and requires less memory. |
| unsigned Hash = 0; |
| }; |
| /// \returns the maximum number of operands that are allowed to be reordered |
| /// for \p Lane and the number of compatible instructions(with the same |
| /// parent/opcode). This is used as a heuristic for selecting the first lane |
| /// to start operand reordering. |
| OperandsOrderData getMaxNumOperandsThatCanBeReordered(unsigned Lane) const { |
| unsigned CntTrue = 0; |
| unsigned NumOperands = getNumOperands(); |
| // Operands with the same APO can be reordered. We therefore need to count |
| // how many of them we have for each APO, like this: Cnt[APO] = x. |
| // Since we only have two APOs, namely true and false, we can avoid using |
| // a map. Instead we can simply count the number of operands that |
| // correspond to one of them (in this case the 'true' APO), and calculate |
| // the other by subtracting it from the total number of operands. |
| // Operands with the same instruction opcode and parent are more |
| // profitable since we don't need to move them in many cases, with a high |
| // probability such lane already can be vectorized effectively. |
| bool AllUndefs = true; |
| unsigned NumOpsWithSameOpcodeParent = 0; |
| Instruction *OpcodeI = nullptr; |
| BasicBlock *Parent = nullptr; |
| unsigned Hash = 0; |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| const OperandData &OpData = getData(OpIdx, Lane); |
| if (OpData.APO) |
| ++CntTrue; |
| // Use Boyer-Moore majority voting for finding the majority opcode and |
| // the number of times it occurs. |
| if (auto *I = dyn_cast<Instruction>(OpData.V)) { |
| if (!OpcodeI || !getSameOpcode({OpcodeI, I}, TLI).getOpcode() || |
| I->getParent() != Parent) { |
| if (NumOpsWithSameOpcodeParent == 0) { |
| NumOpsWithSameOpcodeParent = 1; |
| OpcodeI = I; |
| Parent = I->getParent(); |
| } else { |
| --NumOpsWithSameOpcodeParent; |
| } |
| } else { |
| ++NumOpsWithSameOpcodeParent; |
| } |
| } |
| Hash = hash_combine( |
| Hash, hash_value((OpIdx + 1) * (OpData.V->getValueID() + 1))); |
| AllUndefs = AllUndefs && isa<UndefValue>(OpData.V); |
| } |
| if (AllUndefs) |
| return {}; |
| OperandsOrderData Data; |
| Data.NumOfAPOs = std::max(CntTrue, NumOperands - CntTrue); |
| Data.NumOpsWithSameOpcodeParent = NumOpsWithSameOpcodeParent; |
| Data.Hash = Hash; |
| return Data; |
| } |
| |
| /// Go through the instructions in VL and append their operands. |
| void appendOperandsOfVL(ArrayRef<Value *> VL) { |
| assert(!VL.empty() && "Bad VL"); |
| assert((empty() || VL.size() == getNumLanes()) && |
| "Expected same number of lanes"); |
| assert(isa<Instruction>(VL[0]) && "Expected instruction"); |
| unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands(); |
| OpsVec.resize(NumOperands); |
| unsigned NumLanes = VL.size(); |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| OpsVec[OpIdx].resize(NumLanes); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| assert(isa<Instruction>(VL[Lane]) && "Expected instruction"); |
| // Our tree has just 3 nodes: the root and two operands. |
| // It is therefore trivial to get the APO. We only need to check the |
| // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or |
| // RHS operand. The LHS operand of both add and sub is never attached |
| // to an inversese operation in the linearized form, therefore its APO |
| // is false. The RHS is true only if VL[Lane] is an inverse operation. |
| |
| // Since operand reordering is performed on groups of commutative |
| // operations or alternating sequences (e.g., +, -), we can safely |
| // tell the inverse operations by checking commutativity. |
| bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane])); |
| bool APO = (OpIdx == 0) ? false : IsInverseOperation; |
| OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx), |
| APO, false}; |
| } |
| } |
| } |
| |
| /// \returns the number of operands. |
| unsigned getNumOperands() const { return OpsVec.size(); } |
| |
| /// \returns the number of lanes. |
| unsigned getNumLanes() const { return OpsVec[0].size(); } |
| |
| /// \returns the operand value at \p OpIdx and \p Lane. |
| Value *getValue(unsigned OpIdx, unsigned Lane) const { |
| return getData(OpIdx, Lane).V; |
| } |
| |
| /// \returns true if the data structure is empty. |
| bool empty() const { return OpsVec.empty(); } |
| |
| /// Clears the data. |
| void clear() { OpsVec.clear(); } |
| |
| /// \Returns true if there are enough operands identical to \p Op to fill |
| /// the whole vector. |
| /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow. |
| bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) { |
| bool OpAPO = getData(OpIdx, Lane).APO; |
| for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) { |
| if (Ln == Lane) |
| continue; |
| // This is set to true if we found a candidate for broadcast at Lane. |
| bool FoundCandidate = false; |
| for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) { |
| OperandData &Data = getData(OpI, Ln); |
| if (Data.APO != OpAPO || Data.IsUsed) |
| continue; |
| if (Data.V == Op) { |
| FoundCandidate = true; |
| Data.IsUsed = true; |
| break; |
| } |
| } |
| if (!FoundCandidate) |
| return false; |
| } |
| return true; |
| } |
| |
| public: |
| /// Initialize with all the operands of the instruction vector \p RootVL. |
| VLOperands(ArrayRef<Value *> RootVL, const TargetLibraryInfo &TLI, |
| const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) |
| : TLI(TLI), DL(DL), SE(SE), R(R) { |
| // Append all the operands of RootVL. |
| appendOperandsOfVL(RootVL); |
| } |
| |
| /// \Returns a value vector with the operands across all lanes for the |
| /// opearnd at \p OpIdx. |
| ValueList getVL(unsigned OpIdx) const { |
| ValueList OpVL(OpsVec[OpIdx].size()); |
| assert(OpsVec[OpIdx].size() == getNumLanes() && |
| "Expected same num of lanes across all operands"); |
| for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane) |
| OpVL[Lane] = OpsVec[OpIdx][Lane].V; |
| return OpVL; |
| } |
| |
| // Performs operand reordering for 2 or more operands. |
| // The original operands are in OrigOps[OpIdx][Lane]. |
| // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'. |
| void reorder() { |
| unsigned NumOperands = getNumOperands(); |
| unsigned NumLanes = getNumLanes(); |
| // Each operand has its own mode. We are using this mode to help us select |
| // the instructions for each lane, so that they match best with the ones |
| // we have selected so far. |
| SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands); |
| |
| // This is a greedy single-pass algorithm. We are going over each lane |
| // once and deciding on the best order right away with no back-tracking. |
| // However, in order to increase its effectiveness, we start with the lane |
| // that has operands that can move the least. For example, given the |
| // following lanes: |
| // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd |
| // Lane 1 : A[1] = C[1] - B[1] // Visited 1st |
| // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd |
| // Lane 3 : A[3] = C[3] - B[3] // Visited 4th |
| // we will start at Lane 1, since the operands of the subtraction cannot |
| // be reordered. Then we will visit the rest of the lanes in a circular |
| // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3. |
| |
| // Find the first lane that we will start our search from. |
| unsigned FirstLane = getBestLaneToStartReordering(); |
| |
| // Initialize the modes. |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| Value *OpLane0 = getValue(OpIdx, FirstLane); |
| // Keep track if we have instructions with all the same opcode on one |
| // side. |
| if (isa<LoadInst>(OpLane0)) |
| ReorderingModes[OpIdx] = ReorderingMode::Load; |
| else if (isa<Instruction>(OpLane0)) { |
| // Check if OpLane0 should be broadcast. |
| if (shouldBroadcast(OpLane0, OpIdx, FirstLane)) |
| ReorderingModes[OpIdx] = ReorderingMode::Splat; |
| else |
| ReorderingModes[OpIdx] = ReorderingMode::Opcode; |
| } |
| else if (isa<Constant>(OpLane0)) |
| ReorderingModes[OpIdx] = ReorderingMode::Constant; |
| else if (isa<Argument>(OpLane0)) |
| // Our best hope is a Splat. It may save some cost in some cases. |
| ReorderingModes[OpIdx] = ReorderingMode::Splat; |
| else |
| // NOTE: This should be unreachable. |
| ReorderingModes[OpIdx] = ReorderingMode::Failed; |
| } |
| |
| // Check that we don't have same operands. No need to reorder if operands |
| // are just perfect diamond or shuffled diamond match. Do not do it only |
| // for possible broadcasts or non-power of 2 number of scalars (just for |
| // now). |
| auto &&SkipReordering = [this]() { |
| SmallPtrSet<Value *, 4> UniqueValues; |
| ArrayRef<OperandData> Op0 = OpsVec.front(); |
| for (const OperandData &Data : Op0) |
| UniqueValues.insert(Data.V); |
| for (ArrayRef<OperandData> Op : drop_begin(OpsVec, 1)) { |
| if (any_of(Op, [&UniqueValues](const OperandData &Data) { |
| return !UniqueValues.contains(Data.V); |
| })) |
| return false; |
| } |
| // TODO: Check if we can remove a check for non-power-2 number of |
| // scalars after full support of non-power-2 vectorization. |
| return UniqueValues.size() != 2 && isPowerOf2_32(UniqueValues.size()); |
| }; |
| |
| // If the initial strategy fails for any of the operand indexes, then we |
| // perform reordering again in a second pass. This helps avoid assigning |
| // high priority to the failed strategy, and should improve reordering for |
| // the non-failed operand indexes. |
| for (int Pass = 0; Pass != 2; ++Pass) { |
| // Check if no need to reorder operands since they're are perfect or |
| // shuffled diamond match. |
| // Need to to do it to avoid extra external use cost counting for |
| // shuffled matches, which may cause regressions. |
| if (SkipReordering()) |
| break; |
| // Skip the second pass if the first pass did not fail. |
| bool StrategyFailed = false; |
| // Mark all operand data as free to use. |
| clearUsed(); |
| // We keep the original operand order for the FirstLane, so reorder the |
| // rest of the lanes. We are visiting the nodes in a circular fashion, |
| // using FirstLane as the center point and increasing the radius |
| // distance. |
| SmallVector<SmallVector<Value *, 2>> MainAltOps(NumOperands); |
| for (unsigned I = 0; I < NumOperands; ++I) |
| MainAltOps[I].push_back(getData(I, FirstLane).V); |
| |
| for (unsigned Distance = 1; Distance != NumLanes; ++Distance) { |
| // Visit the lane on the right and then the lane on the left. |
| for (int Direction : {+1, -1}) { |
| int Lane = FirstLane + Direction * Distance; |
| if (Lane < 0 || Lane >= (int)NumLanes) |
| continue; |
| int LastLane = Lane - Direction; |
| assert(LastLane >= 0 && LastLane < (int)NumLanes && |
| "Out of bounds"); |
| // Look for a good match for each operand. |
| for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) { |
| // Search for the operand that matches SortedOps[OpIdx][Lane-1]. |
| std::optional<unsigned> BestIdx = getBestOperand( |
| OpIdx, Lane, LastLane, ReorderingModes, MainAltOps[OpIdx]); |
| // By not selecting a value, we allow the operands that follow to |
| // select a better matching value. We will get a non-null value in |
| // the next run of getBestOperand(). |
| if (BestIdx) { |
| // Swap the current operand with the one returned by |
| // getBestOperand(). |
| swap(OpIdx, *BestIdx, Lane); |
| } else { |
| // We failed to find a best operand, set mode to 'Failed'. |
| ReorderingModes[OpIdx] = ReorderingMode::Failed; |
| // Enable the second pass. |
| StrategyFailed = true; |
| } |
| // Try to get the alternate opcode and follow it during analysis. |
| if (MainAltOps[OpIdx].size() != 2) { |
| OperandData &AltOp = getData(OpIdx, Lane); |
| InstructionsState OpS = |
| getSameOpcode({MainAltOps[OpIdx].front(), AltOp.V}, TLI); |
| if (OpS.getOpcode() && OpS.isAltShuffle()) |
| MainAltOps[OpIdx].push_back(AltOp.V); |
| } |
| } |
| } |
| } |
| // Skip second pass if the strategy did not fail. |
| if (!StrategyFailed) |
| break; |
| } |
| } |
| |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) { |
| switch (RMode) { |
| case ReorderingMode::Load: |
| return "Load"; |
| case ReorderingMode::Opcode: |
| return "Opcode"; |
| case ReorderingMode::Constant: |
| return "Constant"; |
| case ReorderingMode::Splat: |
| return "Splat"; |
| case ReorderingMode::Failed: |
| return "Failed"; |
| } |
| llvm_unreachable("Unimplemented Reordering Type"); |
| } |
| |
| LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode, |
| raw_ostream &OS) { |
| return OS << getModeStr(RMode); |
| } |
| |
| /// Debug print. |
| LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) { |
| printMode(RMode, dbgs()); |
| } |
| |
| friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) { |
| return printMode(RMode, OS); |
| } |
| |
| LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const { |
| const unsigned Indent = 2; |
| unsigned Cnt = 0; |
| for (const OperandDataVec &OpDataVec : OpsVec) { |
| OS << "Operand " << Cnt++ << "\n"; |
| for (const OperandData &OpData : OpDataVec) { |
| OS.indent(Indent) << "{"; |
| if (Value *V = OpData.V) |
| OS << *V; |
| else |
| OS << "null"; |
| OS << ", APO:" << OpData.APO << "}\n"; |
| } |
| OS << "\n"; |
| } |
| return OS; |
| } |
| |
| /// Debug print. |
| LLVM_DUMP_METHOD void dump() const { print(dbgs()); } |
| #endif |
| }; |
| |
| /// Evaluate each pair in \p Candidates and return index into \p Candidates |
| /// for a pair which have highest score deemed to have best chance to form |
| /// root of profitable tree to vectorize. Return std::nullopt if no candidate |
| /// scored above the LookAheadHeuristics::ScoreFail. \param Limit Lower limit |
| /// of the cost, considered to be good enough score. |
| std::optional<int> |
| findBestRootPair(ArrayRef<std::pair<Value *, Value *>> Candidates, |
| int Limit = LookAheadHeuristics::ScoreFail) { |
| LookAheadHeuristics LookAhead(*TLI, *DL, *SE, *this, /*NumLanes=*/2, |
| RootLookAheadMaxDepth); |
| int BestScore = Limit; |
| std::optional<int> Index; |
| for (int I : seq<int>(0, Candidates.size())) { |
| int Score = LookAhead.getScoreAtLevelRec(Candidates[I].first, |
| Candidates[I].second, |
| /*U1=*/nullptr, /*U2=*/nullptr, |
| /*Level=*/1, std::nullopt); |
| if (Score > BestScore) { |
| BestScore = Score; |
| Index = I; |
| } |
| } |
| return Index; |
| } |
| |
| /// Checks if the instruction is marked for deletion. |
| bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); } |
| |
| /// Removes an instruction from its block and eventually deletes it. |
| /// It's like Instruction::eraseFromParent() except that the actual deletion |
| /// is delayed until BoUpSLP is destructed. |
| void eraseInstruction(Instruction *I) { |
| DeletedInstructions.insert(I); |
| } |
| |
| /// Checks if the instruction was already analyzed for being possible |
| /// reduction root. |
| bool isAnalyzedReductionRoot(Instruction *I) const { |
| return AnalyzedReductionsRoots.count(I); |
| } |
| /// Register given instruction as already analyzed for being possible |
| /// reduction root. |
| void analyzedReductionRoot(Instruction *I) { |
| AnalyzedReductionsRoots.insert(I); |
| } |
| /// Checks if the provided list of reduced values was checked already for |
| /// vectorization. |
| bool areAnalyzedReductionVals(ArrayRef<Value *> VL) const { |
| return AnalyzedReductionVals.contains(hash_value(VL)); |
| } |
| /// Adds the list of reduced values to list of already checked values for the |
| /// vectorization. |
| void analyzedReductionVals(ArrayRef<Value *> VL) { |
| AnalyzedReductionVals.insert(hash_value(VL)); |
| } |
| /// Clear the list of the analyzed reduction root instructions. |
| void clearReductionData() { |
| AnalyzedReductionsRoots.clear(); |
| AnalyzedReductionVals.clear(); |
| } |
| /// Checks if the given value is gathered in one of the nodes. |
| bool isAnyGathered(const SmallDenseSet<Value *> &Vals) const { |
| return any_of(MustGather, [&](Value *V) { return Vals.contains(V); }); |
| } |
| |
| /// Check if the value is vectorized in the tree. |
| bool isVectorized(Value *V) const { return getTreeEntry(V); } |
| |
| ~BoUpSLP(); |
| |
| private: |
| /// Check if the operands on the edges \p Edges of the \p UserTE allows |
| /// reordering (i.e. the operands can be reordered because they have only one |
| /// user and reordarable). |
| /// \param ReorderableGathers List of all gather nodes that require reordering |
| /// (e.g., gather of extractlements or partially vectorizable loads). |
| /// \param GatherOps List of gather operand nodes for \p UserTE that require |
| /// reordering, subset of \p NonVectorized. |
| bool |
| canReorderOperands(TreeEntry *UserTE, |
| SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, |
| ArrayRef<TreeEntry *> ReorderableGathers, |
| SmallVectorImpl<TreeEntry *> &GatherOps); |
| |
| /// Checks if the given \p TE is a gather node with clustered reused scalars |
| /// and reorders it per given \p Mask. |
| void reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const; |
| |
| /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, |
| /// if any. If it is not vectorized (gather node), returns nullptr. |
| TreeEntry *getVectorizedOperand(TreeEntry *UserTE, unsigned OpIdx) { |
| ArrayRef<Value *> VL = UserTE->getOperand(OpIdx); |
| TreeEntry *TE = nullptr; |
| const auto *It = find_if(VL, [this, &TE](Value *V) { |
| TE = getTreeEntry(V); |
| return TE; |
| }); |
| if (It != VL.end() && TE->isSame(VL)) |
| return TE; |
| return nullptr; |
| } |
| |
| /// Returns vectorized operand \p OpIdx of the node \p UserTE from the graph, |
| /// if any. If it is not vectorized (gather node), returns nullptr. |
| const TreeEntry *getVectorizedOperand(const TreeEntry *UserTE, |
| unsigned OpIdx) const { |
| return const_cast<BoUpSLP *>(this)->getVectorizedOperand( |
| const_cast<TreeEntry *>(UserTE), OpIdx); |
| } |
| |
| /// Checks if all users of \p I are the part of the vectorization tree. |
| bool areAllUsersVectorized(Instruction *I, |
| ArrayRef<Value *> VectorizedVals) const; |
| |
| /// Return information about the vector formed for the specified index |
| /// of a vector of (the same) instruction. |
| TargetTransformInfo::OperandValueInfo getOperandInfo(ArrayRef<Value *> VL, |
| unsigned OpIdx); |
| |
| /// \returns the cost of the vectorizable entry. |
| InstructionCost getEntryCost(const TreeEntry *E, |
| ArrayRef<Value *> VectorizedVals, |
| SmallPtrSetImpl<Value *> &CheckedExtracts); |
| |
| /// This is the recursive part of buildTree. |
| void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, |
| const EdgeInfo &EI); |
| |
| /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can |
| /// be vectorized to use the original vector (or aggregate "bitcast" to a |
| /// vector) and sets \p CurrentOrder to the identity permutation; otherwise |
| /// returns false, setting \p CurrentOrder to either an empty vector or a |
| /// non-identity permutation that allows to reuse extract instructions. |
| bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, |
| SmallVectorImpl<unsigned> &CurrentOrder) const; |
| |
| /// Vectorize a single entry in the tree. |
| Value *vectorizeTree(TreeEntry *E); |
| |
| /// Vectorize a single entry in the tree, the \p Idx-th operand of the entry |
| /// \p E. |
| Value *vectorizeOperand(TreeEntry *E, unsigned NodeIdx); |
| |
| /// Create a new vector from a list of scalar values. Produces a sequence |
| /// which exploits values reused across lanes, and arranges the inserts |
| /// for ease of later optimization. |
| template <typename BVTy, typename ResTy, typename... Args> |
| ResTy processBuildVector(const TreeEntry *E, Args &...Params); |
| |
| /// Create a new vector from a list of scalar values. Produces a sequence |
| /// which exploits values reused across lanes, and arranges the inserts |
| /// for ease of later optimization. |
| Value *createBuildVector(const TreeEntry *E); |
| |
| /// Returns the instruction in the bundle, which can be used as a base point |
| /// for scheduling. Usually it is the last instruction in the bundle, except |
| /// for the case when all operands are external (in this case, it is the first |
| /// instruction in the list). |
| Instruction &getLastInstructionInBundle(const TreeEntry *E); |
| |
| /// Checks if the gathered \p VL can be represented as shuffle(s) of previous |
| /// tree entries. |
| /// \param TE Tree entry checked for permutation. |
| /// \param VL List of scalars (a subset of the TE scalar), checked for |
| /// permutations. |
| /// \returns ShuffleKind, if gathered values can be represented as shuffles of |
| /// previous tree entries. \p Mask is filled with the shuffle mask. |
| std::optional<TargetTransformInfo::ShuffleKind> |
| isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, |
| SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<const TreeEntry *> &Entries); |
| |
| /// \returns the scalarization cost for this list of values. Assuming that |
| /// this subtree gets vectorized, we may need to extract the values from the |
| /// roots. This method calculates the cost of extracting the values. |
| /// \param ForPoisonSrc true if initial vector is poison, false otherwise. |
| InstructionCost getGatherCost(ArrayRef<Value *> VL, bool ForPoisonSrc) const; |
| |
| /// Set the Builder insert point to one after the last instruction in |
| /// the bundle |
| void setInsertPointAfterBundle(const TreeEntry *E); |
| |
| /// \returns a vector from a collection of scalars in \p VL. if \p Root is not |
| /// specified, the starting vector value is poison. |
| Value *gather(ArrayRef<Value *> VL, Value *Root); |
| |
| /// \returns whether the VectorizableTree is fully vectorizable and will |
| /// be beneficial even the tree height is tiny. |
| bool isFullyVectorizableTinyTree(bool ForReduction) const; |
| |
| /// Reorder commutative or alt operands to get better probability of |
| /// generating vectorized code. |
| static void reorderInputsAccordingToOpcode( |
| ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, |
| SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, |
| const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R); |
| |
| /// Helper for `findExternalStoreUsersReorderIndices()`. It iterates over the |
| /// users of \p TE and collects the stores. It returns the map from the store |
| /// pointers to the collected stores. |
| DenseMap<Value *, SmallVector<StoreInst *, 4>> |
| collectUserStores(const BoUpSLP::TreeEntry *TE) const; |
| |
| /// Helper for `findExternalStoreUsersReorderIndices()`. It checks if the |
| /// stores in \p StoresVec can form a vector instruction. If so it returns true |
| /// and populates \p ReorderIndices with the shuffle indices of the the stores |
| /// when compared to the sorted vector. |
| bool canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, |
| OrdersType &ReorderIndices) const; |
| |
| /// Iterates through the users of \p TE, looking for scalar stores that can be |
| /// potentially vectorized in a future SLP-tree. If found, it keeps track of |
| /// their order and builds an order index vector for each store bundle. It |
| /// returns all these order vectors found. |
| /// We run this after the tree has formed, otherwise we may come across user |
| /// instructions that are not yet in the tree. |
| SmallVector<OrdersType, 1> |
| findExternalStoreUsersReorderIndices(TreeEntry *TE) const; |
| |
| struct TreeEntry { |
| using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>; |
| TreeEntry(VecTreeTy &Container) : Container(Container) {} |
| |
| /// \returns true if the scalars in VL are equal to this entry. |
| bool isSame(ArrayRef<Value *> VL) const { |
| auto &&IsSame = [VL](ArrayRef<Value *> Scalars, ArrayRef<int> Mask) { |
| if (Mask.size() != VL.size() && VL.size() == Scalars.size()) |
| return std::equal(VL.begin(), VL.end(), Scalars.begin()); |
| return VL.size() == Mask.size() && |
| std::equal(VL.begin(), VL.end(), Mask.begin(), |
| [Scalars](Value *V, int Idx) { |
| return (isa<UndefValue>(V) && |
| Idx == PoisonMaskElem) || |
| (Idx != PoisonMaskElem && V == Scalars[Idx]); |
| }); |
| }; |
| if (!ReorderIndices.empty()) { |
| // TODO: implement matching if the nodes are just reordered, still can |
| // treat the vector as the same if the list of scalars matches VL |
| // directly, without reordering. |
| SmallVector<int> Mask; |
| inversePermutation(ReorderIndices, Mask); |
| if (VL.size() == Scalars.size()) |
| return IsSame(Scalars, Mask); |
| if (VL.size() == ReuseShuffleIndices.size()) { |
| ::addMask(Mask, ReuseShuffleIndices); |
| return IsSame(Scalars, Mask); |
| } |
| return false; |
| } |
| return IsSame(Scalars, ReuseShuffleIndices); |
| } |
| |
| bool isOperandGatherNode(const EdgeInfo &UserEI) const { |
| return State == TreeEntry::NeedToGather && |
| UserTreeIndices.front().EdgeIdx == UserEI.EdgeIdx && |
| UserTreeIndices.front().UserTE == UserEI.UserTE; |
| } |
| |
| /// \returns true if current entry has same operands as \p TE. |
| bool hasEqualOperands(const TreeEntry &TE) const { |
| if (TE.getNumOperands() != getNumOperands()) |
| return false; |
| SmallBitVector Used(getNumOperands()); |
| for (unsigned I = 0, E = getNumOperands(); I < E; ++I) { |
| unsigned PrevCount = Used.count(); |
| for (unsigned K = 0; K < E; ++K) { |
| if (Used.test(K)) |
| continue; |
| if (getOperand(K) == TE.getOperand(I)) { |
| Used.set(K); |
| break; |
| } |
| } |
| // Check if we actually found the matching operand. |
| if (PrevCount == Used.count()) |
| return false; |
| } |
| return true; |
| } |
| |
| /// \return Final vectorization factor for the node. Defined by the total |
| /// number of vectorized scalars, including those, used several times in the |
| /// entry and counted in the \a ReuseShuffleIndices, if any. |
| unsigned getVectorFactor() const { |
| if (!ReuseShuffleIndices.empty()) |
| return ReuseShuffleIndices.size(); |
| return Scalars.size(); |
| }; |
| |
| /// A vector of scalars. |
| ValueList Scalars; |
| |
| /// The Scalars are vectorized into this value. It is initialized to Null. |
| WeakTrackingVH VectorizedValue = nullptr; |
| |
| /// Do we need to gather this sequence or vectorize it |
| /// (either with vector instruction or with scatter/gather |
| /// intrinsics for store/load)? |
| enum EntryState { Vectorize, ScatterVectorize, NeedToGather }; |
| EntryState State; |
| |
| /// Does this sequence require some shuffling? |
| SmallVector<int, 4> ReuseShuffleIndices; |
| |
| /// Does this entry require reordering? |
| SmallVector<unsigned, 4> ReorderIndices; |
| |
| /// Points back to the VectorizableTree. |
| /// |
| /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has |
| /// to be a pointer and needs to be able to initialize the child iterator. |
| /// Thus we need a reference back to the container to translate the indices |
| /// to entries. |
| VecTreeTy &Container; |
| |
| /// The TreeEntry index containing the user of this entry. We can actually |
| /// have multiple users so the data structure is not truly a tree. |
| SmallVector<EdgeInfo, 1> UserTreeIndices; |
| |
| /// The index of this treeEntry in VectorizableTree. |
| int Idx = -1; |
| |
| private: |
| /// The operands of each instruction in each lane Operands[op_index][lane]. |
| /// Note: This helps avoid the replication of the code that performs the |
| /// reordering of operands during buildTree_rec() and vectorizeTree(). |
| SmallVector<ValueList, 2> Operands; |
| |
| /// The main/alternate instruction. |
| Instruction *MainOp = nullptr; |
| Instruction *AltOp = nullptr; |
| |
| public: |
| /// Set this bundle's \p OpIdx'th operand to \p OpVL. |
| void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) { |
| if (Operands.size() < OpIdx + 1) |
| Operands.resize(OpIdx + 1); |
| assert(Operands[OpIdx].empty() && "Already resized?"); |
| assert(OpVL.size() <= Scalars.size() && |
| "Number of operands is greater than the number of scalars."); |
| Operands[OpIdx].resize(OpVL.size()); |
| copy(OpVL, Operands[OpIdx].begin()); |
| } |
| |
| /// Set the operands of this bundle in their original order. |
| void setOperandsInOrder() { |
| assert(Operands.empty() && "Already initialized?"); |
| auto *I0 = cast<Instruction>(Scalars[0]); |
| Operands.resize(I0->getNumOperands()); |
| unsigned NumLanes = Scalars.size(); |
| for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) { |
| Operands[OpIdx].resize(NumLanes); |
| for (unsigned Lane = 0; Lane != NumLanes; ++Lane) { |
| auto *I = cast<Instruction>(Scalars[Lane]); |
| assert(I->getNumOperands() == NumOperands && |
| "Expected same number of operands"); |
| Operands[OpIdx][Lane] = I->getOperand(OpIdx); |
| } |
| } |
| } |
| |
| /// Reorders operands of the node to the given mask \p Mask. |
| void reorderOperands(ArrayRef<int> Mask) { |
| for (ValueList &Operand : Operands) |
| reorderScalars(Operand, Mask); |
| } |
| |
| /// \returns the \p OpIdx operand of this TreeEntry. |
| ValueList &getOperand(unsigned OpIdx) { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| return Operands[OpIdx]; |
| } |
| |
| /// \returns the \p OpIdx operand of this TreeEntry. |
| ArrayRef<Value *> getOperand(unsigned OpIdx) const { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| return Operands[OpIdx]; |
| } |
| |
| /// \returns the number of operands. |
| unsigned getNumOperands() const { return Operands.size(); } |
| |
| /// \return the single \p OpIdx operand. |
| Value *getSingleOperand(unsigned OpIdx) const { |
| assert(OpIdx < Operands.size() && "Off bounds"); |
| assert(!Operands[OpIdx].empty() && "No operand available"); |
| return Operands[OpIdx][0]; |
| } |
| |
| /// Some of the instructions in the list have alternate opcodes. |
| bool isAltShuffle() const { return MainOp != AltOp; } |
| |
| bool isOpcodeOrAlt(Instruction *I) const { |
| unsigned CheckedOpcode = I->getOpcode(); |
| return (getOpcode() == CheckedOpcode || |
| getAltOpcode() == CheckedOpcode); |
| } |
| |
| /// Chooses the correct key for scheduling data. If \p Op has the same (or |
| /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is |
| /// \p OpValue. |
| Value *isOneOf(Value *Op) const { |
| auto *I = dyn_cast<Instruction>(Op); |
| if (I && isOpcodeOrAlt(I)) |
| return Op; |
| return MainOp; |
| } |
| |
| void setOperations(const InstructionsState &S) { |
| MainOp = S.MainOp; |
| AltOp = S.AltOp; |
| } |
| |
| Instruction *getMainOp() const { |
| return MainOp; |
| } |
| |
| Instruction *getAltOp() const { |
| return AltOp; |
| } |
| |
| /// The main/alternate opcodes for the list of instructions. |
| unsigned getOpcode() const { |
| return MainOp ? MainOp->getOpcode() : 0; |
| } |
| |
| unsigned getAltOpcode() const { |
| return AltOp ? AltOp->getOpcode() : 0; |
| } |
| |
| /// When ReuseReorderShuffleIndices is empty it just returns position of \p |
| /// V within vector of Scalars. Otherwise, try to remap on its reuse index. |
| int findLaneForValue(Value *V) const { |
| unsigned FoundLane = std::distance(Scalars.begin(), find(Scalars, V)); |
| assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); |
| if (!ReorderIndices.empty()) |
| FoundLane = ReorderIndices[FoundLane]; |
| assert(FoundLane < Scalars.size() && "Couldn't find extract lane"); |
| if (!ReuseShuffleIndices.empty()) { |
| FoundLane = std::distance(ReuseShuffleIndices.begin(), |
| find(ReuseShuffleIndices, FoundLane)); |
| } |
| return FoundLane; |
| } |
| |
| #ifndef NDEBUG |
| /// Debug printer. |
| LLVM_DUMP_METHOD void dump() const { |
| dbgs() << Idx << ".\n"; |
| for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) { |
| dbgs() << "Operand " << OpI << ":\n"; |
| for (const Value *V : Operands[OpI]) |
| dbgs().indent(2) << *V << "\n"; |
| } |
| dbgs() << "Scalars: \n"; |
| for (Value *V : Scalars) |
| dbgs().indent(2) << *V << "\n"; |
| dbgs() << "State: "; |
| switch (State) { |
| case Vectorize: |
| dbgs() << "Vectorize\n"; |
| break; |
| case ScatterVectorize: |
| dbgs() << "ScatterVectorize\n"; |
| break; |
| case NeedToGather: |
| dbgs() << "NeedToGather\n"; |
| break; |
| } |
| dbgs() << "MainOp: "; |
| if (MainOp) |
| dbgs() << *MainOp << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "AltOp: "; |
| if (AltOp) |
| dbgs() << *AltOp << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "VectorizedValue: "; |
| if (VectorizedValue) |
| dbgs() << *VectorizedValue << "\n"; |
| else |
| dbgs() << "NULL\n"; |
| dbgs() << "ReuseShuffleIndices: "; |
| if (ReuseShuffleIndices.empty()) |
| dbgs() << "Empty"; |
| else |
| for (int ReuseIdx : ReuseShuffleIndices) |
| dbgs() << ReuseIdx << ", "; |
| dbgs() << "\n"; |
| dbgs() << "ReorderIndices: "; |
| for (unsigned ReorderIdx : ReorderIndices) |
| dbgs() << ReorderIdx << ", "; |
| dbgs() << "\n"; |
| dbgs() << "UserTreeIndices: "; |
| for (const auto &EInfo : UserTreeIndices) |
| dbgs() << EInfo << ", "; |
| dbgs() << "\n"; |
| } |
| #endif |
| }; |
| |
| #ifndef NDEBUG |
| void dumpTreeCosts(const TreeEntry *E, InstructionCost ReuseShuffleCost, |
| InstructionCost VecCost, InstructionCost ScalarCost, |
| StringRef Banner) const { |
| dbgs() << "SLP: " << Banner << ":\n"; |
| E->dump(); |
| dbgs() << "SLP: Costs:\n"; |
| dbgs() << "SLP: ReuseShuffleCost = " << ReuseShuffleCost << "\n"; |
| dbgs() << "SLP: VectorCost = " << VecCost << "\n"; |
| dbgs() << "SLP: ScalarCost = " << ScalarCost << "\n"; |
| dbgs() << "SLP: ReuseShuffleCost + VecCost - ScalarCost = " |
| << ReuseShuffleCost + VecCost - ScalarCost << "\n"; |
| } |
| #endif |
| |
| /// Create a new VectorizableTree entry. |
| TreeEntry *newTreeEntry(ArrayRef<Value *> VL, |
| std::optional<ScheduleData *> Bundle, |
| const InstructionsState &S, |
| const EdgeInfo &UserTreeIdx, |
| ArrayRef<int> ReuseShuffleIndices = std::nullopt, |
| ArrayRef<unsigned> ReorderIndices = std::nullopt) { |
| TreeEntry::EntryState EntryState = |
| Bundle ? TreeEntry::Vectorize : TreeEntry::NeedToGather; |
| return newTreeEntry(VL, EntryState, Bundle, S, UserTreeIdx, |
| ReuseShuffleIndices, ReorderIndices); |
| } |
| |
| TreeEntry *newTreeEntry(ArrayRef<Value *> VL, |
| TreeEntry::EntryState EntryState, |
| std::optional<ScheduleData *> Bundle, |
| const InstructionsState &S, |
| const EdgeInfo &UserTreeIdx, |
| ArrayRef<int> ReuseShuffleIndices = std::nullopt, |
| ArrayRef<unsigned> ReorderIndices = std::nullopt) { |
| assert(((!Bundle && EntryState == TreeEntry::NeedToGather) || |
| (Bundle && EntryState != TreeEntry::NeedToGather)) && |
| "Need to vectorize gather entry?"); |
| VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree)); |
| TreeEntry *Last = VectorizableTree.back().get(); |
| Last->Idx = VectorizableTree.size() - 1; |
| Last->State = EntryState; |
| Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(), |
| ReuseShuffleIndices.end()); |
| if (ReorderIndices.empty()) { |
| Last->Scalars.assign(VL.begin(), VL.end()); |
| Last->setOperations(S); |
| } else { |
| // Reorder scalars and build final mask. |
| Last->Scalars.assign(VL.size(), nullptr); |
| transform(ReorderIndices, Last->Scalars.begin(), |
| [VL](unsigned Idx) -> Value * { |
| if (Idx >= VL.size()) |
| return UndefValue::get(VL.front()->getType()); |
| return VL[Idx]; |
| }); |
| InstructionsState S = getSameOpcode(Last->Scalars, *TLI); |
| Last->setOperations(S); |
| Last->ReorderIndices.append(ReorderIndices.begin(), ReorderIndices.end()); |
| } |
| if (Last->State != TreeEntry::NeedToGather) { |
| for (Value *V : VL) { |
| assert(!getTreeEntry(V) && "Scalar already in tree!"); |
| ScalarToTreeEntry[V] = Last; |
| } |
| // Update the scheduler bundle to point to this TreeEntry. |
| ScheduleData *BundleMember = *Bundle; |
| assert((BundleMember || isa<PHINode>(S.MainOp) || |
| isVectorLikeInstWithConstOps(S.MainOp) || |
| doesNotNeedToSchedule(VL)) && |
| "Bundle and VL out of sync"); |
| if (BundleMember) { |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| assert(BundleMember && "Unexpected end of bundle."); |
| BundleMember->TE = Last; |
| BundleMember = BundleMember->NextInBundle; |
| } |
| } |
| assert(!BundleMember && "Bundle and VL out of sync"); |
| } else { |
| MustGather.insert(VL.begin(), VL.end()); |
| } |
| |
| if (UserTreeIdx.UserTE) |
| Last->UserTreeIndices.push_back(UserTreeIdx); |
| |
| return Last; |
| } |
| |
| /// -- Vectorization State -- |
| /// Holds all of the tree entries. |
| TreeEntry::VecTreeTy VectorizableTree; |
| |
| #ifndef NDEBUG |
| /// Debug printer. |
| LLVM_DUMP_METHOD void dumpVectorizableTree() const { |
| for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) { |
| VectorizableTree[Id]->dump(); |
| dbgs() << "\n"; |
| } |
| } |
| #endif |
| |
| TreeEntry *getTreeEntry(Value *V) { return ScalarToTreeEntry.lookup(V); } |
| |
| const TreeEntry *getTreeEntry(Value *V) const { |
| return ScalarToTreeEntry.lookup(V); |
| } |
| |
| /// Maps a specific scalar to its tree entry. |
| SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry; |
| |
| /// Maps a value to the proposed vectorizable size. |
| SmallDenseMap<Value *, unsigned> InstrElementSize; |
| |
| /// A list of scalars that we found that we need to keep as scalars. |
| ValueSet MustGather; |
| |
| /// A map between the vectorized entries and the last instructions in the |
| /// bundles. The bundles are built in use order, not in the def order of the |
| /// instructions. So, we cannot rely directly on the last instruction in the |
| /// bundle being the last instruction in the program order during |
| /// vectorization process since the basic blocks are affected, need to |
| /// pre-gather them before. |
| DenseMap<const TreeEntry *, Instruction *> EntryToLastInstruction; |
| |
| /// List of gather nodes, depending on other gather/vector nodes, which should |
| /// be emitted after the vector instruction emission process to correctly |
| /// handle order of the vector instructions and shuffles. |
| SetVector<const TreeEntry *> PostponedGathers; |
| |
| using ValueToGatherNodesMap = |
| DenseMap<Value *, SmallPtrSet<const TreeEntry *, 4>>; |
| ValueToGatherNodesMap ValueToGatherNodes; |
| |
| /// This POD struct describes one external user in the vectorized tree. |
| struct ExternalUser { |
| ExternalUser(Value *S, llvm::User *U, int L) |
| : Scalar(S), User(U), Lane(L) {} |
| |
| // Which scalar in our function. |
| Value *Scalar; |
| |
| // Which user that uses the scalar. |
| llvm::User *User; |
| |
| // Which lane does the scalar belong to. |
| int Lane; |
| }; |
| using UserList = SmallVector<ExternalUser, 16>; |
| |
| /// Checks if two instructions may access the same memory. |
| /// |
| /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it |
| /// is invariant in the calling loop. |
| bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, |
| Instruction *Inst2) { |
| // First check if the result is already in the cache. |
| AliasCacheKey key = std::make_pair(Inst1, Inst2); |
| std::optional<bool> &result = AliasCache[key]; |
| if (result) { |
| return *result; |
| } |
| bool aliased = true; |
| if (Loc1.Ptr && isSimple(Inst1)) |
| aliased = isModOrRefSet(BatchAA.getModRefInfo(Inst2, Loc1)); |
| // Store the result in the cache. |
| result = aliased; |
| return aliased; |
| } |
| |
| using AliasCacheKey = std::pair<Instruction *, Instruction *>; |
| |
| /// Cache for alias results. |
| /// TODO: consider moving this to the AliasAnalysis itself. |
| DenseMap<AliasCacheKey, std::optional<bool>> AliasCache; |
| |
| // Cache for pointerMayBeCaptured calls inside AA. This is preserved |
| // globally through SLP because we don't perform any action which |
| // invalidates capture results. |
| BatchAAResults BatchAA; |
| |
| /// Temporary store for deleted instructions. Instructions will be deleted |
| /// eventually when the BoUpSLP is destructed. The deferral is required to |
| /// ensure that there are no incorrect collisions in the AliasCache, which |
| /// can happen if a new instruction is allocated at the same address as a |
| /// previously deleted instruction. |
| DenseSet<Instruction *> DeletedInstructions; |
| |
| /// Set of the instruction, being analyzed already for reductions. |
| SmallPtrSet<Instruction *, 16> AnalyzedReductionsRoots; |
| |
| /// Set of hashes for the list of reduction values already being analyzed. |
| DenseSet<size_t> AnalyzedReductionVals; |
| |
| /// A list of values that need to extracted out of the tree. |
| /// This list holds pairs of (Internal Scalar : External User). External User |
| /// can be nullptr, it means that this Internal Scalar will be used later, |
| /// after vectorization. |
| UserList ExternalUses; |
| |
| /// Values used only by @llvm.assume calls. |
| SmallPtrSet<const Value *, 32> EphValues; |
| |
| /// Holds all of the instructions that we gathered, shuffle instructions and |
| /// extractelements. |
| SetVector<Instruction *> GatherShuffleExtractSeq; |
| |
| /// A list of blocks that we are going to CSE. |
| SetVector<BasicBlock *> CSEBlocks; |
| |
| /// Contains all scheduling relevant data for an instruction. |
| /// A ScheduleData either represents a single instruction or a member of an |
| /// instruction bundle (= a group of instructions which is combined into a |
| /// vector instruction). |
| struct ScheduleData { |
| // The initial value for the dependency counters. It means that the |
| // dependencies are not calculated yet. |
| enum { InvalidDeps = -1 }; |
| |
| ScheduleData() = default; |
| |
| void init(int BlockSchedulingRegionID, Value *OpVal) { |
| FirstInBundle = this; |
| NextInBundle = nullptr; |
| NextLoadStore = nullptr; |
| IsScheduled = false; |
| SchedulingRegionID = BlockSchedulingRegionID; |
| clearDependencies(); |
| OpValue = OpVal; |
| TE = nullptr; |
| } |
| |
| /// Verify basic self consistency properties |
| void verify() { |
| if (hasValidDependencies()) { |
| assert(UnscheduledDeps <= Dependencies && "invariant"); |
| } else { |
| assert(UnscheduledDeps == Dependencies && "invariant"); |
| } |
| |
| if (IsScheduled) { |
| assert(isSchedulingEntity() && |
| "unexpected scheduled state"); |
| for (const ScheduleData *BundleMember = this; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| assert(BundleMember->hasValidDependencies() && |
| BundleMember->UnscheduledDeps == 0 && |
| "unexpected scheduled state"); |
| assert((BundleMember == this || !BundleMember->IsScheduled) && |
| "only bundle is marked scheduled"); |
| } |
| } |
| |
| assert(Inst->getParent() == FirstInBundle->Inst->getParent() && |
| "all bundle members must be in same basic block"); |
| } |
| |
| /// Returns true if the dependency information has been calculated. |
| /// Note that depenendency validity can vary between instructions within |
| /// a single bundle. |
| bool hasValidDependencies() const { return Dependencies != InvalidDeps; } |
| |
| /// Returns true for single instructions and for bundle representatives |
| /// (= the head of a bundle). |
| bool isSchedulingEntity() const { return FirstInBundle == this; } |
| |
| /// Returns true if it represents an instruction bundle and not only a |
| /// single instruction. |
| bool isPartOfBundle() const { |
| return NextInBundle != nullptr || FirstInBundle != this || TE; |
| } |
| |
| /// Returns true if it is ready for scheduling, i.e. it has no more |
| /// unscheduled depending instructions/bundles. |
| bool isReady() const { |
| assert(isSchedulingEntity() && |
| "can't consider non-scheduling entity for ready list"); |
| return unscheduledDepsInBundle() == 0 && !IsScheduled; |
| } |
| |
| /// Modifies the number of unscheduled dependencies for this instruction, |
| /// and returns the number of remaining dependencies for the containing |
| /// bundle. |
| int incrementUnscheduledDeps(int Incr) { |
| assert(hasValidDependencies() && |
| "increment of unscheduled deps would be meaningless"); |
| UnscheduledDeps += Incr; |
| return FirstInBundle->unscheduledDepsInBundle(); |
| } |
| |
| /// Sets the number of unscheduled dependencies to the number of |
| /// dependencies. |
| void resetUnscheduledDeps() { |
| UnscheduledDeps = Dependencies; |
| } |
| |
| /// Clears all dependency information. |
| void clearDependencies() { |
| Dependencies = InvalidDeps; |
| resetUnscheduledDeps(); |
| MemoryDependencies.clear(); |
| ControlDependencies.clear(); |
| } |
| |
| int unscheduledDepsInBundle() const { |
| assert(isSchedulingEntity() && "only meaningful on the bundle"); |
| int Sum = 0; |
| for (const ScheduleData *BundleMember = this; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| if (BundleMember->UnscheduledDeps == InvalidDeps) |
| return InvalidDeps; |
| Sum += BundleMember->UnscheduledDeps; |
| } |
| return Sum; |
| } |
| |
| void dump(raw_ostream &os) const { |
| if (!isSchedulingEntity()) { |
| os << "/ " << *Inst; |
| } else if (NextInBundle) { |
| os << '[' << *Inst; |
| ScheduleData *SD = NextInBundle; |
| while (SD) { |
| os << ';' << *SD->Inst; |
| SD = SD->NextInBundle; |
| } |
| os << ']'; |
| } else { |
| os << *Inst; |
| } |
| } |
| |
| Instruction *Inst = nullptr; |
| |
| /// Opcode of the current instruction in the schedule data. |
| Value *OpValue = nullptr; |
| |
| /// The TreeEntry that this instruction corresponds to. |
| TreeEntry *TE = nullptr; |
| |
| /// Points to the head in an instruction bundle (and always to this for |
| /// single instructions). |
| ScheduleData *FirstInBundle = nullptr; |
| |
| /// Single linked list of all instructions in a bundle. Null if it is a |
| /// single instruction. |
| ScheduleData *NextInBundle = nullptr; |
| |
| /// Single linked list of all memory instructions (e.g. load, store, call) |
| /// in the block - until the end of the scheduling region. |
| ScheduleData *NextLoadStore = nullptr; |
| |
| /// The dependent memory instructions. |
| /// This list is derived on demand in calculateDependencies(). |
| SmallVector<ScheduleData *, 4> MemoryDependencies; |
| |
| /// List of instructions which this instruction could be control dependent |
| /// on. Allowing such nodes to be scheduled below this one could introduce |
| /// a runtime fault which didn't exist in the original program. |
| /// ex: this is a load or udiv following a readonly call which inf loops |
| SmallVector<ScheduleData *, 4> ControlDependencies; |
| |
| /// This ScheduleData is in the current scheduling region if this matches |
| /// the current SchedulingRegionID of BlockScheduling. |
| int SchedulingRegionID = 0; |
| |
| /// Used for getting a "good" final ordering of instructions. |
| int SchedulingPriority = 0; |
| |
| /// The number of dependencies. Constitutes of the number of users of the |
| /// instruction plus the number of dependent memory instructions (if any). |
| /// This value is calculated on demand. |
| /// If InvalidDeps, the number of dependencies is not calculated yet. |
| int Dependencies = InvalidDeps; |
| |
| /// The number of dependencies minus the number of dependencies of scheduled |
| /// instructions. As soon as this is zero, the instruction/bundle gets ready |
| /// for scheduling. |
| /// Note that this is negative as long as Dependencies is not calculated. |
| int UnscheduledDeps = InvalidDeps; |
| |
| /// True if this instruction is scheduled (or considered as scheduled in the |
| /// dry-run). |
| bool IsScheduled = false; |
| }; |
| |
| #ifndef NDEBUG |
| friend inline raw_ostream &operator<<(raw_ostream &os, |
| const BoUpSLP::ScheduleData &SD) { |
| SD.dump(os); |
| return os; |
| } |
| #endif |
| |
| friend struct GraphTraits<BoUpSLP *>; |
| friend struct DOTGraphTraits<BoUpSLP *>; |
| |
| /// Contains all scheduling data for a basic block. |
| /// It does not schedules instructions, which are not memory read/write |
| /// instructions and their operands are either constants, or arguments, or |
| /// phis, or instructions from others blocks, or their users are phis or from |
| /// the other blocks. The resulting vector instructions can be placed at the |
| /// beginning of the basic block without scheduling (if operands does not need |
| /// to be scheduled) or at the end of the block (if users are outside of the |
| /// block). It allows to save some compile time and memory used by the |
| /// compiler. |
| /// ScheduleData is assigned for each instruction in between the boundaries of |
| /// the tree entry, even for those, which are not part of the graph. It is |
| /// required to correctly follow the dependencies between the instructions and |
| /// their correct scheduling. The ScheduleData is not allocated for the |
| /// instructions, which do not require scheduling, like phis, nodes with |
| /// extractelements/insertelements only or nodes with instructions, with |
| /// uses/operands outside of the block. |
| struct BlockScheduling { |
| BlockScheduling(BasicBlock *BB) |
| : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {} |
| |
| void clear() { |
| ReadyInsts.clear(); |
| ScheduleStart = nullptr; |
| ScheduleEnd = nullptr; |
| FirstLoadStoreInRegion = nullptr; |
| LastLoadStoreInRegion = nullptr; |
| RegionHasStackSave = false; |
| |
| // Reduce the maximum schedule region size by the size of the |
| // previous scheduling run. |
| ScheduleRegionSizeLimit -= ScheduleRegionSize; |
| if (ScheduleRegionSizeLimit < MinScheduleRegionSize) |
| ScheduleRegionSizeLimit = MinScheduleRegionSize; |
| ScheduleRegionSize = 0; |
| |
| // Make a new scheduling region, i.e. all existing ScheduleData is not |
| // in the new region yet. |
| ++SchedulingRegionID; |
| } |
| |
| ScheduleData *getScheduleData(Instruction *I) { |
| if (BB != I->getParent()) |
| // Avoid lookup if can't possibly be in map. |
| return nullptr; |
| ScheduleData *SD = ScheduleDataMap.lookup(I); |
| if (SD && isInSchedulingRegion(SD)) |
| return SD; |
| return nullptr; |
| } |
| |
| ScheduleData *getScheduleData(Value *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return getScheduleData(I); |
| return nullptr; |
| } |
| |
| ScheduleData *getScheduleData(Value *V, Value *Key) { |
| if (V == Key) |
| return getScheduleData(V); |
| auto I = ExtraScheduleDataMap.find(V); |
| if (I != ExtraScheduleDataMap.end()) { |
| ScheduleData *SD = I->second.lookup(Key); |
| if (SD && isInSchedulingRegion(SD)) |
| return SD; |
| } |
| return nullptr; |
| } |
| |
| bool isInSchedulingRegion(ScheduleData *SD) const { |
| return SD->SchedulingRegionID == SchedulingRegionID; |
| } |
| |
| /// Marks an instruction as scheduled and puts all dependent ready |
| /// instructions into the ready-list. |
| template <typename ReadyListType> |
| void schedule(ScheduleData *SD, ReadyListType &ReadyList) { |
| SD->IsScheduled = true; |
| LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); |
| |
| for (ScheduleData *BundleMember = SD; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| if (BundleMember->Inst != BundleMember->OpValue) |
| continue; |
| |
| // Handle the def-use chain dependencies. |
| |
| // Decrement the unscheduled counter and insert to ready list if ready. |
| auto &&DecrUnsched = [this, &ReadyList](Instruction *I) { |
| doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) { |
| if (OpDef && OpDef->hasValidDependencies() && |
| OpDef->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after |
| // decrementing, so we can put the dependent instruction |
| // into the ready list. |
| ScheduleData *DepBundle = OpDef->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (def): " << *DepBundle << "\n"); |
| } |
| }); |
| }; |
| |
| // If BundleMember is a vector bundle, its operands may have been |
| // reordered during buildTree(). We therefore need to get its operands |
| // through the TreeEntry. |
| if (TreeEntry *TE = BundleMember->TE) { |
| // Need to search for the lane since the tree entry can be reordered. |
| int Lane = std::distance(TE->Scalars.begin(), |
| find(TE->Scalars, BundleMember->Inst)); |
| assert(Lane >= 0 && "Lane not set"); |
| |
| // Since vectorization tree is being built recursively this assertion |
| // ensures that the tree entry has all operands set before reaching |
| // this code. Couple of exceptions known at the moment are extracts |
| // where their second (immediate) operand is not added. Since |
| // immediates do not affect scheduler behavior this is considered |
| // okay. |
| auto *In = BundleMember->Inst; |
| assert(In && |
| (isa<ExtractValueInst, ExtractElementInst>(In) || |
| In->getNumOperands() == TE->getNumOperands()) && |
| "Missed TreeEntry operands?"); |
| (void)In; // fake use to avoid build failure when assertions disabled |
| |
| for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands(); |
| OpIdx != NumOperands; ++OpIdx) |
| if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane])) |
| DecrUnsched(I); |
| } else { |
| // If BundleMember is a stand-alone instruction, no operand reordering |
| // has taken place, so we directly access its operands. |
| for (Use &U : BundleMember->Inst->operands()) |
| if (auto *I = dyn_cast<Instruction>(U.get())) |
| DecrUnsched(I); |
| } |
| // Handle the memory dependencies. |
| for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { |
| if (MemoryDepSD->hasValidDependencies() && |
| MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after decrementing, |
| // so we can put the dependent instruction into the ready list. |
| ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (mem): " << *DepBundle << "\n"); |
| } |
| } |
| // Handle the control dependencies. |
| for (ScheduleData *DepSD : BundleMember->ControlDependencies) { |
| if (DepSD->incrementUnscheduledDeps(-1) == 0) { |
| // There are no more unscheduled dependencies after decrementing, |
| // so we can put the dependent instruction into the ready list. |
| ScheduleData *DepBundle = DepSD->FirstInBundle; |
| assert(!DepBundle->IsScheduled && |
| "already scheduled bundle gets ready"); |
| ReadyList.insert(DepBundle); |
| LLVM_DEBUG(dbgs() |
| << "SLP: gets ready (ctl): " << *DepBundle << "\n"); |
| } |
| } |
| |
| } |
| } |
| |
| /// Verify basic self consistency properties of the data structure. |
| void verify() { |
| if (!ScheduleStart) |
| return; |
| |
| assert(ScheduleStart->getParent() == ScheduleEnd->getParent() && |
| ScheduleStart->comesBefore(ScheduleEnd) && |
| "Not a valid scheduling region?"); |
| |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| auto *SD = getScheduleData(I); |
| if (!SD) |
| continue; |
| assert(isInSchedulingRegion(SD) && |
| "primary schedule data not in window?"); |
| assert(isInSchedulingRegion(SD->FirstInBundle) && |
| "entire bundle in window!"); |
| (void)SD; |
| doForAllOpcodes(I, [](ScheduleData *SD) { SD->verify(); }); |
| } |
| |
| for (auto *SD : ReadyInsts) { |
| assert(SD->isSchedulingEntity() && SD->isReady() && |
| "item in ready list not ready?"); |
| (void)SD; |
| } |
| } |
| |
| void doForAllOpcodes(Value *V, |
| function_ref<void(ScheduleData *SD)> Action) { |
| if (ScheduleData *SD = getScheduleData(V)) |
| Action(SD); |
| auto I = ExtraScheduleDataMap.find(V); |
| if (I != ExtraScheduleDataMap.end()) |
| for (auto &P : I->second) |
| if (isInSchedulingRegion(P.second)) |
| Action(P.second); |
| } |
| |
| /// Put all instructions into the ReadyList which are ready for scheduling. |
| template <typename ReadyListType> |
| void initialFillReadyList(ReadyListType &ReadyList) { |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| doForAllOpcodes(I, [&](ScheduleData *SD) { |
| if (SD->isSchedulingEntity() && SD->hasValidDependencies() && |
| SD->isReady()) { |
| ReadyList.insert(SD); |
| LLVM_DEBUG(dbgs() |
| << "SLP: initially in ready list: " << *SD << "\n"); |
| } |
| }); |
| } |
| } |
| |
| /// Build a bundle from the ScheduleData nodes corresponding to the |
| /// scalar instruction for each lane. |
| ScheduleData *buildBundle(ArrayRef<Value *> VL); |
| |
| /// Checks if a bundle of instructions can be scheduled, i.e. has no |
| /// cyclic dependencies. This is only a dry-run, no instructions are |
| /// actually moved at this stage. |
| /// \returns the scheduling bundle. The returned Optional value is not |
| /// std::nullopt if \p VL is allowed to be scheduled. |
| std::optional<ScheduleData *> |
| tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, |
| const InstructionsState &S); |
| |
| /// Un-bundles a group of instructions. |
| void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue); |
| |
| /// Allocates schedule data chunk. |
| ScheduleData *allocateScheduleDataChunks(); |
| |
| /// Extends the scheduling region so that V is inside the region. |
| /// \returns true if the region size is within the limit. |
| bool extendSchedulingRegion(Value *V, const InstructionsState &S); |
| |
| /// Initialize the ScheduleData structures for new instructions in the |
| /// scheduling region. |
| void initScheduleData(Instruction *FromI, Instruction *ToI, |
| ScheduleData *PrevLoadStore, |
| ScheduleData *NextLoadStore); |
| |
| /// Updates the dependency information of a bundle and of all instructions/ |
| /// bundles which depend on the original bundle. |
| void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, |
| BoUpSLP *SLP); |
| |
| /// Sets all instruction in the scheduling region to un-scheduled. |
| void resetSchedule(); |
| |
| BasicBlock *BB; |
| |
| /// Simple memory allocation for ScheduleData. |
| std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; |
| |
| /// The size of a ScheduleData array in ScheduleDataChunks. |
| int ChunkSize; |
| |
| /// The allocator position in the current chunk, which is the last entry |
| /// of ScheduleDataChunks. |
| int ChunkPos; |
| |
| /// Attaches ScheduleData to Instruction. |
| /// Note that the mapping survives during all vectorization iterations, i.e. |
| /// ScheduleData structures are recycled. |
| DenseMap<Instruction *, ScheduleData *> ScheduleDataMap; |
| |
| /// Attaches ScheduleData to Instruction with the leading key. |
| DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>> |
| ExtraScheduleDataMap; |
| |
| /// The ready-list for scheduling (only used for the dry-run). |
| SetVector<ScheduleData *> ReadyInsts; |
| |
| /// The first instruction of the scheduling region. |
| Instruction *ScheduleStart = nullptr; |
| |
| /// The first instruction _after_ the scheduling region. |
| Instruction *ScheduleEnd = nullptr; |
| |
| /// The first memory accessing instruction in the scheduling region |
| /// (can be null). |
| ScheduleData *FirstLoadStoreInRegion = nullptr; |
| |
| /// The last memory accessing instruction in the scheduling region |
| /// (can be null). |
| ScheduleData *LastLoadStoreInRegion = nullptr; |
| |
| /// Is there an llvm.stacksave or llvm.stackrestore in the scheduling |
| /// region? Used to optimize the dependence calculation for the |
| /// common case where there isn't. |
| bool RegionHasStackSave = false; |
| |
| /// The current size of the scheduling region. |
| int ScheduleRegionSize = 0; |
| |
| /// The maximum size allowed for the scheduling region. |
| int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget; |
| |
| /// The ID of the scheduling region. For a new vectorization iteration this |
| /// is incremented which "removes" all ScheduleData from the region. |
| /// Make sure that the initial SchedulingRegionID is greater than the |
| /// initial SchedulingRegionID in ScheduleData (which is 0). |
| int SchedulingRegionID = 1; |
| }; |
| |
| /// Attaches the BlockScheduling structures to basic blocks. |
| MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; |
| |
| /// Performs the "real" scheduling. Done before vectorization is actually |
| /// performed in a basic block. |
| void scheduleBlock(BlockScheduling *BS); |
| |
| /// List of users to ignore during scheduling and that don't need extracting. |
| const SmallDenseSet<Value *> *UserIgnoreList = nullptr; |
| |
| /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of |
| /// sorted SmallVectors of unsigned. |
| struct OrdersTypeDenseMapInfo { |
| static OrdersType getEmptyKey() { |
| OrdersType V; |
| V.push_back(~1U); |
| return V; |
| } |
| |
| static OrdersType getTombstoneKey() { |
| OrdersType V; |
| V.push_back(~2U); |
| return V; |
| } |
| |
| static unsigned getHashValue(const OrdersType &V) { |
| return static_cast<unsigned>(hash_combine_range(V.begin(), V.end())); |
| } |
| |
| static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) { |
| return LHS == RHS; |
| } |
| }; |
| |
| // Analysis and block reference. |
| Function *F; |
| ScalarEvolution *SE; |
| TargetTransformInfo *TTI; |
| TargetLibraryInfo *TLI; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| AssumptionCache *AC; |
| DemandedBits *DB; |
| const DataLayout *DL; |
| OptimizationRemarkEmitter *ORE; |
| |
| unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. |
| unsigned MinVecRegSize; // Set by cl::opt (default: 128). |
| |
| /// Instruction builder to construct the vectorized tree. |
| IRBuilder<> Builder; |
| |
| /// A map of scalar integer values to the smallest bit width with which they |
| /// can legally be represented. The values map to (width, signed) pairs, |
| /// where "width" indicates the minimum bit width and "signed" is True if the |
| /// value must be signed-extended, rather than zero-extended, back to its |
| /// original width. |
| MapVector<Value *, std::pair<uint64_t, bool>> MinBWs; |
| }; |
| |
| } // end namespace slpvectorizer |
| |
| template <> struct GraphTraits<BoUpSLP *> { |
| using TreeEntry = BoUpSLP::TreeEntry; |
| |
| /// NodeRef has to be a pointer per the GraphWriter. |
| using NodeRef = TreeEntry *; |
| |
| using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy; |
| |
| /// Add the VectorizableTree to the index iterator to be able to return |
| /// TreeEntry pointers. |
| struct ChildIteratorType |
| : public iterator_adaptor_base< |
| ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> { |
| ContainerTy &VectorizableTree; |
| |
| ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W, |
| ContainerTy &VT) |
| : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {} |
| |
| NodeRef operator*() { return I->UserTE; } |
| }; |
| |
| static NodeRef getEntryNode(BoUpSLP &R) { |
| return R.VectorizableTree[0].get(); |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { |
| return {N->UserTreeIndices.begin(), N->Container}; |
| } |
| |
| static ChildIteratorType child_end(NodeRef N) { |
| return {N->UserTreeIndices.end(), N->Container}; |
| } |
| |
| /// For the node iterator we just need to turn the TreeEntry iterator into a |
| /// TreeEntry* iterator so that it dereferences to NodeRef. |
| class nodes_iterator { |
| using ItTy = ContainerTy::iterator; |
| ItTy It; |
| |
| public: |
| nodes_iterator(const ItTy &It2) : It(It2) {} |
| NodeRef operator*() { return It->get(); } |
| nodes_iterator operator++() { |
| ++It; |
| return *this; |
| } |
| bool operator!=(const nodes_iterator &N2) const { return N2.It != It; } |
| }; |
| |
| static nodes_iterator nodes_begin(BoUpSLP *R) { |
| return nodes_iterator(R->VectorizableTree.begin()); |
| } |
| |
| static nodes_iterator nodes_end(BoUpSLP *R) { |
| return nodes_iterator(R->VectorizableTree.end()); |
| } |
| |
| static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); } |
| }; |
| |
| template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits { |
| using TreeEntry = BoUpSLP::TreeEntry; |
| |
| DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) { |
| std::string Str; |
| raw_string_ostream OS(Str); |
| OS << Entry->Idx << ".\n"; |
| if (isSplat(Entry->Scalars)) |
| OS << "<splat> "; |
| for (auto *V : Entry->Scalars) { |
| OS << *V; |
| if (llvm::any_of(R->ExternalUses, [&](const BoUpSLP::ExternalUser &EU) { |
| return EU.Scalar == V; |
| })) |
| OS << " <extract>"; |
| OS << "\n"; |
| } |
| return Str; |
| } |
| |
| static std::string getNodeAttributes(const TreeEntry *Entry, |
| const BoUpSLP *) { |
| if (Entry->State == TreeEntry::NeedToGather) |
| return "color=red"; |
| if (Entry->State == TreeEntry::ScatterVectorize) |
| return "color=blue"; |
| return ""; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| BoUpSLP::~BoUpSLP() { |
| SmallVector<WeakTrackingVH> DeadInsts; |
| for (auto *I : DeletedInstructions) { |
| for (Use &U : I->operands()) { |
| auto *Op = dyn_cast<Instruction>(U.get()); |
| if (Op && !DeletedInstructions.count(Op) && Op->hasOneUser() && |
| wouldInstructionBeTriviallyDead(Op, TLI)) |
| DeadInsts.emplace_back(Op); |
| } |
| I->dropAllReferences(); |
| } |
| for (auto *I : DeletedInstructions) { |
| assert(I->use_empty() && |
| "trying to erase instruction with users."); |
| I->eraseFromParent(); |
| } |
| |
| // Cleanup any dead scalar code feeding the vectorized instructions |
| RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI); |
| |
| #ifdef EXPENSIVE_CHECKS |
| // If we could guarantee that this call is not extremely slow, we could |
| // remove the ifdef limitation (see PR47712). |
| assert(!verifyFunction(*F, &dbgs())); |
| #endif |
| } |
| |
| /// Reorders the given \p Reuses mask according to the given \p Mask. \p Reuses |
| /// contains original mask for the scalars reused in the node. Procedure |
| /// transform this mask in accordance with the given \p Mask. |
| static void reorderReuses(SmallVectorImpl<int> &Reuses, ArrayRef<int> Mask) { |
| assert(!Mask.empty() && Reuses.size() == Mask.size() && |
| "Expected non-empty mask."); |
| SmallVector<int> Prev(Reuses.begin(), Reuses.end()); |
| Prev.swap(Reuses); |
| for (unsigned I = 0, E = Prev.size(); I < E; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Reuses[Mask[I]] = Prev[I]; |
| } |
| |
| /// Reorders the given \p Order according to the given \p Mask. \p Order - is |
| /// the original order of the scalars. Procedure transforms the provided order |
| /// in accordance with the given \p Mask. If the resulting \p Order is just an |
| /// identity order, \p Order is cleared. |
| static void reorderOrder(SmallVectorImpl<unsigned> &Order, ArrayRef<int> Mask) { |
| assert(!Mask.empty() && "Expected non-empty mask."); |
| SmallVector<int> MaskOrder; |
| if (Order.empty()) { |
| MaskOrder.resize(Mask.size()); |
| std::iota(MaskOrder.begin(), MaskOrder.end(), 0); |
| } else { |
| inversePermutation(Order, MaskOrder); |
| } |
| reorderReuses(MaskOrder, Mask); |
| if (ShuffleVectorInst::isIdentityMask(MaskOrder)) { |
| Order.clear(); |
| return; |
| } |
| Order.assign(Mask.size(), Mask.size()); |
| for (unsigned I = 0, E = Mask.size(); I < E; ++I) |
| if (MaskOrder[I] != PoisonMaskElem) |
| Order[MaskOrder[I]] = I; |
| fixupOrderingIndices(Order); |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::findReusedOrderedScalars(const BoUpSLP::TreeEntry &TE) { |
| assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); |
| unsigned NumScalars = TE.Scalars.size(); |
| OrdersType CurrentOrder(NumScalars, NumScalars); |
| SmallVector<int> Positions; |
| SmallBitVector UsedPositions(NumScalars); |
| const TreeEntry *STE = nullptr; |
| // Try to find all gathered scalars that are gets vectorized in other |
| // vectorize node. Here we can have only one single tree vector node to |
| // correctly identify order of the gathered scalars. |
| for (unsigned I = 0; I < NumScalars; ++I) { |
| Value *V = TE.Scalars[I]; |
| if (!isa<LoadInst, ExtractElementInst, ExtractValueInst>(V)) |
| continue; |
| if (const auto *LocalSTE = getTreeEntry(V)) { |
| if (!STE) |
| STE = LocalSTE; |
| else if (STE != LocalSTE) |
| // Take the order only from the single vector node. |
| return std::nullopt; |
| unsigned Lane = |
| std::distance(STE->Scalars.begin(), find(STE->Scalars, V)); |
| if (Lane >= NumScalars) |
| return std::nullopt; |
| if (CurrentOrder[Lane] != NumScalars) { |
| if (Lane != I) |
| continue; |
| UsedPositions.reset(CurrentOrder[Lane]); |
| } |
| // The partial identity (where only some elements of the gather node are |
| // in the identity order) is good. |
| CurrentOrder[Lane] = I; |
| UsedPositions.set(I); |
| } |
| } |
| // Need to keep the order if we have a vector entry and at least 2 scalars or |
| // the vectorized entry has just 2 scalars. |
| if (STE && (UsedPositions.count() > 1 || STE->Scalars.size() == 2)) { |
| auto &&IsIdentityOrder = [NumScalars](ArrayRef<unsigned> CurrentOrder) { |
| for (unsigned I = 0; I < NumScalars; ++I) |
| if (CurrentOrder[I] != I && CurrentOrder[I] != NumScalars) |
| return false; |
| return true; |
| }; |
| if (IsIdentityOrder(CurrentOrder)) |
| return OrdersType(); |
| auto *It = CurrentOrder.begin(); |
| for (unsigned I = 0; I < NumScalars;) { |
| if (UsedPositions.test(I)) { |
| ++I; |
| continue; |
| } |
| if (*It == NumScalars) { |
| *It = I; |
| ++I; |
| } |
| ++It; |
| } |
| return std::move(CurrentOrder); |
| } |
| return std::nullopt; |
| } |
| |
| namespace { |
| /// Tracks the state we can represent the loads in the given sequence. |
| enum class LoadsState { Gather, Vectorize, ScatterVectorize }; |
| } // anonymous namespace |
| |
| static bool arePointersCompatible(Value *Ptr1, Value *Ptr2, |
| const TargetLibraryInfo &TLI, |
| bool CompareOpcodes = true) { |
| if (getUnderlyingObject(Ptr1) != getUnderlyingObject(Ptr2)) |
| return false; |
| auto *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1); |
| if (!GEP1) |
| return false; |
| auto *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2); |
| if (!GEP2) |
| return false; |
| return GEP1->getNumOperands() == 2 && GEP2->getNumOperands() == 2 && |
| ((isConstant(GEP1->getOperand(1)) && |
| isConstant(GEP2->getOperand(1))) || |
| !CompareOpcodes || |
| getSameOpcode({GEP1->getOperand(1), GEP2->getOperand(1)}, TLI) |
| .getOpcode()); |
| } |
| |
| /// Checks if the given array of loads can be represented as a vectorized, |
| /// scatter or just simple gather. |
| static LoadsState canVectorizeLoads(ArrayRef<Value *> VL, const Value *VL0, |
| const TargetTransformInfo &TTI, |
| const DataLayout &DL, ScalarEvolution &SE, |
| LoopInfo &LI, const TargetLibraryInfo &TLI, |
| SmallVectorImpl<unsigned> &Order, |
| SmallVectorImpl<Value *> &PointerOps) { |
| // Check that a vectorized load would load the same memory as a scalar |
| // load. For example, we don't want to vectorize loads that are smaller |
| // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM |
| // treats loading/storing it as an i8 struct. If we vectorize loads/stores |
| // from such a struct, we read/write packed bits disagreeing with the |
| // unvectorized version. |
| Type *ScalarTy = VL0->getType(); |
| |
| if (DL.getTypeSizeInBits(ScalarTy) != DL.getTypeAllocSizeInBits(ScalarTy)) |
| return LoadsState::Gather; |
| |
| // Make sure all loads in the bundle are simple - we can't vectorize |
| // atomic or volatile loads. |
| PointerOps.clear(); |
| PointerOps.resize(VL.size()); |
| auto *POIter = PointerOps.begin(); |
| for (Value *V : VL) { |
| auto *L = cast<LoadInst>(V); |
| if (!L->isSimple()) |
| return LoadsState::Gather; |
| *POIter = L->getPointerOperand(); |
| ++POIter; |
| } |
| |
| Order.clear(); |
| // Check the order of pointer operands or that all pointers are the same. |
| bool IsSorted = sortPtrAccesses(PointerOps, ScalarTy, DL, SE, Order); |
| if (IsSorted || all_of(PointerOps, [&](Value *P) { |
| return arePointersCompatible(P, PointerOps.front(), TLI); |
| })) { |
| if (IsSorted) { |
| Value *Ptr0; |
| Value *PtrN; |
| if (Order.empty()) { |
| Ptr0 = PointerOps.front(); |
| PtrN = PointerOps.back(); |
| } else { |
| Ptr0 = PointerOps[Order.front()]; |
| PtrN = PointerOps[Order.back()]; |
| } |
| std::optional<int> Diff = |
| getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, DL, SE); |
| // Check that the sorted loads are consecutive. |
| if (static_cast<unsigned>(*Diff) == VL.size() - 1) |
| return LoadsState::Vectorize; |
| } |
| // TODO: need to improve analysis of the pointers, if not all of them are |
| // GEPs or have > 2 operands, we end up with a gather node, which just |
| // increases the cost. |
| Loop *L = LI.getLoopFor(cast<LoadInst>(VL0)->getParent()); |
| bool ProfitableGatherPointers = |
| static_cast<unsigned>(count_if(PointerOps, [L](Value *V) { |
| return L && L->isLoopInvariant(V); |
| })) <= VL.size() / 2 && VL.size() > 2; |
| if (ProfitableGatherPointers || all_of(PointerOps, [IsSorted](Value *P) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(P); |
| return (IsSorted && !GEP && doesNotNeedToBeScheduled(P)) || |
| (GEP && GEP->getNumOperands() == 2); |
| })) { |
| Align CommonAlignment = cast<LoadInst>(VL0)->getAlign(); |
| for (Value *V : VL) |
| CommonAlignment = |
| std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); |
| auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); |
| if (TTI.isLegalMaskedGather(VecTy, CommonAlignment) && |
| !TTI.forceScalarizeMaskedGather(VecTy, CommonAlignment)) |
| return LoadsState::ScatterVectorize; |
| } |
| } |
| |
| return LoadsState::Gather; |
| } |
| |
| static bool clusterSortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, |
| const DataLayout &DL, ScalarEvolution &SE, |
| SmallVectorImpl<unsigned> &SortedIndices) { |
| assert(llvm::all_of( |
| VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && |
| "Expected list of pointer operands."); |
| // Map from bases to a vector of (Ptr, Offset, OrigIdx), which we insert each |
| // Ptr into, sort and return the sorted indices with values next to one |
| // another. |
| MapVector<Value *, SmallVector<std::tuple<Value *, int, unsigned>>> Bases; |
| Bases[VL[0]].push_back(std::make_tuple(VL[0], 0U, 0U)); |
| |
| unsigned Cnt = 1; |
| for (Value *Ptr : VL.drop_front()) { |
| bool Found = any_of(Bases, [&](auto &Base) { |
| std::optional<int> Diff = |
| getPointersDiff(ElemTy, Base.first, ElemTy, Ptr, DL, SE, |
| /*StrictCheck=*/true); |
| if (!Diff) |
| return false; |
| |
| Base.second.emplace_back(Ptr, *Diff, Cnt++); |
| return true; |
| }); |
| |
| if (!Found) { |
| // If we haven't found enough to usefully cluster, return early. |
| if (Bases.size() > VL.size() / 2 - 1) |
| return false; |
| |
| // Not found already - add a new Base |
| Bases[Ptr].emplace_back(Ptr, 0, Cnt++); |
| } |
| } |
| |
| // For each of the bases sort the pointers by Offset and check if any of the |
| // base become consecutively allocated. |
| bool AnyConsecutive = false; |
| for (auto &Base : Bases) { |
| auto &Vec = Base.second; |
| if (Vec.size() > 1) { |
| llvm::stable_sort(Vec, [](const std::tuple<Value *, int, unsigned> &X, |
| const std::tuple<Value *, int, unsigned> &Y) { |
| return std::get<1>(X) < std::get<1>(Y); |
| }); |
| int InitialOffset = std::get<1>(Vec[0]); |
| AnyConsecutive |= all_of(enumerate(Vec), [InitialOffset](const auto &P) { |
| return std::get<1>(P.value()) == int(P.index()) + InitialOffset; |
| }); |
| } |
| } |
| |
| // Fill SortedIndices array only if it looks worth-while to sort the ptrs. |
| SortedIndices.clear(); |
| if (!AnyConsecutive) |
| return false; |
| |
| for (auto &Base : Bases) { |
| for (auto &T : Base.second) |
| SortedIndices.push_back(std::get<2>(T)); |
| } |
| |
| assert(SortedIndices.size() == VL.size() && |
| "Expected SortedIndices to be the size of VL"); |
| return true; |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::findPartiallyOrderedLoads(const BoUpSLP::TreeEntry &TE) { |
| assert(TE.State == TreeEntry::NeedToGather && "Expected gather node only."); |
| Type *ScalarTy = TE.Scalars[0]->getType(); |
| |
| SmallVector<Value *> Ptrs; |
| Ptrs.reserve(TE.Scalars.size()); |
| for (Value *V : TE.Scalars) { |
| auto *L = dyn_cast<LoadInst>(V); |
| if (!L || !L->isSimple()) |
| return std::nullopt; |
| Ptrs.push_back(L->getPointerOperand()); |
| } |
| |
| BoUpSLP::OrdersType Order; |
| if (clusterSortPtrAccesses(Ptrs, ScalarTy, *DL, *SE, Order)) |
| return std::move(Order); |
| return std::nullopt; |
| } |
| |
| /// Check if two insertelement instructions are from the same buildvector. |
| static bool areTwoInsertFromSameBuildVector( |
| InsertElementInst *VU, InsertElementInst *V, |
| function_ref<Value *(InsertElementInst *)> GetBaseOperand) { |
| // Instructions must be from the same basic blocks. |
| if (VU->getParent() != V->getParent()) |
| return false; |
| // Checks if 2 insertelements are from the same buildvector. |
| if (VU->getType() != V->getType()) |
| return false; |
| // Multiple used inserts are separate nodes. |
| if (!VU->hasOneUse() && !V->hasOneUse()) |
| return false; |
| auto *IE1 = VU; |
| auto *IE2 = V; |
| std::optional<unsigned> Idx1 = getInsertIndex(IE1); |
| std::optional<unsigned> Idx2 = getInsertIndex(IE2); |
| if (Idx1 == std::nullopt || Idx2 == std::nullopt) |
| return false; |
| // Go through the vector operand of insertelement instructions trying to find |
| // either VU as the original vector for IE2 or V as the original vector for |
| // IE1. |
| SmallSet<int, 8> ReusedIdx; |
| bool IsReusedIdx = false; |
| do { |
| if (IE2 == VU && !IE1) |
| return VU->hasOneUse(); |
| if (IE1 == V && !IE2) |
| return V->hasOneUse(); |
| if (IE1 && IE1 != V) { |
| IsReusedIdx |= |
| !ReusedIdx.insert(getInsertIndex(IE1).value_or(*Idx2)).second; |
| if ((IE1 != VU && !IE1->hasOneUse()) || IsReusedIdx) |
| IE1 = nullptr; |
| else |
| IE1 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE1)); |
| } |
| if (IE2 && IE2 != VU) { |
| IsReusedIdx |= |
| !ReusedIdx.insert(getInsertIndex(IE2).value_or(*Idx1)).second; |
| if ((IE2 != V && !IE2->hasOneUse()) || IsReusedIdx) |
| IE2 = nullptr; |
| else |
| IE2 = dyn_cast_or_null<InsertElementInst>(GetBaseOperand(IE2)); |
| } |
| } while (!IsReusedIdx && (IE1 || IE2)); |
| return false; |
| } |
| |
| std::optional<BoUpSLP::OrdersType> |
| BoUpSLP::getReorderingData(const TreeEntry &TE, bool TopToBottom) { |
| // No need to reorder if need to shuffle reuses, still need to shuffle the |
| // node. |
| if (!TE.ReuseShuffleIndices.empty()) { |
| // Check if reuse shuffle indices can be improved by reordering. |
| // For this, check that reuse mask is "clustered", i.e. each scalar values |
| // is used once in each submask of size <number_of_scalars>. |
| // Example: 4 scalar values. |
| // ReuseShuffleIndices mask: 0, 1, 2, 3, 3, 2, 0, 1 - clustered. |
| // 0, 1, 2, 3, 3, 3, 1, 0 - not clustered, because |
| // element 3 is used twice in the second submask. |
| unsigned Sz = TE.Scalars.size(); |
| if (!ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, |
| Sz)) |
| return std::nullopt; |
| unsigned VF = TE.getVectorFactor(); |
| // Try build correct order for extractelement instructions. |
| SmallVector<int> ReusedMask(TE.ReuseShuffleIndices.begin(), |
| TE.ReuseShuffleIndices.end()); |
| if (TE.getOpcode() == Instruction::ExtractElement && !TE.isAltShuffle() && |
| all_of(TE.Scalars, [Sz](Value *V) { |
| std::optional<unsigned> Idx = getExtractIndex(cast<Instruction>(V)); |
| return Idx && *Idx < Sz; |
| })) { |
| SmallVector<int> ReorderMask(Sz, PoisonMaskElem); |
| if (TE.ReorderIndices.empty()) |
| std::iota(ReorderMask.begin(), ReorderMask.end(), 0); |
| else |
| inversePermutation(TE.ReorderIndices, ReorderMask); |
| for (unsigned I = 0; I < VF; ++I) { |
| int &Idx = ReusedMask[I]; |
| if (Idx == PoisonMaskElem) |
| continue; |
| Value *V = TE.Scalars[ReorderMask[Idx]]; |
| std::optional<unsigned> EI = getExtractIndex(cast<Instruction>(V)); |
| Idx = std::distance(ReorderMask.begin(), find(ReorderMask, *EI)); |
| } |
| } |
| // Build the order of the VF size, need to reorder reuses shuffles, they are |
| // always of VF size. |
| OrdersType ResOrder(VF); |
| std::iota(ResOrder.begin(), ResOrder.end(), 0); |
| auto *It = ResOrder.begin(); |
| for (unsigned K = 0; K < VF; K += Sz) { |
| OrdersType CurrentOrder(TE.ReorderIndices); |
| SmallVector<int> SubMask{ArrayRef(ReusedMask).slice(K, Sz)}; |
| if (SubMask.front() == PoisonMaskElem) |
| std::iota(SubMask.begin(), SubMask.end(), 0); |
| reorderOrder(CurrentOrder, SubMask); |
| transform(CurrentOrder, It, [K](unsigned Pos) { return Pos + K; }); |
| std::advance(It, Sz); |
| } |
| if (all_of(enumerate(ResOrder), |
| [](const auto &Data) { return Data.index() == Data.value(); })) |
| return std::nullopt; // No need to reorder. |
| return std::move(ResOrder); |
| } |
| if (TE.State == TreeEntry::Vectorize && |
| (isa<LoadInst, ExtractElementInst, ExtractValueInst>(TE.getMainOp()) || |
| (TopToBottom && isa<StoreInst, InsertElementInst>(TE.getMainOp()))) && |
| !TE.isAltShuffle()) |
| return TE.ReorderIndices; |
| if (TE.State == TreeEntry::Vectorize && TE.getOpcode() == Instruction::PHI) { |
| auto PHICompare = [](llvm::Value *V1, llvm::Value *V2) { |
| if (!V1->hasOneUse() || !V2->hasOneUse()) |
| return false; |
| auto *FirstUserOfPhi1 = cast<Instruction>(*V1->user_begin()); |
| auto *FirstUserOfPhi2 = cast<Instruction>(*V2->user_begin()); |
| if (auto *IE1 = dyn_cast<InsertElementInst>(FirstUserOfPhi1)) |
| if (auto *IE2 = dyn_cast<InsertElementInst>(FirstUserOfPhi2)) { |
| if (!areTwoInsertFromSameBuildVector( |
| IE1, IE2, |
| [](InsertElementInst *II) { return II->getOperand(0); })) |
| return false; |
| std::optional<unsigned> Idx1 = getInsertIndex(IE1); |
| std::optional<unsigned> Idx2 = getInsertIndex(IE2); |
| if (Idx1 == std::nullopt || Idx2 == std::nullopt) |
| return false; |
| return *Idx1 < *Idx2; |
| } |
| if (auto *EE1 = dyn_cast<ExtractElementInst>(FirstUserOfPhi1)) |
| if (auto *EE2 = dyn_cast<ExtractElementInst>(FirstUserOfPhi2)) { |
| if (EE1->getOperand(0) != EE2->getOperand(0)) |
| return false; |
| std::optional<unsigned> Idx1 = getExtractIndex(EE1); |
| std::optional<unsigned> Idx2 = getExtractIndex(EE2); |
| if (Idx1 == std::nullopt || Idx2 == std::nullopt) |
| return false; |
| return *Idx1 < *Idx2; |
| } |
| return false; |
| }; |
| auto IsIdentityOrder = [](const OrdersType &Order) { |
| for (unsigned Idx : seq<unsigned>(0, Order.size())) |
| if (Idx != Order[Idx]) |
| return false; |
| return true; |
| }; |
| if (!TE.ReorderIndices.empty()) |
| return TE.ReorderIndices; |
| DenseMap<Value *, unsigned> PhiToId; |
| SmallVector<Value *, 4> Phis; |
| OrdersType ResOrder(TE.Scalars.size()); |
| for (unsigned Id = 0, Sz = TE.Scalars.size(); Id < Sz; ++Id) { |
| PhiToId[TE.Scalars[Id]] = Id; |
| Phis.push_back(TE.Scalars[Id]); |
| } |
| llvm::stable_sort(Phis, PHICompare); |
| for (unsigned Id = 0, Sz = Phis.size(); Id < Sz; ++Id) |
| ResOrder[Id] = PhiToId[Phis[Id]]; |
| if (IsIdentityOrder(ResOrder)) |
| return std::nullopt; // No need to reorder. |
| return std::move(ResOrder); |
| } |
| if (TE.State == TreeEntry::NeedToGather) { |
| // TODO: add analysis of other gather nodes with extractelement |
| // instructions and other values/instructions, not only undefs. |
| if (((TE.getOpcode() == Instruction::ExtractElement && |
| !TE.isAltShuffle()) || |
| (all_of(TE.Scalars, |
| [](Value *V) { |
| return isa<UndefValue, ExtractElementInst>(V); |
| }) && |
| any_of(TE.Scalars, |
| [](Value *V) { return isa<ExtractElementInst>(V); }))) && |
| all_of(TE.Scalars, |
| [](Value *V) { |
| auto *EE = dyn_cast<ExtractElementInst>(V); |
| return !EE || isa<FixedVectorType>(EE->getVectorOperandType()); |
| }) && |
| allSameType(TE.Scalars)) { |
| // Check that gather of extractelements can be represented as |
| // just a shuffle of a single vector. |
| OrdersType CurrentOrder; |
| bool Reuse = canReuseExtract(TE.Scalars, TE.getMainOp(), CurrentOrder); |
| if (Reuse || !CurrentOrder.empty()) { |
| if (!CurrentOrder.empty()) |
| fixupOrderingIndices(CurrentOrder); |
| return std::move(CurrentOrder); |
| } |
| } |
| // If the gather node is <undef, v, .., poison> and |
| // insertelement poison, v, 0 [+ permute] |
| // is cheaper than |
| // insertelement poison, v, n - try to reorder. |
| // If rotating the whole graph, exclude the permute cost, the whole graph |
| // might be transformed. |
| int Sz = TE.Scalars.size(); |
| if (isSplat(TE.Scalars) && !allConstant(TE.Scalars) && |
| count_if(TE.Scalars, UndefValue::classof) == Sz - 1) { |
| const auto *It = |
| find_if(TE.Scalars, [](Value *V) { return !isConstant(V); }); |
| if (It == TE.Scalars.begin()) |
| return OrdersType(); |
| auto *Ty = FixedVectorType::get(TE.Scalars.front()->getType(), Sz); |
| if (It != TE.Scalars.end()) { |
| OrdersType Order(Sz, Sz); |
| unsigned Idx = std::distance(TE.Scalars.begin(), It); |
| Order[Idx] = 0; |
| fixupOrderingIndices(Order); |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| InstructionCost PermuteCost = |
| TopToBottom |
| ? 0 |
| : TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, Mask); |
| InstructionCost InsertFirstCost = TTI->getVectorInstrCost( |
| Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, 0, |
| PoisonValue::get(Ty), *It); |
| InstructionCost InsertIdxCost = TTI->getVectorInstrCost( |
| Instruction::InsertElement, Ty, TTI::TCK_RecipThroughput, Idx, |
| PoisonValue::get(Ty), *It); |
| if (InsertFirstCost + PermuteCost < InsertIdxCost) |
| return std::move(Order); |
| } |
| } |
| if (std::optional<OrdersType> CurrentOrder = findReusedOrderedScalars(TE)) |
| return CurrentOrder; |
| if (TE.Scalars.size() >= 4) |
| if (std::optional<OrdersType> Order = findPartiallyOrderedLoads(TE)) |
| return Order; |
| } |
| return std::nullopt; |
| } |
| |
| /// Checks if the given mask is a "clustered" mask with the same clusters of |
| /// size \p Sz, which are not identity submasks. |
| static bool isRepeatedNonIdentityClusteredMask(ArrayRef<int> Mask, |
| unsigned Sz) { |
| ArrayRef<int> FirstCluster = Mask.slice(0, Sz); |
| if (ShuffleVectorInst::isIdentityMask(FirstCluster)) |
| return false; |
| for (unsigned I = Sz, E = Mask.size(); I < E; I += Sz) { |
| ArrayRef<int> Cluster = Mask.slice(I, Sz); |
| if (Cluster != FirstCluster) |
| return false; |
| } |
| return true; |
| } |
| |
| void BoUpSLP::reorderNodeWithReuses(TreeEntry &TE, ArrayRef<int> Mask) const { |
| // Reorder reuses mask. |
| reorderReuses(TE.ReuseShuffleIndices, Mask); |
| const unsigned Sz = TE.Scalars.size(); |
| // For vectorized and non-clustered reused no need to do anything else. |
| if (TE.State != TreeEntry::NeedToGather || |
| !ShuffleVectorInst::isOneUseSingleSourceMask(TE.ReuseShuffleIndices, |
| Sz) || |
| !isRepeatedNonIdentityClusteredMask(TE.ReuseShuffleIndices, Sz)) |
| return; |
| SmallVector<int> NewMask; |
| inversePermutation(TE.ReorderIndices, NewMask); |
| addMask(NewMask, TE.ReuseShuffleIndices); |
| // Clear reorder since it is going to be applied to the new mask. |
| TE.ReorderIndices.clear(); |
| // Try to improve gathered nodes with clustered reuses, if possible. |
| ArrayRef<int> Slice = ArrayRef(NewMask).slice(0, Sz); |
| SmallVector<unsigned> NewOrder(Slice.begin(), Slice.end()); |
| inversePermutation(NewOrder, NewMask); |
| reorderScalars(TE.Scalars, NewMask); |
| // Fill the reuses mask with the identity submasks. |
| for (auto *It = TE.ReuseShuffleIndices.begin(), |
| *End = TE.ReuseShuffleIndices.end(); |
| It != End; std::advance(It, Sz)) |
| std::iota(It, std::next(It, Sz), 0); |
| } |
| |
| void BoUpSLP::reorderTopToBottom() { |
| // Maps VF to the graph nodes. |
| DenseMap<unsigned, SetVector<TreeEntry *>> VFToOrderedEntries; |
| // ExtractElement gather nodes which can be vectorized and need to handle |
| // their ordering. |
| DenseMap<const TreeEntry *, OrdersType> GathersToOrders; |
| |
| // Phi nodes can have preferred ordering based on their result users |
| DenseMap<const TreeEntry *, OrdersType> PhisToOrders; |
| |
| // AltShuffles can also have a preferred ordering that leads to fewer |
| // instructions, e.g., the addsub instruction in x86. |
| DenseMap<const TreeEntry *, OrdersType> AltShufflesToOrders; |
| |
| // Maps a TreeEntry to the reorder indices of external users. |
| DenseMap<const TreeEntry *, SmallVector<OrdersType, 1>> |
| ExternalUserReorderMap; |
| // FIXME: Workaround for syntax error reported by MSVC buildbots. |
| TargetTransformInfo &TTIRef = *TTI; |
| // Find all reorderable nodes with the given VF. |
| // Currently the are vectorized stores,loads,extracts + some gathering of |
| // extracts. |
| for_each(VectorizableTree, [this, &TTIRef, &VFToOrderedEntries, |
| &GathersToOrders, &ExternalUserReorderMap, |
| &AltShufflesToOrders, &PhisToOrders]( |
| const std::unique_ptr<TreeEntry> &TE) { |
| // Look for external users that will probably be vectorized. |
| SmallVector<OrdersType, 1> ExternalUserReorderIndices = |
| findExternalStoreUsersReorderIndices(TE.get()); |
| if (!ExternalUserReorderIndices.empty()) { |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| ExternalUserReorderMap.try_emplace(TE.get(), |
| std::move(ExternalUserReorderIndices)); |
| } |
| |
| // Patterns like [fadd,fsub] can be combined into a single instruction in |
| // x86. Reordering them into [fsub,fadd] blocks this pattern. So we need |
| // to take into account their order when looking for the most used order. |
| if (TE->isAltShuffle()) { |
| VectorType *VecTy = |
| FixedVectorType::get(TE->Scalars[0]->getType(), TE->Scalars.size()); |
| unsigned Opcode0 = TE->getOpcode(); |
| unsigned Opcode1 = TE->getAltOpcode(); |
| // The opcode mask selects between the two opcodes. |
| SmallBitVector OpcodeMask(TE->Scalars.size(), false); |
| for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) |
| if (cast<Instruction>(TE->Scalars[Lane])->getOpcode() == Opcode1) |
| OpcodeMask.set(Lane); |
| // If this pattern is supported by the target then we consider the order. |
| if (TTIRef.isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask)) { |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| AltShufflesToOrders.try_emplace(TE.get(), OrdersType()); |
| } |
| // TODO: Check the reverse order too. |
| } |
| |
| if (std::optional<OrdersType> CurrentOrder = |
| getReorderingData(*TE, /*TopToBottom=*/true)) { |
| // Do not include ordering for nodes used in the alt opcode vectorization, |
| // better to reorder them during bottom-to-top stage. If follow the order |
| // here, it causes reordering of the whole graph though actually it is |
| // profitable just to reorder the subgraph that starts from the alternate |
| // opcode vectorization node. Such nodes already end-up with the shuffle |
| // instruction and it is just enough to change this shuffle rather than |
| // rotate the scalars for the whole graph. |
| unsigned Cnt = 0; |
| const TreeEntry *UserTE = TE.get(); |
| while (UserTE && Cnt < RecursionMaxDepth) { |
| if (UserTE->UserTreeIndices.size() != 1) |
| break; |
| if (all_of(UserTE->UserTreeIndices, [](const EdgeInfo &EI) { |
| return EI.UserTE->State == TreeEntry::Vectorize && |
| EI.UserTE->isAltShuffle() && EI.UserTE->Idx != 0; |
| })) |
| return; |
| UserTE = UserTE->UserTreeIndices.back().UserTE; |
| ++Cnt; |
| } |
| VFToOrderedEntries[TE->getVectorFactor()].insert(TE.get()); |
| if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) |
| GathersToOrders.try_emplace(TE.get(), *CurrentOrder); |
| if (TE->State == TreeEntry::Vectorize && |
| TE->getOpcode() == Instruction::PHI) |
| PhisToOrders.try_emplace(TE.get(), *CurrentOrder); |
| } |
| }); |
| |
| // Reorder the graph nodes according to their vectorization factor. |
| for (unsigned VF = VectorizableTree.front()->getVectorFactor(); VF > 1; |
| VF /= 2) { |
| auto It = VFToOrderedEntries.find(VF); |
| if (It == VFToOrderedEntries.end()) |
| continue; |
| // Try to find the most profitable order. We just are looking for the most |
| // used order and reorder scalar elements in the nodes according to this |
| // mostly used order. |
| ArrayRef<TreeEntry *> OrderedEntries = It->second.getArrayRef(); |
| // All operands are reordered and used only in this node - propagate the |
| // most used order to the user node. |
| MapVector<OrdersType, unsigned, |
| DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> |
| OrdersUses; |
| SmallPtrSet<const TreeEntry *, 4> VisitedOps; |
| for (const TreeEntry *OpTE : OrderedEntries) { |
| // No need to reorder this nodes, still need to extend and to use shuffle, |
| // just need to merge reordering shuffle and the reuse shuffle. |
| if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) |
| continue; |
| // Count number of orders uses. |
| const auto &Order = [OpTE, &GathersToOrders, &AltShufflesToOrders, |
| &PhisToOrders]() -> const OrdersType & { |
| if (OpTE->State == TreeEntry::NeedToGather || |
| !OpTE->ReuseShuffleIndices.empty()) { |
| auto It = GathersToOrders.find(OpTE); |
| if (It != GathersToOrders.end()) |
| return It->second; |
| } |
| if (OpTE->isAltShuffle()) { |
| auto It = AltShufflesToOrders.find(OpTE); |
| if (It != AltShufflesToOrders.end()) |
| return It->second; |
| } |
| if (OpTE->State == TreeEntry::Vectorize && |
| OpTE->getOpcode() == Instruction::PHI) { |
| auto It = PhisToOrders.find(OpTE); |
| if (It != PhisToOrders.end()) |
| return It->second; |
| } |
| return OpTE->ReorderIndices; |
| }(); |
| // First consider the order of the external scalar users. |
| auto It = ExternalUserReorderMap.find(OpTE); |
| if (It != ExternalUserReorderMap.end()) { |
| const auto &ExternalUserReorderIndices = It->second; |
| // If the OpTE vector factor != number of scalars - use natural order, |
| // it is an attempt to reorder node with reused scalars but with |
| // external uses. |
| if (OpTE->getVectorFactor() != OpTE->Scalars.size()) { |
| OrdersUses.insert(std::make_pair(OrdersType(), 0)).first->second += |
| ExternalUserReorderIndices.size(); |
| } else { |
| for (const OrdersType &ExtOrder : ExternalUserReorderIndices) |
| ++OrdersUses.insert(std::make_pair(ExtOrder, 0)).first->second; |
| } |
| // No other useful reorder data in this entry. |
| if (Order.empty()) |
| continue; |
| } |
| // Stores actually store the mask, not the order, need to invert. |
| if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && |
| OpTE->getOpcode() == Instruction::Store && !Order.empty()) { |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| unsigned E = Order.size(); |
| OrdersType CurrentOrder(E, E); |
| transform(Mask, CurrentOrder.begin(), [E](int Idx) { |
| return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx); |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| ++OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second; |
| } else { |
| ++OrdersUses.insert(std::make_pair(Order, 0)).first->second; |
| } |
| } |
| // Set order of the user node. |
| if (OrdersUses.empty()) |
| continue; |
| // Choose the most used order. |
| ArrayRef<unsigned> BestOrder = OrdersUses.front().first; |
| unsigned Cnt = OrdersUses.front().second; |
| for (const auto &Pair : drop_begin(OrdersUses)) { |
| if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { |
| BestOrder = Pair.first; |
| Cnt = Pair.second; |
| } |
| } |
| // Set order of the user node. |
| if (BestOrder.empty()) |
| continue; |
| SmallVector<int> Mask; |
| inversePermutation(BestOrder, Mask); |
| SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem); |
| unsigned E = BestOrder.size(); |
| transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { |
| return I < E ? static_cast<int>(I) : PoisonMaskElem; |
| }); |
| // Do an actual reordering, if profitable. |
| for (std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| // Just do the reordering for the nodes with the given VF. |
| if (TE->Scalars.size() != VF) { |
| if (TE->ReuseShuffleIndices.size() == VF) { |
| // Need to reorder the reuses masks of the operands with smaller VF to |
| // be able to find the match between the graph nodes and scalar |
| // operands of the given node during vectorization/cost estimation. |
| assert(all_of(TE->UserTreeIndices, |
| [VF, &TE](const EdgeInfo &EI) { |
| return EI.UserTE->Scalars.size() == VF || |
| EI.UserTE->Scalars.size() == |
| TE->Scalars.size(); |
| }) && |
| "All users must be of VF size."); |
| // Update ordering of the operands with the smaller VF than the given |
| // one. |
| reorderNodeWithReuses(*TE, Mask); |
| } |
| continue; |
| } |
| if (TE->State == TreeEntry::Vectorize && |
| isa<ExtractElementInst, ExtractValueInst, LoadInst, StoreInst, |
| InsertElementInst>(TE->getMainOp()) && |
| !TE->isAltShuffle()) { |
| // Build correct orders for extract{element,value}, loads and |
| // stores. |
| reorderOrder(TE->ReorderIndices, Mask); |
| if (isa<InsertElementInst, StoreInst>(TE->getMainOp())) |
| TE->reorderOperands(Mask); |
| } else { |
| // Reorder the node and its operands. |
| TE->reorderOperands(Mask); |
| assert(TE->ReorderIndices.empty() && |
| "Expected empty reorder sequence."); |
| reorderScalars(TE->Scalars, Mask); |
| } |
| if (!TE->ReuseShuffleIndices.empty()) { |
| // Apply reversed order to keep the original ordering of the reused |
| // elements to avoid extra reorder indices shuffling. |
| OrdersType CurrentOrder; |
| reorderOrder(CurrentOrder, MaskOrder); |
| SmallVector<int> NewReuses; |
| inversePermutation(CurrentOrder, NewReuses); |
| addMask(NewReuses, TE->ReuseShuffleIndices); |
| TE->ReuseShuffleIndices.swap(NewReuses); |
| } |
| } |
| } |
| } |
| |
| bool BoUpSLP::canReorderOperands( |
| TreeEntry *UserTE, SmallVectorImpl<std::pair<unsigned, TreeEntry *>> &Edges, |
| ArrayRef<TreeEntry *> ReorderableGathers, |
| SmallVectorImpl<TreeEntry *> &GatherOps) { |
| for (unsigned I = 0, E = UserTE->getNumOperands(); I < E; ++I) { |
| if (any_of(Edges, [I](const std::pair<unsigned, TreeEntry *> &OpData) { |
| return OpData.first == I && |
| OpData.second->State == TreeEntry::Vectorize; |
| })) |
| continue; |
| if (TreeEntry *TE = getVectorizedOperand(UserTE, I)) { |
| // Do not reorder if operand node is used by many user nodes. |
| if (any_of(TE->UserTreeIndices, |
| [UserTE](const EdgeInfo &EI) { return EI.UserTE != UserTE; })) |
| return false; |
| // Add the node to the list of the ordered nodes with the identity |
| // order. |
| Edges.emplace_back(I, TE); |
| // Add ScatterVectorize nodes to the list of operands, where just |
| // reordering of the scalars is required. Similar to the gathers, so |
| // simply add to the list of gathered ops. |
| // If there are reused scalars, process this node as a regular vectorize |
| // node, just reorder reuses mask. |
| if (TE->State != TreeEntry::Vectorize && TE->ReuseShuffleIndices.empty()) |
| GatherOps.push_back(TE); |
| continue; |
| } |
| TreeEntry *Gather = nullptr; |
| if (count_if(ReorderableGathers, |
| [&Gather, UserTE, I](TreeEntry *TE) { |
| assert(TE->State != TreeEntry::Vectorize && |
| "Only non-vectorized nodes are expected."); |
| if (any_of(TE->UserTreeIndices, |
| [UserTE, I](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE && EI.EdgeIdx == I; |
| })) { |
| assert(TE->isSame(UserTE->getOperand(I)) && |
| "Operand entry does not match operands."); |
| Gather = TE; |
| return true; |
| } |
| return false; |
| }) > 1 && |
| !allConstant(UserTE->getOperand(I))) |
| return false; |
| if (Gather) |
| GatherOps.push_back(Gather); |
| } |
| return true; |
| } |
| |
| void BoUpSLP::reorderBottomToTop(bool IgnoreReorder) { |
| SetVector<TreeEntry *> OrderedEntries; |
| DenseMap<const TreeEntry *, OrdersType> GathersToOrders; |
| // Find all reorderable leaf nodes with the given VF. |
| // Currently the are vectorized loads,extracts without alternate operands + |
| // some gathering of extracts. |
| SmallVector<TreeEntry *> NonVectorized; |
| for_each(VectorizableTree, [this, &OrderedEntries, &GathersToOrders, |
| &NonVectorized]( |
| const std::unique_ptr<TreeEntry> &TE) { |
| if (TE->State != TreeEntry::Vectorize) |
| NonVectorized.push_back(TE.get()); |
| if (std::optional<OrdersType> CurrentOrder = |
| getReorderingData(*TE, /*TopToBottom=*/false)) { |
| OrderedEntries.insert(TE.get()); |
| if (TE->State != TreeEntry::Vectorize || !TE->ReuseShuffleIndices.empty()) |
| GathersToOrders.try_emplace(TE.get(), *CurrentOrder); |
| } |
| }); |
| |
| // 1. Propagate order to the graph nodes, which use only reordered nodes. |
| // I.e., if the node has operands, that are reordered, try to make at least |
| // one operand order in the natural order and reorder others + reorder the |
| // user node itself. |
| SmallPtrSet<const TreeEntry *, 4> Visited; |
| while (!OrderedEntries.empty()) { |
| // 1. Filter out only reordered nodes. |
| // 2. If the entry has multiple uses - skip it and jump to the next node. |
| DenseMap<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>> Users; |
| SmallVector<TreeEntry *> Filtered; |
| for (TreeEntry *TE : OrderedEntries) { |
| if (!(TE->State == TreeEntry::Vectorize || |
| (TE->State == TreeEntry::NeedToGather && |
| GathersToOrders.count(TE))) || |
| TE->UserTreeIndices.empty() || !TE->ReuseShuffleIndices.empty() || |
| !all_of(drop_begin(TE->UserTreeIndices), |
| [TE](const EdgeInfo &EI) { |
| return EI.UserTE == TE->UserTreeIndices.front().UserTE; |
| }) || |
| !Visited.insert(TE).second) { |
| Filtered.push_back(TE); |
| continue; |
| } |
| // Build a map between user nodes and their operands order to speedup |
| // search. The graph currently does not provide this dependency directly. |
| for (EdgeInfo &EI : TE->UserTreeIndices) { |
| TreeEntry *UserTE = EI.UserTE; |
| auto It = Users.find(UserTE); |
| if (It == Users.end()) |
| It = Users.insert({UserTE, {}}).first; |
| It->second.emplace_back(EI.EdgeIdx, TE); |
| } |
| } |
| // Erase filtered entries. |
| for_each(Filtered, |
| [&OrderedEntries](TreeEntry *TE) { OrderedEntries.remove(TE); }); |
| SmallVector< |
| std::pair<TreeEntry *, SmallVector<std::pair<unsigned, TreeEntry *>>>> |
| UsersVec(Users.begin(), Users.end()); |
| sort(UsersVec, [](const auto &Data1, const auto &Data2) { |
| return Data1.first->Idx > Data2.first->Idx; |
| }); |
| for (auto &Data : UsersVec) { |
| // Check that operands are used only in the User node. |
| SmallVector<TreeEntry *> GatherOps; |
| if (!canReorderOperands(Data.first, Data.second, NonVectorized, |
| GatherOps)) { |
| for_each(Data.second, |
| [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { |
| OrderedEntries.remove(Op.second); |
| }); |
| continue; |
| } |
| // All operands are reordered and used only in this node - propagate the |
| // most used order to the user node. |
| MapVector<OrdersType, unsigned, |
| DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo>> |
| OrdersUses; |
| // Do the analysis for each tree entry only once, otherwise the order of |
| // the same node my be considered several times, though might be not |
| // profitable. |
| SmallPtrSet<const TreeEntry *, 4> VisitedOps; |
| SmallPtrSet<const TreeEntry *, 4> VisitedUsers; |
| for (const auto &Op : Data.second) { |
| TreeEntry *OpTE = Op.second; |
| if (!VisitedOps.insert(OpTE).second) |
| continue; |
| if (!OpTE->ReuseShuffleIndices.empty() && !GathersToOrders.count(OpTE)) |
| continue; |
| const auto &Order = [OpTE, &GathersToOrders]() -> const OrdersType & { |
| if (OpTE->State == TreeEntry::NeedToGather || |
| !OpTE->ReuseShuffleIndices.empty()) |
| return GathersToOrders.find(OpTE)->second; |
| return OpTE->ReorderIndices; |
| }(); |
| unsigned NumOps = count_if( |
| Data.second, [OpTE](const std::pair<unsigned, TreeEntry *> &P) { |
| return P.second == OpTE; |
| }); |
| // Stores actually store the mask, not the order, need to invert. |
| if (OpTE->State == TreeEntry::Vectorize && !OpTE->isAltShuffle() && |
| OpTE->getOpcode() == Instruction::Store && !Order.empty()) { |
| SmallVector<int> Mask; |
| inversePermutation(Order, Mask); |
| unsigned E = Order.size(); |
| OrdersType CurrentOrder(E, E); |
| transform(Mask, CurrentOrder.begin(), [E](int Idx) { |
| return Idx == PoisonMaskElem ? E : static_cast<unsigned>(Idx); |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| OrdersUses.insert(std::make_pair(CurrentOrder, 0)).first->second += |
| NumOps; |
| } else { |
| OrdersUses.insert(std::make_pair(Order, 0)).first->second += NumOps; |
| } |
| auto Res = OrdersUses.insert(std::make_pair(OrdersType(), 0)); |
| const auto &&AllowsReordering = [IgnoreReorder, &GathersToOrders]( |
| const TreeEntry *TE) { |
| if (!TE->ReorderIndices.empty() || !TE->ReuseShuffleIndices.empty() || |
| (TE->State == TreeEntry::Vectorize && TE->isAltShuffle()) || |
| (IgnoreReorder && TE->Idx == 0)) |
| return true; |
| if (TE->State == TreeEntry::NeedToGather) { |
| auto It = GathersToOrders.find(TE); |
| if (It != GathersToOrders.end()) |
| return !It->second.empty(); |
| return true; |
| } |
| return false; |
| }; |
| for (const EdgeInfo &EI : OpTE->UserTreeIndices) { |
| TreeEntry *UserTE = EI.UserTE; |
| if (!VisitedUsers.insert(UserTE).second) |
| continue; |
| // May reorder user node if it requires reordering, has reused |
| // scalars, is an alternate op vectorize node or its op nodes require |
| // reordering. |
| if (AllowsReordering(UserTE)) |
| continue; |
| // Check if users allow reordering. |
| // Currently look up just 1 level of operands to avoid increase of |
| // the compile time. |
| // Profitable to reorder if definitely more operands allow |
| // reordering rather than those with natural order. |
| ArrayRef<std::pair<unsigned, TreeEntry *>> Ops = Users[UserTE]; |
| if (static_cast<unsigned>(count_if( |
| Ops, [UserTE, &AllowsReordering]( |
| const std::pair<unsigned, TreeEntry *> &Op) { |
| return AllowsReordering(Op.second) && |
| all_of(Op.second->UserTreeIndices, |
| [UserTE](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE; |
| }); |
| })) <= Ops.size() / 2) |
| ++Res.first->second; |
| } |
| } |
| // If no orders - skip current nodes and jump to the next one, if any. |
| if (OrdersUses.empty()) { |
| for_each(Data.second, |
| [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { |
| OrderedEntries.remove(Op.second); |
| }); |
| continue; |
| } |
| // Choose the best order. |
| ArrayRef<unsigned> BestOrder = OrdersUses.front().first; |
| unsigned Cnt = OrdersUses.front().second; |
| for (const auto &Pair : drop_begin(OrdersUses)) { |
| if (Cnt < Pair.second || (Cnt == Pair.second && Pair.first.empty())) { |
| BestOrder = Pair.first; |
| Cnt = Pair.second; |
| } |
| } |
| // Set order of the user node (reordering of operands and user nodes). |
| if (BestOrder.empty()) { |
| for_each(Data.second, |
| [&OrderedEntries](const std::pair<unsigned, TreeEntry *> &Op) { |
| OrderedEntries.remove(Op.second); |
| }); |
| continue; |
| } |
| // Erase operands from OrderedEntries list and adjust their orders. |
| VisitedOps.clear(); |
| SmallVector<int> Mask; |
| inversePermutation(BestOrder, Mask); |
| SmallVector<int> MaskOrder(BestOrder.size(), PoisonMaskElem); |
| unsigned E = BestOrder.size(); |
| transform(BestOrder, MaskOrder.begin(), [E](unsigned I) { |
| return I < E ? static_cast<int>(I) : PoisonMaskElem; |
| }); |
| for (const std::pair<unsigned, TreeEntry *> &Op : Data.second) { |
| TreeEntry *TE = Op.second; |
| OrderedEntries.remove(TE); |
| if (!VisitedOps.insert(TE).second) |
| continue; |
| if (TE->ReuseShuffleIndices.size() == BestOrder.size()) { |
| reorderNodeWithReuses(*TE, Mask); |
| continue; |
| } |
| // Gathers are processed separately. |
| if (TE->State != TreeEntry::Vectorize) |
| continue; |
| assert((BestOrder.size() == TE->ReorderIndices.size() || |
| TE->ReorderIndices.empty()) && |
| "Non-matching sizes of user/operand entries."); |
| reorderOrder(TE->ReorderIndices, Mask); |
| if (IgnoreReorder && TE == VectorizableTree.front().get()) |
| IgnoreReorder = false; |
| } |
| // For gathers just need to reorder its scalars. |
| for (TreeEntry *Gather : GatherOps) { |
| assert(Gather->ReorderIndices.empty() && |
| "Unexpected reordering of gathers."); |
| if (!Gather->ReuseShuffleIndices.empty()) { |
| // Just reorder reuses indices. |
| reorderReuses(Gather->ReuseShuffleIndices, Mask); |
| continue; |
| } |
| reorderScalars(Gather->Scalars, Mask); |
| OrderedEntries.remove(Gather); |
| } |
| // Reorder operands of the user node and set the ordering for the user |
| // node itself. |
| if (Data.first->State != TreeEntry::Vectorize || |
| !isa<ExtractElementInst, ExtractValueInst, LoadInst>( |
| Data.first->getMainOp()) || |
| Data.first->isAltShuffle()) |
| Data.first->reorderOperands(Mask); |
| if (!isa<InsertElementInst, StoreInst>(Data.first->getMainOp()) || |
| Data.first->isAltShuffle()) { |
| reorderScalars(Data.first->Scalars, Mask); |
| reorderOrder(Data.first->ReorderIndices, MaskOrder); |
| if (Data.first->ReuseShuffleIndices.empty() && |
| !Data.first->ReorderIndices.empty() && |
| !Data.first->isAltShuffle()) { |
| // Insert user node to the list to try to sink reordering deeper in |
| // the graph. |
| OrderedEntries.insert(Data.first); |
| } |
| } else { |
| reorderOrder(Data.first->ReorderIndices, Mask); |
| } |
| } |
| } |
| // If the reordering is unnecessary, just remove the reorder. |
| if (IgnoreReorder && !VectorizableTree.front()->ReorderIndices.empty() && |
| VectorizableTree.front()->ReuseShuffleIndices.empty()) |
| VectorizableTree.front()->ReorderIndices.clear(); |
| } |
| |
| void BoUpSLP::buildExternalUses( |
| const ExtraValueToDebugLocsMap &ExternallyUsedValues) { |
| // Collect the values that we need to extract from the tree. |
| for (auto &TEPtr : VectorizableTree) { |
| TreeEntry *Entry = TEPtr.get(); |
| |
| // No need to handle users of gathered values. |
| if (Entry->State == TreeEntry::NeedToGather) |
| continue; |
| |
| // For each lane: |
| for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { |
| Value *Scalar = Entry->Scalars[Lane]; |
| int FoundLane = Entry->findLaneForValue(Scalar); |
| |
| // Check if the scalar is externally used as an extra arg. |
| auto ExtI = ExternallyUsedValues.find(Scalar); |
| if (ExtI != ExternallyUsedValues.end()) { |
| LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " |
| << Lane << " from " << *Scalar << ".\n"); |
| ExternalUses.emplace_back(Scalar, nullptr, FoundLane); |
| } |
| for (User *U : Scalar->users()) { |
| LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); |
| |
| Instruction *UserInst = dyn_cast<Instruction>(U); |
| if (!UserInst) |
| continue; |
| |
| if (isDeleted(UserInst)) |
| continue; |
| |
| // Skip in-tree scalars that become vectors |
| if (TreeEntry *UseEntry = getTreeEntry(U)) { |
| Value *UseScalar = UseEntry->Scalars[0]; |
| // Some in-tree scalars will remain as scalar in vectorized |
| // instructions. If that is the case, the one in Lane 0 will |
| // be used. |
| if (UseScalar != U || |
| UseEntry->State == TreeEntry::ScatterVectorize || |
| !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { |
| LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U |
| << ".\n"); |
| assert(UseEntry->State != TreeEntry::NeedToGather && "Bad state"); |
| continue; |
| } |
| } |
| |
| // Ignore users in the user ignore list. |
| if (UserIgnoreList && UserIgnoreList->contains(UserInst)) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " |
| << Lane << " from " << *Scalar << ".\n"); |
| ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane)); |
| } |
| } |
| } |
| } |
| |
| DenseMap<Value *, SmallVector<StoreInst *, 4>> |
| BoUpSLP::collectUserStores(const BoUpSLP::TreeEntry *TE) const { |
| DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap; |
| for (unsigned Lane : seq<unsigned>(0, TE->Scalars.size())) { |
| Value *V = TE->Scalars[Lane]; |
| // To save compilation time we don't visit if we have too many users. |
| static constexpr unsigned UsersLimit = 4; |
| if (V->hasNUsesOrMore(UsersLimit)) |
| break; |
| |
| // Collect stores per pointer object. |
| for (User *U : V->users()) { |
| auto *SI = dyn_cast<StoreInst>(U); |
| if (SI == nullptr || !SI->isSimple() || |
| !isValidElementType(SI->getValueOperand()->getType())) |
| continue; |
| // Skip entry if already |
| if (getTreeEntry(U)) |
| continue; |
| |
| Value *Ptr = getUnderlyingObject(SI->getPointerOperand()); |
| auto &StoresVec = PtrToStoresMap[Ptr]; |
| // For now just keep one store per pointer object per lane. |
| // TODO: Extend this to support multiple stores per pointer per lane |
| if (StoresVec.size() > Lane) |
| continue; |
| // Skip if in different BBs. |
| if (!StoresVec.empty() && |
| SI->getParent() != StoresVec.back()->getParent()) |
| continue; |
| // Make sure that the stores are of the same type. |
| if (!StoresVec.empty() && |
| SI->getValueOperand()->getType() != |
| StoresVec.back()->getValueOperand()->getType()) |
| continue; |
| StoresVec.push_back(SI); |
| } |
| } |
| return PtrToStoresMap; |
| } |
| |
| bool BoUpSLP::canFormVector(const SmallVector<StoreInst *, 4> &StoresVec, |
| OrdersType &ReorderIndices) const { |
| // We check whether the stores in StoreVec can form a vector by sorting them |
| // and checking whether they are consecutive. |
| |
| // To avoid calling getPointersDiff() while sorting we create a vector of |
| // pairs {store, offset from first} and sort this instead. |
| SmallVector<std::pair<StoreInst *, int>, 4> StoreOffsetVec(StoresVec.size()); |
| StoreInst *S0 = StoresVec[0]; |
| StoreOffsetVec[0] = {S0, 0}; |
| Type *S0Ty = S0->getValueOperand()->getType(); |
| Value *S0Ptr = S0->getPointerOperand(); |
| for (unsigned Idx : seq<unsigned>(1, StoresVec.size())) { |
| StoreInst *SI = StoresVec[Idx]; |
| std::optional<int> Diff = |
| getPointersDiff(S0Ty, S0Ptr, SI->getValueOperand()->getType(), |
| SI->getPointerOperand(), *DL, *SE, |
| /*StrictCheck=*/true); |
| // We failed to compare the pointers so just abandon this StoresVec. |
| if (!Diff) |
| return false; |
| StoreOffsetVec[Idx] = {StoresVec[Idx], *Diff}; |
| } |
| |
| // Sort the vector based on the pointers. We create a copy because we may |
| // need the original later for calculating the reorder (shuffle) indices. |
| stable_sort(StoreOffsetVec, [](const std::pair<StoreInst *, int> &Pair1, |
| const std::pair<StoreInst *, int> &Pair2) { |
| int Offset1 = Pair1.second; |
| int Offset2 = Pair2.second; |
| return Offset1 < Offset2; |
| }); |
| |
| // Check if the stores are consecutive by checking if their difference is 1. |
| for (unsigned Idx : seq<unsigned>(1, StoreOffsetVec.size())) |
| if (StoreOffsetVec[Idx].second != StoreOffsetVec[Idx-1].second + 1) |
| return false; |
| |
| // Calculate the shuffle indices according to their offset against the sorted |
| // StoreOffsetVec. |
| ReorderIndices.reserve(StoresVec.size()); |
| for (StoreInst *SI : StoresVec) { |
| unsigned Idx = find_if(StoreOffsetVec, |
| [SI](const std::pair<StoreInst *, int> &Pair) { |
| return Pair.first == SI; |
| }) - |
| StoreOffsetVec.begin(); |
| ReorderIndices.push_back(Idx); |
| } |
| // Identity order (e.g., {0,1,2,3}) is modeled as an empty OrdersType in |
| // reorderTopToBottom() and reorderBottomToTop(), so we are following the |
| // same convention here. |
| auto IsIdentityOrder = [](const OrdersType &Order) { |
| for (unsigned Idx : seq<unsigned>(0, Order.size())) |
| if (Idx != Order[Idx]) |
| return false; |
| return true; |
| }; |
| if (IsIdentityOrder(ReorderIndices)) |
| ReorderIndices.clear(); |
| |
| return true; |
| } |
| |
| #ifndef NDEBUG |
| LLVM_DUMP_METHOD static void dumpOrder(const BoUpSLP::OrdersType &Order) { |
| for (unsigned Idx : Order) |
| dbgs() << Idx << ", "; |
| dbgs() << "\n"; |
| } |
| #endif |
| |
| SmallVector<BoUpSLP::OrdersType, 1> |
| BoUpSLP::findExternalStoreUsersReorderIndices(TreeEntry *TE) const { |
| unsigned NumLanes = TE->Scalars.size(); |
| |
| DenseMap<Value *, SmallVector<StoreInst *, 4>> PtrToStoresMap = |
| collectUserStores(TE); |
| |
| // Holds the reorder indices for each candidate store vector that is a user of |
| // the current TreeEntry. |
| SmallVector<OrdersType, 1> ExternalReorderIndices; |
| |
| // Now inspect the stores collected per pointer and look for vectorization |
| // candidates. For each candidate calculate the reorder index vector and push |
| // it into `ExternalReorderIndices` |
| for (const auto &Pair : PtrToStoresMap) { |
| auto &StoresVec = Pair.second; |
| // If we have fewer than NumLanes stores, then we can't form a vector. |
| if (StoresVec.size() != NumLanes) |
| continue; |
| |
| // If the stores are not consecutive then abandon this StoresVec. |
| OrdersType ReorderIndices; |
| if (!canFormVector(StoresVec, ReorderIndices)) |
| continue; |
| |
| // We now know that the scalars in StoresVec can form a vector instruction, |
| // so set the reorder indices. |
| ExternalReorderIndices.push_back(ReorderIndices); |
| } |
| return ExternalReorderIndices; |
| } |
| |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots, |
| const SmallDenseSet<Value *> &UserIgnoreLst) { |
| deleteTree(); |
| UserIgnoreList = &UserIgnoreLst; |
| if (!allSameType(Roots)) |
| return; |
| buildTree_rec(Roots, 0, EdgeInfo()); |
| } |
| |
| void BoUpSLP::buildTree(ArrayRef<Value *> Roots) { |
| deleteTree(); |
| if (!allSameType(Roots)) |
| return; |
| buildTree_rec(Roots, 0, EdgeInfo()); |
| } |
| |
| /// \return true if the specified list of values has only one instruction that |
| /// requires scheduling, false otherwise. |
| #ifndef NDEBUG |
| static bool needToScheduleSingleInstruction(ArrayRef<Value *> VL) { |
| Value *NeedsScheduling = nullptr; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| if (!NeedsScheduling) { |
| NeedsScheduling = V; |
| continue; |
| } |
| return false; |
| } |
| return NeedsScheduling; |
| } |
| #endif |
| |
| /// Generates key/subkey pair for the given value to provide effective sorting |
| /// of the values and better detection of the vectorizable values sequences. The |
| /// keys/subkeys can be used for better sorting of the values themselves (keys) |
| /// and in values subgroups (subkeys). |
| static std::pair<size_t, size_t> generateKeySubkey( |
| Value *V, const TargetLibraryInfo *TLI, |
| function_ref<hash_code(size_t, LoadInst *)> LoadsSubkeyGenerator, |
| bool AllowAlternate) { |
| hash_code Key = hash_value(V->getValueID() + 2); |
| hash_code SubKey = hash_value(0); |
| // Sort the loads by the distance between the pointers. |
| if (auto *LI = dyn_cast<LoadInst>(V)) { |
| Key = hash_combine(LI->getType(), hash_value(Instruction::Load), Key); |
| if (LI->isSimple()) |
| SubKey = hash_value(LoadsSubkeyGenerator(Key, LI)); |
| else |
| Key = SubKey = hash_value(LI); |
| } else if (isVectorLikeInstWithConstOps(V)) { |
| // Sort extracts by the vector operands. |
| if (isa<ExtractElementInst, UndefValue>(V)) |
| Key = hash_value(Value::UndefValueVal + 1); |
| if (auto *EI = dyn_cast<ExtractElementInst>(V)) { |
| if (!isUndefVector(EI->getVectorOperand()).all() && |
| !isa<UndefValue>(EI->getIndexOperand())) |
| SubKey = hash_value(EI->getVectorOperand()); |
| } |
| } else if (auto *I = dyn_cast<Instruction>(V)) { |
| // Sort other instructions just by the opcodes except for CMPInst. |
| // For CMP also sort by the predicate kind. |
| if ((isa<BinaryOperator, CastInst>(I)) && |
| isValidForAlternation(I->getOpcode())) { |
| if (AllowAlternate) |
| Key = hash_value(isa<BinaryOperator>(I) ? 1 : 0); |
| else |
| Key = hash_combine(hash_value(I->getOpcode()), Key); |
| SubKey = hash_combine( |
| hash_value(I->getOpcode()), hash_value(I->getType()), |
| hash_value(isa<BinaryOperator>(I) |
| ? I->getType() |
| : cast<CastInst>(I)->getOperand(0)->getType())); |
| // For casts, look through the only operand to improve compile time. |
| if (isa<CastInst>(I)) { |
| std::pair<size_t, size_t> OpVals = |
| generateKeySubkey(I->getOperand(0), TLI, LoadsSubkeyGenerator, |
| /*AllowAlternate=*/true); |
| Key = hash_combine(OpVals.first, Key); |
| SubKey = hash_combine(OpVals.first, SubKey); |
| } |
| } else if (auto *CI = dyn_cast<CmpInst>(I)) { |
| CmpInst::Predicate Pred = CI->getPredicate(); |
| if (CI->isCommutative()) |
| Pred = std::min(Pred, CmpInst::getInversePredicate(Pred)); |
| CmpInst::Predicate SwapPred = CmpInst::getSwappedPredicate(Pred); |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Pred), |
| hash_value(SwapPred), |
| hash_value(CI->getOperand(0)->getType())); |
| } else if (auto *Call = dyn_cast<CallInst>(I)) { |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(Call, TLI); |
| if (isTriviallyVectorizable(ID)) { |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(ID)); |
| } else if (!VFDatabase(*Call).getMappings(*Call).empty()) { |
| SubKey = hash_combine(hash_value(I->getOpcode()), |
| hash_value(Call->getCalledFunction())); |
| } else { |
| Key = hash_combine(hash_value(Call), Key); |
| SubKey = hash_combine(hash_value(I->getOpcode()), hash_value(Call)); |
| } |
| for (const CallBase::BundleOpInfo &Op : Call->bundle_op_infos()) |
| SubKey = hash_combine(hash_value(Op.Begin), hash_value(Op.End), |
| hash_value(Op.Tag), SubKey); |
| } else if (auto *Gep = dyn_cast<GetElementPtrInst>(I)) { |
| if (Gep->getNumOperands() == 2 && isa<ConstantInt>(Gep->getOperand(1))) |
| SubKey = hash_value(Gep->getPointerOperand()); |
| else |
| SubKey = hash_value(Gep); |
| } else if (BinaryOperator::isIntDivRem(I->getOpcode()) && |
| !isa<ConstantInt>(I->getOperand(1))) { |
| // Do not try to vectorize instructions with potentially high cost. |
| SubKey = hash_value(I); |
| } else { |
| SubKey = hash_value(I->getOpcode()); |
| } |
| Key = hash_combine(hash_value(I->getParent()), Key); |
| } |
| return std::make_pair(Key, SubKey); |
| } |
| |
| /// Checks if the specified instruction \p I is an alternate operation for |
| /// the given \p MainOp and \p AltOp instructions. |
| static bool isAlternateInstruction(const Instruction *I, |
| const Instruction *MainOp, |
| const Instruction *AltOp, |
| const TargetLibraryInfo &TLI); |
| |
| void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth, |
| const EdgeInfo &UserTreeIdx) { |
| assert((allConstant(VL) || allSameType(VL)) && "Invalid types!"); |
| |
| SmallVector<int> ReuseShuffleIndicies; |
| SmallVector<Value *> UniqueValues; |
| auto &&TryToFindDuplicates = [&VL, &ReuseShuffleIndicies, &UniqueValues, |
| &UserTreeIdx, |
| this](const InstructionsState &S) { |
| // Check that every instruction appears once in this bundle. |
| DenseMap<Value *, unsigned> UniquePositions(VL.size()); |
| for (Value *V : VL) { |
| if (isConstant(V)) { |
| ReuseShuffleIndicies.emplace_back( |
| isa<UndefValue>(V) ? PoisonMaskElem : UniqueValues.size()); |
| UniqueValues.emplace_back(V); |
| continue; |
| } |
| auto Res = UniquePositions.try_emplace(V, UniqueValues.size()); |
| ReuseShuffleIndicies.emplace_back(Res.first->second); |
| if (Res.second) |
| UniqueValues.emplace_back(V); |
| } |
| size_t NumUniqueScalarValues = UniqueValues.size(); |
| if (NumUniqueScalarValues == VL.size()) { |
| ReuseShuffleIndicies.clear(); |
| } else { |
| LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n"); |
| if (NumUniqueScalarValues <= 1 || |
| (UniquePositions.size() == 1 && all_of(UniqueValues, |
| [](Value *V) { |
| return isa<UndefValue>(V) || |
| !isConstant(V); |
| })) || |
| !llvm::has_single_bit<uint32_t>(NumUniqueScalarValues)) { |
| LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return false; |
| } |
| VL = UniqueValues; |
| } |
| return true; |
| }; |
| |
| InstructionsState S = getSameOpcode(VL, *TLI); |
| |
| // Gather if we hit the RecursionMaxDepth, unless this is a load (or z/sext of |
| // a load), in which case peek through to include it in the tree, without |
| // ballooning over-budget. |
| if (Depth >= RecursionMaxDepth && |
| !(S.MainOp && isa<Instruction>(S.MainOp) && S.MainOp == S.AltOp && |
| VL.size() >= 4 && |
| (match(S.MainOp, m_Load(m_Value())) || all_of(VL, [&S](const Value *I) { |
| return match(I, |
| m_OneUse(m_ZExtOrSExt(m_OneUse(m_Load(m_Value()))))) && |
| cast<Instruction>(I)->getOpcode() == |
| cast<Instruction>(S.MainOp)->getOpcode(); |
| })))) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| |
| // Don't handle scalable vectors |
| if (S.getOpcode() == Instruction::ExtractElement && |
| isa<ScalableVectorType>( |
| cast<ExtractElementInst>(S.OpValue)->getVectorOperandType())) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to scalable vector type.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| |
| // Don't handle vectors. |
| if (S.OpValue->getType()->isVectorTy() && |
| !isa<InsertElementInst>(S.OpValue)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue)) |
| if (SI->getValueOperand()->getType()->isVectorTy()) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // If all of the operands are identical or constant we have a simple solution. |
| // If we deal with insert/extract instructions, they all must have constant |
| // indices, otherwise we should gather them, not try to vectorize. |
| // If alternate op node with 2 elements with gathered operands - do not |
| // vectorize. |
| auto &&NotProfitableForVectorization = [&S, this, |
| Depth](ArrayRef<Value *> VL) { |
| if (!S.getOpcode() || !S.isAltShuffle() || VL.size() > 2) |
| return false; |
| if (VectorizableTree.size() < MinTreeSize) |
| return false; |
| if (Depth >= RecursionMaxDepth - 1) |
| return true; |
| // Check if all operands are extracts, part of vector node or can build a |
| // regular vectorize node. |
| SmallVector<unsigned, 2> InstsCount(VL.size(), 0); |
| for (Value *V : VL) { |
| auto *I = cast<Instruction>(V); |
| InstsCount.push_back(count_if(I->operand_values(), [](Value *Op) { |
| return isa<Instruction>(Op) || isVectorLikeInstWithConstOps(Op); |
| })); |
| } |
| bool IsCommutative = isCommutative(S.MainOp) || isCommutative(S.AltOp); |
| if ((IsCommutative && |
| std::accumulate(InstsCount.begin(), InstsCount.end(), 0) < 2) || |
| (!IsCommutative && |
| all_of(InstsCount, [](unsigned ICnt) { return ICnt < 2; }))) |
| return true; |
| assert(VL.size() == 2 && "Expected only 2 alternate op instructions."); |
| SmallVector<SmallVector<std::pair<Value *, Value *>>> Candidates; |
| auto *I1 = cast<Instruction>(VL.front()); |
| auto *I2 = cast<Instruction>(VL.back()); |
| for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) |
| Candidates.emplace_back().emplace_back(I1->getOperand(Op), |
| I2->getOperand(Op)); |
| if (static_cast<unsigned>(count_if( |
| Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { |
| return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); |
| })) >= S.MainOp->getNumOperands() / 2) |
| return false; |
| if (S.MainOp->getNumOperands() > 2) |
| return true; |
| if (IsCommutative) { |
| // Check permuted operands. |
| Candidates.clear(); |
| for (int Op = 0, E = S.MainOp->getNumOperands(); Op < E; ++Op) |
| Candidates.emplace_back().emplace_back(I1->getOperand(Op), |
| I2->getOperand((Op + 1) % E)); |
| if (any_of( |
| Candidates, [this](ArrayRef<std::pair<Value *, Value *>> Cand) { |
| return findBestRootPair(Cand, LookAheadHeuristics::ScoreSplat); |
| })) |
| return false; |
| } |
| return true; |
| }; |
| SmallVector<unsigned> SortedIndices; |
| BasicBlock *BB = nullptr; |
| bool IsScatterVectorizeUserTE = |
| UserTreeIdx.UserTE && |
| UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize; |
| bool AreAllSameInsts = |
| (S.getOpcode() && allSameBlock(VL)) || |
| (S.OpValue->getType()->isPointerTy() && IsScatterVectorizeUserTE && |
| VL.size() > 2 && |
| all_of(VL, |
| [&BB](Value *V) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| return doesNotNeedToBeScheduled(V); |
| if (!BB) |
| BB = I->getParent(); |
| return BB == I->getParent() && I->getNumOperands() == 2; |
| }) && |
| BB && |
| sortPtrAccesses(VL, UserTreeIdx.UserTE->getMainOp()->getType(), *DL, *SE, |
| SortedIndices)); |
| if (!AreAllSameInsts || allConstant(VL) || isSplat(VL) || |
| (isa<InsertElementInst, ExtractValueInst, ExtractElementInst>( |
| S.OpValue) && |
| !all_of(VL, isVectorLikeInstWithConstOps)) || |
| NotProfitableForVectorization(VL)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O, small shuffle. \n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| |
| // We now know that this is a vector of instructions of the same type from |
| // the same block. |
| |
| // Don't vectorize ephemeral values. |
| if (!EphValues.empty()) { |
| for (Value *V : VL) { |
| if (EphValues.count(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V |
| << ") is ephemeral.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| } |
| } |
| |
| // Check if this is a duplicate of another entry. |
| if (TreeEntry *E = getTreeEntry(S.OpValue)) { |
| LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n"); |
| if (!E->isSame(VL)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| // Record the reuse of the tree node. FIXME, currently this is only used to |
| // properly draw the graph rather than for the actual vectorization. |
| E->UserTreeIndices.push_back(UserTreeIdx); |
| LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue |
| << ".\n"); |
| return; |
| } |
| |
| // Check that none of the instructions in the bundle are already in the tree. |
| for (Value *V : VL) { |
| if (!IsScatterVectorizeUserTE && !isa<Instruction>(V)) |
| continue; |
| if (getTreeEntry(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V |
| << ") is already in tree.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| |
| // The reduction nodes (stored in UserIgnoreList) also should stay scalar. |
| if (UserIgnoreList && !UserIgnoreList->empty()) { |
| for (Value *V : VL) { |
| if (UserIgnoreList && UserIgnoreList->contains(V)) { |
| LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); |
| if (TryToFindDuplicates(S)) |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| } |
| |
| // Special processing for sorted pointers for ScatterVectorize node with |
| // constant indeces only. |
| if (AreAllSameInsts && UserTreeIdx.UserTE && |
| UserTreeIdx.UserTE->State == TreeEntry::ScatterVectorize && |
| !(S.getOpcode() && allSameBlock(VL))) { |
| assert(S.OpValue->getType()->isPointerTy() && |
| count_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }) >= |
| 2 && |
| "Expected pointers only."); |
| // Reset S to make it GetElementPtr kind of node. |
| const auto *It = find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); |
| assert(It != VL.end() && "Expected at least one GEP."); |
| S = getSameOpcode(*It, *TLI); |
| } |
| |
| // Check that all of the users of the scalars that we want to vectorize are |
| // schedulable. |
| auto *VL0 = cast<Instruction>(S.OpValue); |
| BB = VL0->getParent(); |
| |
| if (!DT->isReachableFromEntry(BB)) { |
| // Don't go into unreachable blocks. They may contain instructions with |
| // dependency cycles which confuse the final scheduling. |
| LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // Don't go into catchswitch blocks, which can happen with PHIs. |
| // Such blocks can only have PHIs and the catchswitch. There is no |
| // place to insert a shuffle if we need to, so just avoid that issue. |
| if (isa<CatchSwitchInst>(BB->getTerminator())) { |
| LLVM_DEBUG(dbgs() << "SLP: bundle in catchswitch block.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| return; |
| } |
| |
| // Check that every instruction appears once in this bundle. |
| if (!TryToFindDuplicates(S)) |
| return; |
| |
| auto &BSRef = BlocksSchedules[BB]; |
| if (!BSRef) |
| BSRef = std::make_unique<BlockScheduling>(BB); |
| |
| BlockScheduling &BS = *BSRef; |
| |
| std::optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S); |
| #ifdef EXPENSIVE_CHECKS |
| // Make sure we didn't break any internal invariants |
| BS.verify(); |
| #endif |
| if (!Bundle) { |
| LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); |
| assert((!BS.getScheduleData(VL0) || |
| !BS.getScheduleData(VL0)->isPartOfBundle()) && |
| "tryScheduleBundle should cancelScheduling on failure"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); |
| |
| unsigned ShuffleOrOp = S.isAltShuffle() ? |
| (unsigned) Instruction::ShuffleVector : S.getOpcode(); |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| auto *PH = cast<PHINode>(VL0); |
| |
| // Check for terminator values (e.g. invoke). |
| for (Value *V : VL) |
| for (Value *Incoming : cast<PHINode>(V)->incoming_values()) { |
| Instruction *Term = dyn_cast<Instruction>(Incoming); |
| if (Term && Term->isTerminator()) { |
| LLVM_DEBUG(dbgs() |
| << "SLP: Need to swizzle PHINodes (terminator use).\n"); |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| |
| TreeEntry *TE = |
| newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); |
| |
| // Keeps the reordered operands to avoid code duplication. |
| SmallVector<ValueList, 2> OperandsVec; |
| for (unsigned I = 0, E = PH->getNumIncomingValues(); I < E; ++I) { |
| if (!DT->isReachableFromEntry(PH->getIncomingBlock(I))) { |
| ValueList Operands(VL.size(), PoisonValue::get(PH->getType())); |
| TE->setOperand(I, Operands); |
| OperandsVec.push_back(Operands); |
| continue; |
| } |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) |
| Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock( |
| PH->getIncomingBlock(I))); |
| TE->setOperand(I, Operands); |
| OperandsVec.push_back(Operands); |
| } |
| for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx) |
| buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx}); |
| return; |
| } |
| case Instruction::ExtractValue: |
| case Instruction::ExtractElement: { |
| OrdersType CurrentOrder; |
| bool Reuse = canReuseExtract(VL, VL0, CurrentOrder); |
| if (Reuse) { |
| LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n"); |
| newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| // This is a special case, as it does not gather, but at the same time |
| // we are not extending buildTree_rec() towards the operands. |
| ValueList Op0; |
| Op0.assign(VL.size(), VL0->getOperand(0)); |
| VectorizableTree.back()->setOperand(0, Op0); |
| return; |
| } |
| if (!CurrentOrder.empty()) { |
| LLVM_DEBUG({ |
| dbgs() << "SLP: Reusing or shuffling of reordered extract sequence " |
| "with order"; |
| for (unsigned Idx : CurrentOrder) |
| dbgs() << " " << Idx; |
| dbgs() << "\n"; |
| }); |
| fixupOrderingIndices(CurrentOrder); |
| // Insert new order with initial value 0, if it does not exist, |
| // otherwise return the iterator to the existing one. |
| newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies, CurrentOrder); |
| // This is a special case, as it does not gather, but at the same time |
| // we are not extending buildTree_rec() towards the operands. |
| ValueList Op0; |
| Op0.assign(VL.size(), VL0->getOperand(0)); |
| VectorizableTree.back()->setOperand(0, Op0); |
| return; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| BS.cancelScheduling(VL, VL0); |
| return; |
| } |
| case Instruction::InsertElement: { |
| assert(ReuseShuffleIndicies.empty() && "All inserts should be unique"); |
| |
| // Check that we have a buildvector and not a shuffle of 2 or more |
| // different vectors. |
| ValueSet SourceVectors; |
| for (Value *V : VL) { |
| SourceVectors.insert(cast<Instruction>(V)->getOperand(0)); |
| assert(getInsertIndex(V) != std::nullopt && |
| "Non-constant or undef index?"); |
| } |
| |
| if (count_if(VL, [&SourceVectors](Value *V) { |
| return !SourceVectors.contains(V); |
| }) >= 2) { |
| // Found 2nd source vector - cancel. |
| LLVM_DEBUG(dbgs() << "SLP: Gather of insertelement vectors with " |
| "different source vectors.\n"); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx); |
| BS.cancelScheduling(VL, VL0); |
| return; |
| } |
| |
| auto OrdCompare = [](const std::pair<int, int> &P1, |
| const std::pair<int, int> &P2) { |
| return P1.first > P2.first; |
| }; |
| PriorityQueue<std::pair<int, int>, SmallVector<std::pair<int, int>>, |
| decltype(OrdCompare)> |
| Indices(OrdCompare); |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| unsigned Idx = *getInsertIndex(VL[I]); |
| Indices.emplace(Idx, I); |
| } |
| OrdersType CurrentOrder(VL.size(), VL.size()); |
| bool IsIdentity = true; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| CurrentOrder[Indices.top().second] = I; |
| IsIdentity &= Indices.top().second == I; |
| Indices.pop(); |
| } |
| if (IsIdentity) |
| CurrentOrder.clear(); |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| std::nullopt, CurrentOrder); |
| LLVM_DEBUG(dbgs() << "SLP: added inserts bundle.\n"); |
| |
| constexpr int NumOps = 2; |
| ValueList VectorOperands[NumOps]; |
| for (int I = 0; I < NumOps; ++I) { |
| for (Value *V : VL) |
| VectorOperands[I].push_back(cast<Instruction>(V)->getOperand(I)); |
| |
| TE->setOperand(I, VectorOperands[I]); |
| } |
| buildTree_rec(VectorOperands[NumOps - 1], Depth + 1, {TE, NumOps - 1}); |
| return; |
| } |
| case Instruction::Load: { |
| // Check that a vectorized load would load the same memory as a scalar |
| // load. For example, we don't want to vectorize loads that are smaller |
| // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM |
| // treats loading/storing it as an i8 struct. If we vectorize loads/stores |
| // from such a struct, we read/write packed bits disagreeing with the |
| // unvectorized version. |
| SmallVector<Value *> PointerOps; |
| OrdersType CurrentOrder; |
| TreeEntry *TE = nullptr; |
| switch (canVectorizeLoads(VL, VL0, *TTI, *DL, *SE, *LI, *TLI, |
| CurrentOrder, PointerOps)) { |
| case LoadsState::Vectorize: |
| if (CurrentOrder.empty()) { |
| // Original loads are consecutive and does not require reordering. |
| TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n"); |
| } else { |
| fixupOrderingIndices(CurrentOrder); |
| // Need to reorder. |
| TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies, CurrentOrder); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n"); |
| } |
| TE->setOperandsInOrder(); |
| break; |
| case LoadsState::ScatterVectorize: |
| // Vectorizing non-consecutive loads with `llvm.masked.gather`. |
| TE = newTreeEntry(VL, TreeEntry::ScatterVectorize, Bundle, S, |
| UserTreeIdx, ReuseShuffleIndicies); |
| TE->setOperandsInOrder(); |
| buildTree_rec(PointerOps, Depth + 1, {TE, 0}); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of non-consecutive loads.\n"); |
| break; |
| case LoadsState::Gather: |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| #ifndef NDEBUG |
| Type *ScalarTy = VL0->getType(); |
| if (DL->getTypeSizeInBits(ScalarTy) != |
| DL->getTypeAllocSizeInBits(ScalarTy)) |
| LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); |
| else if (any_of(VL, [](Value *V) { |
| return !cast<LoadInst>(V)->isSimple(); |
| })) |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); |
| else |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); |
| #endif // NDEBUG |
| break; |
| } |
| return; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| Type *SrcTy = VL0->getOperand(0)->getType(); |
| for (Value *V : VL) { |
| Type *Ty = cast<Instruction>(V)->getOperand(0)->getType(); |
| if (Ty != SrcTy || !isValidElementType(Ty)) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() |
| << "SLP: Gathering casts with different src types.\n"); |
| return; |
| } |
| } |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n"); |
| |
| TE->setOperandsInOrder(); |
| for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) |
| Operands.push_back(cast<Instruction>(V)->getOperand(i)); |
| |
| buildTree_rec(Operands, Depth + 1, {TE, i}); |
| } |
| return; |
| } |
| case Instruction::ICmp: |
| case Instruction::FCmp: { |
| // Check that all of the compares have the same predicate. |
| CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); |
| CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0); |
| Type *ComparedTy = VL0->getOperand(0)->getType(); |
| for (Value *V : VL) { |
| CmpInst *Cmp = cast<CmpInst>(V); |
| if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) || |
| Cmp->getOperand(0)->getType() != ComparedTy) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() |
| << "SLP: Gathering cmp with different predicate.\n"); |
| return; |
| } |
| } |
| |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n"); |
| |
| ValueList Left, Right; |
| if (cast<CmpInst>(VL0)->isCommutative()) { |
| // Commutative predicate - collect + sort operands of the instructions |
| // so that each side is more likely to have the same opcode. |
| assert(P0 == SwapP0 && "Commutative Predicate mismatch"); |
| reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); |
| } else { |
| // Collect operands - commute if it uses the swapped predicate. |
| for (Value *V : VL) { |
| auto *Cmp = cast<CmpInst>(V); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| if (Cmp->getPredicate() != P0) |
| std::swap(LHS, RHS); |
| Left.push_back(LHS); |
| Right.push_back(RHS); |
| } |
| } |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| return; |
| } |
| case Instruction::Select: |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n"); |
| |
| // Sort operands of the instructions so that each side is more likely to |
| // have the same opcode. |
| if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { |
| ValueList Left, Right; |
| reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, *this); |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| return; |
| } |
| |
| TE->setOperandsInOrder(); |
| for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) |
| Operands.push_back(cast<Instruction>(V)->getOperand(i)); |
| |
| buildTree_rec(Operands, Depth + 1, {TE, i}); |
| } |
| return; |
| } |
| case Instruction::GetElementPtr: { |
| // We don't combine GEPs with complicated (nested) indexing. |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| continue; |
| if (I->getNumOperands() != 2) { |
| LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| |
| // We can't combine several GEPs into one vector if they operate on |
| // different types. |
| Type *Ty0 = cast<GEPOperator>(VL0)->getSourceElementType(); |
| for (Value *V : VL) { |
| auto *GEP = dyn_cast<GEPOperator>(V); |
| if (!GEP) |
| continue; |
| Type *CurTy = GEP->getSourceElementType(); |
| if (Ty0 != CurTy) { |
| LLVM_DEBUG(dbgs() |
| << "SLP: not-vectorizable GEP (different types).\n"); |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| |
| // We don't combine GEPs with non-constant indexes. |
| Type *Ty1 = VL0->getOperand(1)->getType(); |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) |
| continue; |
| auto *Op = I->getOperand(1); |
| if ((!IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || |
| (Op->getType() != Ty1 && |
| ((IsScatterVectorizeUserTE && !isa<ConstantInt>(Op)) || |
| Op->getType()->getScalarSizeInBits() > |
| DL->getIndexSizeInBits( |
| V->getType()->getPointerAddressSpace())))) { |
| LLVM_DEBUG(dbgs() |
| << "SLP: not-vectorizable GEP (non-constant indexes).\n"); |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| return; |
| } |
| } |
| |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); |
| SmallVector<ValueList, 2> Operands(2); |
| // Prepare the operand vector for pointer operands. |
| for (Value *V : VL) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) { |
| Operands.front().push_back(V); |
| continue; |
| } |
| Operands.front().push_back(GEP->getPointerOperand()); |
| } |
| TE->setOperand(0, Operands.front()); |
| // Need to cast all indices to the same type before vectorization to |
| // avoid crash. |
| // Required to be able to find correct matches between different gather |
| // nodes and reuse the vectorized values rather than trying to gather them |
| // again. |
| int IndexIdx = 1; |
| Type *VL0Ty = VL0->getOperand(IndexIdx)->getType(); |
| Type *Ty = all_of(VL, |
| [VL0Ty, IndexIdx](Value *V) { |
| auto *GEP = dyn_cast<GetElementPtrInst>(V); |
| if (!GEP) |
| return true; |
| return VL0Ty == GEP->getOperand(IndexIdx)->getType(); |
| }) |
| ? VL0Ty |
| : DL->getIndexType(cast<GetElementPtrInst>(VL0) |
| ->getPointerOperandType() |
| ->getScalarType()); |
| // Prepare the operand vector. |
| for (Value *V : VL) { |
| auto *I = dyn_cast<GetElementPtrInst>(V); |
| if (!I) { |
| Operands.back().push_back( |
| ConstantInt::get(Ty, 0, /*isSigned=*/false)); |
| continue; |
| } |
| auto *Op = I->getOperand(IndexIdx); |
| auto *CI = dyn_cast<ConstantInt>(Op); |
| if (!CI) |
| Operands.back().push_back(Op); |
| else |
| Operands.back().push_back(ConstantExpr::getIntegerCast( |
| CI, Ty, CI->getValue().isSignBitSet())); |
| } |
| TE->setOperand(IndexIdx, Operands.back()); |
| |
| for (unsigned I = 0, Ops = Operands.size(); I < Ops; ++I) |
| buildTree_rec(Operands[I], Depth + 1, {TE, I}); |
| return; |
| } |
| case Instruction::Store: { |
| // Check if the stores are consecutive or if we need to swizzle them. |
| llvm::Type *ScalarTy = cast<StoreInst>(VL0)->getValueOperand()->getType(); |
| // Avoid types that are padded when being allocated as scalars, while |
| // being packed together in a vector (such as i1). |
| if (DL->getTypeSizeInBits(ScalarTy) != |
| DL->getTypeAllocSizeInBits(ScalarTy)) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: Gathering stores of non-packed type.\n"); |
| return; |
| } |
| // Make sure all stores in the bundle are simple - we can't vectorize |
| // atomic or volatile stores. |
| SmallVector<Value *, 4> PointerOps(VL.size()); |
| ValueList Operands(VL.size()); |
| auto POIter = PointerOps.begin(); |
| auto OIter = Operands.begin(); |
| for (Value *V : VL) { |
| auto *SI = cast<StoreInst>(V); |
| if (!SI->isSimple()) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple stores.\n"); |
| return; |
| } |
| *POIter = SI->getPointerOperand(); |
| *OIter = SI->getValueOperand(); |
| ++POIter; |
| ++OIter; |
| } |
| |
| OrdersType CurrentOrder; |
| // Check the order of pointer operands. |
| if (llvm::sortPtrAccesses(PointerOps, ScalarTy, *DL, *SE, CurrentOrder)) { |
| Value *Ptr0; |
| Value *PtrN; |
| if (CurrentOrder.empty()) { |
| Ptr0 = PointerOps.front(); |
| PtrN = PointerOps.back(); |
| } else { |
| Ptr0 = PointerOps[CurrentOrder.front()]; |
| PtrN = PointerOps[CurrentOrder.back()]; |
| } |
| std::optional<int> Dist = |
| getPointersDiff(ScalarTy, Ptr0, ScalarTy, PtrN, *DL, *SE); |
| // Check that the sorted pointer operands are consecutive. |
| if (static_cast<unsigned>(*Dist) == VL.size() - 1) { |
| if (CurrentOrder.empty()) { |
| // Original stores are consecutive and does not require reordering. |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, |
| UserTreeIdx, ReuseShuffleIndicies); |
| TE->setOperandsInOrder(); |
| buildTree_rec(Operands, Depth + 1, {TE, 0}); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n"); |
| } else { |
| fixupOrderingIndices(CurrentOrder); |
| TreeEntry *TE = |
| newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies, CurrentOrder); |
| TE->setOperandsInOrder(); |
| buildTree_rec(Operands, Depth + 1, {TE, 0}); |
| LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled stores.\n"); |
| } |
| return; |
| } |
| } |
| |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); |
| return; |
| } |
| case Instruction::Call: { |
| // Check if the calls are all to the same vectorizable intrinsic or |
| // library function. |
| CallInst *CI = cast<CallInst>(VL0); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| VFShape Shape = VFShape::get( |
| *CI, ElementCount::getFixed(static_cast<unsigned int>(VL.size())), |
| false /*HasGlobalPred*/); |
| Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); |
| |
| if (!VecFunc && !isTriviallyVectorizable(ID)) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); |
| return; |
| } |
| Function *F = CI->getCalledFunction(); |
| unsigned NumArgs = CI->arg_size(); |
| SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr); |
| for (unsigned j = 0; j != NumArgs; ++j) |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) |
| ScalarArgs[j] = CI->getArgOperand(j); |
| for (Value *V : VL) { |
| CallInst *CI2 = dyn_cast<CallInst>(V); |
| if (!CI2 || CI2->getCalledFunction() != F || |
| getVectorIntrinsicIDForCall(CI2, TLI) != ID || |
| (VecFunc && |
| VecFunc != VFDatabase(*CI2).getVectorizedFunction(Shape)) || |
| !CI->hasIdenticalOperandBundleSchema(*CI2)) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V |
| << "\n"); |
| return; |
| } |
| // Some intrinsics have scalar arguments and should be same in order for |
| // them to be vectorized. |
| for (unsigned j = 0; j != NumArgs; ++j) { |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, j)) { |
| Value *A1J = CI2->getArgOperand(j); |
| if (ScalarArgs[j] != A1J) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI |
| << " argument " << ScalarArgs[j] << "!=" << A1J |
| << "\n"); |
| return; |
| } |
| } |
| } |
| // Verify that the bundle operands are identical between the two calls. |
| if (CI->hasOperandBundles() && |
| !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), |
| CI->op_begin() + CI->getBundleOperandsEndIndex(), |
| CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" |
| << *CI << "!=" << *V << '\n'); |
| return; |
| } |
| } |
| |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| TE->setOperandsInOrder(); |
| for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) { |
| // For scalar operands no need to to create an entry since no need to |
| // vectorize it. |
| if (isVectorIntrinsicWithScalarOpAtArg(ID, i)) |
| continue; |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) { |
| auto *CI2 = cast<CallInst>(V); |
| Operands.push_back(CI2->getArgOperand(i)); |
| } |
| buildTree_rec(Operands, Depth + 1, {TE, i}); |
| } |
| return; |
| } |
| case Instruction::ShuffleVector: { |
| // If this is not an alternate sequence of opcode like add-sub |
| // then do not vectorize this instruction. |
| if (!S.isAltShuffle()) { |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); |
| return; |
| } |
| TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); |
| |
| // Reorder operands if reordering would enable vectorization. |
| auto *CI = dyn_cast<CmpInst>(VL0); |
| if (isa<BinaryOperator>(VL0) || CI) { |
| ValueList Left, Right; |
| if (!CI || all_of(VL, [](Value *V) { |
| return cast<CmpInst>(V)->isCommutative(); |
| })) { |
| reorderInputsAccordingToOpcode(VL, Left, Right, *TLI, *DL, *SE, |
| *this); |
| } else { |
| auto *MainCI = cast<CmpInst>(S.MainOp); |
| auto *AltCI = cast<CmpInst>(S.AltOp); |
| CmpInst::Predicate MainP = MainCI->getPredicate(); |
| CmpInst::Predicate AltP = AltCI->getPredicate(); |
| assert(MainP != AltP && |
| "Expected different main/alternate predicates."); |
| // Collect operands - commute if it uses the swapped predicate or |
| // alternate operation. |
| for (Value *V : VL) { |
| auto *Cmp = cast<CmpInst>(V); |
| Value *LHS = Cmp->getOperand(0); |
| Value *RHS = Cmp->getOperand(1); |
| |
| if (isAlternateInstruction(Cmp, MainCI, AltCI, *TLI)) { |
| if (AltP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) |
| std::swap(LHS, RHS); |
| } else { |
| if (MainP == CmpInst::getSwappedPredicate(Cmp->getPredicate())) |
| std::swap(LHS, RHS); |
| } |
| Left.push_back(LHS); |
| Right.push_back(RHS); |
| } |
| } |
| TE->setOperand(0, Left); |
| TE->setOperand(1, Right); |
| buildTree_rec(Left, Depth + 1, {TE, 0}); |
| buildTree_rec(Right, Depth + 1, {TE, 1}); |
| return; |
| } |
| |
| TE->setOperandsInOrder(); |
| for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { |
| ValueList Operands; |
| // Prepare the operand vector. |
| for (Value *V : VL) |
| Operands.push_back(cast<Instruction>(V)->getOperand(i)); |
| |
| buildTree_rec(Operands, Depth + 1, {TE, i}); |
| } |
| return; |
| } |
| default: |
| BS.cancelScheduling(VL, VL0); |
| newTreeEntry(VL, std::nullopt /*not vectorized*/, S, UserTreeIdx, |
| ReuseShuffleIndicies); |
| LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); |
| return; |
| } |
| } |
| |
| unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { |
| unsigned N = 1; |
| Type *EltTy = T; |
| |
| while (isa<StructType, ArrayType, VectorType>(EltTy)) { |
| if (auto *ST = dyn_cast<StructType>(EltTy)) { |
| // Check that struct is homogeneous. |
| for (const auto *Ty : ST->elements()) |
| if (Ty != *ST->element_begin()) |
| return 0; |
| N *= ST->getNumElements(); |
| EltTy = *ST->element_begin(); |
| } else if (auto *AT = dyn_cast<ArrayType>(EltTy)) { |
| N *= AT->getNumElements(); |
| EltTy = AT->getElementType(); |
| } else { |
| auto *VT = cast<FixedVectorType>(EltTy); |
| N *= VT->getNumElements(); |
| EltTy = VT->getElementType(); |
| } |
| } |
| |
| if (!isValidElementType(EltTy)) |
| return 0; |
| uint64_t VTSize = DL.getTypeStoreSizeInBits(FixedVectorType::get(EltTy, N)); |
| if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) |
| return 0; |
| return N; |
| } |
| |
| bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue, |
| SmallVectorImpl<unsigned> &CurrentOrder) const { |
| const auto *It = find_if(VL, [](Value *V) { |
| return isa<ExtractElementInst, ExtractValueInst>(V); |
| }); |
| assert(It != VL.end() && "Expected at least one extract instruction."); |
| auto *E0 = cast<Instruction>(*It); |
| assert(all_of(VL, |
| [](Value *V) { |
| return isa<UndefValue, ExtractElementInst, ExtractValueInst>( |
| V); |
| }) && |
| "Invalid opcode"); |
| // Check if all of the extracts come from the same vector and from the |
| // correct offset. |
| Value *Vec = E0->getOperand(0); |
| |
| CurrentOrder.clear(); |
| |
| // We have to extract from a vector/aggregate with the same number of elements. |
| unsigned NElts; |
| if (E0->getOpcode() == Instruction::ExtractValue) { |
| const DataLayout &DL = E0->getModule()->getDataLayout(); |
| NElts = canMapToVector(Vec->getType(), DL); |
| if (!NElts) |
| return false; |
| // Check if load can be rewritten as load of vector. |
| LoadInst *LI = dyn_cast<LoadInst>(Vec); |
| if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) |
| return false; |
| } else { |
| NElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| } |
| |
| if (NElts != VL.size()) |
| return false; |
| |
| // Check that all of the indices extract from the correct offset. |
| bool ShouldKeepOrder = true; |
| unsigned E = VL.size(); |
| // Assign to all items the initial value E + 1 so we can check if the extract |
| // instruction index was used already. |
| // Also, later we can check that all the indices are used and we have a |
| // consecutive access in the extract instructions, by checking that no |
| // element of CurrentOrder still has value E + 1. |
| CurrentOrder.assign(E, E); |
| unsigned I = 0; |
| for (; I < E; ++I) { |
| auto *Inst = dyn_cast<Instruction>(VL[I]); |
| if (!Inst) |
| continue; |
| if (Inst->getOperand(0) != Vec) |
| break; |
| if (auto *EE = dyn_cast<ExtractElementInst>(Inst)) |
| if (isa<UndefValue>(EE->getIndexOperand())) |
| continue; |
| std::optional<unsigned> Idx = getExtractIndex(Inst); |
| if (!Idx) |
| break; |
| const unsigned ExtIdx = *Idx; |
| if (ExtIdx != I) { |
| if (ExtIdx >= E || CurrentOrder[ExtIdx] != E) |
| break; |
| ShouldKeepOrder = false; |
| CurrentOrder[ExtIdx] = I; |
| } else { |
| if (CurrentOrder[I] != E) |
| break; |
| CurrentOrder[I] = I; |
| } |
| } |
| if (I < E) { |
| CurrentOrder.clear(); |
| return false; |
| } |
| if (ShouldKeepOrder) |
| CurrentOrder.clear(); |
| |
| return ShouldKeepOrder; |
| } |
| |
| bool BoUpSLP::areAllUsersVectorized(Instruction *I, |
| ArrayRef<Value *> VectorizedVals) const { |
| return (I->hasOneUse() && is_contained(VectorizedVals, I)) || |
| all_of(I->users(), [this](User *U) { |
| return ScalarToTreeEntry.count(U) > 0 || |
| isVectorLikeInstWithConstOps(U) || |
| (isa<ExtractElementInst>(U) && MustGather.contains(U)); |
| }); |
| } |
| |
| static std::pair<InstructionCost, InstructionCost> |
| getVectorCallCosts(CallInst *CI, FixedVectorType *VecTy, |
| TargetTransformInfo *TTI, TargetLibraryInfo *TLI) { |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| // Calculate the cost of the scalar and vector calls. |
| SmallVector<Type *, 4> VecTys; |
| for (Use &Arg : CI->args()) |
| VecTys.push_back( |
| FixedVectorType::get(Arg->getType(), VecTy->getNumElements())); |
| FastMathFlags FMF; |
| if (auto *FPCI = dyn_cast<FPMathOperator>(CI)) |
| FMF = FPCI->getFastMathFlags(); |
| SmallVector<const Value *> Arguments(CI->args()); |
| IntrinsicCostAttributes CostAttrs(ID, VecTy, Arguments, VecTys, FMF, |
| dyn_cast<IntrinsicInst>(CI)); |
| auto IntrinsicCost = |
| TTI->getIntrinsicInstrCost(CostAttrs, TTI::TCK_RecipThroughput); |
| |
| auto Shape = VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( |
| VecTy->getNumElements())), |
| false /*HasGlobalPred*/); |
| Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); |
| auto LibCost = IntrinsicCost; |
| if (!CI->isNoBuiltin() && VecFunc) { |
| // Calculate the cost of the vector library call. |
| // If the corresponding vector call is cheaper, return its cost. |
| LibCost = TTI->getCallInstrCost(nullptr, VecTy, VecTys, |
| TTI::TCK_RecipThroughput); |
| } |
| return {IntrinsicCost, LibCost}; |
| } |
| |
| /// Build shuffle mask for shuffle graph entries and lists of main and alternate |
| /// operations operands. |
| static void |
| buildShuffleEntryMask(ArrayRef<Value *> VL, ArrayRef<unsigned> ReorderIndices, |
| ArrayRef<int> ReusesIndices, |
| const function_ref<bool(Instruction *)> IsAltOp, |
| SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<Value *> *OpScalars = nullptr, |
| SmallVectorImpl<Value *> *AltScalars = nullptr) { |
| unsigned Sz = VL.size(); |
| Mask.assign(Sz, PoisonMaskElem); |
| SmallVector<int> OrderMask; |
| if (!ReorderIndices.empty()) |
| inversePermutation(ReorderIndices, OrderMask); |
| for (unsigned I = 0; I < Sz; ++I) { |
| unsigned Idx = I; |
| if (!ReorderIndices.empty()) |
| Idx = OrderMask[I]; |
| auto *OpInst = cast<Instruction>(VL[Idx]); |
| if (IsAltOp(OpInst)) { |
| Mask[I] = Sz + Idx; |
| if (AltScalars) |
| AltScalars->push_back(OpInst); |
| } else { |
| Mask[I] = Idx; |
| if (OpScalars) |
| OpScalars->push_back(OpInst); |
| } |
| } |
| if (!ReusesIndices.empty()) { |
| SmallVector<int> NewMask(ReusesIndices.size(), PoisonMaskElem); |
| transform(ReusesIndices, NewMask.begin(), [&Mask](int Idx) { |
| return Idx != PoisonMaskElem ? Mask[Idx] : PoisonMaskElem; |
| }); |
| Mask.swap(NewMask); |
| } |
| } |
| |
| static bool isAlternateInstruction(const Instruction *I, |
| const Instruction *MainOp, |
| const Instruction *AltOp, |
| const TargetLibraryInfo &TLI) { |
| if (auto *MainCI = dyn_cast<CmpInst>(MainOp)) { |
| auto *AltCI = cast<CmpInst>(AltOp); |
| CmpInst::Predicate MainP = MainCI->getPredicate(); |
| CmpInst::Predicate AltP = AltCI->getPredicate(); |
| assert(MainP != AltP && "Expected different main/alternate predicates."); |
| auto *CI = cast<CmpInst>(I); |
| if (isCmpSameOrSwapped(MainCI, CI, TLI)) |
| return false; |
| if (isCmpSameOrSwapped(AltCI, CI, TLI)) |
| return true; |
| CmpInst::Predicate P = CI->getPredicate(); |
| CmpInst::Predicate SwappedP = CmpInst::getSwappedPredicate(P); |
| |
| assert((MainP == P || AltP == P || MainP == SwappedP || AltP == SwappedP) && |
| "CmpInst expected to match either main or alternate predicate or " |
| "their swap."); |
| (void)AltP; |
| return MainP != P && MainP != SwappedP; |
| } |
| return I->getOpcode() == AltOp->getOpcode(); |
| } |
| |
| TTI::OperandValueInfo BoUpSLP::getOperandInfo(ArrayRef<Value *> VL, |
| unsigned OpIdx) { |
| assert(!VL.empty()); |
| const auto *I0 = cast<Instruction>(*find_if(VL, Instruction::classof)); |
| const auto *Op0 = I0->getOperand(OpIdx); |
| |
| const bool IsConstant = all_of(VL, [&](Value *V) { |
| // TODO: We should allow undef elements here |
| const auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return true; |
| auto *Op = I->getOperand(OpIdx); |
| return isConstant(Op) && !isa<UndefValue>(Op); |
| }); |
| const bool IsUniform = all_of(VL, [&](Value *V) { |
| // TODO: We should allow undef elements here |
| const auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| return false; |
| return I->getOperand(OpIdx) == Op0; |
| }); |
| const bool IsPowerOfTwo = all_of(VL, [&](Value *V) { |
| // TODO: We should allow undef elements here |
| const auto *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| assert((isa<UndefValue>(V) || |
| I0->getOpcode() == Instruction::GetElementPtr) && |
| "Expected undef or GEP."); |
| return true; |
| } |
| auto *Op = I->getOperand(OpIdx); |
| if (auto *CI = dyn_cast<ConstantInt>(Op)) |
| return CI->getValue().isPowerOf2(); |
| return false; |
| }); |
| const bool IsNegatedPowerOfTwo = all_of(VL, [&](Value *V) { |
| // TODO: We should allow undef elements here |
| const auto *I = dyn_cast<Instruction>(V); |
| if (!I) { |
| assert((isa<UndefValue>(V) || |
| I0->getOpcode() == Instruction::GetElementPtr) && |
| "Expected undef or GEP."); |
| return true; |
| } |
| const auto *Op = I->getOperand(OpIdx); |
| if (auto *CI = dyn_cast<ConstantInt>(Op)) |
| return CI->getValue().isNegatedPowerOf2(); |
| return false; |
| }); |
| |
| TTI::OperandValueKind VK = TTI::OK_AnyValue; |
| if (IsConstant && IsUniform) |
| VK = TTI::OK_UniformConstantValue; |
| else if (IsConstant) |
| VK = TTI::OK_NonUniformConstantValue; |
| else if (IsUniform) |
| VK = TTI::OK_UniformValue; |
| |
| TTI::OperandValueProperties VP = TTI::OP_None; |
| VP = IsPowerOfTwo ? TTI::OP_PowerOf2 : VP; |
| VP = IsNegatedPowerOfTwo ? TTI::OP_NegatedPowerOf2 : VP; |
| |
| return {VK, VP}; |
| } |
| |
| namespace { |
| /// The base class for shuffle instruction emission and shuffle cost estimation. |
| class BaseShuffleAnalysis { |
| protected: |
| /// Checks if the mask is an identity mask. |
| /// \param IsStrict if is true the function returns false if mask size does |
| /// not match vector size. |
| static bool isIdentityMask(ArrayRef<int> Mask, const FixedVectorType *VecTy, |
| bool IsStrict) { |
| int Limit = Mask.size(); |
| int VF = VecTy->getNumElements(); |
| return (VF == Limit || !IsStrict) && |
| all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && |
| ShuffleVectorInst::isIdentityMask(Mask); |
| } |
| |
| /// Tries to combine 2 different masks into single one. |
| /// \param LocalVF Vector length of the permuted input vector. \p Mask may |
| /// change the size of the vector, \p LocalVF is the original size of the |
| /// shuffled vector. |
| static void combineMasks(unsigned LocalVF, SmallVectorImpl<int> &Mask, |
| ArrayRef<int> ExtMask) { |
| unsigned VF = Mask.size(); |
| SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem); |
| for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { |
| if (ExtMask[I] == PoisonMaskElem) |
| continue; |
| int MaskedIdx = Mask[ExtMask[I] % VF]; |
| NewMask[I] = |
| MaskedIdx == PoisonMaskElem ? PoisonMaskElem : MaskedIdx % LocalVF; |
| } |
| Mask.swap(NewMask); |
| } |
| |
| /// Looks through shuffles trying to reduce final number of shuffles in the |
| /// code. The function looks through the previously emitted shuffle |
| /// instructions and properly mark indices in mask as undef. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will |
| /// look through %s1 and %s2 and select vectors %0 and %1 with mask |
| /// <0, 1, 2, 3> for the shuffle. |
| /// If 2 operands are of different size, the smallest one will be resized and |
| /// the mask recalculated properly. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will |
| /// look through %s1 and %s2 and select vectors %0 and %1 with mask |
| /// <0, 1, 2, 3> for the shuffle. |
| /// So, it tries to transform permutations to simple vector merge, if |
| /// possible. |
| /// \param V The input vector which must be shuffled using the given \p Mask. |
| /// If the better candidate is found, \p V is set to this best candidate |
| /// vector. |
| /// \param Mask The input mask for the shuffle. If the best candidate is found |
| /// during looking-through-shuffles attempt, it is updated accordingly. |
| /// \param SinglePermute true if the shuffle operation is originally a |
| /// single-value-permutation. In this case the look-through-shuffles procedure |
| /// may look for resizing shuffles as the best candidates. |
| /// \return true if the shuffle results in the non-resizing identity shuffle |
| /// (and thus can be ignored), false - otherwise. |
| static bool peekThroughShuffles(Value *&V, SmallVectorImpl<int> &Mask, |
| bool SinglePermute) { |
| Value *Op = V; |
| ShuffleVectorInst *IdentityOp = nullptr; |
| SmallVector<int> IdentityMask; |
| while (auto *SV = dyn_cast<ShuffleVectorInst>(Op)) { |
| // Exit if not a fixed vector type or changing size shuffle. |
| auto *SVTy = dyn_cast<FixedVectorType>(SV->getType()); |
| if (!SVTy) |
| break; |
| // Remember the identity or broadcast mask, if it is not a resizing |
| // shuffle. If no better candidates are found, this Op and Mask will be |
| // used in the final shuffle. |
| if (isIdentityMask(Mask, SVTy, /*IsStrict=*/false)) { |
| if (!IdentityOp || !SinglePermute || |
| (isIdentityMask(Mask, SVTy, /*IsStrict=*/true) && |
| !ShuffleVectorInst::isZeroEltSplatMask(IdentityMask))) { |
| IdentityOp = SV; |
| // Store current mask in the IdentityMask so later we did not lost |
| // this info if IdentityOp is selected as the best candidate for the |
| // permutation. |
| IdentityMask.assign(Mask); |
| } |
| } |
| // Remember the broadcast mask. If no better candidates are found, this Op |
| // and Mask will be used in the final shuffle. |
| // Zero splat can be used as identity too, since it might be used with |
| // mask <0, 1, 2, ...>, i.e. identity mask without extra reshuffling. |
| // E.g. if need to shuffle the vector with the mask <3, 1, 2, 0>, which is |
| // expensive, the analysis founds out, that the source vector is just a |
| // broadcast, this original mask can be transformed to identity mask <0, |
| // 1, 2, 3>. |
| // \code |
| // %0 = shuffle %v, poison, zeroinitalizer |
| // %res = shuffle %0, poison, <3, 1, 2, 0> |
| // \endcode |
| // may be transformed to |
| // \code |
| // %0 = shuffle %v, poison, zeroinitalizer |
| // %res = shuffle %0, poison, <0, 1, 2, 3> |
| // \endcode |
| if (SV->isZeroEltSplat()) { |
| IdentityOp = SV; |
| IdentityMask.assign(Mask); |
| } |
| int LocalVF = Mask.size(); |
| if (auto *SVOpTy = |
| dyn_cast<FixedVectorType>(SV->getOperand(0)->getType())) |
| LocalVF = SVOpTy->getNumElements(); |
| SmallVector<int> ExtMask(Mask.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(Mask)) { |
| if (I == PoisonMaskElem || |
| static_cast<unsigned>(I) >= SV->getShuffleMask().size()) |
| continue; |
| ExtMask[Idx] = SV->getMaskValue(I); |
| } |
| bool IsOp1Undef = |
| isUndefVector(SV->getOperand(0), |
| buildUseMask(LocalVF, ExtMask, UseMask::FirstArg)) |
| .all(); |
| bool IsOp2Undef = |
| isUndefVector(SV->getOperand(1), |
| buildUseMask(LocalVF, ExtMask, UseMask::SecondArg)) |
| .all(); |
| if (!IsOp1Undef && !IsOp2Undef) { |
| // Update mask and mark undef elems. |
| for (int &I : Mask) { |
| if (I == PoisonMaskElem) |
| continue; |
| if (SV->getMaskValue(I % SV->getShuffleMask().size()) == |
| PoisonMaskElem) |
| I = PoisonMaskElem; |
| } |
| break; |
| } |
| SmallVector<int> ShuffleMask(SV->getShuffleMask().begin(), |
| SV->getShuffleMask().end()); |
| combineMasks(LocalVF, ShuffleMask, Mask); |
| Mask.swap(ShuffleMask); |
| if (IsOp2Undef) |
| Op = SV->getOperand(0); |
| else |
| Op = SV->getOperand(1); |
| } |
| if (auto *OpTy = dyn_cast<FixedVectorType>(Op->getType()); |
| !OpTy || !isIdentityMask(Mask, OpTy, SinglePermute) || |
| ShuffleVectorInst::isZeroEltSplatMask(Mask)) { |
| if (IdentityOp) { |
| V = IdentityOp; |
| assert(Mask.size() == IdentityMask.size() && |
| "Expected masks of same sizes."); |
| // Clear known poison elements. |
| for (auto [I, Idx] : enumerate(Mask)) |
| if (Idx == PoisonMaskElem) |
| IdentityMask[I] = PoisonMaskElem; |
| Mask.swap(IdentityMask); |
| auto *Shuffle = dyn_cast<ShuffleVectorInst>(V); |
| return SinglePermute && |
| (isIdentityMask(Mask, cast<FixedVectorType>(V->getType()), |
| /*IsStrict=*/true) || |
| (Shuffle && Mask.size() == Shuffle->getShuffleMask().size() && |
| Shuffle->isZeroEltSplat() && |
| ShuffleVectorInst::isZeroEltSplatMask(Mask))); |
| } |
| V = Op; |
| return false; |
| } |
| V = Op; |
| return true; |
| } |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| template <typename T, typename ShuffleBuilderTy> |
| static T createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask, |
| ShuffleBuilderTy &Builder) { |
| assert(V1 && "Expected at least one vector value."); |
| if (V2) |
| Builder.resizeToMatch(V1, V2); |
| int VF = Mask.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) |
| VF = FTy->getNumElements(); |
| if (V2 && |
| !isUndefVector(V2, buildUseMask(VF, Mask, UseMask::SecondArg)).all()) { |
| // Peek through shuffles. |
| Value *Op1 = V1; |
| Value *Op2 = V2; |
| int VF = |
| cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); |
| SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem); |
| SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (Mask[I] < VF) |
| CombinedMask1[I] = Mask[I]; |
| else |
| CombinedMask2[I] = Mask[I] - VF; |
| } |
| Value *PrevOp1; |
| Value *PrevOp2; |
| do { |
| PrevOp1 = Op1; |
| PrevOp2 = Op2; |
| (void)peekThroughShuffles(Op1, CombinedMask1, /*SinglePermute=*/false); |
| (void)peekThroughShuffles(Op2, CombinedMask2, /*SinglePermute=*/false); |
| // Check if we have 2 resizing shuffles - need to peek through operands |
| // again. |
| if (auto *SV1 = dyn_cast<ShuffleVectorInst>(Op1)) |
| if (auto *SV2 = dyn_cast<ShuffleVectorInst>(Op2)) { |
| SmallVector<int> ExtMask1(Mask.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(CombinedMask1)) { |
| if (I == PoisonMaskElem) |
| continue; |
| ExtMask1[Idx] = SV1->getMaskValue(I); |
| } |
| SmallBitVector UseMask1 = buildUseMask( |
| cast<FixedVectorType>(SV1->getOperand(1)->getType()) |
| ->getNumElements(), |
| ExtMask1, UseMask::SecondArg); |
| SmallVector<int> ExtMask2(CombinedMask2.size(), PoisonMaskElem); |
| for (auto [Idx, I] : enumerate(CombinedMask2)) { |
| if (I == PoisonMaskElem) |
| continue; |
| ExtMask2[Idx] = SV2->getMaskValue(I); |
| } |
| SmallBitVector UseMask2 = buildUseMask( |
| cast<FixedVectorType>(SV2->getOperand(1)->getType()) |
| ->getNumElements(), |
| ExtMask2, UseMask::SecondArg); |
| if (SV1->getOperand(0)->getType() == |
| SV2->getOperand(0)->getType() && |
| SV1->getOperand(0)->getType() != SV1->getType() && |
| isUndefVector(SV1->getOperand(1), UseMask1).all() && |
| isUndefVector(SV2->getOperand(1), UseMask2).all()) { |
| Op1 = SV1->getOperand(0); |
| Op2 = SV2->getOperand(0); |
| SmallVector<int> ShuffleMask1(SV1->getShuffleMask().begin(), |
| SV1->getShuffleMask().end()); |
| int LocalVF = ShuffleMask1.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(Op1->getType())) |
| LocalVF = FTy->getNumElements(); |
| combineMasks(LocalVF, ShuffleMask1, CombinedMask1); |
| CombinedMask1.swap(ShuffleMask1); |
| SmallVector<int> ShuffleMask2(SV2->getShuffleMask().begin(), |
| SV2->getShuffleMask().end()); |
| LocalVF = ShuffleMask2.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(Op2->getType())) |
| LocalVF = FTy->getNumElements(); |
| combineMasks(LocalVF, ShuffleMask2, CombinedMask2); |
| CombinedMask2.swap(ShuffleMask2); |
| } |
| } |
| } while (PrevOp1 != Op1 || PrevOp2 != Op2); |
| Builder.resizeToMatch(Op1, Op2); |
| VF = std::max(cast<VectorType>(Op1->getType()) |
| ->getElementCount() |
| .getKnownMinValue(), |
| cast<VectorType>(Op2->getType()) |
| ->getElementCount() |
| .getKnownMinValue()); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (CombinedMask2[I] != PoisonMaskElem) { |
| assert(CombinedMask1[I] == PoisonMaskElem && |
| "Expected undefined mask element"); |
| CombinedMask1[I] = CombinedMask2[I] + (Op1 == Op2 ? 0 : VF); |
| } |
| } |
| const int Limit = CombinedMask1.size() * 2; |
| if (Op1 == Op2 && Limit == 2 * VF && |
| all_of(CombinedMask1, [=](int Idx) { return Idx < Limit; }) && |
| (ShuffleVectorInst::isIdentityMask(CombinedMask1) || |
| (ShuffleVectorInst::isZeroEltSplatMask(CombinedMask1) && |
| isa<ShuffleVectorInst>(Op1) && |
| cast<ShuffleVectorInst>(Op1)->getShuffleMask() == |
| ArrayRef(CombinedMask1)))) |
| return Builder.createIdentity(Op1); |
| return Builder.createShuffleVector( |
| Op1, Op1 == Op2 ? PoisonValue::get(Op1->getType()) : Op2, |
| CombinedMask1); |
| } |
| if (isa<PoisonValue>(V1)) |
| return Builder.createPoison( |
| cast<VectorType>(V1->getType())->getElementType(), Mask.size()); |
| SmallVector<int> NewMask(Mask.begin(), Mask.end()); |
| bool IsIdentity = peekThroughShuffles(V1, NewMask, /*SinglePermute=*/true); |
| assert(V1 && "Expected non-null value after looking through shuffles."); |
| |
| if (!IsIdentity) |
| return Builder.createShuffleVector(V1, NewMask); |
| return Builder.createIdentity(V1); |
| } |
| }; |
| } // namespace |
| |
| /// Merges shuffle masks and emits final shuffle instruction, if required. It |
| /// supports shuffling of 2 input vectors. It implements lazy shuffles emission, |
| /// when the actual shuffle instruction is generated only if this is actually |
| /// required. Otherwise, the shuffle instruction emission is delayed till the |
| /// end of the process, to reduce the number of emitted instructions and further |
| /// analysis/transformations. |
| class BoUpSLP::ShuffleCostEstimator : public BaseShuffleAnalysis { |
| bool IsFinalized = false; |
| SmallVector<int> CommonMask; |
| SmallVector<PointerUnion<Value *, const TreeEntry *> , 2> InVectors; |
| const TargetTransformInfo &TTI; |
| InstructionCost Cost = 0; |
| ArrayRef<Value *> VectorizedVals; |
| BoUpSLP &R; |
| SmallPtrSetImpl<Value *> &CheckedExtracts; |
| constexpr static TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| InstructionCost getBuildVectorCost(ArrayRef<Value *> VL, Value *Root) { |
| if ((!Root && allConstant(VL)) || all_of(VL, UndefValue::classof)) |
| return TTI::TCC_Free; |
| auto *VecTy = FixedVectorType::get(VL.front()->getType(), VL.size()); |
| InstructionCost GatherCost = 0; |
| SmallVector<Value *> Gathers(VL.begin(), VL.end()); |
| // Improve gather cost for gather of loads, if we can group some of the |
| // loads into vector loads. |
| InstructionsState S = getSameOpcode(VL, *R.TLI); |
| if (VL.size() > 2 && S.getOpcode() == Instruction::Load && |
| !S.isAltShuffle() && |
| !all_of(Gathers, [&](Value *V) { return R.getTreeEntry(V); }) && |
| !isSplat(Gathers)) { |
| BoUpSLP::ValueSet VectorizedLoads; |
| unsigned StartIdx = 0; |
| unsigned VF = VL.size() / 2; |
| unsigned VectorizedCnt = 0; |
| unsigned ScatterVectorizeCnt = 0; |
| const unsigned Sz = R.DL->getTypeSizeInBits(S.MainOp->getType()); |
| for (unsigned MinVF = R.getMinVF(2 * Sz); VF >= MinVF; VF /= 2) { |
| for (unsigned Cnt = StartIdx, End = VL.size(); Cnt + VF <= End; |
| Cnt += VF) { |
| ArrayRef<Value *> Slice = VL.slice(Cnt, VF); |
| if (!VectorizedLoads.count(Slice.front()) && |
| !VectorizedLoads.count(Slice.back()) && allSameBlock(Slice)) { |
| SmallVector<Value *> PointerOps; |
| OrdersType CurrentOrder; |
| LoadsState LS = |
| canVectorizeLoads(Slice, Slice.front(), TTI, *R.DL, *R.SE, |
| *R.LI, *R.TLI, CurrentOrder, PointerOps); |
| switch (LS) { |
| case LoadsState::Vectorize: |
| case LoadsState::ScatterVectorize: |
| // Mark the vectorized loads so that we don't vectorize them |
| // again. |
| if (LS == LoadsState::Vectorize) |
| ++VectorizedCnt; |
| else |
| ++ScatterVectorizeCnt; |
| VectorizedLoads.insert(Slice.begin(), Slice.end()); |
| // If we vectorized initial block, no need to try to vectorize |
| // it again. |
| if (Cnt == StartIdx) |
| StartIdx += VF; |
| break; |
| case LoadsState::Gather: |
| break; |
| } |
| } |
| } |
| // Check if the whole array was vectorized already - exit. |
| if (StartIdx >= VL.size()) |
| break; |
| // Found vectorizable parts - exit. |
| if (!VectorizedLoads.empty()) |
| break; |
| } |
| if (!VectorizedLoads.empty()) { |
| unsigned NumParts = TTI.getNumberOfParts(VecTy); |
| bool NeedInsertSubvectorAnalysis = |
| !NumParts || (VL.size() / VF) > NumParts; |
| // Get the cost for gathered loads. |
| for (unsigned I = 0, End = VL.size(); I < End; I += VF) { |
| if (VectorizedLoads.contains(VL[I])) |
| continue; |
| GatherCost += getBuildVectorCost(VL.slice(I, VF), Root); |
| } |
| // Exclude potentially vectorized loads from list of gathered |
| // scalars. |
| auto *LI = cast<LoadInst>(S.MainOp); |
| Gathers.assign(Gathers.size(), PoisonValue::get(LI->getType())); |
| // The cost for vectorized loads. |
| InstructionCost ScalarsCost = 0; |
| for (Value *V : VectorizedLoads) { |
| auto *LI = cast<LoadInst>(V); |
| ScalarsCost += |
| TTI.getMemoryOpCost(Instruction::Load, LI->getType(), |
| LI->getAlign(), LI->getPointerAddressSpace(), |
| CostKind, TTI::OperandValueInfo(), LI); |
| } |
| auto *LoadTy = FixedVectorType::get(LI->getType(), VF); |
| Align Alignment = LI->getAlign(); |
| GatherCost += |
| VectorizedCnt * |
| TTI.getMemoryOpCost(Instruction::Load, LoadTy, Alignment, |
| LI->getPointerAddressSpace(), CostKind, |
| TTI::OperandValueInfo(), LI); |
| GatherCost += ScatterVectorizeCnt * |
| TTI.getGatherScatterOpCost( |
| Instruction::Load, LoadTy, LI->getPointerOperand(), |
| /*VariableMask=*/false, Alignment, CostKind, LI); |
| if (NeedInsertSubvectorAnalysis) { |
| // Add the cost for the subvectors insert. |
| for (int I = VF, E = VL.size(); I < E; I += VF) |
| GatherCost += TTI.getShuffleCost(TTI::SK_InsertSubvector, VecTy, |
| std::nullopt, CostKind, I, LoadTy); |
| } |
| GatherCost -= ScalarsCost; |
| } |
| } else if (!Root && isSplat(VL)) { |
| // Found the broadcasting of the single scalar, calculate the cost as |
| // the broadcast. |
| const auto *It = |
| find_if(VL, [](Value *V) { return !isa<UndefValue>(V); }); |
| assert(It != VL.end() && "Expected at least one non-undef value."); |
| // Add broadcast for non-identity shuffle only. |
| bool NeedShuffle = |
| count(VL, *It) > 1 && |
| (VL.front() != *It || !all_of(VL.drop_front(), UndefValue::classof)); |
| InstructionCost InsertCost = TTI.getVectorInstrCost( |
| Instruction::InsertElement, VecTy, CostKind, |
| NeedShuffle ? 0 : std::distance(VL.begin(), It), |
| PoisonValue::get(VecTy), *It); |
| return InsertCost + |
| (NeedShuffle ? TTI.getShuffleCost( |
| TargetTransformInfo::SK_Broadcast, VecTy, |
| /*Mask=*/std::nullopt, CostKind, /*Index=*/0, |
| /*SubTp=*/nullptr, /*Args=*/*It) |
| : TTI::TCC_Free); |
| } |
| return GatherCost + |
| (all_of(Gathers, UndefValue::classof) |
| ? TTI::TCC_Free |
| : R.getGatherCost(Gathers, !Root && VL.equals(Gathers))); |
| }; |
| |
| /// Compute the cost of creating a vector of type \p VecTy containing the |
| /// extracted values from \p VL. |
| InstructionCost computeExtractCost(ArrayRef<Value *> VL, ArrayRef<int> Mask, |
| TTI::ShuffleKind ShuffleKind) { |
| auto *VecTy = FixedVectorType::get(VL.front()->getType(), VL.size()); |
| unsigned NumOfParts = TTI.getNumberOfParts(VecTy); |
| |
| if (ShuffleKind != TargetTransformInfo::SK_PermuteSingleSrc || |
| !NumOfParts || VecTy->getNumElements() < NumOfParts) |
| return TTI.getShuffleCost(ShuffleKind, VecTy, Mask); |
| |
| bool AllConsecutive = true; |
| unsigned EltsPerVector = VecTy->getNumElements() / NumOfParts; |
| unsigned Idx = -1; |
| InstructionCost Cost = 0; |
| |
| // Process extracts in blocks of EltsPerVector to check if the source vector |
| // operand can be re-used directly. If not, add the cost of creating a |
| // shuffle to extract the values into a vector register. |
| SmallVector<int> RegMask(EltsPerVector, PoisonMaskElem); |
| for (auto *V : VL) { |
| ++Idx; |
| |
| // Reached the start of a new vector registers. |
| if (Idx % EltsPerVector == 0) { |
| RegMask.assign(EltsPerVector, PoisonMaskElem); |
| AllConsecutive = true; |
| continue; |
| } |
| |
| // Need to exclude undefs from analysis. |
| if (isa<UndefValue>(V) || Mask[Idx] == PoisonMaskElem) |
| continue; |
| |
| // Check all extracts for a vector register on the target directly |
| // extract values in order. |
| unsigned CurrentIdx = *getExtractIndex(cast<Instruction>(V)); |
| if (!isa<UndefValue>(VL[Idx - 1]) && Mask[Idx - 1] != PoisonMaskElem) { |
| unsigned PrevIdx = *getExtractIndex(cast<Instruction>(VL[Idx - 1])); |
| AllConsecutive &= PrevIdx + 1 == CurrentIdx && |
| CurrentIdx % EltsPerVector == Idx % EltsPerVector; |
| RegMask[Idx % EltsPerVector] = CurrentIdx % EltsPerVector; |
| } |
| |
| if (AllConsecutive) |
| continue; |
| |
| // Skip all indices, except for the last index per vector block. |
| if ((Idx + 1) % EltsPerVector != 0 && Idx + 1 != VL.size()) |
| continue; |
| |
| // If we have a series of extracts which are not consecutive and hence |
| // cannot re-use the source vector register directly, compute the shuffle |
| // cost to extract the vector with EltsPerVector elements. |
| Cost += TTI.getShuffleCost( |
| TargetTransformInfo::SK_PermuteSingleSrc, |
| FixedVectorType::get(VecTy->getElementType(), EltsPerVector), |
| RegMask); |
| } |
| return Cost; |
| } |
| |
| class ShuffleCostBuilder { |
| const TargetTransformInfo &TTI; |
| |
| static bool isEmptyOrIdentity(ArrayRef<int> Mask, unsigned VF) { |
| int Limit = 2 * VF; |
| return Mask.empty() || |
| (VF == Mask.size() && |
| all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) && |
| ShuffleVectorInst::isIdentityMask(Mask)); |
| } |
| |
| public: |
| ShuffleCostBuilder(const TargetTransformInfo &TTI) : TTI(TTI) {} |
| ~ShuffleCostBuilder() = default; |
| InstructionCost createShuffleVector(Value *V1, Value *, |
| ArrayRef<int> Mask) const { |
| // Empty mask or identity mask are free. |
| unsigned VF = |
| cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue(); |
| if (isEmptyOrIdentity(Mask, VF)) |
| return TTI::TCC_Free; |
| return TTI.getShuffleCost( |
| TTI::SK_PermuteTwoSrc, |
| FixedVectorType::get( |
| cast<VectorType>(V1->getType())->getElementType(), Mask.size()), |
| Mask); |
| } |
| InstructionCost createShuffleVector(Value *V1, ArrayRef<int> Mask) const { |
| // Empty mask or identity mask are free. |
| if (isEmptyOrIdentity(Mask, Mask.size())) |
| return TTI::TCC_Free; |
| return TTI.getShuffleCost( |
| TTI::SK_PermuteSingleSrc, |
| FixedVectorType::get( |
| cast<VectorType>(V1->getType())->getElementType(), Mask.size()), |
| Mask); |
| } |
| InstructionCost createIdentity(Value *) const { return TTI::TCC_Free; } |
| InstructionCost createPoison(Type *Ty, unsigned VF) const { |
| return TTI::TCC_Free; |
| } |
| void resizeToMatch(Value *&, Value *&) const {} |
| }; |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| InstructionCost |
| createShuffle(const PointerUnion<Value *, const TreeEntry *> &P1, |
| const PointerUnion<Value *, const TreeEntry *> &P2, |
| ArrayRef<int> Mask) { |
| ShuffleCostBuilder Builder(TTI); |
| Value *V1 = P1.dyn_cast<Value *>(), *V2 = P2.dyn_cast<Value *>(); |
| unsigned CommonVF = 0; |
| if (!V1) { |
| const TreeEntry *E = P1.get<const TreeEntry *>(); |
| unsigned VF = E->getVectorFactor(); |
| if (V2) { |
| unsigned V2VF = cast<FixedVectorType>(V2->getType())->getNumElements(); |
| if (V2VF != VF && V2VF == E->Scalars.size()) |
| VF = E->Scalars.size(); |
| } else if (!P2.isNull()) { |
| const TreeEntry *E2 = P2.get<const TreeEntry *>(); |
| if (E->Scalars.size() == E2->Scalars.size()) |
| CommonVF = VF = E->Scalars.size(); |
| } |
| V1 = Constant::getNullValue( |
| FixedVectorType::get(E->Scalars.front()->getType(), VF)); |
| } |
| if (!V2 && !P2.isNull()) { |
| const TreeEntry *E = P2.get<const TreeEntry *>(); |
| unsigned VF = E->getVectorFactor(); |
| unsigned V1VF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| if (!CommonVF && V1VF == E->Scalars.size()) |
| CommonVF = E->Scalars.size(); |
| if (CommonVF) |
| VF = CommonVF; |
| V2 = Constant::getNullValue( |
| FixedVectorType::get(E->Scalars.front()->getType(), VF)); |
| } |
| return BaseShuffleAnalysis::createShuffle<InstructionCost>(V1, V2, Mask, |
| Builder); |
| } |
| |
| public: |
| ShuffleCostEstimator(TargetTransformInfo &TTI, |
| ArrayRef<Value *> VectorizedVals, BoUpSLP &R, |
| SmallPtrSetImpl<Value *> &CheckedExtracts) |
| : TTI(TTI), VectorizedVals(VectorizedVals), R(R), |
| CheckedExtracts(CheckedExtracts) {} |
| Value *adjustExtracts(const TreeEntry *E, ArrayRef<int> Mask, |
| TTI::ShuffleKind ShuffleKind) { |
| if (Mask.empty()) |
| return nullptr; |
| Value *VecBase = nullptr; |
| ArrayRef<Value *> VL = E->Scalars; |
| auto *VecTy = FixedVectorType::get(VL.front()->getType(), VL.size()); |
| // If the resulting type is scalarized, do not adjust the cost. |
| unsigned VecNumParts = TTI.getNumberOfParts(VecTy); |
| if (VecNumParts == VecTy->getNumElements()) |
| return nullptr; |
| DenseMap<Value *, int> ExtractVectorsTys; |
| for (auto [I, V] : enumerate(VL)) { |
| // Ignore non-extractelement scalars. |
| if (isa<UndefValue>(V) || (!Mask.empty() && Mask[I] == PoisonMaskElem)) |
| continue; |
| // If all users of instruction are going to be vectorized and this |
| // instruction itself is not going to be vectorized, consider this |
| // instruction as dead and remove its cost from the final cost of the |
| // vectorized tree. |
| // Also, avoid adjusting the cost for extractelements with multiple uses |
| // in different graph entries. |
| const TreeEntry *VE = R.getTreeEntry(V); |
| if (!CheckedExtracts.insert(V).second || |
| !R.areAllUsersVectorized(cast<Instruction>(V), VectorizedVals) || |
| (VE && VE != E)) |
| continue; |
| auto *EE = cast<ExtractElementInst>(V); |
| VecBase = EE->getVectorOperand(); |
| std::optional<unsigned> EEIdx = getExtractIndex(EE); |
| if (!EEIdx) |
| continue; |
| unsigned Idx = *EEIdx; |
| if (VecNumParts != TTI.getNumberOfParts(EE->getVectorOperandType())) { |
| auto It = |
| ExtractVectorsTys.try_emplace(EE->getVectorOperand(), Idx).first; |
| It->getSecond() = std::min<int>(It->second, Idx); |
| } |
| // Take credit for instruction that will become dead. |
| if (EE->hasOneUse()) { |
| Instruction *Ext = EE->user_back(); |
| if (isa<SExtInst, ZExtInst>(Ext) && all_of(Ext->users(), [](User *U) { |
| return isa<GetElementPtrInst>(U); |
| })) { |
| // Use getExtractWithExtendCost() to calculate the cost of |
| // extractelement/ext pair. |
| Cost -= TTI.getExtractWithExtendCost(Ext->getOpcode(), Ext->getType(), |
| EE->getVectorOperandType(), Idx); |
| // Add back the cost of s|zext which is subtracted separately. |
| Cost += TTI.getCastInstrCost( |
| Ext->getOpcode(), Ext->getType(), EE->getType(), |
| TTI::getCastContextHint(Ext), CostKind, Ext); |
| continue; |
| } |
| } |
| Cost -= TTI.getVectorInstrCost(*EE, EE->getVectorOperandType(), CostKind, |
| Idx); |
| } |
| // Add a cost for subvector extracts/inserts if required. |
| for (const auto &Data : ExtractVectorsTys) { |
| auto *EEVTy = cast<FixedVectorType>(Data.first->getType()); |
| unsigned NumElts = VecTy->getNumElements(); |
| if (Data.second % NumElts == 0) |
| continue; |
| if (TTI.getNumberOfParts(EEVTy) > VecNumParts) { |
| unsigned Idx = (Data.second / NumElts) * NumElts; |
| unsigned EENumElts = EEVTy->getNumElements(); |
| if (Idx % NumElts == 0) |
| continue; |
| if (Idx + NumElts <= EENumElts) { |
| Cost += TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, |
| EEVTy, std::nullopt, CostKind, Idx, VecTy); |
| } else { |
| // Need to round up the subvector type vectorization factor to avoid a |
| // crash in cost model functions. Make SubVT so that Idx + VF of SubVT |
| // <= EENumElts. |
| auto *SubVT = |
| FixedVectorType::get(VecTy->getElementType(), EENumElts - Idx); |
| Cost += TTI.getShuffleCost(TargetTransformInfo::SK_ExtractSubvector, |
| EEVTy, std::nullopt, CostKind, Idx, SubVT); |
| } |
| } else { |
| Cost += TTI.getShuffleCost(TargetTransformInfo::SK_InsertSubvector, |
| VecTy, std::nullopt, CostKind, 0, EEVTy); |
| } |
| } |
| // Check that gather of extractelements can be represented as just a |
| // shuffle of a single/two vectors the scalars are extracted from. |
| // Found the bunch of extractelement instructions that must be gathered |
| // into a vector and can be represented as a permutation elements in a |
| // single input vector or of 2 input vectors. |
| Cost += computeExtractCost(VL, Mask, ShuffleKind); |
| return VecBase; |
| } |
| void add(const TreeEntry *E1, const TreeEntry *E2, ArrayRef<int> Mask) { |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign({E1, E2}); |
| } |
| void add(const TreeEntry *E1, ArrayRef<int> Mask) { |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign(1, E1); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void add(Value *V1, ArrayRef<int> Mask) { |
| assert(CommonMask.empty() && InVectors.empty() && |
| "Expected empty input mask/vectors."); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| InVectors.assign(1, V1); |
| } |
| Value *gather(ArrayRef<Value *> VL, Value *Root = nullptr) { |
| Cost += getBuildVectorCost(VL, Root); |
| if (!Root) { |
| assert(InVectors.empty() && "Unexpected input vectors for buildvector."); |
| // FIXME: Need to find a way to avoid use of getNullValue here. |
| SmallVector<Constant *> Vals; |
| for (Value *V : VL) { |
| if (isa<UndefValue>(V)) { |
| Vals.push_back(cast<Constant>(V)); |
| continue; |
| } |
| Vals.push_back(Constant::getNullValue(V->getType())); |
| } |
| return ConstantVector::get(Vals); |
| } |
| return ConstantVector::getSplat( |
| ElementCount::getFixed(VL.size()), |
| Constant::getNullValue(VL.front()->getType())); |
| } |
| /// Finalize emission of the shuffles. |
| InstructionCost |
| finalize(ArrayRef<int> ExtMask, unsigned VF = 0, |
| function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) { |
| IsFinalized = true; |
| if (Action) { |
| const PointerUnion<Value *, const TreeEntry *> &Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Cost += createShuffle(Vec, InVectors.back(), CommonMask); |
| InVectors.pop_back(); |
| } else { |
| Cost += createShuffle(Vec, nullptr, CommonMask); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| assert(VF > 0 && |
| "Expected vector length for the final value before action."); |
| Value *V = Vec.dyn_cast<Value *>(); |
| if (!Vec.isNull() && !V) |
| V = Constant::getNullValue(FixedVectorType::get( |
| Vec.get<const TreeEntry *>()->Scalars.front()->getType(), |
| CommonMask.size())); |
| Action(V, CommonMask); |
| } |
| ::addMask(CommonMask, ExtMask, /*ExtendingManyInputs=*/true); |
| if (CommonMask.empty()) |
| return Cost; |
| int Limit = CommonMask.size() * 2; |
| if (all_of(CommonMask, [=](int Idx) { return Idx < Limit; }) && |
| ShuffleVectorInst::isIdentityMask(CommonMask)) |
| return Cost; |
| return Cost + |
| createShuffle(InVectors.front(), |
| InVectors.size() == 2 ? InVectors.back() : nullptr, |
| CommonMask); |
| } |
| |
| ~ShuffleCostEstimator() { |
| assert((IsFinalized || CommonMask.empty()) && |
| "Shuffle construction must be finalized."); |
| } |
| }; |
| |
| InstructionCost |
| BoUpSLP::getEntryCost(const TreeEntry *E, ArrayRef<Value *> VectorizedVals, |
| SmallPtrSetImpl<Value *> &CheckedExtracts) { |
| ArrayRef<Value *> VL = E->Scalars; |
| |
| Type *ScalarTy = VL[0]->getType(); |
| if (auto *SI = dyn_cast<StoreInst>(VL[0])) |
| ScalarTy = SI->getValueOperand()->getType(); |
| else if (auto *CI = dyn_cast<CmpInst>(VL[0])) |
| ScalarTy = CI->getOperand(0)->getType(); |
| else if (auto *IE = dyn_cast<InsertElementInst>(VL[0])) |
| ScalarTy = IE->getOperand(1)->getType(); |
| auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| |
| // If we have computed a smaller type for the expression, update VecTy so |
| // that the costs will be accurate. |
| if (MinBWs.count(VL[0])) |
| VecTy = FixedVectorType::get( |
| IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size()); |
| unsigned EntryVF = E->getVectorFactor(); |
| auto *FinalVecTy = FixedVectorType::get(VecTy->getElementType(), EntryVF); |
| |
| bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty(); |
| if (E->State == TreeEntry::NeedToGather) { |
| if (allConstant(VL)) |
| return 0; |
| if (isa<InsertElementInst>(VL[0])) |
| return InstructionCost::getInvalid(); |
| ShuffleCostEstimator Estimator(*TTI, VectorizedVals, *this, |
| CheckedExtracts); |
| unsigned VF = E->getVectorFactor(); |
| SmallVector<int> ReuseShuffleIndicies(E->ReuseShuffleIndices.begin(), |
| E->ReuseShuffleIndices.end()); |
| SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); |
| // Build a mask out of the reorder indices and reorder scalars per this |
| // mask. |
| SmallVector<int> ReorderMask; |
| inversePermutation(E->ReorderIndices, ReorderMask); |
| if (!ReorderMask.empty()) |
| reorderScalars(GatheredScalars, ReorderMask); |
| SmallVector<int> Mask; |
| SmallVector<int> ExtractMask; |
| std::optional<TargetTransformInfo::ShuffleKind> ExtractShuffle; |
| std::optional<TargetTransformInfo::ShuffleKind> GatherShuffle; |
| SmallVector<const TreeEntry *> Entries; |
| Type *ScalarTy = GatheredScalars.front()->getType(); |
| // Check for gathered extracts. |
| ExtractShuffle = tryToGatherExtractElements(GatheredScalars, ExtractMask); |
| SmallVector<Value *> IgnoredVals; |
| if (UserIgnoreList) |
| IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end()); |
| |
| bool Resized = false; |
| if (Value *VecBase = Estimator.adjustExtracts( |
| E, ExtractMask, ExtractShuffle.value_or(TTI::SK_PermuteTwoSrc))) |
| if (auto *VecBaseTy = dyn_cast<FixedVectorType>(VecBase->getType())) |
| if (VF == VecBaseTy->getNumElements() && GatheredScalars.size() != VF) { |
| Resized = true; |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(ScalarTy)); |
| } |
| |
| // Do not try to look for reshuffled loads for gathered loads (they will be |
| // handled later), for vectorized scalars, and cases, which are definitely |
| // not profitable (splats and small gather nodes.) |
| if (ExtractShuffle || E->getOpcode() != Instruction::Load || |
| E->isAltShuffle() || |
| all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) || |
| isSplat(E->Scalars) || |
| (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) |
| GatherShuffle = isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); |
| if (GatherShuffle) { |
| assert((Entries.size() == 1 || Entries.size() == 2) && |
| "Expected shuffle of 1 or 2 entries."); |
| if (*GatherShuffle == TTI::SK_PermuteSingleSrc && |
| Entries.front()->isSame(E->Scalars)) { |
| // Perfect match in the graph, will reuse the previously vectorized |
| // node. Cost is 0. |
| LLVM_DEBUG( |
| dbgs() |
| << "SLP: perfect diamond match for gather bundle that starts with " |
| << *VL.front() << ".\n"); |
| return 0; |
| } |
| if (!Resized) { |
| unsigned VF1 = Entries.front()->getVectorFactor(); |
| unsigned VF2 = Entries.back()->getVectorFactor(); |
| if ((VF == VF1 || VF == VF2) && GatheredScalars.size() != VF) |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(ScalarTy)); |
| } |
| // Remove shuffled elements from list of gathers. |
| for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { |
| if (Mask[I] != PoisonMaskElem) |
| GatheredScalars[I] = PoisonValue::get(ScalarTy); |
| } |
| LLVM_DEBUG(dbgs() << "SLP: shuffled " << Entries.size() |
| << " entries for bundle that starts with " |
| << *VL.front() << ".\n";); |
| if (Entries.size() == 1) |
| Estimator.add(Entries.front(), Mask); |
| else |
| Estimator.add(Entries.front(), Entries.back(), Mask); |
| if (all_of(GatheredScalars, PoisonValue ::classof)) |
| return Estimator.finalize(E->ReuseShuffleIndices); |
| return Estimator.finalize( |
| E->ReuseShuffleIndices, E->Scalars.size(), |
| [&](Value *&Vec, SmallVectorImpl<int> &Mask) { |
| Vec = Estimator.gather(GatheredScalars, |
| Constant::getNullValue(FixedVectorType::get( |
| GatheredScalars.front()->getType(), |
| GatheredScalars.size()))); |
| }); |
| } |
| if (!all_of(GatheredScalars, PoisonValue::classof)) { |
| auto Gathers = ArrayRef(GatheredScalars).take_front(VL.size()); |
| bool SameGathers = VL.equals(Gathers); |
| Value *BV = Estimator.gather( |
| Gathers, SameGathers ? nullptr |
| : Constant::getNullValue(FixedVectorType::get( |
| GatheredScalars.front()->getType(), |
| GatheredScalars.size()))); |
| SmallVector<int> ReuseMask(Gathers.size(), PoisonMaskElem); |
| std::iota(ReuseMask.begin(), ReuseMask.end(), 0); |
| Estimator.add(BV, ReuseMask); |
| } |
| if (ExtractShuffle) |
| Estimator.add(E, std::nullopt); |
| return Estimator.finalize(E->ReuseShuffleIndices); |
| } |
| InstructionCost CommonCost = 0; |
| SmallVector<int> Mask; |
| if (!E->ReorderIndices.empty()) { |
| SmallVector<int> NewMask; |
| if (E->getOpcode() == Instruction::Store) { |
| // For stores the order is actually a mask. |
| NewMask.resize(E->ReorderIndices.size()); |
| copy(E->ReorderIndices, NewMask.begin()); |
| } else { |
| inversePermutation(E->ReorderIndices, NewMask); |
| } |
| ::addMask(Mask, NewMask); |
| } |
| if (NeedToShuffleReuses) |
| ::addMask(Mask, E->ReuseShuffleIndices); |
| if (!Mask.empty() && !ShuffleVectorInst::isIdentityMask(Mask)) |
| CommonCost = |
| TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FinalVecTy, Mask); |
| assert((E->State == TreeEntry::Vectorize || |
| E->State == TreeEntry::ScatterVectorize) && |
| "Unhandled state"); |
| assert(E->getOpcode() && |
| ((allSameType(VL) && allSameBlock(VL)) || |
| (E->getOpcode() == Instruction::GetElementPtr && |
| E->getMainOp()->getType()->isPointerTy())) && |
| "Invalid VL"); |
| Instruction *VL0 = E->getMainOp(); |
| unsigned ShuffleOrOp = |
| E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); |
| const unsigned Sz = VL.size(); |
| auto GetCostDiff = |
| [=](function_ref<InstructionCost(unsigned)> ScalarEltCost, |
| function_ref<InstructionCost(InstructionCost)> VectorCost) { |
| // Calculate the cost of this instruction. |
| InstructionCost ScalarCost = 0; |
| if (isa<CastInst, CmpInst, SelectInst, CallInst>(VL0)) { |
| // For some of the instructions no need to calculate cost for each |
| // particular instruction, we can use the cost of the single |
| // instruction x total number of scalar instructions. |
| ScalarCost = Sz * ScalarEltCost(0); |
| } else { |
| for (unsigned I = 0; I < Sz; ++I) |
| ScalarCost += ScalarEltCost(I); |
| } |
| |
| InstructionCost VecCost = VectorCost(CommonCost); |
| LLVM_DEBUG(dumpTreeCosts(E, CommonCost, VecCost - CommonCost, |
| ScalarCost, "Calculated costs for Tree")); |
| return VecCost - ScalarCost; |
| }; |
| // Calculate cost difference from vectorizing set of GEPs. |
| // Negative value means vectorizing is profitable. |
| auto GetGEPCostDiff = [=](ArrayRef<Value *> Ptrs, Value *BasePtr) { |
| InstructionCost ScalarCost = 0; |
| InstructionCost VecCost = 0; |
| // Here we differentiate two cases: (1) when Ptrs represent a regular |
| // vectorization tree node (as they are pointer arguments of scattered |
| // loads) or (2) when Ptrs are the arguments of loads or stores being |
| // vectorized as plane wide unit-stride load/store since all the |
| // loads/stores are known to be from/to adjacent locations. |
| assert(E->State == TreeEntry::Vectorize && |
| "Entry state expected to be Vectorize here."); |
| if (isa<LoadInst, StoreInst>(VL0)) { |
| // Case 2: estimate costs for pointer related costs when vectorizing to |
| // a wide load/store. |
| // Scalar cost is estimated as a set of pointers with known relationship |
| // between them. |
| // For vector code we will use BasePtr as argument for the wide load/store |
| // but we also need to account all the instructions which are going to |
| // stay in vectorized code due to uses outside of these scalar |
| // loads/stores. |
| ScalarCost = TTI->getPointersChainCost( |
| Ptrs, BasePtr, TTI::PointersChainInfo::getUnitStride(), ScalarTy, |
| CostKind); |
| |
| SmallVector<const Value *> PtrsRetainedInVecCode; |
| for (Value *V : Ptrs) { |
| if (V == BasePtr) { |
| PtrsRetainedInVecCode.push_back(V); |
| continue; |
| } |
| auto *Ptr = dyn_cast<GetElementPtrInst>(V); |
| // For simplicity assume Ptr to stay in vectorized code if it's not a |
| // GEP instruction. We don't care since it's cost considered free. |
| // TODO: We should check for any uses outside of vectorizable tree |
| // rather than just single use. |
| if (!Ptr || !Ptr->hasOneUse()) |
| PtrsRetainedInVecCode.push_back(V); |
| } |
| |
| if (PtrsRetainedInVecCode.size() == Ptrs.size()) { |
| // If all pointers stay in vectorized code then we don't have |
| // any savings on that. |
| LLVM_DEBUG(dumpTreeCosts(E, 0, ScalarCost, ScalarCost, |
| "Calculated GEPs cost for Tree")); |
| return InstructionCost{TTI::TCC_Free}; |
| } |
| VecCost = TTI->getPointersChainCost( |
| PtrsRetainedInVecCode, BasePtr, |
| TTI::PointersChainInfo::getKnownStride(), VecTy, CostKind); |
| } else { |
| // Case 1: Ptrs are the arguments of loads that we are going to transform |
| // into masked gather load intrinsic. |
| // All the scalar GEPs will be removed as a result of vectorization. |
| // For any external uses of some lanes extract element instructions will |
| // be generated (which cost is estimated separately). |
| TTI::PointersChainInfo PtrsInfo = |
| all_of(Ptrs, |
| [](const Value *V) { |
| auto *Ptr = dyn_cast<GetElementPtrInst>(V); |
| return Ptr && !Ptr->hasAllConstantIndices(); |
| }) |
| ? TTI::PointersChainInfo::getUnknownStride() |
| : TTI::PointersChainInfo::getKnownStride(); |
| |
| ScalarCost = TTI->getPointersChainCost(Ptrs, BasePtr, PtrsInfo, ScalarTy, |
| CostKind); |
| |
| // Remark: it not quite correct to use scalar GEP cost for a vector GEP, |
| // but it's not clear how to do that without having vector GEP arguments |
| // ready. |
| // Perhaps using just TTI::TCC_Free/TTI::TCC_Basic would be better option. |
| if (const auto *Base = dyn_cast<GetElementPtrInst>(BasePtr)) { |
| SmallVector<const Value *> Indices(Base->indices()); |
| VecCost = TTI->getGEPCost(Base->getSourceElementType(), |
| Base->getPointerOperand(), Indices, CostKind); |
| } |
| } |
| |
| LLVM_DEBUG(dumpTreeCosts(E, 0, VecCost, ScalarCost, |
| "Calculated GEPs cost for Tree")); |
| |
| return VecCost - ScalarCost; |
| }; |
| |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| // Count reused scalars. |
| InstructionCost ScalarCost = 0; |
| SmallPtrSet<const TreeEntry *, 4> CountedOps; |
| for (Value *V : VL) { |
| auto *PHI = dyn_cast<PHINode>(V); |
| if (!PHI) |
| continue; |
| |
| ValueList Operands(PHI->getNumIncomingValues(), nullptr); |
| for (unsigned I = 0, N = PHI->getNumIncomingValues(); I < N; ++I) { |
| Value *Op = PHI->getIncomingValue(I); |
| Operands[I] = Op; |
| } |
| if (const TreeEntry *OpTE = getTreeEntry(Operands.front())) |
| if (OpTE->isSame(Operands) && CountedOps.insert(OpTE).second) |
| if (!OpTE->ReuseShuffleIndices.empty()) |
| ScalarCost += TTI::TCC_Basic * (OpTE->ReuseShuffleIndices.size() - |
| OpTE->Scalars.size()); |
| } |
| |
| return CommonCost - ScalarCost; |
| } |
| case Instruction::ExtractValue: |
| case Instruction::ExtractElement: { |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *I = cast<Instruction>(VL[Idx]); |
| VectorType *SrcVecTy; |
| if (ShuffleOrOp == Instruction::ExtractElement) { |
| auto *EE = cast<ExtractElementInst>(I); |
| SrcVecTy = EE->getVectorOperandType(); |
| } else { |
| auto *EV = cast<ExtractValueInst>(I); |
| Type *AggregateTy = EV->getAggregateOperand()->getType(); |
| unsigned NumElts; |
| if (auto *ATy = dyn_cast<ArrayType>(AggregateTy)) |
| NumElts = ATy->getNumElements(); |
| else |
| NumElts = AggregateTy->getStructNumElements(); |
| SrcVecTy = FixedVectorType::get(ScalarTy, NumElts); |
| } |
| if (I->hasOneUse()) { |
| Instruction *Ext = I->user_back(); |
| if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) && |
| all_of(Ext->users(), |
| [](User *U) { return isa<GetElementPtrInst>(U); })) { |
| // Use getExtractWithExtendCost() to calculate the cost of |
| // extractelement/ext pair. |
| InstructionCost Cost = TTI->getExtractWithExtendCost( |
| Ext->getOpcode(), Ext->getType(), SrcVecTy, *getExtractIndex(I)); |
| // Subtract the cost of s|zext which is subtracted separately. |
| Cost -= TTI->getCastInstrCost( |
| Ext->getOpcode(), Ext->getType(), I->getType(), |
| TTI::getCastContextHint(Ext), CostKind, Ext); |
| return Cost; |
| } |
| } |
| return TTI->getVectorInstrCost(Instruction::ExtractElement, SrcVecTy, |
| CostKind, *getExtractIndex(I)); |
| }; |
| auto GetVectorCost = [](InstructionCost CommonCost) { return CommonCost; }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::InsertElement: { |
| assert(E->ReuseShuffleIndices.empty() && |
| "Unique insertelements only are expected."); |
| auto *SrcVecTy = cast<FixedVectorType>(VL0->getType()); |
| unsigned const NumElts = SrcVecTy->getNumElements(); |
| unsigned const NumScalars = VL.size(); |
| |
| unsigned NumOfParts = TTI->getNumberOfParts(SrcVecTy); |
| |
| SmallVector<int> InsertMask(NumElts, PoisonMaskElem); |
| unsigned OffsetBeg = *getInsertIndex(VL.front()); |
| unsigned OffsetEnd = OffsetBeg; |
| InsertMask[OffsetBeg] = 0; |
| for (auto [I, V] : enumerate(VL.drop_front())) { |
| unsigned Idx = *getInsertIndex(V); |
| if (OffsetBeg > Idx) |
| OffsetBeg = Idx; |
| else if (OffsetEnd < Idx) |
| OffsetEnd = Idx; |
| InsertMask[Idx] = I + 1; |
| } |
| unsigned VecScalarsSz = PowerOf2Ceil(NumElts); |
| if (NumOfParts > 0) |
| VecScalarsSz = PowerOf2Ceil((NumElts + NumOfParts - 1) / NumOfParts); |
| unsigned VecSz = (1 + OffsetEnd / VecScalarsSz - OffsetBeg / VecScalarsSz) * |
| VecScalarsSz; |
| unsigned Offset = VecScalarsSz * (OffsetBeg / VecScalarsSz); |
| unsigned InsertVecSz = std::min<unsigned>( |
| PowerOf2Ceil(OffsetEnd - OffsetBeg + 1), |
| ((OffsetEnd - OffsetBeg + VecScalarsSz) / VecScalarsSz) * VecScalarsSz); |
| bool IsWholeSubvector = |
| OffsetBeg == Offset && ((OffsetEnd + 1) % VecScalarsSz == 0); |
| // Check if we can safely insert a subvector. If it is not possible, just |
| // generate a whole-sized vector and shuffle the source vector and the new |
| // subvector. |
| if (OffsetBeg + InsertVecSz > VecSz) { |
| // Align OffsetBeg to generate correct mask. |
| OffsetBeg = alignDown(OffsetBeg, VecSz, Offset); |
| InsertVecSz = VecSz; |
| } |
| |
| APInt DemandedElts = APInt::getZero(NumElts); |
| // TODO: Add support for Instruction::InsertValue. |
| SmallVector<int> Mask; |
| if (!E->ReorderIndices.empty()) { |
| inversePermutation(E->ReorderIndices, Mask); |
| Mask.append(InsertVecSz - Mask.size(), PoisonMaskElem); |
| } else { |
| Mask.assign(VecSz, PoisonMaskElem); |
| std::iota(Mask.begin(), std::next(Mask.begin(), InsertVecSz), 0); |
| } |
| bool IsIdentity = true; |
| SmallVector<int> PrevMask(InsertVecSz, PoisonMaskElem); |
| Mask.swap(PrevMask); |
| for (unsigned I = 0; I < NumScalars; ++I) { |
| unsigned InsertIdx = *getInsertIndex(VL[PrevMask[I]]); |
| DemandedElts.setBit(InsertIdx); |
| IsIdentity &= InsertIdx - OffsetBeg == I; |
| Mask[InsertIdx - OffsetBeg] = I; |
| } |
| assert(Offset < NumElts && "Failed to find vector index offset"); |
| |
| InstructionCost Cost = 0; |
| Cost -= TTI->getScalarizationOverhead(SrcVecTy, DemandedElts, |
| /*Insert*/ true, /*Extract*/ false, |
| CostKind); |
| |
| // First cost - resize to actual vector size if not identity shuffle or |
| // need to shift the vector. |
| // Do not calculate the cost if the actual size is the register size and |
| // we can merge this shuffle with the following SK_Select. |
| auto *InsertVecTy = |
| FixedVectorType::get(SrcVecTy->getElementType(), InsertVecSz); |
| if (!IsIdentity) |
| Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, |
| InsertVecTy, Mask); |
| auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { |
| return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); |
| })); |
| // Second cost - permutation with subvector, if some elements are from the |
| // initial vector or inserting a subvector. |
| // TODO: Implement the analysis of the FirstInsert->getOperand(0) |
| // subvector of ActualVecTy. |
| SmallBitVector InMask = |
| isUndefVector(FirstInsert->getOperand(0), |
| buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask)); |
| if (!InMask.all() && NumScalars != NumElts && !IsWholeSubvector) { |
| if (InsertVecSz != VecSz) { |
| auto *ActualVecTy = |
| FixedVectorType::get(SrcVecTy->getElementType(), VecSz); |
| Cost += TTI->getShuffleCost(TTI::SK_InsertSubvector, ActualVecTy, |
| std::nullopt, CostKind, OffsetBeg - Offset, |
| InsertVecTy); |
| } else { |
| for (unsigned I = 0, End = OffsetBeg - Offset; I < End; ++I) |
| Mask[I] = InMask.test(I) ? PoisonMaskElem : I; |
| for (unsigned I = OffsetBeg - Offset, End = OffsetEnd - Offset; |
| I <= End; ++I) |
| if (Mask[I] != PoisonMaskElem) |
| Mask[I] = I + VecSz; |
| for (unsigned I = OffsetEnd + 1 - Offset; I < VecSz; ++I) |
| Mask[I] = |
| ((I >= InMask.size()) || InMask.test(I)) ? PoisonMaskElem : I; |
| Cost += TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, InsertVecTy, Mask); |
| } |
| } |
| return Cost; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<Instruction>(VL[Idx]); |
| return TTI->getCastInstrCost(E->getOpcode(), ScalarTy, |
| VI->getOperand(0)->getType(), |
| TTI::getCastContextHint(VI), CostKind, VI); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| Type *SrcTy = VL0->getOperand(0)->getType(); |
| auto *SrcVecTy = FixedVectorType::get(SrcTy, VL.size()); |
| InstructionCost VecCost = CommonCost; |
| // Check if the values are candidates to demote. |
| if (!MinBWs.count(VL0) || VecTy != SrcVecTy) |
| VecCost += |
| TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, |
| TTI::getCastContextHint(VL0), CostKind, VL0); |
| return VecCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::FCmp: |
| case Instruction::ICmp: |
| case Instruction::Select: { |
| CmpInst::Predicate VecPred, SwappedVecPred; |
| auto MatchCmp = m_Cmp(VecPred, m_Value(), m_Value()); |
| if (match(VL0, m_Select(MatchCmp, m_Value(), m_Value())) || |
| match(VL0, MatchCmp)) |
| SwappedVecPred = CmpInst::getSwappedPredicate(VecPred); |
| else |
| SwappedVecPred = VecPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| auto GetScalarCost = [&](unsigned Idx) { |
| auto *VI = cast<Instruction>(VL[Idx]); |
| CmpInst::Predicate CurrentPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| auto MatchCmp = m_Cmp(CurrentPred, m_Value(), m_Value()); |
| if ((!match(VI, m_Select(MatchCmp, m_Value(), m_Value())) && |
| !match(VI, MatchCmp)) || |
| (CurrentPred != VecPred && CurrentPred != SwappedVecPred)) |
| VecPred = SwappedVecPred = ScalarTy->isFloatingPointTy() |
| ? CmpInst::BAD_FCMP_PREDICATE |
| : CmpInst::BAD_ICMP_PREDICATE; |
| |
| return TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, |
| Builder.getInt1Ty(), CurrentPred, CostKind, |
| VI); |
| }; |
| auto GetVectorCost = [&](InstructionCost CommonCost) { |
| auto *MaskTy = FixedVectorType::get(Builder.getInt1Ty(), VL.size()); |
| |
| InstructionCost VecCost = TTI->getCmpSelInstrCost( |
| E->getOpcode(), VecTy, MaskTy, VecPred, CostKind, VL0); |
| // Check if it is possible and profitable to use min/max for selects |
| // in VL. |
| // |
| auto IntrinsicAndUse = canConvertToMinOrMaxIntrinsic(VL); |
| if (IntrinsicAndUse.first != Intrinsic::not_intrinsic) { |
| IntrinsicCostAttributes CostAttrs(IntrinsicAndUse.first, VecTy, |
| {VecTy, VecTy}); |
| InstructionCost IntrinsicCost = |
| TTI->getIntrinsicInstrCost(CostAttrs, CostKind); |
| // If the selects are the only uses of the compares, they will be |
| // dead and we can adjust the cost by removing their cost. |
| if (IntrinsicAndUse.second) |
| IntrinsicCost -= TTI->getCmpSelInstrCost(Instruction::ICmp, VecTy, |
| MaskTy, VecPred, CostKind); |
| VecCost = std::min(VecCost, IntrinsicCost); |
| } |
| return VecCost + CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::FNeg: |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<Instruction>(VL[Idx]); |
| unsigned OpIdx = isa<UnaryOperator>(VI) ? 0 : 1; |
| TTI::OperandValueInfo Op1Info = TTI::getOperandInfo(VI->getOperand(0)); |
| TTI::OperandValueInfo Op2Info = |
| TTI::getOperandInfo(VI->getOperand(OpIdx)); |
| SmallVector<const Value *> Operands(VI->operand_values()); |
| return TTI->getArithmeticInstrCost(ShuffleOrOp, ScalarTy, CostKind, |
| Op1Info, Op2Info, Operands, VI); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| unsigned OpIdx = isa<UnaryOperator>(VL0) ? 0 : 1; |
| TTI::OperandValueInfo Op1Info = getOperandInfo(VL, 0); |
| TTI::OperandValueInfo Op2Info = getOperandInfo(VL, OpIdx); |
| return TTI->getArithmeticInstrCost(ShuffleOrOp, VecTy, CostKind, Op1Info, |
| Op2Info) + |
| CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::GetElementPtr: { |
| return CommonCost + GetGEPCostDiff(VL, VL0); |
| } |
| case Instruction::Load: { |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<LoadInst>(VL[Idx]); |
| return TTI->getMemoryOpCost(Instruction::Load, ScalarTy, VI->getAlign(), |
| VI->getPointerAddressSpace(), CostKind, |
| TTI::OperandValueInfo(), VI); |
| }; |
| auto *LI0 = cast<LoadInst>(VL0); |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| InstructionCost VecLdCost; |
| if (E->State == TreeEntry::Vectorize) { |
| VecLdCost = TTI->getMemoryOpCost( |
| Instruction::Load, VecTy, LI0->getAlign(), |
| LI0->getPointerAddressSpace(), CostKind, TTI::OperandValueInfo()); |
| } else { |
| assert(E->State == TreeEntry::ScatterVectorize && "Unknown EntryState"); |
| Align CommonAlignment = LI0->getAlign(); |
| for (Value *V : VL) |
| CommonAlignment = |
| std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); |
| VecLdCost = TTI->getGatherScatterOpCost( |
| Instruction::Load, VecTy, LI0->getPointerOperand(), |
| /*VariableMask=*/false, CommonAlignment, CostKind); |
| } |
| return VecLdCost + CommonCost; |
| }; |
| |
| InstructionCost Cost = GetCostDiff(GetScalarCost, GetVectorCost); |
| // If this node generates masked gather load then it is not a terminal node. |
| // Hence address operand cost is estimated separately. |
| if (E->State == TreeEntry::ScatterVectorize) |
| return Cost; |
| |
| // Estimate cost of GEPs since this tree node is a terminator. |
| SmallVector<Value *> PointerOps(VL.size()); |
| for (auto [I, V] : enumerate(VL)) |
| PointerOps[I] = cast<LoadInst>(V)->getPointerOperand(); |
| return Cost + GetGEPCostDiff(PointerOps, LI0->getPointerOperand()); |
| } |
| case Instruction::Store: { |
| bool IsReorder = !E->ReorderIndices.empty(); |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<StoreInst>(VL[Idx]); |
| TTI::OperandValueInfo OpInfo = getOperandInfo(VI, 0); |
| return TTI->getMemoryOpCost(Instruction::Store, ScalarTy, VI->getAlign(), |
| VI->getPointerAddressSpace(), CostKind, |
| OpInfo, VI); |
| }; |
| auto *BaseSI = |
| cast<StoreInst>(IsReorder ? VL[E->ReorderIndices.front()] : VL0); |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| // We know that we can merge the stores. Calculate the cost. |
| TTI::OperandValueInfo OpInfo = getOperandInfo(VL, 0); |
| return TTI->getMemoryOpCost(Instruction::Store, VecTy, BaseSI->getAlign(), |
| BaseSI->getPointerAddressSpace(), CostKind, |
| OpInfo) + |
| CommonCost; |
| }; |
| SmallVector<Value *> PointerOps(VL.size()); |
| for (auto [I, V] : enumerate(VL)) { |
| unsigned Idx = IsReorder ? E->ReorderIndices[I] : I; |
| PointerOps[Idx] = cast<StoreInst>(V)->getPointerOperand(); |
| } |
| |
| return GetCostDiff(GetScalarCost, GetVectorCost) + |
| GetGEPCostDiff(PointerOps, BaseSI->getPointerOperand()); |
| } |
| case Instruction::Call: { |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *CI = cast<CallInst>(VL[Idx]); |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| if (ID != Intrinsic::not_intrinsic) { |
| IntrinsicCostAttributes CostAttrs(ID, *CI, 1); |
| return TTI->getIntrinsicInstrCost(CostAttrs, CostKind); |
| } |
| return TTI->getCallInstrCost(CI->getCalledFunction(), |
| CI->getFunctionType()->getReturnType(), |
| CI->getFunctionType()->params(), CostKind); |
| }; |
| auto GetVectorCost = [=](InstructionCost CommonCost) { |
| auto *CI = cast<CallInst>(VL0); |
| auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); |
| return std::min(VecCallCosts.first, VecCallCosts.second) + CommonCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| case Instruction::ShuffleVector: { |
| assert(E->isAltShuffle() && |
| ((Instruction::isBinaryOp(E->getOpcode()) && |
| Instruction::isBinaryOp(E->getAltOpcode())) || |
| (Instruction::isCast(E->getOpcode()) && |
| Instruction::isCast(E->getAltOpcode())) || |
| (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && |
| "Invalid Shuffle Vector Operand"); |
| // Try to find the previous shuffle node with the same operands and same |
| // main/alternate ops. |
| auto TryFindNodeWithEqualOperands = [=]() { |
| for (const std::unique_ptr<TreeEntry> &TE : VectorizableTree) { |
| if (TE.get() == E) |
| break; |
| if (TE->isAltShuffle() && |
| ((TE->getOpcode() == E->getOpcode() && |
| TE->getAltOpcode() == E->getAltOpcode()) || |
| (TE->getOpcode() == E->getAltOpcode() && |
| TE->getAltOpcode() == E->getOpcode())) && |
| TE->hasEqualOperands(*E)) |
| return true; |
| } |
| return false; |
| }; |
| auto GetScalarCost = [=](unsigned Idx) { |
| auto *VI = cast<Instruction>(VL[Idx]); |
| assert(E->isOpcodeOrAlt(VI) && "Unexpected main/alternate opcode"); |
| (void)E; |
| return TTI->getInstructionCost(VI, CostKind); |
| }; |
| // Need to clear CommonCost since the final shuffle cost is included into |
| // vector cost. |
| auto GetVectorCost = [&](InstructionCost) { |
| // VecCost is equal to sum of the cost of creating 2 vectors |
| // and the cost of creating shuffle. |
| InstructionCost VecCost = 0; |
| if (TryFindNodeWithEqualOperands()) { |
| LLVM_DEBUG({ |
| dbgs() << "SLP: diamond match for alternate node found.\n"; |
| E->dump(); |
| }); |
| // No need to add new vector costs here since we're going to reuse |
| // same main/alternate vector ops, just do different shuffling. |
| } else if (Instruction::isBinaryOp(E->getOpcode())) { |
| VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, CostKind); |
| VecCost += |
| TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy, CostKind); |
| } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { |
| VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy, |
| Builder.getInt1Ty(), |
| CI0->getPredicate(), CostKind, VL0); |
| VecCost += TTI->getCmpSelInstrCost( |
| E->getOpcode(), ScalarTy, Builder.getInt1Ty(), |
| cast<CmpInst>(E->getAltOp())->getPredicate(), CostKind, |
| E->getAltOp()); |
| } else { |
| Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType(); |
| Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType(); |
| auto *Src0Ty = FixedVectorType::get(Src0SclTy, VL.size()); |
| auto *Src1Ty = FixedVectorType::get(Src1SclTy, VL.size()); |
| VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty, |
| TTI::CastContextHint::None, CostKind); |
| VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty, |
| TTI::CastContextHint::None, CostKind); |
| } |
| if (E->ReuseShuffleIndices.empty()) { |
| VecCost += |
| TTI->getShuffleCost(TargetTransformInfo::SK_Select, FinalVecTy); |
| } else { |
| SmallVector<int> Mask; |
| buildShuffleEntryMask( |
| E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, |
| [E](Instruction *I) { |
| assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); |
| return I->getOpcode() == E->getAltOpcode(); |
| }, |
| Mask); |
| VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteTwoSrc, |
| FinalVecTy, Mask); |
| } |
| return VecCost; |
| }; |
| return GetCostDiff(GetScalarCost, GetVectorCost); |
| } |
| default: |
| llvm_unreachable("Unknown instruction"); |
| } |
| } |
| |
| bool BoUpSLP::isFullyVectorizableTinyTree(bool ForReduction) const { |
| LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height " |
| << VectorizableTree.size() << " is fully vectorizable .\n"); |
| |
| auto &&AreVectorizableGathers = [this](const TreeEntry *TE, unsigned Limit) { |
| SmallVector<int> Mask; |
| return TE->State == TreeEntry::NeedToGather && |
| !any_of(TE->Scalars, |
| [this](Value *V) { return EphValues.contains(V); }) && |
| (allConstant(TE->Scalars) || isSplat(TE->Scalars) || |
| TE->Scalars.size() < Limit || |
| ((TE->getOpcode() == Instruction::ExtractElement || |
| all_of(TE->Scalars, |
| [](Value *V) { |
| return isa<ExtractElementInst, UndefValue>(V); |
| })) && |
| isFixedVectorShuffle(TE->Scalars, Mask)) || |
| (TE->State == TreeEntry::NeedToGather && |
| TE->getOpcode() == Instruction::Load && !TE->isAltShuffle())); |
| }; |
| |
| // We only handle trees of heights 1 and 2. |
| if (VectorizableTree.size() == 1 && |
| (VectorizableTree[0]->State == TreeEntry::Vectorize || |
| (ForReduction && |
| AreVectorizableGathers(VectorizableTree[0].get(), |
| VectorizableTree[0]->Scalars.size()) && |
| VectorizableTree[0]->getVectorFactor() > 2))) |
| return true; |
| |
| if (VectorizableTree.size() != 2) |
| return false; |
| |
| // Handle splat and all-constants stores. Also try to vectorize tiny trees |
| // with the second gather nodes if they have less scalar operands rather than |
| // the initial tree element (may be profitable to shuffle the second gather) |
| // or they are extractelements, which form shuffle. |
| SmallVector<int> Mask; |
| if (VectorizableTree[0]->State == TreeEntry::Vectorize && |
| AreVectorizableGathers(VectorizableTree[1].get(), |
| VectorizableTree[0]->Scalars.size())) |
| return true; |
| |
| // Gathering cost would be too much for tiny trees. |
| if (VectorizableTree[0]->State == TreeEntry::NeedToGather || |
| (VectorizableTree[1]->State == TreeEntry::NeedToGather && |
| VectorizableTree[0]->State != TreeEntry::ScatterVectorize)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isLoadCombineCandidateImpl(Value *Root, unsigned NumElts, |
| TargetTransformInfo *TTI, |
| bool MustMatchOrInst) { |
| // Look past the root to find a source value. Arbitrarily follow the |
| // path through operand 0 of any 'or'. Also, peek through optional |
| // shift-left-by-multiple-of-8-bits. |
| Value *ZextLoad = Root; |
| const APInt *ShAmtC; |
| bool FoundOr = false; |
| while (!isa<ConstantExpr>(ZextLoad) && |
| (match(ZextLoad, m_Or(m_Value(), m_Value())) || |
| (match(ZextLoad, m_Shl(m_Value(), m_APInt(ShAmtC))) && |
| ShAmtC->urem(8) == 0))) { |
| auto *BinOp = cast<BinaryOperator>(ZextLoad); |
| ZextLoad = BinOp->getOperand(0); |
| if (BinOp->getOpcode() == Instruction::Or) |
| FoundOr = true; |
| } |
| // Check if the input is an extended load of the required or/shift expression. |
| Value *Load; |
| if ((MustMatchOrInst && !FoundOr) || ZextLoad == Root || |
| !match(ZextLoad, m_ZExt(m_Value(Load))) || !isa<LoadInst>(Load)) |
| return false; |
| |
| // Require that the total load bit width is a legal integer type. |
| // For example, <8 x i8> --> i64 is a legal integer on a 64-bit target. |
| // But <16 x i8> --> i128 is not, so the backend probably can't reduce it. |
| Type *SrcTy = Load->getType(); |
| unsigned LoadBitWidth = SrcTy->getIntegerBitWidth() * NumElts; |
| if (!TTI->isTypeLegal(IntegerType::get(Root->getContext(), LoadBitWidth))) |
| return false; |
| |
| // Everything matched - assume that we can fold the whole sequence using |
| // load combining. |
| LLVM_DEBUG(dbgs() << "SLP: Assume load combining for tree starting at " |
| << *(cast<Instruction>(Root)) << "\n"); |
| |
| return true; |
| } |
| |
| bool BoUpSLP::isLoadCombineReductionCandidate(RecurKind RdxKind) const { |
| if (RdxKind != RecurKind::Or) |
| return false; |
| |
| unsigned NumElts = VectorizableTree[0]->Scalars.size(); |
| Value *FirstReduced = VectorizableTree[0]->Scalars[0]; |
| return isLoadCombineCandidateImpl(FirstReduced, NumElts, TTI, |
| /* MatchOr */ false); |
| } |
| |
| bool BoUpSLP::isLoadCombineCandidate() const { |
| // Peek through a final sequence of stores and check if all operations are |
| // likely to be load-combined. |
| unsigned NumElts = VectorizableTree[0]->Scalars.size(); |
| for (Value *Scalar : VectorizableTree[0]->Scalars) { |
| Value *X; |
| if (!match(Scalar, m_Store(m_Value(X), m_Value())) || |
| !isLoadCombineCandidateImpl(X, NumElts, TTI, /* MatchOr */ true)) |
| return false; |
| } |
| return true; |
| } |
| |
| bool BoUpSLP::isTreeTinyAndNotFullyVectorizable(bool ForReduction) const { |
| // No need to vectorize inserts of gathered values. |
| if (VectorizableTree.size() == 2 && |
| isa<InsertElementInst>(VectorizableTree[0]->Scalars[0]) && |
| VectorizableTree[1]->State == TreeEntry::NeedToGather && |
| (VectorizableTree[1]->getVectorFactor() <= 2 || |
| !(isSplat(VectorizableTree[1]->Scalars) || |
| allConstant(VectorizableTree[1]->Scalars)))) |
| return true; |
| |
| // We can vectorize the tree if its size is greater than or equal to the |
| // minimum size specified by the MinTreeSize command line option. |
| if (VectorizableTree.size() >= MinTreeSize) |
| return false; |
| |
| // If we have a tiny tree (a tree whose size is less than MinTreeSize), we |
| // can vectorize it if we can prove it fully vectorizable. |
| if (isFullyVectorizableTinyTree(ForReduction)) |
| return false; |
| |
| assert(VectorizableTree.empty() |
| ? ExternalUses.empty() |
| : true && "We shouldn't have any external users"); |
| |
| // Otherwise, we can't vectorize the tree. It is both tiny and not fully |
| // vectorizable. |
| return true; |
| } |
| |
| InstructionCost BoUpSLP::getSpillCost() const { |
| // Walk from the bottom of the tree to the top, tracking which values are |
| // live. When we see a call instruction that is not part of our tree, |
| // query TTI to see if there is a cost to keeping values live over it |
| // (for example, if spills and fills are required). |
| unsigned BundleWidth = VectorizableTree.front()->Scalars.size(); |
| InstructionCost Cost = 0; |
| |
| SmallPtrSet<Instruction*, 4> LiveValues; |
| Instruction *PrevInst = nullptr; |
| |
| // The entries in VectorizableTree are not necessarily ordered by their |
| // position in basic blocks. Collect them and order them by dominance so later |
| // instructions are guaranteed to be visited first. For instructions in |
| // different basic blocks, we only scan to the beginning of the block, so |
| // their order does not matter, as long as all instructions in a basic block |
| // are grouped together. Using dominance ensures a deterministic order. |
| SmallVector<Instruction *, 16> OrderedScalars; |
| for (const auto &TEPtr : VectorizableTree) { |
| if (TEPtr->State != TreeEntry::Vectorize) |
| continue; |
| Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]); |
| if (!Inst) |
| continue; |
| OrderedScalars.push_back(Inst); |
| } |
| llvm::sort(OrderedScalars, [&](Instruction *A, Instruction *B) { |
| auto *NodeA = DT->getNode(A->getParent()); |
| auto *NodeB = DT->getNode(B->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA != NodeB) |
| return NodeA->getDFSNumIn() > NodeB->getDFSNumIn(); |
| return B->comesBefore(A); |
| }); |
| |
| for (Instruction *Inst : OrderedScalars) { |
| if (!PrevInst) { |
| PrevInst = Inst; |
| continue; |
| } |
| |
| // Update LiveValues. |
| LiveValues.erase(PrevInst); |
| for (auto &J : PrevInst->operands()) { |
| if (isa<Instruction>(&*J) && getTreeEntry(&*J)) |
| LiveValues.insert(cast<Instruction>(&*J)); |
| } |
| |
| LLVM_DEBUG({ |
| dbgs() << "SLP: #LV: " << LiveValues.size(); |
| for (auto *X : LiveValues) |
| dbgs() << " " << X->getName(); |
| dbgs() << ", Looking at "; |
| Inst->dump(); |
| }); |
| |
| // Now find the sequence of instructions between PrevInst and Inst. |
| unsigned NumCalls = 0; |
| BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(), |
| PrevInstIt = |
| PrevInst->getIterator().getReverse(); |
| while (InstIt != PrevInstIt) { |
| if (PrevInstIt == PrevInst->getParent()->rend()) { |
| PrevInstIt = Inst->getParent()->rbegin(); |
| continue; |
| } |
| |
| auto NoCallIntrinsic = [this](Instruction *I) { |
| if (auto *II = dyn_cast<IntrinsicInst>(I)) { |
| if (II->isAssumeLikeIntrinsic()) |
| return true; |
| FastMathFlags FMF; |
| SmallVector<Type *, 4> Tys; |
| for (auto &ArgOp : II->args()) |
| Tys.push_back(ArgOp->getType()); |
| if (auto *FPMO = dyn_cast<FPMathOperator>(II)) |
| FMF = FPMO->getFastMathFlags(); |
| IntrinsicCostAttributes ICA(II->getIntrinsicID(), II->getType(), Tys, |
| FMF); |
| InstructionCost IntrCost = |
| TTI->getIntrinsicInstrCost(ICA, TTI::TCK_RecipThroughput); |
| InstructionCost CallCost = TTI->getCallInstrCost( |
| nullptr, II->getType(), Tys, TTI::TCK_RecipThroughput); |
| if (IntrCost < CallCost) |
| return true; |
| } |
| return false; |
| }; |
| |
| // Debug information does not impact spill cost. |
| if (isa<CallBase>(&*PrevInstIt) && !NoCallIntrinsic(&*PrevInstIt) && |
| &*PrevInstIt != PrevInst) |
| NumCalls++; |
| |
| ++PrevInstIt; |
| } |
| |
| if (NumCalls) { |
| SmallVector<Type*, 4> V; |
| for (auto *II : LiveValues) { |
| auto *ScalarTy = II->getType(); |
| if (auto *VectorTy = dyn_cast<FixedVectorType>(ScalarTy)) |
| ScalarTy = VectorTy->getElementType(); |
| V.push_back(FixedVectorType::get(ScalarTy, BundleWidth)); |
| } |
| Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V); |
| } |
| |
| PrevInst = Inst; |
| } |
| |
| return Cost; |
| } |
| |
| /// Checks if the \p IE1 instructions is followed by \p IE2 instruction in the |
| /// buildvector sequence. |
| static bool isFirstInsertElement(const InsertElementInst *IE1, |
| const InsertElementInst *IE2) { |
| if (IE1 == IE2) |
| return false; |
| const auto *I1 = IE1; |
| const auto *I2 = IE2; |
| const InsertElementInst *PrevI1; |
| const InsertElementInst *PrevI2; |
| unsigned Idx1 = *getInsertIndex(IE1); |
| unsigned Idx2 = *getInsertIndex(IE2); |
| do { |
| if (I2 == IE1) |
| return true; |
| if (I1 == IE2) |
| return false; |
| PrevI1 = I1; |
| PrevI2 = I2; |
| if (I1 && (I1 == IE1 || I1->hasOneUse()) && |
| getInsertIndex(I1).value_or(Idx2) != Idx2) |
| I1 = dyn_cast<InsertElementInst>(I1->getOperand(0)); |
| if (I2 && ((I2 == IE2 || I2->hasOneUse())) && |
| getInsertIndex(I2).value_or(Idx1) != Idx1) |
| I2 = dyn_cast<InsertElementInst>(I2->getOperand(0)); |
| } while ((I1 && PrevI1 != I1) || (I2 && PrevI2 != I2)); |
| llvm_unreachable("Two different buildvectors not expected."); |
| } |
| |
| namespace { |
| /// Returns incoming Value *, if the requested type is Value * too, or a default |
| /// value, otherwise. |
| struct ValueSelect { |
| template <typename U> |
| static std::enable_if_t<std::is_same_v<Value *, U>, Value *> get(Value *V) { |
| return V; |
| } |
| template <typename U> |
| static std::enable_if_t<!std::is_same_v<Value *, U>, U> get(Value *) { |
| return U(); |
| } |
| }; |
| } // namespace |
| |
| /// Does the analysis of the provided shuffle masks and performs the requested |
| /// actions on the vectors with the given shuffle masks. It tries to do it in |
| /// several steps. |
| /// 1. If the Base vector is not undef vector, resizing the very first mask to |
| /// have common VF and perform action for 2 input vectors (including non-undef |
| /// Base). Other shuffle masks are combined with the resulting after the 1 stage |
| /// and processed as a shuffle of 2 elements. |
| /// 2. If the Base is undef vector and have only 1 shuffle mask, perform the |
| /// action only for 1 vector with the given mask, if it is not the identity |
| /// mask. |
| /// 3. If > 2 masks are used, perform the remaining shuffle actions for 2 |
| /// vectors, combing the masks properly between the steps. |
| template <typename T> |
| static T *performExtractsShuffleAction( |
| MutableArrayRef<std::pair<T *, SmallVector<int>>> ShuffleMask, Value *Base, |
| function_ref<unsigned(T *)> GetVF, |
| function_ref<std::pair<T *, bool>(T *, ArrayRef<int>, bool)> ResizeAction, |
| function_ref<T *(ArrayRef<int>, ArrayRef<T *>)> Action) { |
| assert(!ShuffleMask.empty() && "Empty list of shuffles for inserts."); |
| SmallVector<int> Mask(ShuffleMask.begin()->second); |
| auto VMIt = std::next(ShuffleMask.begin()); |
| T *Prev = nullptr; |
| SmallBitVector UseMask = |
| buildUseMask(Mask.size(), Mask, UseMask::UndefsAsMask); |
| SmallBitVector IsBaseUndef = isUndefVector(Base, UseMask); |
| if (!IsBaseUndef.all()) { |
| // Base is not undef, need to combine it with the next subvectors. |
| std::pair<T *, bool> Res = |
| ResizeAction(ShuffleMask.begin()->first, Mask, /*ForSingleMask=*/false); |
| SmallBitVector IsBasePoison = isUndefVector<true>(Base, UseMask); |
| for (unsigned Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) { |
| if (Mask[Idx] == PoisonMaskElem) |
| Mask[Idx] = IsBasePoison.test(Idx) ? PoisonMaskElem : Idx; |
| else |
| Mask[Idx] = (Res.second ? Idx : Mask[Idx]) + VF; |
| } |
| auto *V = ValueSelect::get<T *>(Base); |
| (void)V; |
| assert((!V || GetVF(V) == Mask.size()) && |
| "Expected base vector of VF number of elements."); |
| Prev = Action(Mask, {nullptr, Res.first}); |
| } else if (ShuffleMask.size() == 1) { |
| // Base is undef and only 1 vector is shuffled - perform the action only for |
| // single vector, if the mask is not the identity mask. |
| std::pair<T *, bool> Res = ResizeAction(ShuffleMask.begin()->first, Mask, |
| /*ForSingleMask=*/true); |
| if (Res.second) |
| // Identity mask is found. |
| Prev = Res.first; |
| else |
| Prev = Action(Mask, {ShuffleMask.begin()->first}); |
| } else { |
| // Base is undef and at least 2 input vectors shuffled - perform 2 vectors |
| // shuffles step by step, combining shuffle between the steps. |
| unsigned Vec1VF = GetVF(ShuffleMask.begin()->first); |
| unsigned Vec2VF = GetVF(VMIt->first); |
| if (Vec1VF == Vec2VF) { |
| // No need to resize the input vectors since they are of the same size, we |
| // can shuffle them directly. |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (SecMask[I] != PoisonMaskElem) { |
| assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| Mask[I] = SecMask[I] + Vec1VF; |
| } |
| } |
| Prev = Action(Mask, {ShuffleMask.begin()->first, VMIt->first}); |
| } else { |
| // Vectors of different sizes - resize and reshuffle. |
| std::pair<T *, bool> Res1 = ResizeAction(ShuffleMask.begin()->first, Mask, |
| /*ForSingleMask=*/false); |
| std::pair<T *, bool> Res2 = |
| ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (Mask[I] != PoisonMaskElem) { |
| assert(SecMask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| if (Res1.second) |
| Mask[I] = I; |
| } else if (SecMask[I] != PoisonMaskElem) { |
| assert(Mask[I] == PoisonMaskElem && "Multiple uses of scalars."); |
| Mask[I] = (Res2.second ? I : SecMask[I]) + VF; |
| } |
| } |
| Prev = Action(Mask, {Res1.first, Res2.first}); |
| } |
| VMIt = std::next(VMIt); |
| } |
| bool IsBaseNotUndef = !IsBaseUndef.all(); |
| (void)IsBaseNotUndef; |
| // Perform requested actions for the remaining masks/vectors. |
| for (auto E = ShuffleMask.end(); VMIt != E; ++VMIt) { |
| // Shuffle other input vectors, if any. |
| std::pair<T *, bool> Res = |
| ResizeAction(VMIt->first, VMIt->second, /*ForSingleMask=*/false); |
| ArrayRef<int> SecMask = VMIt->second; |
| for (unsigned I = 0, VF = Mask.size(); I < VF; ++I) { |
| if (SecMask[I] != PoisonMaskElem) { |
| assert((Mask[I] == PoisonMaskElem || IsBaseNotUndef) && |
| "Multiple uses of scalars."); |
| Mask[I] = (Res.second ? I : SecMask[I]) + VF; |
| } else if (Mask[I] != PoisonMaskElem) { |
| Mask[I] = I; |
| } |
| } |
| Prev = Action(Mask, {Prev, Res.first}); |
| } |
| return Prev; |
| } |
| |
| InstructionCost BoUpSLP::getTreeCost(ArrayRef<Value *> VectorizedVals) { |
| // Build a map for gathered scalars to the nodes where they are used. |
| ValueToGatherNodes.clear(); |
| for (const std::unique_ptr<TreeEntry> &EntryPtr : VectorizableTree) { |
| if (EntryPtr->State != TreeEntry::NeedToGather) |
| continue; |
| for (Value *V : EntryPtr->Scalars) |
| if (!isConstant(V)) |
| ValueToGatherNodes.try_emplace(V).first->getSecond().insert( |
| EntryPtr.get()); |
| } |
| InstructionCost Cost = 0; |
| LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size " |
| << VectorizableTree.size() << ".\n"); |
| |
| unsigned BundleWidth = VectorizableTree[0]->Scalars.size(); |
| |
| SmallPtrSet<Value *, 4> CheckedExtracts; |
| for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) { |
| TreeEntry &TE = *VectorizableTree[I]; |
| if (TE.State == TreeEntry::NeedToGather) { |
| if (const TreeEntry *E = getTreeEntry(TE.getMainOp()); |
| E && E->getVectorFactor() == TE.getVectorFactor() && |
| E->isSame(TE.Scalars)) { |
| // Some gather nodes might be absolutely the same as some vectorizable |
| // nodes after reordering, need to handle it. |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost 0 for bundle that starts with " |
| << *TE.Scalars[0] << ".\n" |
| << "SLP: Current total cost = " << Cost << "\n"); |
| continue; |
| } |
| } |
| |
| InstructionCost C = getEntryCost(&TE, VectorizedVals, CheckedExtracts); |
| Cost += C; |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for bundle that starts with " << *TE.Scalars[0] |
| << ".\n" |
| << "SLP: Current total cost = " << Cost << "\n"); |
| } |
| |
| SmallPtrSet<Value *, 16> ExtractCostCalculated; |
| InstructionCost ExtractCost = 0; |
| SmallVector<MapVector<const TreeEntry *, SmallVector<int>>> ShuffleMasks; |
| SmallVector<std::pair<Value *, const TreeEntry *>> FirstUsers; |
| SmallVector<APInt> DemandedElts; |
| for (ExternalUser &EU : ExternalUses) { |
| // We only add extract cost once for the same scalar. |
| if (!isa_and_nonnull<InsertElementInst>(EU.User) && |
| !ExtractCostCalculated.insert(EU.Scalar).second) |
| continue; |
| |
| // Uses by ephemeral values are free (because the ephemeral value will be |
| // removed prior to code generation, and so the extraction will be |
| // removed as well). |
| if (EphValues.count(EU.User)) |
| continue; |
| |
| // No extract cost for vector "scalar" |
| if (isa<FixedVectorType>(EU.Scalar->getType())) |
| continue; |
| |
| // If found user is an insertelement, do not calculate extract cost but try |
| // to detect it as a final shuffled/identity match. |
| if (auto *VU = dyn_cast_or_null<InsertElementInst>(EU.User)) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(VU->getType())) { |
| std::optional<unsigned> InsertIdx = getInsertIndex(VU); |
| if (InsertIdx) { |
| const TreeEntry *ScalarTE = getTreeEntry(EU.Scalar); |
| auto *It = find_if( |
| FirstUsers, |
| [this, VU](const std::pair<Value *, const TreeEntry *> &Pair) { |
| return areTwoInsertFromSameBuildVector( |
| VU, cast<InsertElementInst>(Pair.first), |
| [this](InsertElementInst *II) -> Value * { |
| Value *Op0 = II->getOperand(0); |
| if (getTreeEntry(II) && !getTreeEntry(Op0)) |
| return nullptr; |
| return Op0; |
| }); |
| }); |
| int VecId = -1; |
| if (It == FirstUsers.end()) { |
| (void)ShuffleMasks.emplace_back(); |
| SmallVectorImpl<int> &Mask = ShuffleMasks.back()[ScalarTE]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| // Find the insertvector, vectorized in tree, if any. |
| Value *Base = VU; |
| while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { |
| if (IEBase != EU.User && |
| (!IEBase->hasOneUse() || |
| getInsertIndex(IEBase).value_or(*InsertIdx) == *InsertIdx)) |
| break; |
| // Build the mask for the vectorized insertelement instructions. |
| if (const TreeEntry *E = getTreeEntry(IEBase)) { |
| VU = IEBase; |
| do { |
| IEBase = cast<InsertElementInst>(Base); |
| int Idx = *getInsertIndex(IEBase); |
| assert(Mask[Idx] == PoisonMaskElem && |
| "InsertElementInstruction used already."); |
| Mask[Idx] = Idx; |
| Base = IEBase->getOperand(0); |
| } while (E == getTreeEntry(Base)); |
| break; |
| } |
| Base = cast<InsertElementInst>(Base)->getOperand(0); |
| } |
| FirstUsers.emplace_back(VU, ScalarTE); |
| DemandedElts.push_back(APInt::getZero(FTy->getNumElements())); |
| VecId = FirstUsers.size() - 1; |
| } else { |
| if (isFirstInsertElement(VU, cast<InsertElementInst>(It->first))) |
| It->first = VU; |
| VecId = std::distance(FirstUsers.begin(), It); |
| } |
| int InIdx = *InsertIdx; |
| SmallVectorImpl<int> &Mask = ShuffleMasks[VecId][ScalarTE]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| Mask[InIdx] = EU.Lane; |
| DemandedElts[VecId].setBit(InIdx); |
| continue; |
| } |
| } |
| } |
| |
| // If we plan to rewrite the tree in a smaller type, we will need to sign |
| // extend the extracted value back to the original type. Here, we account |
| // for the extract and the added cost of the sign extend if needed. |
| auto *VecTy = FixedVectorType::get(EU.Scalar->getType(), BundleWidth); |
| TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; |
| if (MinBWs.count(ScalarRoot)) { |
| auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); |
| auto Extend = |
| MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt; |
| VecTy = FixedVectorType::get(MinTy, BundleWidth); |
| ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(), |
| VecTy, EU.Lane); |
| } else { |
| ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, |
| CostKind, EU.Lane); |
| } |
| } |
| |
| InstructionCost SpillCost = getSpillCost(); |
| Cost += SpillCost + ExtractCost; |
| auto &&ResizeToVF = [this, &Cost](const TreeEntry *TE, ArrayRef<int> Mask, |
| bool) { |
| InstructionCost C = 0; |
| unsigned VF = Mask.size(); |
| unsigned VecVF = TE->getVectorFactor(); |
| if (VF != VecVF && |
| (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); }) || |
| (all_of(Mask, |
| [VF](int Idx) { return Idx < 2 * static_cast<int>(VF); }) && |
| !ShuffleVectorInst::isIdentityMask(Mask)))) { |
| SmallVector<int> OrigMask(VecVF, PoisonMaskElem); |
| std::copy(Mask.begin(), std::next(Mask.begin(), std::min(VF, VecVF)), |
| OrigMask.begin()); |
| C = TTI->getShuffleCost( |
| TTI::SK_PermuteSingleSrc, |
| FixedVectorType::get(TE->getMainOp()->getType(), VecVF), OrigMask); |
| LLVM_DEBUG( |
| dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of insertelement external users.\n"; |
| TE->dump(); dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| return std::make_pair(TE, true); |
| } |
| return std::make_pair(TE, false); |
| }; |
| // Calculate the cost of the reshuffled vectors, if any. |
| for (int I = 0, E = FirstUsers.size(); I < E; ++I) { |
| Value *Base = cast<Instruction>(FirstUsers[I].first)->getOperand(0); |
| unsigned VF = ShuffleMasks[I].begin()->second.size(); |
| auto *FTy = FixedVectorType::get( |
| cast<VectorType>(FirstUsers[I].first->getType())->getElementType(), VF); |
| auto Vector = ShuffleMasks[I].takeVector(); |
| auto &&EstimateShufflesCost = [this, FTy, |
| &Cost](ArrayRef<int> Mask, |
| ArrayRef<const TreeEntry *> TEs) { |
| assert((TEs.size() == 1 || TEs.size() == 2) && |
| "Expected exactly 1 or 2 tree entries."); |
| if (TEs.size() == 1) { |
| int Limit = 2 * Mask.size(); |
| if (!all_of(Mask, [Limit](int Idx) { return Idx < Limit; }) || |
| !ShuffleVectorInst::isIdentityMask(Mask)) { |
| InstructionCost C = |
| TTI->getShuffleCost(TTI::SK_PermuteSingleSrc, FTy, Mask); |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of insertelement " |
| "external users.\n"; |
| TEs.front()->dump(); |
| dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| } |
| } else { |
| InstructionCost C = |
| TTI->getShuffleCost(TTI::SK_PermuteTwoSrc, FTy, Mask); |
| LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C |
| << " for final shuffle of vector node and external " |
| "insertelement users.\n"; |
| if (TEs.front()) { TEs.front()->dump(); } TEs.back()->dump(); |
| dbgs() << "SLP: Current total cost = " << Cost << "\n"); |
| Cost += C; |
| } |
| return TEs.back(); |
| }; |
| (void)performExtractsShuffleAction<const TreeEntry>( |
| MutableArrayRef(Vector.data(), Vector.size()), Base, |
| [](const TreeEntry *E) { return E->getVectorFactor(); }, ResizeToVF, |
| EstimateShufflesCost); |
| InstructionCost InsertCost = TTI->getScalarizationOverhead( |
| cast<FixedVectorType>(FirstUsers[I].first->getType()), DemandedElts[I], |
| /*Insert*/ true, /*Extract*/ false, TTI::TCK_RecipThroughput); |
| Cost -= InsertCost; |
| } |
| |
| #ifndef NDEBUG |
| SmallString<256> Str; |
| { |
| raw_svector_ostream OS(Str); |
| OS << "SLP: Spill Cost = " << SpillCost << ".\n" |
| << "SLP: Extract Cost = " << ExtractCost << ".\n" |
| << "SLP: Total Cost = " << Cost << ".\n"; |
| } |
| LLVM_DEBUG(dbgs() << Str); |
| if (ViewSLPTree) |
| ViewGraph(this, "SLP" + F->getName(), false, Str); |
| #endif |
| |
| return Cost; |
| } |
| |
| std::optional<TargetTransformInfo::ShuffleKind> |
| BoUpSLP::isGatherShuffledEntry(const TreeEntry *TE, ArrayRef<Value *> VL, |
| SmallVectorImpl<int> &Mask, |
| SmallVectorImpl<const TreeEntry *> &Entries) { |
| Entries.clear(); |
| // No need to check for the topmost gather node. |
| if (TE == VectorizableTree.front().get()) |
| return std::nullopt; |
| Mask.assign(VL.size(), PoisonMaskElem); |
| assert(TE->UserTreeIndices.size() == 1 && |
| "Expected only single user of the gather node."); |
| // TODO: currently checking only for Scalars in the tree entry, need to count |
| // reused elements too for better cost estimation. |
| Instruction &UserInst = |
| getLastInstructionInBundle(TE->UserTreeIndices.front().UserTE); |
| BasicBlock *ParentBB = nullptr; |
| // Main node of PHI entries keeps the correct order of operands/incoming |
| // blocks. |
| if (auto *PHI = |
| dyn_cast<PHINode>(TE->UserTreeIndices.front().UserTE->getMainOp())) { |
| ParentBB = PHI->getIncomingBlock(TE->UserTreeIndices.front().EdgeIdx); |
| } else { |
| ParentBB = UserInst.getParent(); |
| } |
| auto *NodeUI = DT->getNode(ParentBB); |
| assert(NodeUI && "Should only process reachable instructions"); |
| SmallPtrSet<Value *, 4> GatheredScalars(VL.begin(), VL.end()); |
| auto CheckOrdering = [&](Instruction *LastEI) { |
| // Check if the user node of the TE comes after user node of EntryPtr, |
| // otherwise EntryPtr depends on TE. |
| // Gather nodes usually are not scheduled and inserted before their first |
| // user node. So, instead of checking dependency between the gather nodes |
| // themselves, we check the dependency between their user nodes. |
| // If one user node comes before the second one, we cannot use the second |
| // gather node as the source vector for the first gather node, because in |
| // the list of instructions it will be emitted later. |
| auto *EntryParent = LastEI->getParent(); |
| auto *NodeEUI = DT->getNode(EntryParent); |
| if (!NodeEUI) |
| return false; |
| assert((NodeUI == NodeEUI) == |
| (NodeUI->getDFSNumIn() == NodeEUI->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| // Check the order of the gather nodes users. |
| if (UserInst.getParent() != EntryParent && |
| (DT->dominates(NodeUI, NodeEUI) || !DT->dominates(NodeEUI, NodeUI))) |
| return false; |
| if (UserInst.getParent() == EntryParent && UserInst.comesBefore(LastEI)) |
| return false; |
| return true; |
| }; |
| // Find all tree entries used by the gathered values. If no common entries |
| // found - not a shuffle. |
| // Here we build a set of tree nodes for each gathered value and trying to |
| // find the intersection between these sets. If we have at least one common |
| // tree node for each gathered value - we have just a permutation of the |
| // single vector. If we have 2 different sets, we're in situation where we |
| // have a permutation of 2 input vectors. |
| SmallVector<SmallPtrSet<const TreeEntry *, 4>> UsedTEs; |
| DenseMap<Value *, int> UsedValuesEntry; |
| for (Value *V : VL) { |
| if (isConstant(V)) |
| continue; |
| // Build a list of tree entries where V is used. |
| SmallPtrSet<const TreeEntry *, 4> VToTEs; |
| for (const TreeEntry *TEPtr : ValueToGatherNodes.find(V)->second) { |
| if (TEPtr == TE) |
| continue; |
| if (!any_of(TEPtr->Scalars, [&GatheredScalars](Value *V) { |
| return GatheredScalars.contains(V); |
| })) |
| continue; |
| assert(TEPtr->UserTreeIndices.size() == 1 && |
| "Expected only single user of the gather node."); |
| Instruction &EntryUserInst = |
| getLastInstructionInBundle(TEPtr->UserTreeIndices.front().UserTE); |
| PHINode *EntryPHI = |
| dyn_cast<PHINode>(TEPtr->UserTreeIndices.front().UserTE->getMainOp()); |
| if (&UserInst == &EntryUserInst && !EntryPHI) { |
| // If 2 gathers are operands of the same entry, compare operands |
| // indices, use the earlier one as the base. |
| if (TE->UserTreeIndices.front().UserTE == |
| TEPtr->UserTreeIndices.front().UserTE && |
| TE->UserTreeIndices.front().EdgeIdx < |
| TEPtr->UserTreeIndices.front().EdgeIdx) |
| continue; |
| } |
| // Check if the user node of the TE comes after user node of EntryPtr, |
| // otherwise EntryPtr depends on TE. |
| auto *EntryI = EntryPHI |
| ? EntryPHI |
| ->getIncomingBlock( |
| TEPtr->UserTreeIndices.front().EdgeIdx) |
| ->getTerminator() |
| : &EntryUserInst; |
| if (!CheckOrdering(EntryI) && |
| (ParentBB != EntryI->getParent() || |
| TE->UserTreeIndices.front().UserTE != |
| TEPtr->UserTreeIndices.front().UserTE || |
| TE->UserTreeIndices.front().EdgeIdx < |
| TEPtr->UserTreeIndices.front().EdgeIdx)) |
| continue; |
| VToTEs.insert(TEPtr); |
| } |
| if (const TreeEntry *VTE = getTreeEntry(V)) { |
| Instruction &EntryUserInst = getLastInstructionInBundle(VTE); |
| if (&EntryUserInst == &UserInst || !CheckOrdering(&EntryUserInst)) |
| continue; |
| VToTEs.insert(VTE); |
| } |
| if (VToTEs.empty()) |
| continue; |
| if (UsedTEs.empty()) { |
| // The first iteration, just insert the list of nodes to vector. |
| UsedTEs.push_back(VToTEs); |
| UsedValuesEntry.try_emplace(V, 0); |
| } else { |
| // Need to check if there are any previously used tree nodes which use V. |
| // If there are no such nodes, consider that we have another one input |
| // vector. |
| SmallPtrSet<const TreeEntry *, 4> SavedVToTEs(VToTEs); |
| unsigned Idx = 0; |
| for (SmallPtrSet<const TreeEntry *, 4> &Set : UsedTEs) { |
| // Do we have a non-empty intersection of previously listed tree entries |
| // and tree entries using current V? |
| set_intersect(VToTEs, Set); |
| if (!VToTEs.empty()) { |
| // Yes, write the new subset and continue analysis for the next |
| // scalar. |
| Set.swap(VToTEs); |
| break; |
| } |
| VToTEs = SavedVToTEs; |
| ++Idx; |
| } |
| // No non-empty intersection found - need to add a second set of possible |
| // source vectors. |
| if (Idx == UsedTEs.size()) { |
| // If the number of input vectors is greater than 2 - not a permutation, |
| // fallback to the regular gather. |
| // TODO: support multiple reshuffled nodes. |
| if (UsedTEs.size() == 2) |
| continue; |
| UsedTEs.push_back(SavedVToTEs); |
| Idx = UsedTEs.size() - 1; |
| } |
| UsedValuesEntry.try_emplace(V, Idx); |
| } |
| } |
| |
| if (UsedTEs.empty()) |
| return std::nullopt; |
| |
| unsigned VF = 0; |
| if (UsedTEs.size() == 1) { |
| // Keep the order to avoid non-determinism. |
| SmallVector<const TreeEntry *> FirstEntries(UsedTEs.front().begin(), |
| UsedTEs.front().end()); |
| sort(FirstEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| }); |
| // Try to find the perfect match in another gather node at first. |
| auto *It = find_if(FirstEntries, [=](const TreeEntry *EntryPtr) { |
| return EntryPtr->isSame(VL) || EntryPtr->isSame(TE->Scalars); |
| }); |
| if (It != FirstEntries.end() && (*It)->getVectorFactor() == VL.size()) { |
| Entries.push_back(*It); |
| std::iota(Mask.begin(), Mask.end(), 0); |
| // Clear undef scalars. |
| for (int I = 0, Sz = VL.size(); I < Sz; ++I) |
| if (isa<PoisonValue>(VL[I])) |
| Mask[I] = PoisonMaskElem; |
| return TargetTransformInfo::SK_PermuteSingleSrc; |
| } |
| // No perfect match, just shuffle, so choose the first tree node from the |
| // tree. |
| Entries.push_back(FirstEntries.front()); |
| } else { |
| // Try to find nodes with the same vector factor. |
| assert(UsedTEs.size() == 2 && "Expected at max 2 permuted entries."); |
| // Keep the order of tree nodes to avoid non-determinism. |
| DenseMap<int, const TreeEntry *> VFToTE; |
| for (const TreeEntry *TE : UsedTEs.front()) { |
| unsigned VF = TE->getVectorFactor(); |
| auto It = VFToTE.find(VF); |
| if (It != VFToTE.end()) { |
| if (It->second->Idx > TE->Idx) |
| It->getSecond() = TE; |
| continue; |
| } |
| VFToTE.try_emplace(VF, TE); |
| } |
| // Same, keep the order to avoid non-determinism. |
| SmallVector<const TreeEntry *> SecondEntries(UsedTEs.back().begin(), |
| UsedTEs.back().end()); |
| sort(SecondEntries, [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| }); |
| for (const TreeEntry *TE : SecondEntries) { |
| auto It = VFToTE.find(TE->getVectorFactor()); |
| if (It != VFToTE.end()) { |
| VF = It->first; |
| Entries.push_back(It->second); |
| Entries.push_back(TE); |
| break; |
| } |
| } |
| // No 2 source vectors with the same vector factor - just choose 2 with max |
| // index. |
| if (Entries.empty()) { |
| Entries.push_back( |
| *std::max_element(UsedTEs.front().begin(), UsedTEs.front().end(), |
| [](const TreeEntry *TE1, const TreeEntry *TE2) { |
| return TE1->Idx < TE2->Idx; |
| })); |
| Entries.push_back(SecondEntries.front()); |
| VF = std::max(Entries.front()->getVectorFactor(), |
| Entries.back()->getVectorFactor()); |
| } |
| } |
| |
| bool IsSplatOrUndefs = isSplat(VL) || all_of(VL, UndefValue::classof); |
| // Checks if the 2 PHIs are compatible in terms of high possibility to be |
| // vectorized. |
| auto AreCompatiblePHIs = [&](Value *V, Value *V1) { |
| auto *PHI = cast<PHINode>(V); |
| auto *PHI1 = cast<PHINode>(V1); |
| // Check that all incoming values are compatible/from same parent (if they |
| // are instructions). |
| // The incoming values are compatible if they all are constants, or |
| // instruction with the same/alternate opcodes from the same basic block. |
| for (int I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) { |
| Value *In = PHI->getIncomingValue(I); |
| Value *In1 = PHI1->getIncomingValue(I); |
| if (isConstant(In) && isConstant(In1)) |
| continue; |
| if (!getSameOpcode({In, In1}, *TLI).getOpcode()) |
| return false; |
| if (cast<Instruction>(In)->getParent() != |
| cast<Instruction>(In1)->getParent()) |
| return false; |
| } |
| return true; |
| }; |
| // Check if the value can be ignored during analysis for shuffled gathers. |
| // We suppose it is better to ignore instruction, which do not form splats, |
| // are not vectorized/not extractelements (these instructions will be handled |
| // by extractelements processing) or may form vector node in future. |
| auto MightBeIgnored = [=](Value *V) { |
| auto *I = dyn_cast<Instruction>(V); |
| SmallVector<Value *> IgnoredVals; |
| if (UserIgnoreList) |
| IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end()); |
| return I && !IsSplatOrUndefs && !ScalarToTreeEntry.count(I) && |
| !isVectorLikeInstWithConstOps(I) && |
| !areAllUsersVectorized(I, IgnoredVals) && isSimple(I); |
| }; |
| // Check that the neighbor instruction may form a full vector node with the |
| // current instruction V. It is possible, if they have same/alternate opcode |
| // and same parent basic block. |
| auto NeighborMightBeIgnored = [&](Value *V, int Idx) { |
| Value *V1 = VL[Idx]; |
| bool UsedInSameVTE = false; |
| auto It = UsedValuesEntry.find(V1); |
| if (It != UsedValuesEntry.end()) |
| UsedInSameVTE = It->second == UsedValuesEntry.find(V)->second; |
| return V != V1 && MightBeIgnored(V1) && !UsedInSameVTE && |
| getSameOpcode({V, V1}, *TLI).getOpcode() && |
| cast<Instruction>(V)->getParent() == |
| cast<Instruction>(V1)->getParent() && |
| (!isa<PHINode>(V1) || AreCompatiblePHIs(V, V1)); |
| }; |
| // Build a shuffle mask for better cost estimation and vector emission. |
| SmallBitVector UsedIdxs(Entries.size()); |
| SmallVector<std::pair<unsigned, int>> EntryLanes; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| Value *V = VL[I]; |
| auto It = UsedValuesEntry.find(V); |
| if (It == UsedValuesEntry.end()) |
| continue; |
| // Do not try to shuffle scalars, if they are constants, or instructions |
| // that can be vectorized as a result of the following vector build |
| // vectorization. |
| if (isConstant(V) || (MightBeIgnored(V) && |
| ((I > 0 && NeighborMightBeIgnored(V, I - 1)) || |
| (I != E - 1 && NeighborMightBeIgnored(V, I + 1))))) |
| continue; |
| unsigned Idx = It->second; |
| EntryLanes.emplace_back(Idx, I); |
| UsedIdxs.set(Idx); |
| } |
| // Iterate through all shuffled scalars and select entries, which can be used |
| // for final shuffle. |
| SmallVector<const TreeEntry *> TempEntries; |
| for (unsigned I = 0, Sz = Entries.size(); I < Sz; ++I) { |
| if (!UsedIdxs.test(I)) |
| continue; |
| // Fix the entry number for the given scalar. If it is the first entry, set |
| // Pair.first to 0, otherwise to 1 (currently select at max 2 nodes). |
| // These indices are used when calculating final shuffle mask as the vector |
| // offset. |
| for (std::pair<unsigned, int> &Pair : EntryLanes) |
| if (Pair.first == I) |
| Pair.first = TempEntries.size(); |
| TempEntries.push_back(Entries[I]); |
| } |
| Entries.swap(TempEntries); |
| if (EntryLanes.size() == Entries.size() && !VL.equals(TE->Scalars)) { |
| // We may have here 1 or 2 entries only. If the number of scalars is equal |
| // to the number of entries, no need to do the analysis, it is not very |
| // profitable. Since VL is not the same as TE->Scalars, it means we already |
| // have some shuffles before. Cut off not profitable case. |
| Entries.clear(); |
| return std::nullopt; |
| } |
| // Build the final mask, check for the identity shuffle, if possible. |
| bool IsIdentity = Entries.size() == 1; |
| // Pair.first is the offset to the vector, while Pair.second is the index of |
| // scalar in the list. |
| for (const std::pair<unsigned, int> &Pair : EntryLanes) { |
| Mask[Pair.second] = Pair.first * VF + |
| Entries[Pair.first]->findLaneForValue(VL[Pair.second]); |
| IsIdentity &= Mask[Pair.second] == Pair.second; |
| } |
| switch (Entries.size()) { |
| case 1: |
| if (IsIdentity || EntryLanes.size() > 1 || VL.size() <= 2) |
| return TargetTransformInfo::SK_PermuteSingleSrc; |
| break; |
| case 2: |
| if (EntryLanes.size() > 2 || VL.size() <= 2) |
| return TargetTransformInfo::SK_PermuteTwoSrc; |
| break; |
| default: |
| break; |
| } |
| Entries.clear(); |
| return std::nullopt; |
| } |
| |
| InstructionCost BoUpSLP::getGatherCost(ArrayRef<Value *> VL, |
| bool ForPoisonSrc) const { |
| // Find the type of the operands in VL. |
| Type *ScalarTy = VL[0]->getType(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) |
| ScalarTy = SI->getValueOperand()->getType(); |
| auto *VecTy = FixedVectorType::get(ScalarTy, VL.size()); |
| bool DuplicateNonConst = false; |
| // Find the cost of inserting/extracting values from the vector. |
| // Check if the same elements are inserted several times and count them as |
| // shuffle candidates. |
| APInt ShuffledElements = APInt::getZero(VL.size()); |
| DenseSet<Value *> UniqueElements; |
| constexpr TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; |
| InstructionCost Cost; |
| auto EstimateInsertCost = [&](unsigned I, Value *V) { |
| if (!ForPoisonSrc) |
| Cost += |
| TTI->getVectorInstrCost(Instruction::InsertElement, VecTy, CostKind, |
| I, Constant::getNullValue(VecTy), V); |
| }; |
| for (unsigned I = 0, E = VL.size(); I < E; ++I) { |
| Value *V = VL[I]; |
| // No need to shuffle duplicates for constants. |
| if ((ForPoisonSrc && isConstant(V)) || isa<UndefValue>(V)) { |
| ShuffledElements.setBit(I); |
| continue; |
| } |
| if (!UniqueElements.insert(V).second) { |
| DuplicateNonConst = true; |
| ShuffledElements.setBit(I); |
| continue; |
| } |
| EstimateInsertCost(I, V); |
| } |
| if (ForPoisonSrc) |
| Cost = |
| TTI->getScalarizationOverhead(VecTy, ~ShuffledElements, /*Insert*/ true, |
| /*Extract*/ false, CostKind); |
| if (DuplicateNonConst) |
| Cost += |
| TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy); |
| return Cost; |
| } |
| |
| // Perform operand reordering on the instructions in VL and return the reordered |
| // operands in Left and Right. |
| void BoUpSLP::reorderInputsAccordingToOpcode( |
| ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, |
| SmallVectorImpl<Value *> &Right, const TargetLibraryInfo &TLI, |
| const DataLayout &DL, ScalarEvolution &SE, const BoUpSLP &R) { |
| if (VL.empty()) |
| return; |
| VLOperands Ops(VL, TLI, DL, SE, R); |
| // Reorder the operands in place. |
| Ops.reorder(); |
| Left = Ops.getVL(0); |
| Right = Ops.getVL(1); |
| } |
| |
| Instruction &BoUpSLP::getLastInstructionInBundle(const TreeEntry *E) { |
| // Get the basic block this bundle is in. All instructions in the bundle |
| // should be in this block (except for extractelement-like instructions with |
| // constant indeces). |
| auto *Front = E->getMainOp(); |
| auto *BB = Front->getParent(); |
| assert(llvm::all_of(E->Scalars, [=](Value *V) -> bool { |
| if (E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(V)) |
| return true; |
| auto *I = cast<Instruction>(V); |
| return !E->isOpcodeOrAlt(I) || I->getParent() == BB || |
| isVectorLikeInstWithConstOps(I); |
| })); |
| |
| auto &&FindLastInst = [E, Front, this, &BB]() { |
| Instruction *LastInst = Front; |
| for (Value *V : E->Scalars) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| continue; |
| if (LastInst->getParent() == I->getParent()) { |
| if (LastInst->comesBefore(I)) |
| LastInst = I; |
| continue; |
| } |
| assert(((E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(I)) || |
| (isVectorLikeInstWithConstOps(LastInst) && |
| isVectorLikeInstWithConstOps(I))) && |
| "Expected vector-like or non-GEP in GEP node insts only."); |
| if (!DT->isReachableFromEntry(LastInst->getParent())) { |
| LastInst = I; |
| continue; |
| } |
| if (!DT->isReachableFromEntry(I->getParent())) |
| continue; |
| auto *NodeA = DT->getNode(LastInst->getParent()); |
| auto *NodeB = DT->getNode(I->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == |
| (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA->getDFSNumIn() < NodeB->getDFSNumIn()) |
| LastInst = I; |
| } |
| BB = LastInst->getParent(); |
| return LastInst; |
| }; |
| |
| auto &&FindFirstInst = [E, Front, this]() { |
| Instruction *FirstInst = Front; |
| for (Value *V : E->Scalars) { |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I) |
| continue; |
| if (FirstInst->getParent() == I->getParent()) { |
| if (I->comesBefore(FirstInst)) |
| FirstInst = I; |
| continue; |
| } |
| assert(((E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(I)) || |
| (isVectorLikeInstWithConstOps(FirstInst) && |
| isVectorLikeInstWithConstOps(I))) && |
| "Expected vector-like or non-GEP in GEP node insts only."); |
| if (!DT->isReachableFromEntry(FirstInst->getParent())) { |
| FirstInst = I; |
| continue; |
| } |
| if (!DT->isReachableFromEntry(I->getParent())) |
| continue; |
| auto *NodeA = DT->getNode(FirstInst->getParent()); |
| auto *NodeB = DT->getNode(I->getParent()); |
| assert(NodeA && "Should only process reachable instructions"); |
| assert(NodeB && "Should only process reachable instructions"); |
| assert((NodeA == NodeB) == |
| (NodeA->getDFSNumIn() == NodeB->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| if (NodeA->getDFSNumIn() > NodeB->getDFSNumIn()) |
| FirstInst = I; |
| } |
| return FirstInst; |
| }; |
| |
| // Set the insert point to the beginning of the basic block if the entry |
| // should not be scheduled. |
| if (E->State != TreeEntry::NeedToGather && |
| (doesNotNeedToSchedule(E->Scalars) || |
| all_of(E->Scalars, isVectorLikeInstWithConstOps))) { |
| Instruction *InsertInst; |
| if ((E->getOpcode() == Instruction::GetElementPtr && |
| any_of(E->Scalars, |
| [](Value *V) { |
| return !isa<GetElementPtrInst>(V) && isa<Instruction>(V); |
| })) || |
| all_of(E->Scalars, [](Value *V) { |
| return !isVectorLikeInstWithConstOps(V) && isUsedOutsideBlock(V); |
| })) |
| InsertInst = FindLastInst(); |
| else |
| InsertInst = FindFirstInst(); |
| return *InsertInst; |
| } |
| |
| // The last instruction in the bundle in program order. |
| Instruction *LastInst = nullptr; |
| |
| // Find the last instruction. The common case should be that BB has been |
| // scheduled, and the last instruction is VL.back(). So we start with |
| // VL.back() and iterate over schedule data until we reach the end of the |
| // bundle. The end of the bundle is marked by null ScheduleData. |
| if (BlocksSchedules.count(BB)) { |
| Value *V = E->isOneOf(E->Scalars.back()); |
| if (doesNotNeedToBeScheduled(V)) |
| V = *find_if_not(E->Scalars, doesNotNeedToBeScheduled); |
| auto *Bundle = BlocksSchedules[BB]->getScheduleData(V); |
| if (Bundle && Bundle->isPartOfBundle()) |
| for (; Bundle; Bundle = Bundle->NextInBundle) |
| if (Bundle->OpValue == Bundle->Inst) |
| LastInst = Bundle->Inst; |
| } |
| |
| // LastInst can still be null at this point if there's either not an entry |
| // for BB in BlocksSchedules or there's no ScheduleData available for |
| // VL.back(). This can be the case if buildTree_rec aborts for various |
| // reasons (e.g., the maximum recursion depth is reached, the maximum region |
| // size is reached, etc.). ScheduleData is initialized in the scheduling |
| // "dry-run". |
| // |
| // If this happens, we can still find the last instruction by brute force. We |
| // iterate forwards from Front (inclusive) until we either see all |
| // instructions in the bundle or reach the end of the block. If Front is the |
| // last instruction in program order, LastInst will be set to Front, and we |
| // will visit all the remaining instructions in the block. |
| // |
| // One of the reasons we exit early from buildTree_rec is to place an upper |
| // bound on compile-time. Thus, taking an additional compile-time hit here is |
| // not ideal. However, this should be exceedingly rare since it requires that |
| // we both exit early from buildTree_rec and that the bundle be out-of-order |
| // (causing us to iterate all the way to the end of the block). |
| if (!LastInst) |
| LastInst = FindLastInst(); |
| assert(LastInst && "Failed to find last instruction in bundle"); |
| return *LastInst; |
| } |
| |
| void BoUpSLP::setInsertPointAfterBundle(const TreeEntry *E) { |
| auto *Front = E->getMainOp(); |
| Instruction *LastInst = EntryToLastInstruction.lookup(E); |
| assert(LastInst && "Failed to find last instruction in bundle"); |
| // If the instruction is PHI, set the insert point after all the PHIs. |
| bool IsPHI = isa<PHINode>(LastInst); |
| if (IsPHI) |
| LastInst = LastInst->getParent()->getFirstNonPHI(); |
| if (IsPHI || (E->State != TreeEntry::NeedToGather && |
| doesNotNeedToSchedule(E->Scalars))) { |
| Builder.SetInsertPoint(LastInst); |
| } else { |
| // Set the insertion point after the last instruction in the bundle. Set the |
| // debug location to Front. |
| Builder.SetInsertPoint(LastInst->getParent(), |
| std::next(LastInst->getIterator())); |
| } |
| Builder.SetCurrentDebugLocation(Front->getDebugLoc()); |
| } |
| |
| Value *BoUpSLP::gather(ArrayRef<Value *> VL, Value *Root) { |
| // List of instructions/lanes from current block and/or the blocks which are |
| // part of the current loop. These instructions will be inserted at the end to |
| // make it possible to optimize loops and hoist invariant instructions out of |
| // the loops body with better chances for success. |
| SmallVector<std::pair<Value *, unsigned>, 4> PostponedInsts; |
| SmallSet<int, 4> PostponedIndices; |
| Loop *L = LI->getLoopFor(Builder.GetInsertBlock()); |
| auto &&CheckPredecessor = [](BasicBlock *InstBB, BasicBlock *InsertBB) { |
| SmallPtrSet<BasicBlock *, 4> Visited; |
| while (InsertBB && InsertBB != InstBB && Visited.insert(InsertBB).second) |
| InsertBB = InsertBB->getSinglePredecessor(); |
| return InsertBB && InsertBB == InstBB; |
| }; |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| if (auto *Inst = dyn_cast<Instruction>(VL[I])) |
| if ((CheckPredecessor(Inst->getParent(), Builder.GetInsertBlock()) || |
| getTreeEntry(Inst) || |
| (L && (!Root || L->isLoopInvariant(Root)) && L->contains(Inst))) && |
| PostponedIndices.insert(I).second) |
| PostponedInsts.emplace_back(Inst, I); |
| } |
| |
| auto &&CreateInsertElement = [this](Value *Vec, Value *V, unsigned Pos) { |
| Vec = Builder.CreateInsertElement(Vec, V, Builder.getInt32(Pos)); |
| auto *InsElt = dyn_cast<InsertElementInst>(Vec); |
| if (!InsElt) |
| return Vec; |
| GatherShuffleExtractSeq.insert(InsElt); |
| CSEBlocks.insert(InsElt->getParent()); |
| // Add to our 'need-to-extract' list. |
| if (TreeEntry *Entry = getTreeEntry(V)) { |
| // Find which lane we need to extract. |
| unsigned FoundLane = Entry->findLaneForValue(V); |
| ExternalUses.emplace_back(V, InsElt, FoundLane); |
| } |
| return Vec; |
| }; |
| Value *Val0 = |
| isa<StoreInst>(VL[0]) ? cast<StoreInst>(VL[0])->getValueOperand() : VL[0]; |
| FixedVectorType *VecTy = FixedVectorType::get(Val0->getType(), VL.size()); |
| Value *Vec = Root ? Root : PoisonValue::get(VecTy); |
| SmallVector<int> NonConsts; |
| // Insert constant values at first. |
| for (int I = 0, E = VL.size(); I < E; ++I) { |
| if (PostponedIndices.contains(I)) |
| continue; |
| if (!isConstant(VL[I])) { |
| NonConsts.push_back(I); |
| continue; |
| } |
| if (Root) { |
| if (!isa<UndefValue>(VL[I])) { |
| NonConsts.push_back(I); |
| continue; |
| } |
| if (isa<PoisonValue>(VL[I])) |
| continue; |
| if (auto *SV = dyn_cast<ShuffleVectorInst>(Root)) { |
| if (SV->getMaskValue(I) == PoisonMaskElem) |
| continue; |
| } |
| } |
| Vec = CreateInsertElement(Vec, VL[I], I); |
| } |
| // Insert non-constant values. |
| for (int I : NonConsts) |
| Vec = CreateInsertElement(Vec, VL[I], I); |
| // Append instructions, which are/may be part of the loop, in the end to make |
| // it possible to hoist non-loop-based instructions. |
| for (const std::pair<Value *, unsigned> &Pair : PostponedInsts) |
| Vec = CreateInsertElement(Vec, Pair.first, Pair.second); |
| |
| return Vec; |
| } |
| |
| /// Merges shuffle masks and emits final shuffle instruction, if required. It |
| /// supports shuffling of 2 input vectors. It implements lazy shuffles emission, |
| /// when the actual shuffle instruction is generated only if this is actually |
| /// required. Otherwise, the shuffle instruction emission is delayed till the |
| /// end of the process, to reduce the number of emitted instructions and further |
| /// analysis/transformations. |
| /// The class also will look through the previously emitted shuffle instructions |
| /// and properly mark indices in mask as undef. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 3, 2>, it will |
| /// look through %s1 and %s2 and emit |
| /// \code |
| /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> |
| /// \endcode |
| /// instead. |
| /// If 2 operands are of different size, the smallest one will be resized and |
| /// the mask recalculated properly. |
| /// For example, given the code |
| /// \code |
| /// %s1 = shufflevector <2 x ty> %0, poison, <1, 0, 1, 0> |
| /// %s2 = shufflevector <2 x ty> %1, poison, <1, 0, 1, 0> |
| /// \endcode |
| /// and if need to emit shuffle of %s1 and %s2 with mask <1, 0, 5, 4>, it will |
| /// look through %s1 and %s2 and emit |
| /// \code |
| /// %res = shufflevector <2 x ty> %0, %1, <0, 1, 2, 3> |
| /// \endcode |
| /// instead. |
| class BoUpSLP::ShuffleInstructionBuilder final : public BaseShuffleAnalysis { |
| bool IsFinalized = false; |
| /// Combined mask for all applied operands and masks. It is built during |
| /// analysis and actual emission of shuffle vector instructions. |
| SmallVector<int> CommonMask; |
| /// List of operands for the shuffle vector instruction. It hold at max 2 |
| /// operands, if the 3rd is going to be added, the first 2 are combined into |
| /// shuffle with \p CommonMask mask, the first operand sets to be the |
| /// resulting shuffle and the second operand sets to be the newly added |
| /// operand. The \p CommonMask is transformed in the proper way after that. |
| SmallVector<Value *, 2> InVectors; |
| IRBuilderBase &Builder; |
| BoUpSLP &R; |
| |
| class ShuffleIRBuilder { |
| IRBuilderBase &Builder; |
| /// Holds all of the instructions that we gathered. |
| SetVector<Instruction *> &GatherShuffleExtractSeq; |
| /// A list of blocks that we are going to CSE. |
| SetVector<BasicBlock *> &CSEBlocks; |
| |
| public: |
| ShuffleIRBuilder(IRBuilderBase &Builder, |
| SetVector<Instruction *> &GatherShuffleExtractSeq, |
| SetVector<BasicBlock *> &CSEBlocks) |
| : Builder(Builder), GatherShuffleExtractSeq(GatherShuffleExtractSeq), |
| CSEBlocks(CSEBlocks) {} |
| ~ShuffleIRBuilder() = default; |
| /// Creates shufflevector for the 2 operands with the given mask. |
| Value *createShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| Value *Vec = Builder.CreateShuffleVector(V1, V2, Mask); |
| if (auto *I = dyn_cast<Instruction>(Vec)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| return Vec; |
| } |
| /// Creates permutation of the single vector operand with the given mask, if |
| /// it is not identity mask. |
| Value *createShuffleVector(Value *V1, ArrayRef<int> Mask) { |
| if (Mask.empty()) |
| return V1; |
| unsigned VF = Mask.size(); |
| unsigned LocalVF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| if (VF == LocalVF && ShuffleVectorInst::isIdentityMask(Mask)) |
| return V1; |
| Value *Vec = Builder.CreateShuffleVector(V1, Mask); |
| if (auto *I = dyn_cast<Instruction>(Vec)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| return Vec; |
| } |
| Value *createIdentity(Value *V) { return V; } |
| Value *createPoison(Type *Ty, unsigned VF) { |
| return PoisonValue::get(FixedVectorType::get(Ty, VF)); |
| } |
| /// Resizes 2 input vector to match the sizes, if the they are not equal |
| /// yet. The smallest vector is resized to the size of the larger vector. |
| void resizeToMatch(Value *&V1, Value *&V2) { |
| if (V1->getType() == V2->getType()) |
| return; |
| int V1VF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| int V2VF = cast<FixedVectorType>(V2->getType())->getNumElements(); |
| int VF = std::max(V1VF, V2VF); |
| int MinVF = std::min(V1VF, V2VF); |
| SmallVector<int> IdentityMask(VF, PoisonMaskElem); |
| std::iota(IdentityMask.begin(), std::next(IdentityMask.begin(), MinVF), |
| 0); |
| Value *&Op = MinVF == V1VF ? V1 : V2; |
| Op = Builder.CreateShuffleVector(Op, IdentityMask); |
| if (auto *I = dyn_cast<Instruction>(Op)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| if (MinVF == V1VF) |
| V1 = Op; |
| else |
| V2 = Op; |
| } |
| }; |
| |
| /// Smart shuffle instruction emission, walks through shuffles trees and |
| /// tries to find the best matching vector for the actual shuffle |
| /// instruction. |
| Value *createShuffle(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| assert(V1 && "Expected at least one vector value."); |
| ShuffleIRBuilder ShuffleBuilder(Builder, R.GatherShuffleExtractSeq, |
| R.CSEBlocks); |
| return BaseShuffleAnalysis::createShuffle<Value *>(V1, V2, Mask, |
| ShuffleBuilder); |
| } |
| |
| /// Transforms mask \p CommonMask per given \p Mask to make proper set after |
| /// shuffle emission. |
| static void transformMaskAfterShuffle(MutableArrayRef<int> CommonMask, |
| ArrayRef<int> Mask) { |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| } |
| |
| public: |
| ShuffleInstructionBuilder(IRBuilderBase &Builder, BoUpSLP &R) |
| : Builder(Builder), R(R) {} |
| |
| /// Adjusts extractelements after reusing them. |
| Value *adjustExtracts(const TreeEntry *E, ArrayRef<int> Mask) { |
| Value *VecBase = nullptr; |
| for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { |
| int Idx = Mask[I]; |
| if (Idx == PoisonMaskElem) |
| continue; |
| auto *EI = cast<ExtractElementInst>(E->Scalars[I]); |
| VecBase = EI->getVectorOperand(); |
| // If the only one use is vectorized - can delete the extractelement |
| // itself. |
| if (!EI->hasOneUse() || any_of(EI->users(), [&](User *U) { |
| return !R.ScalarToTreeEntry.count(U); |
| })) |
| continue; |
| R.eraseInstruction(EI); |
| } |
| return VecBase; |
| } |
| /// Checks if the specified entry \p E needs to be delayed because of its |
| /// dependency nodes. |
| Value *needToDelay(const TreeEntry *E, ArrayRef<const TreeEntry *> Deps) { |
| // No need to delay emission if all deps are ready. |
| if (all_of(Deps, [](const TreeEntry *TE) { return TE->VectorizedValue; })) |
| return nullptr; |
| // Postpone gather emission, will be emitted after the end of the |
| // process to keep correct order. |
| auto *VecTy = FixedVectorType::get(E->Scalars.front()->getType(), |
| E->getVectorFactor()); |
| Value *Vec = Builder.CreateAlignedLoad( |
| VecTy, PoisonValue::get(VecTy->getPointerTo()), MaybeAlign()); |
| return Vec; |
| } |
| /// Adds 2 input vectors and the mask for their shuffling. |
| void add(Value *V1, Value *V2, ArrayRef<int> Mask) { |
| assert(V1 && V2 && !Mask.empty() && "Expected non-empty input vectors."); |
| if (InVectors.empty()) { |
| InVectors.push_back(V1); |
| InVectors.push_back(V2); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| return; |
| } |
| Value *Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Vec = createShuffle(Vec, InVectors.back(), CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } else if (cast<FixedVectorType>(Vec->getType())->getNumElements() != |
| Mask.size()) { |
| Vec = createShuffle(Vec, nullptr, CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } |
| V1 = createShuffle(V1, V2, Mask); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx + Sz; |
| InVectors.front() = Vec; |
| if (InVectors.size() == 2) |
| InVectors.back() = V1; |
| else |
| InVectors.push_back(V1); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void add(Value *V1, ArrayRef<int> Mask) { |
| if (InVectors.empty()) { |
| if (!isa<FixedVectorType>(V1->getType())) { |
| V1 = createShuffle(V1, nullptr, CommonMask); |
| CommonMask.assign(Mask.size(), PoisonMaskElem); |
| transformMaskAfterShuffle(CommonMask, Mask); |
| } |
| InVectors.push_back(V1); |
| CommonMask.assign(Mask.begin(), Mask.end()); |
| return; |
| } |
| const auto *It = find(InVectors, V1); |
| if (It == InVectors.end()) { |
| if (InVectors.size() == 2 || |
| InVectors.front()->getType() != V1->getType() || |
| !isa<FixedVectorType>(V1->getType())) { |
| Value *V = InVectors.front(); |
| if (InVectors.size() == 2) { |
| V = createShuffle(InVectors.front(), InVectors.back(), CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } else if (cast<FixedVectorType>(V->getType())->getNumElements() != |
| CommonMask.size()) { |
| V = createShuffle(InVectors.front(), nullptr, CommonMask); |
| transformMaskAfterShuffle(CommonMask, CommonMask); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] == PoisonMaskElem && Mask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = |
| V->getType() != V1->getType() |
| ? Idx + Sz |
| : Mask[Idx] + cast<FixedVectorType>(V1->getType()) |
| ->getNumElements(); |
| if (V->getType() != V1->getType()) |
| V1 = createShuffle(V1, nullptr, Mask); |
| InVectors.front() = V; |
| if (InVectors.size() == 2) |
| InVectors.back() = V1; |
| else |
| InVectors.push_back(V1); |
| return; |
| } |
| // Check if second vector is required if the used elements are already |
| // used from the first one. |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) { |
| InVectors.push_back(V1); |
| break; |
| } |
| } |
| int VF = CommonMask.size(); |
| if (auto *FTy = dyn_cast<FixedVectorType>(V1->getType())) |
| VF = FTy->getNumElements(); |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (Mask[Idx] != PoisonMaskElem && CommonMask[Idx] == PoisonMaskElem) |
| CommonMask[Idx] = Mask[Idx] + (It == InVectors.begin() ? 0 : VF); |
| } |
| /// Adds another one input vector and the mask for the shuffling. |
| void addOrdered(Value *V1, ArrayRef<unsigned> Order) { |
| SmallVector<int> NewMask; |
| inversePermutation(Order, NewMask); |
| add(V1, NewMask); |
| } |
| Value *gather(ArrayRef<Value *> VL, Value *Root = nullptr) { |
| return R.gather(VL, Root); |
| } |
| Value *createFreeze(Value *V) { return Builder.CreateFreeze(V); } |
| /// Finalize emission of the shuffles. |
| /// \param Action the action (if any) to be performed before final applying of |
| /// the \p ExtMask mask. |
| Value * |
| finalize(ArrayRef<int> ExtMask, unsigned VF = 0, |
| function_ref<void(Value *&, SmallVectorImpl<int> &)> Action = {}) { |
| IsFinalized = true; |
| if (Action) { |
| Value *Vec = InVectors.front(); |
| if (InVectors.size() == 2) { |
| Vec = createShuffle(Vec, InVectors.back(), CommonMask); |
| InVectors.pop_back(); |
| } else { |
| Vec = createShuffle(Vec, nullptr, CommonMask); |
| } |
| for (unsigned Idx = 0, Sz = CommonMask.size(); Idx < Sz; ++Idx) |
| if (CommonMask[Idx] != PoisonMaskElem) |
| CommonMask[Idx] = Idx; |
| assert(VF > 0 && |
| "Expected vector length for the final value before action."); |
| unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| if (VecVF < VF) { |
| SmallVector<int> ResizeMask(VF, PoisonMaskElem); |
| std::iota(ResizeMask.begin(), std::next(ResizeMask.begin(), VecVF), 0); |
| Vec = createShuffle(Vec, nullptr, ResizeMask); |
| } |
| Action(Vec, CommonMask); |
| InVectors.front() = Vec; |
| } |
| if (!ExtMask.empty()) { |
| if (CommonMask.empty()) { |
| CommonMask.assign(ExtMask.begin(), ExtMask.end()); |
| } else { |
| SmallVector<int> NewMask(ExtMask.size(), PoisonMaskElem); |
| for (int I = 0, Sz = ExtMask.size(); I < Sz; ++I) { |
| if (ExtMask[I] == PoisonMaskElem) |
| continue; |
| NewMask[I] = CommonMask[ExtMask[I]]; |
| } |
| CommonMask.swap(NewMask); |
| } |
| } |
| if (CommonMask.empty()) { |
| assert(InVectors.size() == 1 && "Expected only one vector with no mask"); |
| return InVectors.front(); |
| } |
| if (InVectors.size() == 2) |
| return createShuffle(InVectors.front(), InVectors.back(), CommonMask); |
| return createShuffle(InVectors.front(), nullptr, CommonMask); |
| } |
| |
| ~ShuffleInstructionBuilder() { |
| assert((IsFinalized || CommonMask.empty()) && |
| "Shuffle construction must be finalized."); |
| } |
| }; |
| |
| Value *BoUpSLP::vectorizeOperand(TreeEntry *E, unsigned NodeIdx) { |
| ArrayRef<Value *> VL = E->getOperand(NodeIdx); |
| const unsigned VF = VL.size(); |
| InstructionsState S = getSameOpcode(VL, *TLI); |
| // Special processing for GEPs bundle, which may include non-gep values. |
| if (!S.getOpcode() && VL.front()->getType()->isPointerTy()) { |
| const auto *It = |
| find_if(VL, [](Value *V) { return isa<GetElementPtrInst>(V); }); |
| if (It != VL.end()) |
| S = getSameOpcode(*It, *TLI); |
| } |
| if (S.getOpcode()) { |
| if (TreeEntry *VE = getTreeEntry(S.OpValue); |
| VE && VE->isSame(VL) && |
| (any_of(VE->UserTreeIndices, |
| [E, NodeIdx](const EdgeInfo &EI) { |
| return EI.UserTE == E && EI.EdgeIdx == NodeIdx; |
| }) || |
| any_of(VectorizableTree, |
| [E, NodeIdx, VE](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isOperandGatherNode({E, NodeIdx}) && |
| VE->isSame(TE->Scalars); |
| }))) { |
| auto FinalShuffle = [&](Value *V, ArrayRef<int> Mask) { |
| ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); |
| ShuffleBuilder.add(V, Mask); |
| return ShuffleBuilder.finalize(std::nullopt); |
| }; |
| Value *V = vectorizeTree(VE); |
| if (VF != cast<FixedVectorType>(V->getType())->getNumElements()) { |
| if (!VE->ReuseShuffleIndices.empty()) { |
| // Reshuffle to get only unique values. |
| // If some of the scalars are duplicated in the vectorization |
| // tree entry, we do not vectorize them but instead generate a |
| // mask for the reuses. But if there are several users of the |
| // same entry, they may have different vectorization factors. |
| // This is especially important for PHI nodes. In this case, we |
| // need to adapt the resulting instruction for the user |
| // vectorization factor and have to reshuffle it again to take |
| // only unique elements of the vector. Without this code the |
| // function incorrectly returns reduced vector instruction with |
| // the same elements, not with the unique ones. |
| |
| // block: |
| // %phi = phi <2 x > { .., %entry} {%shuffle, %block} |
| // %2 = shuffle <2 x > %phi, poison, <4 x > <1, 1, 0, 0> |
| // ... (use %2) |
| // %shuffle = shuffle <2 x> %2, poison, <2 x> {2, 0} |
| // br %block |
| SmallVector<int> UniqueIdxs(VF, PoisonMaskElem); |
| SmallSet<int, 4> UsedIdxs; |
| int Pos = 0; |
| for (int Idx : VE->ReuseShuffleIndices) { |
| if (Idx != static_cast<int>(VF) && Idx != PoisonMaskElem && |
| UsedIdxs.insert(Idx).second) |
| UniqueIdxs[Idx] = Pos; |
| ++Pos; |
| } |
| assert(VF >= UsedIdxs.size() && "Expected vectorization factor " |
| "less than original vector size."); |
| UniqueIdxs.append(VF - UsedIdxs.size(), PoisonMaskElem); |
| V = FinalShuffle(V, UniqueIdxs); |
| } else { |
| assert(VF < cast<FixedVectorType>(V->getType())->getNumElements() && |
| "Expected vectorization factor less " |
| "than original vector size."); |
| SmallVector<int> UniformMask(VF, 0); |
| std::iota(UniformMask.begin(), UniformMask.end(), 0); |
| V = FinalShuffle(V, UniformMask); |
| } |
| } |
| // Need to update the operand gather node, if actually the operand is not a |
| // vectorized node, but the buildvector/gather node, which matches one of |
| // the vectorized nodes. |
| if (find_if(VE->UserTreeIndices, [&](const EdgeInfo &EI) { |
| return EI.UserTE == E && EI.EdgeIdx == NodeIdx; |
| }) == VE->UserTreeIndices.end()) { |
| auto *It = find_if( |
| VectorizableTree, [&](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->State == TreeEntry::NeedToGather && |
| TE->UserTreeIndices.front().UserTE == E && |
| TE->UserTreeIndices.front().EdgeIdx == NodeIdx; |
| }); |
| assert(It != VectorizableTree.end() && "Expected gather node operand."); |
| (*It)->VectorizedValue = V; |
| } |
| return V; |
| } |
| } |
| |
| // Find the corresponding gather entry and vectorize it. |
| // Allows to be more accurate with tree/graph transformations, checks for the |
| // correctness of the transformations in many cases. |
| auto *I = find_if(VectorizableTree, |
| [E, NodeIdx](const std::unique_ptr<TreeEntry> &TE) { |
| return TE->isOperandGatherNode({E, NodeIdx}); |
| }); |
| assert(I != VectorizableTree.end() && "Gather node is not in the graph."); |
| assert(I->get()->UserTreeIndices.size() == 1 && |
| "Expected only single user for the gather node."); |
| assert(I->get()->isSame(VL) && "Expected same list of scalars."); |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| if (E->getOpcode() != Instruction::InsertElement && |
| E->getOpcode() != Instruction::PHI) { |
| Instruction *LastInst = EntryToLastInstruction.lookup(E); |
| assert(LastInst && "Failed to find last instruction in bundle"); |
| Builder.SetInsertPoint(LastInst); |
| } |
| return vectorizeTree(I->get()); |
| } |
| |
| template <typename BVTy, typename ResTy, typename... Args> |
| ResTy BoUpSLP::processBuildVector(const TreeEntry *E, Args &...Params) { |
| assert(E->State == TreeEntry::NeedToGather && "Expected gather node."); |
| unsigned VF = E->getVectorFactor(); |
| |
| bool NeedFreeze = false; |
| SmallVector<int> ReuseShuffleIndicies(E->ReuseShuffleIndices.begin(), |
| E->ReuseShuffleIndices.end()); |
| SmallVector<Value *> GatheredScalars(E->Scalars.begin(), E->Scalars.end()); |
| // Build a mask out of the reorder indices and reorder scalars per this |
| // mask. |
| SmallVector<int> ReorderMask; |
| inversePermutation(E->ReorderIndices, ReorderMask); |
| if (!ReorderMask.empty()) |
| reorderScalars(GatheredScalars, ReorderMask); |
| auto FindReusedSplat = [&](SmallVectorImpl<int> &Mask) { |
| if (!isSplat(E->Scalars) || none_of(E->Scalars, [](Value *V) { |
| return isa<UndefValue>(V) && !isa<PoisonValue>(V); |
| })) |
| return false; |
| TreeEntry *UserTE = E->UserTreeIndices.back().UserTE; |
| unsigned EdgeIdx = E->UserTreeIndices.back().EdgeIdx; |
| if (UserTE->getNumOperands() != 2) |
| return false; |
| auto *It = |
| find_if(VectorizableTree, [=](const std::unique_ptr<TreeEntry> &TE) { |
| return find_if(TE->UserTreeIndices, [=](const EdgeInfo &EI) { |
| return EI.UserTE == UserTE && EI.EdgeIdx != EdgeIdx; |
| }) != TE->UserTreeIndices.end(); |
| }); |
| if (It == VectorizableTree.end()) |
| return false; |
| unsigned I = |
| *find_if_not(Mask, [](int Idx) { return Idx == PoisonMaskElem; }); |
| int Sz = Mask.size(); |
| if (all_of(Mask, [Sz](int Idx) { return Idx < 2 * Sz; }) && |
| ShuffleVectorInst::isIdentityMask(Mask)) |
| std::iota(Mask.begin(), Mask.end(), 0); |
| else |
| std::fill(Mask.begin(), Mask.end(), I); |
| return true; |
| }; |
| BVTy ShuffleBuilder(Params...); |
| ResTy Res = ResTy(); |
| SmallVector<int> Mask; |
| SmallVector<int> ExtractMask; |
| std::optional<TargetTransformInfo::ShuffleKind> ExtractShuffle; |
| std::optional<TargetTransformInfo::ShuffleKind> GatherShuffle; |
| SmallVector<const TreeEntry *> Entries; |
| Type *ScalarTy = GatheredScalars.front()->getType(); |
| if (!all_of(GatheredScalars, UndefValue::classof)) { |
| // Check for gathered extracts. |
| ExtractShuffle = tryToGatherExtractElements(GatheredScalars, ExtractMask); |
| SmallVector<Value *> IgnoredVals; |
| if (UserIgnoreList) |
| IgnoredVals.assign(UserIgnoreList->begin(), UserIgnoreList->end()); |
| bool Resized = false; |
| if (Value *VecBase = ShuffleBuilder.adjustExtracts(E, ExtractMask)) |
| if (auto *VecBaseTy = dyn_cast<FixedVectorType>(VecBase->getType())) |
| if (VF == VecBaseTy->getNumElements() && GatheredScalars.size() != VF) { |
| Resized = true; |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(ScalarTy)); |
| } |
| // Gather extracts after we check for full matched gathers only. |
| if (ExtractShuffle || E->getOpcode() != Instruction::Load || |
| E->isAltShuffle() || |
| all_of(E->Scalars, [this](Value *V) { return getTreeEntry(V); }) || |
| isSplat(E->Scalars) || |
| (E->Scalars != GatheredScalars && GatheredScalars.size() <= 2)) { |
| GatherShuffle = isGatherShuffledEntry(E, GatheredScalars, Mask, Entries); |
| } |
| if (GatherShuffle) { |
| if (Value *Delayed = ShuffleBuilder.needToDelay(E, Entries)) { |
| // Delay emission of gathers which are not ready yet. |
| PostponedGathers.insert(E); |
| // Postpone gather emission, will be emitted after the end of the |
| // process to keep correct order. |
| return Delayed; |
| } |
| assert((Entries.size() == 1 || Entries.size() == 2) && |
| "Expected shuffle of 1 or 2 entries."); |
| if (*GatherShuffle == TTI::SK_PermuteSingleSrc && |
| Entries.front()->isSame(E->Scalars)) { |
| // Perfect match in the graph, will reuse the previously vectorized |
| // node. Cost is 0. |
| LLVM_DEBUG( |
| dbgs() |
| << "SLP: perfect diamond match for gather bundle that starts with " |
| << *E->Scalars.front() << ".\n"); |
| // Restore the mask for previous partially matched values. |
| for (auto [I, V] : enumerate(E->Scalars)) { |
| if (isa<PoisonValue>(V)) { |
| Mask[I] = PoisonMaskElem; |
| continue; |
| } |
| if (Mask[I] == PoisonMaskElem) |
| Mask[I] = Entries.front()->findLaneForValue(V); |
| } |
| ShuffleBuilder.add(Entries.front()->VectorizedValue, Mask); |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices); |
| return Res; |
| } |
| if (!Resized) { |
| unsigned VF1 = Entries.front()->getVectorFactor(); |
| unsigned VF2 = Entries.back()->getVectorFactor(); |
| if ((VF == VF1 || VF == VF2) && GatheredScalars.size() != VF) |
| GatheredScalars.append(VF - GatheredScalars.size(), |
| PoisonValue::get(ScalarTy)); |
| } |
| // Remove shuffled elements from list of gathers. |
| for (int I = 0, Sz = Mask.size(); I < Sz; ++I) { |
| if (Mask[I] != PoisonMaskElem) |
| GatheredScalars[I] = PoisonValue::get(ScalarTy); |
| } |
| } |
| } |
| auto TryPackScalars = [&](SmallVectorImpl<Value *> &Scalars, |
| SmallVectorImpl<int> &ReuseMask, |
| bool IsRootPoison) { |
| // For splats with can emit broadcasts instead of gathers, so try to find |
| // such sequences. |
| bool IsSplat = IsRootPoison && isSplat(Scalars) && |
| (Scalars.size() > 2 || Scalars.front() == Scalars.back()); |
| Scalars.append(VF - Scalars.size(), PoisonValue::get(ScalarTy)); |
| SmallVector<int> UndefPos; |
| DenseMap<Value *, unsigned> UniquePositions; |
| // Gather unique non-const values and all constant values. |
| // For repeated values, just shuffle them. |
| int NumNonConsts = 0; |
| int SinglePos = 0; |
| for (auto [I, V] : enumerate(Scalars)) { |
| if (isa<UndefValue>(V)) { |
| if (!isa<PoisonValue>(V)) { |
| ReuseMask[I] = I; |
| UndefPos.push_back(I); |
| } |
| continue; |
| } |
| if (isConstant(V)) { |
| ReuseMask[I] = I; |
| continue; |
| } |
| ++NumNonConsts; |
| SinglePos = I; |
| Value *OrigV = V; |
| Scalars[I] = PoisonValue::get(ScalarTy); |
| if (IsSplat) { |
| Scalars.front() = OrigV; |
| ReuseMask[I] = 0; |
| } else { |
| const auto Res = UniquePositions.try_emplace(OrigV, I); |
| Scalars[Res.first->second] = OrigV; |
| ReuseMask[I] = Res.first->second; |
| } |
| } |
| if (NumNonConsts == 1) { |
| // Restore single insert element. |
| if (IsSplat) { |
| ReuseMask.assign(VF, PoisonMaskElem); |
| std::swap(Scalars.front(), Scalars[SinglePos]); |
| if (!UndefPos.empty() && UndefPos.front() == 0) |
| Scalars.front() = UndefValue::get(ScalarTy); |
| } |
| ReuseMask[SinglePos] = SinglePos; |
| } else if (!UndefPos.empty() && IsSplat) { |
| // For undef values, try to replace them with the simple broadcast. |
| // We can do it if the broadcasted value is guaranteed to be |
| // non-poisonous, or by freezing the incoming scalar value first. |
| auto *It = find_if(Scalars, [this, E](Value *V) { |
| return !isa<UndefValue>(V) && |
| (getTreeEntry(V) || isGuaranteedNotToBePoison(V) || |
| (E->UserTreeIndices.size() == 1 && |
| any_of(V->uses(), [E](const Use &U) { |
| // Check if the value already used in the same operation in |
| // one of the nodes already. |
| return E->UserTreeIndices.front().EdgeIdx != |
| U.getOperandNo() && |
| is_contained( |
| E->UserTreeIndices.front().UserTE->Scalars, |
| U.getUser()); |
| }))); |
| }); |
| if (It != Scalars.end()) { |
| // Replace undefs by the non-poisoned scalars and emit broadcast. |
| int Pos = std::distance(Scalars.begin(), It); |
| for_each(UndefPos, [&](int I) { |
| // Set the undef position to the non-poisoned scalar. |
| ReuseMask[I] = Pos; |
| // Replace the undef by the poison, in the mask it is replaced by |
| // non-poisoned scalar already. |
| if (I != Pos) |
| Scalars[I] = PoisonValue::get(ScalarTy); |
| }); |
| } else { |
| // Replace undefs by the poisons, emit broadcast and then emit |
| // freeze. |
| for_each(UndefPos, [&](int I) { |
| ReuseMask[I] = PoisonMaskElem; |
| if (isa<UndefValue>(Scalars[I])) |
| Scalars[I] = PoisonValue::get(ScalarTy); |
| }); |
| NeedFreeze = true; |
| } |
| } |
| }; |
| if (ExtractShuffle || GatherShuffle) { |
| bool IsNonPoisoned = true; |
| bool IsUsedInExpr = false; |
| Value *Vec1 = nullptr; |
| if (ExtractShuffle) { |
| // Gather of extractelements can be represented as just a shuffle of |
| // a single/two vectors the scalars are extracted from. |
| // Find input vectors. |
| Value *Vec2 = nullptr; |
| for (unsigned I = 0, Sz = ExtractMask.size(); I < Sz; ++I) { |
| if (ExtractMask[I] == PoisonMaskElem || |
| (!Mask.empty() && Mask[I] != PoisonMaskElem)) { |
| ExtractMask[I] = PoisonMaskElem; |
| continue; |
| } |
| if (isa<UndefValue>(E->Scalars[I])) |
| continue; |
| auto *EI = cast<ExtractElementInst>(E->Scalars[I]); |
| if (!Vec1) { |
| Vec1 = EI->getVectorOperand(); |
| } else if (Vec1 != EI->getVectorOperand()) { |
| assert((!Vec2 || Vec2 == EI->getVectorOperand()) && |
| "Expected only 1 or 2 vectors shuffle."); |
| Vec2 = EI->getVectorOperand(); |
| } |
| } |
| if (Vec2) { |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(Vec1) && isGuaranteedNotToBePoison(Vec2); |
| ShuffleBuilder.add(Vec1, Vec2, ExtractMask); |
| } else if (Vec1) { |
| IsUsedInExpr = FindReusedSplat(ExtractMask); |
| ShuffleBuilder.add(Vec1, ExtractMask); |
| IsNonPoisoned &= isGuaranteedNotToBePoison(Vec1); |
| } else { |
| ShuffleBuilder.add(PoisonValue::get(FixedVectorType::get( |
| ScalarTy, GatheredScalars.size())), |
| ExtractMask); |
| } |
| } |
| if (GatherShuffle) { |
| if (Entries.size() == 1) { |
| IsUsedInExpr = FindReusedSplat(Mask); |
| ShuffleBuilder.add(Entries.front()->VectorizedValue, Mask); |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(Entries.front()->VectorizedValue); |
| } else { |
| ShuffleBuilder.add(Entries.front()->VectorizedValue, |
| Entries.back()->VectorizedValue, Mask); |
| IsNonPoisoned &= |
| isGuaranteedNotToBePoison(Entries.front()->VectorizedValue) && |
| isGuaranteedNotToBePoison(Entries.back()->VectorizedValue); |
| } |
| } |
| // Try to figure out best way to combine values: build a shuffle and insert |
| // elements or just build several shuffles. |
| // Insert non-constant scalars. |
| SmallVector<Value *> NonConstants(GatheredScalars); |
| int EMSz = ExtractMask.size(); |
| int MSz = Mask.size(); |
| // Try to build constant vector and shuffle with it only if currently we |
| // have a single permutation and more than 1 scalar constants. |
| bool IsSingleShuffle = !ExtractShuffle || !GatherShuffle; |
| bool IsIdentityShuffle = |
| (ExtractShuffle.value_or(TTI::SK_PermuteTwoSrc) == |
| TTI::SK_PermuteSingleSrc && |
| none_of(ExtractMask, [&](int I) { return I >= EMSz; }) && |
| ShuffleVectorInst::isIdentityMask(ExtractMask)) || |
| (GatherShuffle.value_or(TTI::SK_PermuteTwoSrc) == |
| TTI::SK_PermuteSingleSrc && |
| none_of(Mask, [&](int I) { return I >= MSz; }) && |
| ShuffleVectorInst::isIdentityMask(Mask)); |
| bool EnoughConstsForShuffle = |
| IsSingleShuffle && |
| (none_of(GatheredScalars, |
| [](Value *V) { |
| return isa<UndefValue>(V) && !isa<PoisonValue>(V); |
| }) || |
| any_of(GatheredScalars, |
| [](Value *V) { |
| return isa<Constant>(V) && !isa<UndefValue>(V); |
| })) && |
| (!IsIdentityShuffle || |
| (GatheredScalars.size() == 2 && |
| any_of(GatheredScalars, |
| [](Value *V) { return !isa<UndefValue>(V); })) || |
| count_if(GatheredScalars, [](Value *V) { |
| return isa<Constant>(V) && !isa<PoisonValue>(V); |
| }) > 1); |
| // NonConstants array contains just non-constant values, GatheredScalars |
| // contains only constant to build final vector and then shuffle. |
| for (int I = 0, Sz = GatheredScalars.size(); I < Sz; ++I) { |
| if (EnoughConstsForShuffle && isa<Constant>(GatheredScalars[I])) |
| NonConstants[I] = PoisonValue::get(ScalarTy); |
| else |
| GatheredScalars[I] = PoisonValue::get(ScalarTy); |
| } |
| // Generate constants for final shuffle and build a mask for them. |
| if (!all_of(GatheredScalars, PoisonValue::classof)) { |
| SmallVector<int> BVMask(GatheredScalars.size(), PoisonMaskElem); |
| TryPackScalars(GatheredScalars, BVMask, /*IsRootPoison=*/true); |
| Value *BV = ShuffleBuilder.gather(GatheredScalars); |
| ShuffleBuilder.add(BV, BVMask); |
| } |
| if (all_of(NonConstants, [=](Value *V) { |
| return isa<PoisonValue>(V) || |
| (IsSingleShuffle && ((IsIdentityShuffle && |
| IsNonPoisoned) || IsUsedInExpr) && isa<UndefValue>(V)); |
| })) |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices); |
| else |
| Res = ShuffleBuilder.finalize( |
| E->ReuseShuffleIndices, E->Scalars.size(), |
| [&](Value *&Vec, SmallVectorImpl<int> &Mask) { |
| TryPackScalars(NonConstants, Mask, /*IsRootPoison=*/false); |
| Vec = ShuffleBuilder.gather(NonConstants, Vec); |
| }); |
| } else if (!allConstant(GatheredScalars)) { |
| // Gather unique scalars and all constants. |
| SmallVector<int> ReuseMask(GatheredScalars.size(), PoisonMaskElem); |
| TryPackScalars(GatheredScalars, ReuseMask, /*IsRootPoison=*/true); |
| Value *BV = ShuffleBuilder.gather(GatheredScalars); |
| ShuffleBuilder.add(BV, ReuseMask); |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices); |
| } else { |
| // Gather all constants. |
| SmallVector<int> Mask(E->Scalars.size(), PoisonMaskElem); |
| for (auto [I, V] : enumerate(E->Scalars)) { |
| if (!isa<PoisonValue>(V)) |
| Mask[I] = I; |
| } |
| Value *BV = ShuffleBuilder.gather(E->Scalars); |
| ShuffleBuilder.add(BV, Mask); |
| Res = ShuffleBuilder.finalize(E->ReuseShuffleIndices); |
| } |
| |
| if (NeedFreeze) |
| Res = ShuffleBuilder.createFreeze(Res); |
| return Res; |
| } |
| |
| Value *BoUpSLP::createBuildVector(const TreeEntry *E) { |
| return processBuildVector<ShuffleInstructionBuilder, Value *>(E, Builder, |
| *this); |
| } |
| |
| Value *BoUpSLP::vectorizeTree(TreeEntry *E) { |
| IRBuilder<>::InsertPointGuard Guard(Builder); |
| |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| if (E->State == TreeEntry::NeedToGather) { |
| if (E->getMainOp() && E->Idx == 0) |
| setInsertPointAfterBundle(E); |
| Value *Vec = createBuildVector(E); |
| E->VectorizedValue = Vec; |
| return Vec; |
| } |
| |
| auto FinalShuffle = [&](Value *V, const TreeEntry *E) { |
| ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); |
| if (E->getOpcode() == Instruction::Store) { |
| ArrayRef<int> Mask = |
| ArrayRef(reinterpret_cast<const int *>(E->ReorderIndices.begin()), |
| E->ReorderIndices.size()); |
| ShuffleBuilder.add(V, Mask); |
| } else { |
| ShuffleBuilder.addOrdered(V, E->ReorderIndices); |
| } |
| return ShuffleBuilder.finalize(E->ReuseShuffleIndices); |
| }; |
| |
| assert((E->State == TreeEntry::Vectorize || |
| E->State == TreeEntry::ScatterVectorize) && |
| "Unhandled state"); |
| unsigned ShuffleOrOp = |
| E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode(); |
| Instruction *VL0 = E->getMainOp(); |
| Type *ScalarTy = VL0->getType(); |
| if (auto *Store = dyn_cast<StoreInst>(VL0)) |
| ScalarTy = Store->getValueOperand()->getType(); |
| else if (auto *IE = dyn_cast<InsertElementInst>(VL0)) |
| ScalarTy = IE->getOperand(1)->getType(); |
| auto *VecTy = FixedVectorType::get(ScalarTy, E->Scalars.size()); |
| switch (ShuffleOrOp) { |
| case Instruction::PHI: { |
| assert((E->ReorderIndices.empty() || |
| E != VectorizableTree.front().get() || |
| !E->UserTreeIndices.empty()) && |
| "PHI reordering is free."); |
| auto *PH = cast<PHINode>(VL0); |
| Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); |
| Value *V = NewPhi; |
| |
| // Adjust insertion point once all PHI's have been generated. |
| Builder.SetInsertPoint(&*PH->getParent()->getFirstInsertionPt()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| |
| // PHINodes may have multiple entries from the same block. We want to |
| // visit every block once. |
| SmallPtrSet<BasicBlock*, 4> VisitedBBs; |
| |
| for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { |
| ValueList Operands; |
| BasicBlock *IBB = PH->getIncomingBlock(i); |
| |
| // Stop emission if all incoming values are generated. |
| if (NewPhi->getNumIncomingValues() == PH->getNumIncomingValues()) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return V; |
| } |
| |
| if (!VisitedBBs.insert(IBB).second) { |
| NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); |
| continue; |
| } |
| |
| Builder.SetInsertPoint(IBB->getTerminator()); |
| Builder.SetCurrentDebugLocation(PH->getDebugLoc()); |
| Value *Vec = vectorizeOperand(E, i); |
| NewPhi->addIncoming(Vec, IBB); |
| } |
| |
| assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && |
| "Invalid number of incoming values"); |
| return V; |
| } |
| |
| case Instruction::ExtractElement: { |
| Value *V = E->getSingleOperand(0); |
| setInsertPointAfterBundle(E); |
| V = FinalShuffle(V, E); |
| E->VectorizedValue = V; |
| return V; |
| } |
| case Instruction::ExtractValue: { |
| auto *LI = cast<LoadInst>(E->getSingleOperand(0)); |
| Builder.SetInsertPoint(LI); |
| auto *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); |
| Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); |
| LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlign()); |
| Value *NewV = propagateMetadata(V, E->Scalars); |
| NewV = FinalShuffle(NewV, E); |
| E->VectorizedValue = NewV; |
| return NewV; |
| } |
| case Instruction::InsertElement: { |
| assert(E->ReuseShuffleIndices.empty() && "All inserts should be unique"); |
| Builder.SetInsertPoint(cast<Instruction>(E->Scalars.back())); |
| Value *V = vectorizeOperand(E, 1); |
| |
| // Create InsertVector shuffle if necessary |
| auto *FirstInsert = cast<Instruction>(*find_if(E->Scalars, [E](Value *V) { |
| return !is_contained(E->Scalars, cast<Instruction>(V)->getOperand(0)); |
| })); |
| const unsigned NumElts = |
| cast<FixedVectorType>(FirstInsert->getType())->getNumElements(); |
| const unsigned NumScalars = E->Scalars.size(); |
| |
| unsigned Offset = *getInsertIndex(VL0); |
| assert(Offset < NumElts && "Failed to find vector index offset"); |
| |
| // Create shuffle to resize vector |
| SmallVector<int> Mask; |
| if (!E->ReorderIndices.empty()) { |
| inversePermutation(E->ReorderIndices, Mask); |
| Mask.append(NumElts - NumScalars, PoisonMaskElem); |
| } else { |
| Mask.assign(NumElts, PoisonMaskElem); |
| std::iota(Mask.begin(), std::next(Mask.begin(), NumScalars), 0); |
| } |
| // Create InsertVector shuffle if necessary |
| bool IsIdentity = true; |
| SmallVector<int> PrevMask(NumElts, PoisonMaskElem); |
| Mask.swap(PrevMask); |
| for (unsigned I = 0; I < NumScalars; ++I) { |
| Value *Scalar = E->Scalars[PrevMask[I]]; |
| unsigned InsertIdx = *getInsertIndex(Scalar); |
| IsIdentity &= InsertIdx - Offset == I; |
| Mask[InsertIdx - Offset] = I; |
| } |
| if (!IsIdentity || NumElts != NumScalars) { |
| V = Builder.CreateShuffleVector(V, Mask); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| |
| SmallVector<int> InsertMask(NumElts, PoisonMaskElem); |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (Mask[I] != PoisonMaskElem) |
| InsertMask[Offset + I] = I; |
| } |
| SmallBitVector UseMask = |
| buildUseMask(NumElts, InsertMask, UseMask::UndefsAsMask); |
| SmallBitVector IsFirstUndef = |
| isUndefVector(FirstInsert->getOperand(0), UseMask); |
| if ((!IsIdentity || Offset != 0 || !IsFirstUndef.all()) && |
| NumElts != NumScalars) { |
| if (IsFirstUndef.all()) { |
| if (!ShuffleVectorInst::isIdentityMask(InsertMask)) { |
| SmallBitVector IsFirstPoison = |
| isUndefVector<true>(FirstInsert->getOperand(0), UseMask); |
| if (!IsFirstPoison.all()) { |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (InsertMask[I] == PoisonMaskElem && !IsFirstPoison.test(I)) |
| InsertMask[I] = I + NumElts; |
| } |
| } |
| V = Builder.CreateShuffleVector( |
| V, |
| IsFirstPoison.all() ? PoisonValue::get(V->getType()) |
| : FirstInsert->getOperand(0), |
| InsertMask, cast<Instruction>(E->Scalars.back())->getName()); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| } else { |
| SmallBitVector IsFirstPoison = |
| isUndefVector<true>(FirstInsert->getOperand(0), UseMask); |
| for (unsigned I = 0; I < NumElts; I++) { |
| if (InsertMask[I] == PoisonMaskElem) |
| InsertMask[I] = IsFirstPoison.test(I) ? PoisonMaskElem : I; |
| else |
| InsertMask[I] += NumElts; |
| } |
| V = Builder.CreateShuffleVector( |
| FirstInsert->getOperand(0), V, InsertMask, |
| cast<Instruction>(E->Scalars.back())->getName()); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| } |
| |
| ++NumVectorInstructions; |
| E->VectorizedValue = V; |
| return V; |
| } |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::SIToFP: |
| case Instruction::UIToFP: |
| case Instruction::Trunc: |
| case Instruction::FPTrunc: |
| case Instruction::BitCast: { |
| setInsertPointAfterBundle(E); |
| |
| Value *InVec = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| auto *CI = cast<CastInst>(VL0); |
| Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::FCmp: |
| case Instruction::ICmp: { |
| setInsertPointAfterBundle(E); |
| |
| Value *L = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *R = vectorizeOperand(E, 1); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); |
| Value *V = Builder.CreateCmp(P0, L, R); |
| propagateIRFlags(V, E->Scalars, VL0); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::Select: { |
| setInsertPointAfterBundle(E); |
| |
| Value *Cond = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *True = vectorizeOperand(E, 1); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *False = vectorizeOperand(E, 2); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = Builder.CreateSelect(Cond, True, False); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::FNeg: { |
| setInsertPointAfterBundle(E); |
| |
| Value *Op = vectorizeOperand(E, 0); |
| |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = Builder.CreateUnOp( |
| static_cast<Instruction::UnaryOps>(E->getOpcode()), Op); |
| propagateIRFlags(V, E->Scalars, VL0); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| V = propagateMetadata(I, E->Scalars); |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| setInsertPointAfterBundle(E); |
| |
| Value *LHS = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| Value *RHS = vectorizeOperand(E, 1); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, |
| RHS); |
| propagateIRFlags(V, E->Scalars, VL0); |
| if (auto *I = dyn_cast<Instruction>(V)) |
| V = propagateMetadata(I, E->Scalars); |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Load: { |
| // Loads are inserted at the head of the tree because we don't want to |
| // sink them all the way down past store instructions. |
| setInsertPointAfterBundle(E); |
| |
| LoadInst *LI = cast<LoadInst>(VL0); |
| Instruction *NewLI; |
| unsigned AS = LI->getPointerAddressSpace(); |
| Value *PO = LI->getPointerOperand(); |
| if (E->State == TreeEntry::Vectorize) { |
| Value *VecPtr = Builder.CreateBitCast(PO, VecTy->getPointerTo(AS)); |
| NewLI = Builder.CreateAlignedLoad(VecTy, VecPtr, LI->getAlign()); |
| |
| // The pointer operand uses an in-tree scalar so we add the new BitCast |
| // or LoadInst to ExternalUses list to make sure that an extract will |
| // be generated in the future. |
| if (TreeEntry *Entry = getTreeEntry(PO)) { |
| // Find which lane we need to extract. |
| unsigned FoundLane = Entry->findLaneForValue(PO); |
| ExternalUses.emplace_back( |
| PO, PO != VecPtr ? cast<User>(VecPtr) : NewLI, FoundLane); |
| } |
| } else { |
| assert(E->State == TreeEntry::ScatterVectorize && "Unhandled state"); |
| Value *VecPtr = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| // Use the minimum alignment of the gathered loads. |
| Align CommonAlignment = LI->getAlign(); |
| for (Value *V : E->Scalars) |
| CommonAlignment = |
| std::min(CommonAlignment, cast<LoadInst>(V)->getAlign()); |
| NewLI = Builder.CreateMaskedGather(VecTy, VecPtr, CommonAlignment); |
| } |
| Value *V = propagateMetadata(NewLI, E->Scalars); |
| |
| V = FinalShuffle(V, E); |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::Store: { |
| auto *SI = cast<StoreInst>(VL0); |
| unsigned AS = SI->getPointerAddressSpace(); |
| |
| setInsertPointAfterBundle(E); |
| |
| Value *VecValue = vectorizeOperand(E, 0); |
| VecValue = FinalShuffle(VecValue, E); |
| |
| Value *ScalarPtr = SI->getPointerOperand(); |
| Value *VecPtr = Builder.CreateBitCast( |
| ScalarPtr, VecValue->getType()->getPointerTo(AS)); |
| StoreInst *ST = |
| Builder.CreateAlignedStore(VecValue, VecPtr, SI->getAlign()); |
| |
| // The pointer operand uses an in-tree scalar, so add the new BitCast or |
| // StoreInst to ExternalUses to make sure that an extract will be |
| // generated in the future. |
| if (TreeEntry *Entry = getTreeEntry(ScalarPtr)) { |
| // Find which lane we need to extract. |
| unsigned FoundLane = Entry->findLaneForValue(ScalarPtr); |
| ExternalUses.push_back(ExternalUser( |
| ScalarPtr, ScalarPtr != VecPtr ? cast<User>(VecPtr) : ST, |
| FoundLane)); |
| } |
| |
| Value *V = propagateMetadata(ST, E->Scalars); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::GetElementPtr: { |
| auto *GEP0 = cast<GetElementPtrInst>(VL0); |
| setInsertPointAfterBundle(E); |
| |
| Value *Op0 = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| SmallVector<Value *> OpVecs; |
| for (int J = 1, N = GEP0->getNumOperands(); J < N; ++J) { |
| Value *OpVec = vectorizeOperand(E, J); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| OpVecs.push_back(OpVec); |
| } |
| |
| Value *V = Builder.CreateGEP(GEP0->getSourceElementType(), Op0, OpVecs); |
| if (Instruction *I = dyn_cast<GetElementPtrInst>(V)) { |
| SmallVector<Value *> GEPs; |
| for (Value *V : E->Scalars) { |
| if (isa<GetElementPtrInst>(V)) |
| GEPs.push_back(V); |
| } |
| V = propagateMetadata(I, GEPs); |
| } |
| |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| case Instruction::Call: { |
| CallInst *CI = cast<CallInst>(VL0); |
| setInsertPointAfterBundle(E); |
| |
| Intrinsic::ID IID = Intrinsic::not_intrinsic; |
| if (Function *FI = CI->getCalledFunction()) |
| IID = FI->getIntrinsicID(); |
| |
| Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); |
| |
| auto VecCallCosts = getVectorCallCosts(CI, VecTy, TTI, TLI); |
| bool UseIntrinsic = ID != Intrinsic::not_intrinsic && |
| VecCallCosts.first <= VecCallCosts.second; |
| |
| Value *ScalarArg = nullptr; |
| std::vector<Value *> OpVecs; |
| SmallVector<Type *, 2> TysForDecl; |
| // Add return type if intrinsic is overloaded on it. |
| if (isVectorIntrinsicWithOverloadTypeAtArg(IID, -1)) |
| TysForDecl.push_back( |
| FixedVectorType::get(CI->getType(), E->Scalars.size())); |
| for (int j = 0, e = CI->arg_size(); j < e; ++j) { |
| ValueList OpVL; |
| // Some intrinsics have scalar arguments. This argument should not be |
| // vectorized. |
| if (UseIntrinsic && isVectorIntrinsicWithScalarOpAtArg(IID, j)) { |
| CallInst *CEI = cast<CallInst>(VL0); |
| ScalarArg = CEI->getArgOperand(j); |
| OpVecs.push_back(CEI->getArgOperand(j)); |
| if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) |
| TysForDecl.push_back(ScalarArg->getType()); |
| continue; |
| } |
| |
| Value *OpVec = vectorizeOperand(E, j); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); |
| OpVecs.push_back(OpVec); |
| if (isVectorIntrinsicWithOverloadTypeAtArg(IID, j)) |
| TysForDecl.push_back(OpVec->getType()); |
| } |
| |
| Function *CF; |
| if (!UseIntrinsic) { |
| VFShape Shape = |
| VFShape::get(*CI, ElementCount::getFixed(static_cast<unsigned>( |
| VecTy->getNumElements())), |
| false /*HasGlobalPred*/); |
| CF = VFDatabase(*CI).getVectorizedFunction(Shape); |
| } else { |
| CF = Intrinsic::getDeclaration(F->getParent(), ID, TysForDecl); |
| } |
| |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| CI->getOperandBundlesAsDefs(OpBundles); |
| Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); |
| |
| // The scalar argument uses an in-tree scalar so we add the new vectorized |
| // call to ExternalUses list to make sure that an extract will be |
| // generated in the future. |
| if (ScalarArg) { |
| if (TreeEntry *Entry = getTreeEntry(ScalarArg)) { |
| // Find which lane we need to extract. |
| unsigned FoundLane = Entry->findLaneForValue(ScalarArg); |
| ExternalUses.push_back( |
| ExternalUser(ScalarArg, cast<User>(V), FoundLane)); |
| } |
| } |
| |
| propagateIRFlags(V, E->Scalars, VL0); |
| V = FinalShuffle(V, E); |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| return V; |
| } |
| case Instruction::ShuffleVector: { |
| assert(E->isAltShuffle() && |
| ((Instruction::isBinaryOp(E->getOpcode()) && |
| Instruction::isBinaryOp(E->getAltOpcode())) || |
| (Instruction::isCast(E->getOpcode()) && |
| Instruction::isCast(E->getAltOpcode())) || |
| (isa<CmpInst>(VL0) && isa<CmpInst>(E->getAltOp()))) && |
| "Invalid Shuffle Vector Operand"); |
| |
| Value *LHS = nullptr, *RHS = nullptr; |
| if (Instruction::isBinaryOp(E->getOpcode()) || isa<CmpInst>(VL0)) { |
| setInsertPointAfterBundle(E); |
| LHS = vectorizeOperand(E, 0); |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| RHS = vectorizeOperand(E, 1); |
| } else { |
| setInsertPointAfterBundle(E); |
| LHS = vectorizeOperand(E, 0); |
| } |
| if (E->VectorizedValue) { |
| LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n"); |
| return E->VectorizedValue; |
| } |
| |
| Value *V0, *V1; |
| if (Instruction::isBinaryOp(E->getOpcode())) { |
| V0 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS); |
| V1 = Builder.CreateBinOp( |
| static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS); |
| } else if (auto *CI0 = dyn_cast<CmpInst>(VL0)) { |
| V0 = Builder.CreateCmp(CI0->getPredicate(), LHS, RHS); |
| auto *AltCI = cast<CmpInst>(E->getAltOp()); |
| CmpInst::Predicate AltPred = AltCI->getPredicate(); |
| V1 = Builder.CreateCmp(AltPred, LHS, RHS); |
| } else { |
| V0 = Builder.CreateCast( |
| static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy); |
| V1 = Builder.CreateCast( |
| static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy); |
| } |
| // Add V0 and V1 to later analysis to try to find and remove matching |
| // instruction, if any. |
| for (Value *V : {V0, V1}) { |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| } |
| |
| // Create shuffle to take alternate operations from the vector. |
| // Also, gather up main and alt scalar ops to propagate IR flags to |
| // each vector operation. |
| ValueList OpScalars, AltScalars; |
| SmallVector<int> Mask; |
| buildShuffleEntryMask( |
| E->Scalars, E->ReorderIndices, E->ReuseShuffleIndices, |
| [E, this](Instruction *I) { |
| assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode"); |
| return isAlternateInstruction(I, E->getMainOp(), E->getAltOp(), |
| *TLI); |
| }, |
| Mask, &OpScalars, &AltScalars); |
| |
| propagateIRFlags(V0, OpScalars); |
| propagateIRFlags(V1, AltScalars); |
| |
| Value *V = Builder.CreateShuffleVector(V0, V1, Mask); |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| V = propagateMetadata(I, E->Scalars); |
| GatherShuffleExtractSeq.insert(I); |
| CSEBlocks.insert(I->getParent()); |
| } |
| |
| E->VectorizedValue = V; |
| ++NumVectorInstructions; |
| |
| return V; |
| } |
| default: |
| llvm_unreachable("unknown inst"); |
| } |
| return nullptr; |
| } |
| |
| Value *BoUpSLP::vectorizeTree() { |
| ExtraValueToDebugLocsMap ExternallyUsedValues; |
| SmallVector<std::pair<Value *, Value *>> ReplacedExternals; |
| return vectorizeTree(ExternallyUsedValues, ReplacedExternals); |
| } |
| |
| namespace { |
| /// Data type for handling buildvector sequences with the reused scalars from |
| /// other tree entries. |
| struct ShuffledInsertData { |
| /// List of insertelements to be replaced by shuffles. |
| SmallVector<InsertElementInst *> InsertElements; |
| /// The parent vectors and shuffle mask for the given list of inserts. |
| MapVector<Value *, SmallVector<int>> ValueMasks; |
| }; |
| } // namespace |
| |
| Value *BoUpSLP::vectorizeTree( |
| const ExtraValueToDebugLocsMap &ExternallyUsedValues, |
| SmallVectorImpl<std::pair<Value *, Value *>> &ReplacedExternals, |
| Instruction *ReductionRoot) { |
| // All blocks must be scheduled before any instructions are inserted. |
| for (auto &BSIter : BlocksSchedules) { |
| scheduleBlock(BSIter.second.get()); |
| } |
| |
| // Pre-gather last instructions. |
| for (const std::unique_ptr<TreeEntry> &E : VectorizableTree) { |
| if ((E->State == TreeEntry::NeedToGather && |
| (!E->getMainOp() || E->Idx > 0)) || |
| (E->State != TreeEntry::NeedToGather && |
| E->getOpcode() == Instruction::ExtractValue) || |
| E->getOpcode() == Instruction::InsertElement) |
| continue; |
| Instruction *LastInst = &getLastInstructionInBundle(E.get()); |
| EntryToLastInstruction.try_emplace(E.get(), LastInst); |
| } |
| |
| Builder.SetInsertPoint(ReductionRoot ? ReductionRoot |
| : &F->getEntryBlock().front()); |
| auto *VectorRoot = vectorizeTree(VectorizableTree[0].get()); |
| // Run through the list of postponed gathers and emit them, replacing the temp |
| // emitted allocas with actual vector instructions. |
| ArrayRef<const TreeEntry *> PostponedNodes = PostponedGathers.getArrayRef(); |
| DenseMap<Value *, SmallVector<TreeEntry *>> PostponedValues; |
| for (const TreeEntry *E : PostponedNodes) { |
| auto *TE = const_cast<TreeEntry *>(E); |
| if (auto *VecTE = getTreeEntry(TE->Scalars.front())) |
| if (VecTE->isSame(TE->UserTreeIndices.front().UserTE->getOperand( |
| TE->UserTreeIndices.front().EdgeIdx))) |
| // Found gather node which is absolutely the same as one of the |
| // vectorized nodes. It may happen after reordering. |
| continue; |
| auto *PrevVec = cast<Instruction>(TE->VectorizedValue); |
| TE->VectorizedValue = nullptr; |
| auto *UserI = |
| cast<Instruction>(TE->UserTreeIndices.front().UserTE->VectorizedValue); |
| Builder.SetInsertPoint(PrevVec); |
| Builder.SetCurrentDebugLocation(UserI->getDebugLoc()); |
| Value *Vec = vectorizeTree(TE); |
| PrevVec->replaceAllUsesWith(Vec); |
| PostponedValues.try_emplace(Vec).first->second.push_back(TE); |
| // Replace the stub vector node, if it was used before for one of the |
| // buildvector nodes already. |
| auto It = PostponedValues.find(PrevVec); |
| if (It != PostponedValues.end()) { |
| for (TreeEntry *VTE : It->getSecond()) |
| VTE->VectorizedValue = Vec; |
| } |
| eraseInstruction(PrevVec); |
| } |
| |
| // If the vectorized tree can be rewritten in a smaller type, we truncate the |
| // vectorized root. InstCombine will then rewrite the entire expression. We |
| // sign extend the extracted values below. |
| auto *ScalarRoot = VectorizableTree[0]->Scalars[0]; |
| if (MinBWs.count(ScalarRoot)) { |
| if (auto *I = dyn_cast<Instruction>(VectorRoot)) { |
| // If current instr is a phi and not the last phi, insert it after the |
| // last phi node. |
| if (isa<PHINode>(I)) |
| Builder.SetInsertPoint(&*I->getParent()->getFirstInsertionPt()); |
| else |
| Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); |
| } |
| auto BundleWidth = VectorizableTree[0]->Scalars.size(); |
| auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first); |
| auto *VecTy = FixedVectorType::get(MinTy, BundleWidth); |
| auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); |
| VectorizableTree[0]->VectorizedValue = Trunc; |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() |
| << " values .\n"); |
| |
| SmallVector<ShuffledInsertData> ShuffledInserts; |
| // Maps vector instruction to original insertelement instruction |
| DenseMap<Value *, InsertElementInst *> VectorToInsertElement; |
| // Maps extract Scalar to the corresponding extractelement instruction in the |
| // basic block. Only one extractelement per block should be emitted. |
| DenseMap<Value *, DenseMap<BasicBlock *, Instruction *>> ScalarToEEs; |
| // Extract all of the elements with the external uses. |
| for (const auto &ExternalUse : ExternalUses) { |
| Value *Scalar = ExternalUse.Scalar; |
| llvm::User *User = ExternalUse.User; |
| |
| // Skip users that we already RAUW. This happens when one instruction |
| // has multiple uses of the same value. |
| if (User && !is_contained(Scalar->users(), User)) |
| continue; |
| TreeEntry *E = getTreeEntry(Scalar); |
| assert(E && "Invalid scalar"); |
| assert(E->State != TreeEntry::NeedToGather && |
| "Extracting from a gather list"); |
| // Non-instruction pointers are not deleted, just skip them. |
| if (E->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(Scalar)) |
| continue; |
| |
| Value *Vec = E->VectorizedValue; |
| assert(Vec && "Can't find vectorizable value"); |
| |
| Value *Lane = Builder.getInt32(ExternalUse.Lane); |
| auto ExtractAndExtendIfNeeded = [&](Value *Vec) { |
| if (Scalar->getType() != Vec->getType()) { |
| Value *Ex = nullptr; |
| auto It = ScalarToEEs.find(Scalar); |
| if (It != ScalarToEEs.end()) { |
| // No need to emit many extracts, just move the only one in the |
| // current block. |
| auto EEIt = It->second.find(Builder.GetInsertBlock()); |
| if (EEIt != It->second.end()) { |
| Instruction *I = EEIt->second; |
| if (Builder.GetInsertPoint() != Builder.GetInsertBlock()->end() && |
| Builder.GetInsertPoint()->comesBefore(I)) |
| I->moveBefore(&*Builder.GetInsertPoint()); |
| Ex = I; |
| } |
| } |
| if (!Ex) { |
| // "Reuse" the existing extract to improve final codegen. |
| if (auto *ES = dyn_cast<ExtractElementInst>(Scalar)) { |
| Ex = Builder.CreateExtractElement(ES->getOperand(0), |
| ES->getOperand(1)); |
| } else { |
| Ex = Builder.CreateExtractElement(Vec, Lane); |
| } |
| if (auto *I = dyn_cast<Instruction>(Ex)) |
| ScalarToEEs[Scalar].try_emplace(Builder.GetInsertBlock(), I); |
| } |
| // The then branch of the previous if may produce constants, since 0 |
| // operand might be a constant. |
| if (auto *ExI = dyn_cast<Instruction>(Ex)) { |
| GatherShuffleExtractSeq.insert(ExI); |
| CSEBlocks.insert(ExI->getParent()); |
| } |
| // If necessary, sign-extend or zero-extend ScalarRoot |
| // to the larger type. |
| if (!MinBWs.count(ScalarRoot)) |
| return Ex; |
| if (MinBWs[ScalarRoot].second) |
| return Builder.CreateSExt(Ex, Scalar->getType()); |
| return Builder.CreateZExt(Ex, Scalar->getType()); |
| } |
| assert(isa<FixedVectorType>(Scalar->getType()) && |
| isa<InsertElementInst>(Scalar) && |
| "In-tree scalar of vector type is not insertelement?"); |
| auto *IE = cast<InsertElementInst>(Scalar); |
| VectorToInsertElement.try_emplace(Vec, IE); |
| return Vec; |
| }; |
| // If User == nullptr, the Scalar is used as extra arg. Generate |
| // ExtractElement instruction and update the record for this scalar in |
| // ExternallyUsedValues. |
| if (!User) { |
| assert(ExternallyUsedValues.count(Scalar) && |
| "Scalar with nullptr as an external user must be registered in " |
| "ExternallyUsedValues map"); |
| if (auto *VecI = dyn_cast<Instruction>(Vec)) { |
| if (auto *PHI = dyn_cast<PHINode>(VecI)) |
| Builder.SetInsertPoint(PHI->getParent()->getFirstNonPHI()); |
| else |
| Builder.SetInsertPoint(VecI->getParent(), |
| std::next(VecI->getIterator())); |
| } else { |
| Builder.SetInsertPoint(&F->getEntryBlock().front()); |
| } |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| // Required to update internally referenced instructions. |
| Scalar->replaceAllUsesWith(NewInst); |
| ReplacedExternals.emplace_back(Scalar, NewInst); |
| continue; |
| } |
| |
| if (auto *VU = dyn_cast<InsertElementInst>(User)) { |
| // Skip if the scalar is another vector op or Vec is not an instruction. |
| if (!Scalar->getType()->isVectorTy() && isa<Instruction>(Vec)) { |
| if (auto *FTy = dyn_cast<FixedVectorType>(User->getType())) { |
| std::optional<unsigned> InsertIdx = getInsertIndex(VU); |
| if (InsertIdx) { |
| // Need to use original vector, if the root is truncated. |
| if (MinBWs.count(Scalar) && |
| VectorizableTree[0]->VectorizedValue == Vec) |
| Vec = VectorRoot; |
| auto *It = |
| find_if(ShuffledInserts, [VU](const ShuffledInsertData &Data) { |
| // Checks if 2 insertelements are from the same buildvector. |
| InsertElementInst *VecInsert = Data.InsertElements.front(); |
| return areTwoInsertFromSameBuildVector( |
| VU, VecInsert, |
| [](InsertElementInst *II) { return II->getOperand(0); }); |
| }); |
| unsigned Idx = *InsertIdx; |
| if (It == ShuffledInserts.end()) { |
| (void)ShuffledInserts.emplace_back(); |
| It = std::next(ShuffledInserts.begin(), |
| ShuffledInserts.size() - 1); |
| SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| // Find the insertvector, vectorized in tree, if any. |
| Value *Base = VU; |
| while (auto *IEBase = dyn_cast<InsertElementInst>(Base)) { |
| if (IEBase != User && |
| (!IEBase->hasOneUse() || |
| getInsertIndex(IEBase).value_or(Idx) == Idx)) |
| break; |
| // Build the mask for the vectorized insertelement instructions. |
| if (const TreeEntry *E = getTreeEntry(IEBase)) { |
| do { |
| IEBase = cast<InsertElementInst>(Base); |
| int IEIdx = *getInsertIndex(IEBase); |
| assert(Mask[Idx] == PoisonMaskElem && |
| "InsertElementInstruction used already."); |
| Mask[IEIdx] = IEIdx; |
| Base = IEBase->getOperand(0); |
| } while (E == getTreeEntry(Base)); |
| break; |
| } |
| Base = cast<InsertElementInst>(Base)->getOperand(0); |
| // After the vectorization the def-use chain has changed, need |
| // to look through original insertelement instructions, if they |
| // get replaced by vector instructions. |
| auto It = VectorToInsertElement.find(Base); |
| if (It != VectorToInsertElement.end()) |
| Base = It->second; |
| } |
| } |
| SmallVectorImpl<int> &Mask = It->ValueMasks[Vec]; |
| if (Mask.empty()) |
| Mask.assign(FTy->getNumElements(), PoisonMaskElem); |
| Mask[Idx] = ExternalUse.Lane; |
| It->InsertElements.push_back(cast<InsertElementInst>(User)); |
| continue; |
| } |
| } |
| } |
| } |
| |
| // Generate extracts for out-of-tree users. |
| // Find the insertion point for the extractelement lane. |
| if (auto *VecI = dyn_cast<Instruction>(Vec)) { |
| if (PHINode *PH = dyn_cast<PHINode>(User)) { |
| for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { |
| if (PH->getIncomingValue(i) == Scalar) { |
| Instruction *IncomingTerminator = |
| PH->getIncomingBlock(i)->getTerminator(); |
| if (isa<CatchSwitchInst>(IncomingTerminator)) { |
| Builder.SetInsertPoint(VecI->getParent(), |
| std::next(VecI->getIterator())); |
| } else { |
| Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); |
| } |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| PH->setOperand(i, NewInst); |
| } |
| } |
| } else { |
| Builder.SetInsertPoint(cast<Instruction>(User)); |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| User->replaceUsesOfWith(Scalar, NewInst); |
| } |
| } else { |
| Builder.SetInsertPoint(&F->getEntryBlock().front()); |
| Value *NewInst = ExtractAndExtendIfNeeded(Vec); |
| User->replaceUsesOfWith(Scalar, NewInst); |
| } |
| |
| LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); |
| } |
| |
| auto CreateShuffle = [&](Value *V1, Value *V2, ArrayRef<int> Mask) { |
| SmallVector<int> CombinedMask1(Mask.size(), PoisonMaskElem); |
| SmallVector<int> CombinedMask2(Mask.size(), PoisonMaskElem); |
| int VF = cast<FixedVectorType>(V1->getType())->getNumElements(); |
| for (int I = 0, E = Mask.size(); I < E; ++I) { |
| if (Mask[I] < VF) |
| CombinedMask1[I] = Mask[I]; |
| else |
| CombinedMask2[I] = Mask[I] - VF; |
| } |
| ShuffleInstructionBuilder ShuffleBuilder(Builder, *this); |
| ShuffleBuilder.add(V1, CombinedMask1); |
| if (V2) |
| ShuffleBuilder.add(V2, CombinedMask2); |
| return ShuffleBuilder.finalize(std::nullopt); |
| }; |
| |
| auto &&ResizeToVF = [&CreateShuffle](Value *Vec, ArrayRef<int> Mask, |
| bool ForSingleMask) { |
| unsigned VF = Mask.size(); |
| unsigned VecVF = cast<FixedVectorType>(Vec->getType())->getNumElements(); |
| if (VF != VecVF) { |
| if (any_of(Mask, [VF](int Idx) { return Idx >= static_cast<int>(VF); })) { |
| Vec = CreateShuffle(Vec, nullptr, Mask); |
| return std::make_pair(Vec, true); |
| } |
| if (!ForSingleMask) { |
| SmallVector<int> ResizeMask(VF, PoisonMaskElem); |
| for (unsigned I = 0; I < VF; ++I) { |
| if (Mask[I] != PoisonMaskElem) |
| ResizeMask[Mask[I]] = Mask[I]; |
| } |
| Vec = CreateShuffle(Vec, nullptr, ResizeMask); |
| } |
| } |
| |
| return std::make_pair(Vec, false); |
| }; |
| // Perform shuffling of the vectorize tree entries for better handling of |
| // external extracts. |
| for (int I = 0, E = ShuffledInserts.size(); I < E; ++I) { |
| // Find the first and the last instruction in the list of insertelements. |
| sort(ShuffledInserts[I].InsertElements, isFirstInsertElement); |
| InsertElementInst *FirstInsert = ShuffledInserts[I].InsertElements.front(); |
| InsertElementInst *LastInsert = ShuffledInserts[I].InsertElements.back(); |
| Builder.SetInsertPoint(LastInsert); |
| auto Vector = ShuffledInserts[I].ValueMasks.takeVector(); |
| Value *NewInst = performExtractsShuffleAction<Value>( |
| MutableArrayRef(Vector.data(), Vector.size()), |
| FirstInsert->getOperand(0), |
| [](Value *Vec) { |
| return cast<VectorType>(Vec->getType()) |
| ->getElementCount() |
| .getKnownMinValue(); |
| }, |
| ResizeToVF, |
| [FirstInsert, &CreateShuffle](ArrayRef<int> Mask, |
| ArrayRef<Value *> Vals) { |
| assert((Vals.size() == 1 || Vals.size() == 2) && |
| "Expected exactly 1 or 2 input values."); |
| if (Vals.size() == 1) { |
| // Do not create shuffle if the mask is a simple identity |
| // non-resizing mask. |
| if (Mask.size() != cast<FixedVectorType>(Vals.front()->getType()) |
| ->getNumElements() || |
| !ShuffleVectorInst::isIdentityMask(Mask)) |
| return CreateShuffle(Vals.front(), nullptr, Mask); |
| return Vals.front(); |
| } |
| return CreateShuffle(Vals.front() ? Vals.front() |
| : FirstInsert->getOperand(0), |
| Vals.back(), Mask); |
| }); |
| auto It = ShuffledInserts[I].InsertElements.rbegin(); |
| // Rebuild buildvector chain. |
| InsertElementInst *II = nullptr; |
| if (It != ShuffledInserts[I].InsertElements.rend()) |
| II = *It; |
| SmallVector<Instruction *> Inserts; |
| while (It != ShuffledInserts[I].InsertElements.rend()) { |
| assert(II && "Must be an insertelement instruction."); |
| if (*It == II) |
| ++It; |
| else |
| Inserts.push_back(cast<Instruction>(II)); |
| II = dyn_cast<InsertElementInst>(II->getOperand(0)); |
| } |
| for (Instruction *II : reverse(Inserts)) { |
| II->replaceUsesOfWith(II->getOperand(0), NewInst); |
| if (auto *NewI = dyn_cast<Instruction>(NewInst)) |
| if (II->getParent() == NewI->getParent() && II->comesBefore(NewI)) |
| II->moveAfter(NewI); |
| NewInst = II; |
| } |
| LastInsert->replaceAllUsesWith(NewInst); |
| for (InsertElementInst *IE : reverse(ShuffledInserts[I].InsertElements)) { |
| IE->replaceUsesOfWith(IE->getOperand(0), |
| PoisonValue::get(IE->getOperand(0)->getType())); |
| IE->replaceUsesOfWith(IE->getOperand(1), |
| PoisonValue::get(IE->getOperand(1)->getType())); |
| eraseInstruction(IE); |
| } |
| CSEBlocks.insert(LastInsert->getParent()); |
| } |
| |
| SmallVector<Instruction *> RemovedInsts; |
| // For each vectorized value: |
| for (auto &TEPtr : VectorizableTree) { |
| TreeEntry *Entry = TEPtr.get(); |
| |
| // No need to handle users of gathered values. |
| if (Entry->State == TreeEntry::NeedToGather) |
| continue; |
| |
| assert(Entry->VectorizedValue && "Can't find vectorizable value"); |
| |
| // For each lane: |
| for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { |
| Value *Scalar = Entry->Scalars[Lane]; |
| |
| if (Entry->getOpcode() == Instruction::GetElementPtr && |
| !isa<GetElementPtrInst>(Scalar)) |
| continue; |
| #ifndef NDEBUG |
| Type *Ty = Scalar->getType(); |
| if (!Ty->isVoidTy()) { |
| for (User *U : Scalar->users()) { |
| LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); |
| |
| // It is legal to delete users in the ignorelist. |
| assert((getTreeEntry(U) || |
| (UserIgnoreList && UserIgnoreList->contains(U)) || |
| (isa_and_nonnull<Instruction>(U) && |
| isDeleted(cast<Instruction>(U)))) && |
| "Deleting out-of-tree value"); |
| } |
| } |
| #endif |
| LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); |
| eraseInstruction(cast<Instruction>(Scalar)); |
| // Retain to-be-deleted instructions for some debug-info |
| // bookkeeping. NOTE: eraseInstruction only marks the instruction for |
| // deletion - instructions are not deleted until later. |
| RemovedInsts.push_back(cast<Instruction>(Scalar)); |
| } |
| } |
| |
| // Merge the DIAssignIDs from the about-to-be-deleted instructions into the |
| // new vector instruction. |
| if (auto *V = dyn_cast<Instruction>(VectorizableTree[0]->VectorizedValue)) |
| V->mergeDIAssignID(RemovedInsts); |
| |
| Builder.ClearInsertionPoint(); |
| InstrElementSize.clear(); |
| |
| return VectorizableTree[0]->VectorizedValue; |
| } |
| |
| void BoUpSLP::optimizeGatherSequence() { |
| LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherShuffleExtractSeq.size() |
| << " gather sequences instructions.\n"); |
| // LICM InsertElementInst sequences. |
| for (Instruction *I : GatherShuffleExtractSeq) { |
| if (isDeleted(I)) |
| continue; |
| |
| // Check if this block is inside a loop. |
| Loop *L = LI->getLoopFor(I->getParent()); |
| if (!L) |
| continue; |
| |
| // Check if it has a preheader. |
| BasicBlock *PreHeader = L->getLoopPreheader(); |
| if (!PreHeader) |
| continue; |
| |
| // If the vector or the element that we insert into it are |
| // instructions that are defined in this basic block then we can't |
| // hoist this instruction. |
| if (any_of(I->operands(), [L](Value *V) { |
| auto *OpI = dyn_cast<Instruction>(V); |
| return OpI && L->contains(OpI); |
| })) |
| continue; |
| |
| // We can hoist this instruction. Move it to the pre-header. |
| I->moveBefore(PreHeader->getTerminator()); |
| CSEBlocks.insert(PreHeader); |
| } |
| |
| // Make a list of all reachable blocks in our CSE queue. |
| SmallVector<const DomTreeNode *, 8> CSEWorkList; |
| CSEWorkList.reserve(CSEBlocks.size()); |
| for (BasicBlock *BB : CSEBlocks) |
| if (DomTreeNode *N = DT->getNode(BB)) { |
| assert(DT->isReachableFromEntry(N)); |
| CSEWorkList.push_back(N); |
| } |
| |
| // Sort blocks by domination. This ensures we visit a block after all blocks |
| // dominating it are visited. |
| llvm::sort(CSEWorkList, [](const DomTreeNode *A, const DomTreeNode *B) { |
| assert((A == B) == (A->getDFSNumIn() == B->getDFSNumIn()) && |
| "Different nodes should have different DFS numbers"); |
| return A->getDFSNumIn() < B->getDFSNumIn(); |
| }); |
| |
| // Less defined shuffles can be replaced by the more defined copies. |
| // Between two shuffles one is less defined if it has the same vector operands |
| // and its mask indeces are the same as in the first one or undefs. E.g. |
| // shuffle %0, poison, <0, 0, 0, undef> is less defined than shuffle %0, |
| // poison, <0, 0, 0, 0>. |
| auto &&IsIdenticalOrLessDefined = [this](Instruction *I1, Instruction *I2, |
| SmallVectorImpl<int> &NewMask) { |
| if (I1->getType() != I2->getType()) |
| return false; |
| auto *SI1 = dyn_cast<ShuffleVectorInst>(I1); |
| auto *SI2 = dyn_cast<ShuffleVectorInst>(I2); |
| if (!SI1 || !SI2) |
| return I1->isIdenticalTo(I2); |
| if (SI1->isIdenticalTo(SI2)) |
| return true; |
| for (int I = 0, E = SI1->getNumOperands(); I < E; ++I) |
| if (SI1->getOperand(I) != SI2->getOperand(I)) |
| return false; |
| // Check if the second instruction is more defined than the first one. |
| NewMask.assign(SI2->getShuffleMask().begin(), SI2->getShuffleMask().end()); |
| ArrayRef<int> SM1 = SI1->getShuffleMask(); |
| // Count trailing undefs in the mask to check the final number of used |
| // registers. |
| unsigned LastUndefsCnt = 0; |
| for (int I = 0, E = NewMask.size(); I < E; ++I) { |
| if (SM1[I] == PoisonMaskElem) |
| ++LastUndefsCnt; |
| else |
| LastUndefsCnt = 0; |
| if (NewMask[I] != PoisonMaskElem && SM1[I] != PoisonMaskElem && |
| NewMask[I] != SM1[I]) |
| return false; |
| if (NewMask[I] == PoisonMaskElem) |
| NewMask[I] = SM1[I]; |
| } |
| // Check if the last undefs actually change the final number of used vector |
| // registers. |
| return SM1.size() - LastUndefsCnt > 1 && |
| TTI->getNumberOfParts(SI1->getType()) == |
| TTI->getNumberOfParts( |
| FixedVectorType::get(SI1->getType()->getElementType(), |
| SM1.size() - LastUndefsCnt)); |
| }; |
| // Perform O(N^2) search over the gather/shuffle sequences and merge identical |
| // instructions. TODO: We can further optimize this scan if we split the |
| // instructions into different buckets based on the insert lane. |
| SmallVector<Instruction *, 16> Visited; |
| for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { |
| assert(*I && |
| (I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && |
| "Worklist not sorted properly!"); |
| BasicBlock *BB = (*I)->getBlock(); |
| // For all instructions in blocks containing gather sequences: |
| for (Instruction &In : llvm::make_early_inc_range(*BB)) { |
| if (isDeleted(&In)) |
| continue; |
| if (!isa<InsertElementInst, ExtractElementInst, ShuffleVectorInst>(&In) && |
| !GatherShuffleExtractSeq.contains(&In)) |
| continue; |
| |
| // Check if we can replace this instruction with any of the |
| // visited instructions. |
| bool Replaced = false; |
| for (Instruction *&V : Visited) { |
| SmallVector<int> NewMask; |
| if (IsIdenticalOrLessDefined(&In, V, NewMask) && |
| DT->dominates(V->getParent(), In.getParent())) { |
| In.replaceAllUsesWith(V); |
| eraseInstruction(&In); |
| if (auto *SI = dyn_cast<ShuffleVectorInst>(V)) |
| if (!NewMask.empty()) |
| SI->setShuffleMask(NewMask); |
| Replaced = true; |
| break; |
| } |
| if (isa<ShuffleVectorInst>(In) && isa<ShuffleVectorInst>(V) && |
| GatherShuffleExtractSeq.contains(V) && |
| IsIdenticalOrLessDefined(V, &In, NewMask) && |
| DT->dominates(In.getParent(), V->getParent())) { |
| In.moveAfter(V); |
| V->replaceAllUsesWith(&In); |
| eraseInstruction(V); |
| if (auto *SI = dyn_cast<ShuffleVectorInst>(&In)) |
| if (!NewMask.empty()) |
| SI->setShuffleMask(NewMask); |
| V = &In; |
| Replaced = true; |
| break; |
| } |
| } |
| if (!Replaced) { |
| assert(!is_contained(Visited, &In)); |
| Visited.push_back(&In); |
| } |
| } |
| } |
| CSEBlocks.clear(); |
| GatherShuffleExtractSeq.clear(); |
| } |
| |
| BoUpSLP::ScheduleData * |
| BoUpSLP::BlockScheduling::buildBundle(ArrayRef<Value *> VL) { |
| ScheduleData *Bundle = nullptr; |
| ScheduleData *PrevInBundle = nullptr; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| ScheduleData *BundleMember = getScheduleData(V); |
| assert(BundleMember && |
| "no ScheduleData for bundle member " |
| "(maybe not in same basic block)"); |
| assert(BundleMember->isSchedulingEntity() && |
| "bundle member already part of other bundle"); |
| if (PrevInBundle) { |
| PrevInBundle->NextInBundle = BundleMember; |
| } else { |
| Bundle = BundleMember; |
| } |
| |
| // Group the instructions to a bundle. |
| BundleMember->FirstInBundle = Bundle; |
| PrevInBundle = BundleMember; |
| } |
| assert(Bundle && "Failed to find schedule bundle"); |
| return Bundle; |
| } |
| |
| // Groups the instructions to a bundle (which is then a single scheduling entity) |
| // and schedules instructions until the bundle gets ready. |
| std::optional<BoUpSLP::ScheduleData *> |
| BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, |
| const InstructionsState &S) { |
| // No need to schedule PHIs, insertelement, extractelement and extractvalue |
| // instructions. |
| if (isa<PHINode>(S.OpValue) || isVectorLikeInstWithConstOps(S.OpValue) || |
| doesNotNeedToSchedule(VL)) |
| return nullptr; |
| |
| // Initialize the instruction bundle. |
| Instruction *OldScheduleEnd = ScheduleEnd; |
| LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n"); |
| |
| auto TryScheduleBundleImpl = [this, OldScheduleEnd, SLP](bool ReSchedule, |
| ScheduleData *Bundle) { |
| // The scheduling region got new instructions at the lower end (or it is a |
| // new region for the first bundle). This makes it necessary to |
| // recalculate all dependencies. |
| // It is seldom that this needs to be done a second time after adding the |
| // initial bundle to the region. |
| if (ScheduleEnd != OldScheduleEnd) { |
| for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) |
| doForAllOpcodes(I, [](ScheduleData *SD) { SD->clearDependencies(); }); |
| ReSchedule = true; |
| } |
| if (Bundle) { |
| LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle |
| << " in block " << BB->getName() << "\n"); |
| calculateDependencies(Bundle, /*InsertInReadyList=*/true, SLP); |
| } |
| |
| if (ReSchedule) { |
| resetSchedule(); |
| initialFillReadyList(ReadyInsts); |
| } |
| |
| // Now try to schedule the new bundle or (if no bundle) just calculate |
| // dependencies. As soon as the bundle is "ready" it means that there are no |
| // cyclic dependencies and we can schedule it. Note that's important that we |
| // don't "schedule" the bundle yet (see cancelScheduling). |
| while (((!Bundle && ReSchedule) || (Bundle && !Bundle->isReady())) && |
| !ReadyInsts.empty()) { |
| ScheduleData *Picked = ReadyInsts.pop_back_val(); |
| assert(Picked->isSchedulingEntity() && Picked->isReady() && |
| "must be ready to schedule"); |
| schedule(Picked, ReadyInsts); |
| } |
| }; |
| |
| // Make sure that the scheduling region contains all |
| // instructions of the bundle. |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| if (!extendSchedulingRegion(V, S)) { |
| // If the scheduling region got new instructions at the lower end (or it |
| // is a new region for the first bundle). This makes it necessary to |
| // recalculate all dependencies. |
| // Otherwise the compiler may crash trying to incorrectly calculate |
| // dependencies and emit instruction in the wrong order at the actual |
| // scheduling. |
| TryScheduleBundleImpl(/*ReSchedule=*/false, nullptr); |
| return std::nullopt; |
| } |
| } |
| |
| bool ReSchedule = false; |
| for (Value *V : VL) { |
| if (doesNotNeedToBeScheduled(V)) |
| continue; |
| ScheduleData *BundleMember = getScheduleData(V); |
| assert(BundleMember && |
| "no ScheduleData for bundle member (maybe not in same basic block)"); |
| |
| // Make sure we don't leave the pieces of the bundle in the ready list when |
| // whole bundle might not be ready. |
| ReadyInsts.remove(BundleMember); |
| |
| if (!BundleMember->IsScheduled) |
| continue; |
| // A bundle member was scheduled as single instruction before and now |
| // needs to be scheduled as part of the bundle. We just get rid of the |
| // existing schedule. |
| LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember |
| << " was already scheduled\n"); |
| ReSchedule = true; |
| } |
| |
| auto *Bundle = buildBundle(VL); |
| TryScheduleBundleImpl(ReSchedule, Bundle); |
| if (!Bundle->isReady()) { |
| cancelScheduling(VL, S.OpValue); |
| return std::nullopt; |
| } |
| return Bundle; |
| } |
| |
| void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL, |
| Value *OpValue) { |
| if (isa<PHINode>(OpValue) || isVectorLikeInstWithConstOps(OpValue) || |
| doesNotNeedToSchedule(VL)) |
| return; |
| |
| if (doesNotNeedToBeScheduled(OpValue)) |
| OpValue = *find_if_not(VL, doesNotNeedToBeScheduled); |
| ScheduleData *Bundle = getScheduleData(OpValue); |
| LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); |
| assert(!Bundle->IsScheduled && |
| "Can't cancel bundle which is already scheduled"); |
| assert(Bundle->isSchedulingEntity() && |
| (Bundle->isPartOfBundle() || needToScheduleSingleInstruction(VL)) && |
| "tried to unbundle something which is not a bundle"); |
| |
| // Remove the bundle from the ready list. |
| if (Bundle->isReady()) |
| ReadyInsts.remove(Bundle); |
| |
| // Un-bundle: make single instructions out of the bundle. |
| ScheduleData *BundleMember = Bundle; |
| while (BundleMember) { |
| assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); |
| BundleMember->FirstInBundle = BundleMember; |
| ScheduleData *Next = BundleMember->NextInBundle; |
| BundleMember->NextInBundle = nullptr; |
| BundleMember->TE = nullptr; |
| if (BundleMember->unscheduledDepsInBundle() == 0) { |
| ReadyInsts.insert(BundleMember); |
| } |
| BundleMember = Next; |
| } |
| } |
| |
| BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() { |
| // Allocate a new ScheduleData for the instruction. |
| if (ChunkPos >= ChunkSize) { |
| ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize)); |
| ChunkPos = 0; |
| } |
| return &(ScheduleDataChunks.back()[ChunkPos++]); |
| } |
| |
| bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V, |
| const InstructionsState &S) { |
| if (getScheduleData(V, isOneOf(S, V))) |
| return true; |
| Instruction *I = dyn_cast<Instruction>(V); |
| assert(I && "bundle member must be an instruction"); |
| assert(!isa<PHINode>(I) && !isVectorLikeInstWithConstOps(I) && |
| !doesNotNeedToBeScheduled(I) && |
| "phi nodes/insertelements/extractelements/extractvalues don't need to " |
| "be scheduled"); |
| auto &&CheckScheduleForI = [this, &S](Instruction *I) -> bool { |
| ScheduleData *ISD = getScheduleData(I); |
| if (!ISD) |
| return false; |
| assert(isInSchedulingRegion(ISD) && |
| "ScheduleData not in scheduling region"); |
| ScheduleData *SD = allocateScheduleDataChunks(); |
| SD->Inst = I; |
| SD->init(SchedulingRegionID, S.OpValue); |
| ExtraScheduleDataMap[I][S.OpValue] = SD; |
| return true; |
| }; |
| if (CheckScheduleForI(I)) |
| return true; |
| if (!ScheduleStart) { |
| // It's the first instruction in the new region. |
| initScheduleData(I, I->getNextNode(), nullptr, nullptr); |
| ScheduleStart = I; |
| ScheduleEnd = I->getNextNode(); |
| if (isOneOf(S, I) != I) |
| CheckScheduleForI(I); |
| assert(ScheduleEnd && "tried to vectorize a terminator?"); |
| LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); |
| return true; |
| } |
| // Search up and down at the same time, because we don't know if the new |
| // instruction is above or below the existing scheduling region. |
| BasicBlock::reverse_iterator UpIter = |
| ++ScheduleStart->getIterator().getReverse(); |
| BasicBlock::reverse_iterator UpperEnd = BB->rend(); |
| BasicBlock::iterator DownIter = ScheduleEnd->getIterator(); |
| BasicBlock::iterator LowerEnd = BB->end(); |
| while (UpIter != UpperEnd && DownIter != LowerEnd && &*UpIter != I && |
| &*DownIter != I) { |
| if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { |
| LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); |
| return false; |
| } |
| |
| ++UpIter; |
| ++DownIter; |
| } |
| if (DownIter == LowerEnd || (UpIter != UpperEnd && &*UpIter == I)) { |
| assert(I->getParent() == ScheduleStart->getParent() && |
| "Instruction is in wrong basic block."); |
| initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); |
| ScheduleStart = I; |
| if (isOneOf(S, I) != I) |
| CheckScheduleForI(I); |
| LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I |
| << "\n"); |
| return true; |
| } |
| assert((UpIter == UpperEnd || (DownIter != LowerEnd && &*DownIter == I)) && |
| "Expected to reach top of the basic block or instruction down the " |
| "lower end."); |
| assert(I->getParent() == ScheduleEnd->getParent() && |
| "Instruction is in wrong basic block."); |
| initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, |
| nullptr); |
| ScheduleEnd = I->getNextNode(); |
| if (isOneOf(S, I) != I) |
| CheckScheduleForI(I); |
| assert(ScheduleEnd && "tried to vectorize a terminator?"); |
| LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); |
| return true; |
| } |
| |
| void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, |
| Instruction *ToI, |
| ScheduleData *PrevLoadStore, |
| ScheduleData *NextLoadStore) { |
| ScheduleData *CurrentLoadStore = PrevLoadStore; |
| for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { |
| // No need to allocate data for non-schedulable instructions. |
| if (doesNotNeedToBeScheduled(I)) |
| continue; |
| ScheduleData *SD = ScheduleDataMap.lookup(I); |
| if (!SD) { |
| SD = allocateScheduleDataChunks(); |
| ScheduleDataMap[I] = SD; |
| SD->Inst = I; |
| } |
| assert(!isInSchedulingRegion(SD) && |
| "new ScheduleData already in scheduling region"); |
| SD->init(SchedulingRegionID, I); |
| |
| if (I->mayReadOrWriteMemory() && |
| (!isa<IntrinsicInst>(I) || |
| (cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect && |
| cast<IntrinsicInst>(I)->getIntrinsicID() != |
| Intrinsic::pseudoprobe))) { |
| // Update the linked list of memory accessing instructions. |
| if (CurrentLoadStore) { |
| CurrentLoadStore->NextLoadStore = SD; |
| } else { |
| FirstLoadStoreInRegion = SD; |
| } |
| CurrentLoadStore = SD; |
| } |
| |
| if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| RegionHasStackSave = true; |
| } |
| if (NextLoadStore) { |
| if (CurrentLoadStore) |
| CurrentLoadStore->NextLoadStore = NextLoadStore; |
| } else { |
| LastLoadStoreInRegion = CurrentLoadStore; |
| } |
| } |
| |
| void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, |
| bool InsertInReadyList, |
| BoUpSLP *SLP) { |
| assert(SD->isSchedulingEntity()); |
| |
| SmallVector<ScheduleData *, 10> WorkList; |
| WorkList.push_back(SD); |
| |
| while (!WorkList.empty()) { |
| ScheduleData *SD = WorkList.pop_back_val(); |
| for (ScheduleData *BundleMember = SD; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| assert(isInSchedulingRegion(BundleMember)); |
| if (BundleMember->hasValidDependencies()) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember |
| << "\n"); |
| BundleMember->Dependencies = 0; |
| BundleMember->resetUnscheduledDeps(); |
| |
| // Handle def-use chain dependencies. |
| if (BundleMember->OpValue != BundleMember->Inst) { |
| if (ScheduleData *UseSD = getScheduleData(BundleMember->Inst)) { |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = UseSD->FirstInBundle; |
| if (!DestBundle->IsScheduled) |
| BundleMember->incrementUnscheduledDeps(1); |
| if (!DestBundle->hasValidDependencies()) |
| WorkList.push_back(DestBundle); |
| } |
| } else { |
| for (User *U : BundleMember->Inst->users()) { |
| if (ScheduleData *UseSD = getScheduleData(cast<Instruction>(U))) { |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = UseSD->FirstInBundle; |
| if (!DestBundle->IsScheduled) |
| BundleMember->incrementUnscheduledDeps(1); |
| if (!DestBundle->hasValidDependencies()) |
| WorkList.push_back(DestBundle); |
| } |
| } |
| } |
| |
| auto makeControlDependent = [&](Instruction *I) { |
| auto *DepDest = getScheduleData(I); |
| assert(DepDest && "must be in schedule window"); |
| DepDest->ControlDependencies.push_back(BundleMember); |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = DepDest->FirstInBundle; |
| if (!DestBundle->IsScheduled) |
| BundleMember->incrementUnscheduledDeps(1); |
| if (!DestBundle->hasValidDependencies()) |
| WorkList.push_back(DestBundle); |
| }; |
| |
| // Any instruction which isn't safe to speculate at the beginning of the |
| // block is control dependend on any early exit or non-willreturn call |
| // which proceeds it. |
| if (!isGuaranteedToTransferExecutionToSuccessor(BundleMember->Inst)) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (isSafeToSpeculativelyExecute(I, &*BB->begin(), SLP->AC)) |
| continue; |
| |
| // Add the dependency |
| makeControlDependent(I); |
| |
| if (!isGuaranteedToTransferExecutionToSuccessor(I)) |
| // Everything past here must be control dependent on I. |
| break; |
| } |
| } |
| |
| if (RegionHasStackSave) { |
| // If we have an inalloc alloca instruction, it needs to be scheduled |
| // after any preceeding stacksave. We also need to prevent any alloca |
| // from reordering above a preceeding stackrestore. |
| if (match(BundleMember->Inst, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(BundleMember->Inst, m_Intrinsic<Intrinsic::stackrestore>())) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (match(I, m_Intrinsic<Intrinsic::stacksave>()) || |
| match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| // Any allocas past here must be control dependent on I, and I |
| // must be memory dependend on BundleMember->Inst. |
| break; |
| |
| if (!isa<AllocaInst>(I)) |
| continue; |
| |
| // Add the dependency |
| makeControlDependent(I); |
| } |
| } |
| |
| // In addition to the cases handle just above, we need to prevent |
| // allocas and loads/stores from moving below a stacksave or a |
| // stackrestore. Avoiding moving allocas below stackrestore is currently |
| // thought to be conservatism. Moving loads/stores below a stackrestore |
| // can lead to incorrect code. |
| if (isa<AllocaInst>(BundleMember->Inst) || |
| BundleMember->Inst->mayReadOrWriteMemory()) { |
| for (Instruction *I = BundleMember->Inst->getNextNode(); |
| I != ScheduleEnd; I = I->getNextNode()) { |
| if (!match(I, m_Intrinsic<Intrinsic::stacksave>()) && |
| !match(I, m_Intrinsic<Intrinsic::stackrestore>())) |
| continue; |
| |
| // Add the dependency |
| makeControlDependent(I); |
| break; |
| } |
| } |
| } |
| |
| // Handle the memory dependencies (if any). |
| ScheduleData *DepDest = BundleMember->NextLoadStore; |
| if (!DepDest) |
| continue; |
| Instruction *SrcInst = BundleMember->Inst; |
| assert(SrcInst->mayReadOrWriteMemory() && |
| "NextLoadStore list for non memory effecting bundle?"); |
| MemoryLocation SrcLoc = getLocation(SrcInst); |
| bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); |
| unsigned numAliased = 0; |
| unsigned DistToSrc = 1; |
| |
| for ( ; DepDest; DepDest = DepDest->NextLoadStore) { |
| assert(isInSchedulingRegion(DepDest)); |
| |
| // We have two limits to reduce the complexity: |
| // 1) AliasedCheckLimit: It's a small limit to reduce calls to |
| // SLP->isAliased (which is the expensive part in this loop). |
| // 2) MaxMemDepDistance: It's for very large blocks and it aborts |
| // the whole loop (even if the loop is fast, it's quadratic). |
| // It's important for the loop break condition (see below) to |
| // check this limit even between two read-only instructions. |
| if (DistToSrc >= MaxMemDepDistance || |
| ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && |
| (numAliased >= AliasedCheckLimit || |
| SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { |
| |
| // We increment the counter only if the locations are aliased |
| // (instead of counting all alias checks). This gives a better |
| // balance between reduced runtime and accurate dependencies. |
| numAliased++; |
| |
| DepDest->MemoryDependencies.push_back(BundleMember); |
| BundleMember->Dependencies++; |
| ScheduleData *DestBundle = DepDest->FirstInBundle; |
| if (!DestBundle->IsScheduled) { |
| BundleMember->incrementUnscheduledDeps(1); |
| } |
| if (!DestBundle->hasValidDependencies()) { |
| WorkList.push_back(DestBundle); |
| } |
| } |
| |
| // Example, explaining the loop break condition: Let's assume our |
| // starting instruction is i0 and MaxMemDepDistance = 3. |
| // |
| // +--------v--v--v |
| // i0,i1,i2,i3,i4,i5,i6,i7,i8 |
| // +--------^--^--^ |
| // |
| // MaxMemDepDistance let us stop alias-checking at i3 and we add |
| // dependencies from i0 to i3,i4,.. (even if they are not aliased). |
| // Previously we already added dependencies from i3 to i6,i7,i8 |
| // (because of MaxMemDepDistance). As we added a dependency from |
| // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 |
| // and we can abort this loop at i6. |
| if (DistToSrc >= 2 * MaxMemDepDistance) |
| break; |
| DistToSrc++; |
| } |
| } |
| if (InsertInReadyList && SD->isReady()) { |
| ReadyInsts.insert(SD); |
| LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst |
| << "\n"); |
| } |
| } |
| } |
| |
| void BoUpSLP::BlockScheduling::resetSchedule() { |
| assert(ScheduleStart && |
| "tried to reset schedule on block which has not been scheduled"); |
| for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { |
| doForAllOpcodes(I, [&](ScheduleData *SD) { |
| assert(isInSchedulingRegion(SD) && |
| "ScheduleData not in scheduling region"); |
| SD->IsScheduled = false; |
| SD->resetUnscheduledDeps(); |
| }); |
| } |
| ReadyInsts.clear(); |
| } |
| |
| void BoUpSLP::scheduleBlock(BlockScheduling *BS) { |
| if (!BS->ScheduleStart) |
| return; |
| |
| LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); |
| |
| // A key point - if we got here, pre-scheduling was able to find a valid |
| // scheduling of the sub-graph of the scheduling window which consists |
| // of all vector bundles and their transitive users. As such, we do not |
| // need to reschedule anything *outside of* that subgraph. |
| |
| BS->resetSchedule(); |
| |
| // For the real scheduling we use a more sophisticated ready-list: it is |
| // sorted by the original instruction location. This lets the final schedule |
| // be as close as possible to the original instruction order. |
| // WARNING: If changing this order causes a correctness issue, that means |
| // there is some missing dependence edge in the schedule data graph. |
| struct ScheduleDataCompare { |
| bool operator()(ScheduleData *SD1, ScheduleData *SD2) const { |
| return SD2->SchedulingPriority < SD1->SchedulingPriority; |
| } |
| }; |
| std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; |
| |
| // Ensure that all dependency data is updated (for nodes in the sub-graph) |
| // and fill the ready-list with initial instructions. |
| int Idx = 0; |
| for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; |
| I = I->getNextNode()) { |
| BS->doForAllOpcodes(I, [this, &Idx, BS](ScheduleData *SD) { |
| TreeEntry *SDTE = getTreeEntry(SD->Inst); |
| (void)SDTE; |
| assert((isVectorLikeInstWithConstOps(SD->Inst) || |
| SD->isPartOfBundle() == |
| (SDTE && !doesNotNeedToSchedule(SDTE->Scalars))) && |
| "scheduler and vectorizer bundle mismatch"); |
| SD->FirstInBundle->SchedulingPriority = Idx++; |
| |
| if (SD->isSchedulingEntity() && SD->isPartOfBundle()) |
| BS->calculateDependencies(SD, false, this); |
| }); |
| } |
| BS->initialFillReadyList(ReadyInsts); |
| |
| Instruction *LastScheduledInst = BS->ScheduleEnd; |
| |
| // Do the "real" scheduling. |
| while (!ReadyInsts.empty()) { |
| ScheduleData *picked = *ReadyInsts.begin(); |
| ReadyInsts.erase(ReadyInsts.begin()); |
| |
| // Move the scheduled instruction(s) to their dedicated places, if not |
| // there yet. |
| for (ScheduleData *BundleMember = picked; BundleMember; |
| BundleMember = BundleMember->NextInBundle) { |
| Instruction *pickedInst = BundleMember->Inst; |
| if (pickedInst->getNextNode() != LastScheduledInst) |
| pickedInst->moveBefore(LastScheduledInst); |
| LastScheduledInst = pickedInst; |
| } |
| |
| BS->schedule(picked, ReadyInsts); |
| } |
| |
| // Check that we didn't break any of our invariants. |
| #ifdef EXPENSIVE_CHECKS |
| BS->verify(); |
| #endif |
| |
| #if !defined(NDEBUG) || defined(EXPENSIVE_CHECKS) |
| // Check that all schedulable entities got scheduled |
| for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { |
| BS->doForAllOpcodes(I, [&](ScheduleData *SD) { |
| if (SD->isSchedulingEntity() && SD->hasValidDependencies()) { |
| assert(SD->IsScheduled && "must be scheduled at this point"); |
| } |
| }); |
| } |
| #endif |
| |
| // Avoid duplicate scheduling of the block. |
| BS->ScheduleStart = nullptr; |
| } |
| |
| unsigned BoUpSLP::getVectorElementSize(Value *V) { |
| // If V is a store, just return the width of the stored value (or value |
| // truncated just before storing) without traversing the expression tree. |
| // This is the common case. |
| if (auto *Store = dyn_cast<StoreInst>(V)) |
| return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); |
| |
| if (auto *IEI = dyn_cast<InsertElementInst>(V)) |
| return getVectorElementSize(IEI->getOperand(1)); |
| |
| auto E = InstrElementSize.find(V); |
| if (E != InstrElementSize.end()) |
| return E->second; |
| |
| // If V is not a store, we can traverse the expression tree to find loads |
| // that feed it. The type of the loaded value may indicate a more suitable |
| // width than V's type. We want to base the vector element size on the width |
| // of memory operations where possible. |
| SmallVector<std::pair<Instruction *, BasicBlock *>, 16> Worklist; |
| SmallPtrSet<Instruction *, 16> Visited; |
| if (auto *I = dyn_cast<Instruction>(V)) { |
| Worklist.emplace_back(I, I->getParent()); |
| Visited.insert(I); |
| } |
| |
| // Traverse the expression tree in bottom-up order looking for loads. If we |
| // encounter an instruction we don't yet handle, we give up. |
| auto Width = 0u; |
| while (!Worklist.empty()) { |
| Instruction *I; |
| BasicBlock *Parent; |
| std::tie(I, Parent) = Worklist.pop_back_val(); |
| |
| // We should only be looking at scalar instructions here. If the current |
| // instruction has a vector type, skip. |
| auto *Ty = I->getType(); |
| if (isa<VectorType>(Ty)) |
| continue; |
| |
| // If the current instruction is a load, update MaxWidth to reflect the |
| // width of the loaded value. |
| if (isa<LoadInst, ExtractElementInst, ExtractValueInst>(I)) |
| Width = std::max<unsigned>(Width, DL->getTypeSizeInBits(Ty)); |
| |
| // Otherwise, we need to visit the operands of the instruction. We only |
| // handle the interesting cases from buildTree here. If an operand is an |
| // instruction we haven't yet visited and from the same basic block as the |
| // user or the use is a PHI node, we add it to the worklist. |
| else if (isa<PHINode, CastInst, GetElementPtrInst, CmpInst, SelectInst, |
| BinaryOperator, UnaryOperator>(I)) { |
| for (Use &U : I->operands()) |
| if (auto *J = dyn_cast<Instruction>(U.get())) |
| if (Visited.insert(J).second && |
| (isa<PHINode>(I) || J->getParent() == Parent)) |
| Worklist.emplace_back(J, J->getParent()); |
| } else { |
| break; |
| } |
| } |
| |
| // If we didn't encounter a memory access in the expression tree, or if we |
| // gave up for some reason, just return the width of V. Otherwise, return the |
| // maximum width we found. |
| if (!Width) { |
| if (auto *CI = dyn_cast<CmpInst>(V)) |
| V = CI->getOperand(0); |
| Width = DL->getTypeSizeInBits(V->getType()); |
| } |
| |
| for (Instruction *I : Visited) |
| InstrElementSize[I] = Width; |
| |
| return Width; |
| } |
| |
| // Determine if a value V in a vectorizable expression Expr can be demoted to a |
| // smaller type with a truncation. We collect the values that will be demoted |
| // in ToDemote and additional roots that require investigating in Roots. |
| static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, |
| SmallVectorImpl<Value *> &ToDemote, |
| SmallVectorImpl<Value *> &Roots) { |
| // We can always demote constants. |
| if (isa<Constant>(V)) { |
| ToDemote.push_back(V); |
| return true; |
| } |
| |
| // If the value is not an instruction in the expression with only one use, it |
| // cannot be demoted. |
| auto *I = dyn_cast<Instruction>(V); |
| if (!I || !I->hasOneUse() || !Expr.count(I)) |
| return false; |
| |
| switch (I->getOpcode()) { |
| |
| // We can always demote truncations and extensions. Since truncations can |
| // seed additional demotion, we save the truncated value. |
| case Instruction::Trunc: |
| Roots.push_back(I->getOperand(0)); |
| break; |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| if (isa<ExtractElementInst, InsertElementInst>(I->getOperand(0))) |
| return false; |
| break; |
| |
| // We can demote certain binary operations if we can demote both of their |
| // operands. |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || |
| !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) |
| return false; |
| break; |
| |
| // We can demote selects if we can demote their true and false values. |
| case Instruction::Select: { |
| SelectInst *SI = cast<SelectInst>(I); |
| if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || |
| !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) |
| return false; |
| break; |
| } |
| |
| // We can demote phis if we can demote all their incoming operands. Note that |
| // we don't need to worry about cycles since we ensure single use above. |
| case Instruction::PHI: { |
| PHINode *PN = cast<PHINode>(I); |
| for (Value *IncValue : PN->incoming_values()) |
| if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) |
| return false; |
| break; |
| } |
| |
| // Otherwise, conservatively give up. |
| default: |
| return false; |
| } |
| |
| // Record the value that we can demote. |
| ToDemote.push_back(V); |
| return true; |
| } |
| |
| void BoUpSLP::computeMinimumValueSizes() { |
| // If there are no external uses, the expression tree must be rooted by a |
| // store. We can't demote in-memory values, so there is nothing to do here. |
| if (ExternalUses.empty()) |
| return; |
| |
| // We only attempt to truncate integer expressions. |
| auto &TreeRoot = VectorizableTree[0]->Scalars; |
| auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); |
| if (!TreeRootIT) |
| return; |
| |
| // If the expression is not rooted by a store, these roots should have |
| // external uses. We will rely on InstCombine to rewrite the expression in |
| // the narrower type. However, InstCombine only rewrites single-use values. |
| // This means that if a tree entry other than a root is used externally, it |
| // must have multiple uses and InstCombine will not rewrite it. The code |
| // below ensures that only the roots are used externally. |
| SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); |
| for (auto &EU : ExternalUses) |
| if (!Expr.erase(EU.Scalar)) |
| return; |
| if (!Expr.empty()) |
| return; |
| |
| // Collect the scalar values of the vectorizable expression. We will use this |
| // context to determine which values can be demoted. If we see a truncation, |
| // we mark it as seeding another demotion. |
| for (auto &EntryPtr : VectorizableTree) |
| Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end()); |
| |
| // Ensure the roots of the vectorizable tree don't form a cycle. They must |
| // have a single external user that is not in the vectorizable tree. |
| for (auto *Root : TreeRoot) |
| if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) |
| return; |
| |
| // Conservatively determine if we can actually truncate the roots of the |
| // expression. Collect the values that can be demoted in ToDemote and |
| // additional roots that require investigating in Roots. |
| SmallVector<Value *, 32> ToDemote; |
| SmallVector<Value *, 4> Roots; |
| for (auto *Root : TreeRoot) |
| if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) |
| return; |
| |
| // The maximum bit width required to represent all the values that can be |
| // demoted without loss of precision. It would be safe to truncate the roots |
| // of the expression to this width. |
| auto MaxBitWidth = 8u; |
| |
| // We first check if all the bits of the roots are demanded. If they're not, |
| // we can truncate the roots to this narrower type. |
| for (auto *Root : TreeRoot) { |
| auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); |
| MaxBitWidth = std::max<unsigned>(Mask.getBitWidth() - Mask.countl_zero(), |
| MaxBitWidth); |
| } |
| |
| // True if the roots can be zero-extended back to their original type, rather |
| // than sign-extended. We know that if the leading bits are not demanded, we |
| // can safely zero-extend. So we initialize IsKnownPositive to True. |
| bool IsKnownPositive = true; |
| |
| // If all the bits of the roots are demanded, we can try a little harder to |
| // compute a narrower type. This can happen, for example, if the roots are |
| // getelementptr indices. InstCombine promotes these indices to the pointer |
| // width. Thus, all their bits are technically demanded even though the |
| // address computation might be vectorized in a smaller type. |
| // |
| // We start by looking at each entry that can be demoted. We compute the |
| // maximum bit width required to store the scalar by using ValueTracking to |
| // compute the number of high-order bits we can truncate. |
| if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) && |
| llvm::all_of(TreeRoot, [](Value *R) { |
| assert(R->hasOneUse() && "Root should have only one use!"); |
| return isa<GetElementPtrInst>(R->user_back()); |
| })) { |
| MaxBitWidth = 8u; |
| |
| // Determine if the sign bit of all the roots is known to be zero. If not, |
| // IsKnownPositive is set to False. |
| IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) { |
| KnownBits Known = computeKnownBits(R, *DL); |
| return Known.isNonNegative(); |
| }); |
| |
| // Determine the maximum number of bits required to store the scalar |
| // values. |
| for (auto *Scalar : ToDemote) { |
| auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT); |
| auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); |
| MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); |
| } |
| |
| // If we can't prove that the sign bit is zero, we must add one to the |
| // maximum bit width to account for the unknown sign bit. This preserves |
| // the existing sign bit so we can safely sign-extend the root back to the |
| // original type. Otherwise, if we know the sign bit is zero, we will |
| // zero-extend the root instead. |
| // |
| // FIXME: This is somewhat suboptimal, as there will be cases where adding |
| // one to the maximum bit width will yield a larger-than-necessary |
| // type. In general, we need to add an extra bit only if we can't |
| // prove that the upper bit of the original type is equal to the |
| // upper bit of the proposed smaller type. If these two bits are the |
| // same (either zero or one) we know that sign-extending from the |
| // smaller type will result in the same value. Here, since we can't |
| // yet prove this, we are just making the proposed smaller type |
| // larger to ensure correctness. |
| if (!IsKnownPositive) |
| ++MaxBitWidth; |
| } |
| |
| // Round MaxBitWidth up to the next power-of-two. |
| MaxBitWidth = llvm::bit_ceil(MaxBitWidth); |
| |
| // If the maximum bit width we compute is less than the with of the roots' |
| // type, we can proceed with the narrowing. Otherwise, do nothing. |
| if (MaxBitWidth >= TreeRootIT->getBitWidth()) |
| return; |
| |
| // If we can truncate the root, we must collect additional values that might |
| // be demoted as a result. That is, those seeded by truncations we will |
| // modify. |
| while (!Roots.empty()) |
| collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); |
| |
| // Finally, map the values we can demote to the maximum bit with we computed. |
| for (auto *Scalar : ToDemote) |
| MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive); |
| } |
| |
| PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { |
| auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); |
| auto *TTI = &AM.getResult<TargetIRAnalysis>(F); |
| auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); |
| auto *AA = &AM.getResult<AAManager>(F); |
| auto *LI = &AM.getResult<LoopAnalysis>(F); |
| auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
| auto *AC = &AM.getResult<AssumptionAnalysis>(F); |
| auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); |
| auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| |
| bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| |
| PreservedAnalyses PA; |
| PA.preserveSet<CFGAnalyses>(); |
| return PA; |
| } |
| |
| bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, |
| TargetTransformInfo *TTI_, |
| TargetLibraryInfo *TLI_, AAResults *AA_, |
| LoopInfo *LI_, DominatorTree *DT_, |
| AssumptionCache *AC_, DemandedBits *DB_, |
| OptimizationRemarkEmitter *ORE_) { |
| if (!RunSLPVectorization) |
| return false; |
| SE = SE_; |
| TTI = TTI_; |
| TLI = TLI_; |
| AA = AA_; |
| LI = LI_; |
| DT = DT_; |
| AC = AC_; |
| DB = DB_; |
| DL = &F.getParent()->getDataLayout(); |
| |
| Stores.clear(); |
| GEPs.clear(); |
| bool Changed = false; |
| |
| // If the target claims to have no vector registers don't attempt |
| // vectorization. |
| if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true))) { |
| LLVM_DEBUG( |
| dbgs() << "SLP: Didn't find any vector registers for target, abort.\n"); |
| return false; |
| } |
| |
| // Don't vectorize when the attribute NoImplicitFloat is used. |
| if (F.hasFnAttribute(Attribute::NoImplicitFloat)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); |
| |
| // Use the bottom up slp vectorizer to construct chains that start with |
| // store instructions. |
| BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_); |
| |
| // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to |
| // delete instructions. |
| |
| // Update DFS numbers now so that we can use them for ordering. |
| DT->updateDFSNumbers(); |
| |
| // Scan the blocks in the function in post order. |
| for (auto *BB : post_order(&F.getEntryBlock())) { |
| // Start new block - clear the list of reduction roots. |
| R.clearReductionData(); |
| collectSeedInstructions(BB); |
| |
| // Vectorize trees that end at stores. |
| if (!Stores.empty()) { |
| LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() |
| << " underlying objects.\n"); |
| Changed |= vectorizeStoreChains(R); |
| } |
| |
| // Vectorize trees that end at reductions. |
| Changed |= vectorizeChainsInBlock(BB, R); |
| |
| // Vectorize the index computations of getelementptr instructions. This |
| // is primarily intended to catch gather-like idioms ending at |
| // non-consecutive loads. |
| if (!GEPs.empty()) { |
| LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() |
| << " underlying objects.\n"); |
| Changed |= vectorizeGEPIndices(BB, R); |
| } |
| } |
| |
| if (Changed) { |
| R.optimizeGatherSequence(); |
| LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); |
| } |
| return Changed; |
| } |
| |
| bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R, |
| unsigned Idx, unsigned MinVF) { |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << Chain.size() |
| << "\n"); |
| const unsigned Sz = R.getVectorElementSize(Chain[0]); |
| unsigned VF = Chain.size(); |
| |
| if (!isPowerOf2_32(Sz) || !isPowerOf2_32(VF) || VF < 2 || VF < MinVF) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << Idx |
| << "\n"); |
| |
| R.buildTree(Chain); |
| if (R.isTreeTinyAndNotFullyVectorizable()) |
| return false; |
| if (R.isLoadCombineCandidate()) |
| return false; |
| R.reorderTopToBottom(); |
| R.reorderBottomToTop(); |
| R.buildExternalUses(); |
| |
| R.computeMinimumValueSizes(); |
| |
| InstructionCost Cost = R.getTreeCost(); |
| |
| LLVM_DEBUG(dbgs() << "SLP: Found cost = " << Cost << " for VF=" << VF << "\n"); |
| if (Cost < -SLPCostThreshold) { |
| LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost = " << Cost << "\n"); |
| |
| using namespace ore; |
| |
| R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized", |
| cast<StoreInst>(Chain[0])) |
| << "Stores SLP vectorized with cost " << NV("Cost", Cost) |
| << " and with tree size " |
| << NV("TreeSize", R.getTreeSize())); |
| |
| R.vectorizeTree(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, |
| BoUpSLP &R) { |
| // We may run into multiple chains that merge into a single chain. We mark the |
| // stores that we vectorized so that we don't visit the same store twice. |
| BoUpSLP::ValueSet VectorizedStores; |
| bool Changed = false; |
| |
| int E = Stores.size(); |
| SmallBitVector Tails(E, false); |
| int MaxIter = MaxStoreLookup.getValue(); |
| SmallVector<std::pair<int, int>, 16> ConsecutiveChain( |
| E, std::make_pair(E, INT_MAX)); |
| SmallVector<SmallBitVector, 4> CheckedPairs(E, SmallBitVector(E, false)); |
| int IterCnt; |
| auto &&FindConsecutiveAccess = [this, &Stores, &Tails, &IterCnt, MaxIter, |
| &CheckedPairs, |
| &ConsecutiveChain](int K, int Idx) { |
| if (IterCnt >= MaxIter) |
| return true; |
| if (CheckedPairs[Idx].test(K)) |
| return ConsecutiveChain[K].second == 1 && |
| ConsecutiveChain[K].first == Idx; |
| ++IterCnt; |
| CheckedPairs[Idx].set(K); |
| CheckedPairs[K].set(Idx); |
| std::optional<int> Diff = getPointersDiff( |
| Stores[K]->getValueOperand()->getType(), Stores[K]->getPointerOperand(), |
| Stores[Idx]->getValueOperand()->getType(), |
| Stores[Idx]->getPointerOperand(), *DL, *SE, /*StrictCheck=*/true); |
| if (!Diff || *Diff == 0) |
| return false; |
| int Val = *Diff; |
| if (Val < 0) { |
| if (ConsecutiveChain[Idx].second > -Val) { |
| Tails.set(K); |
| ConsecutiveChain[Idx] = std::make_pair(K, -Val); |
| } |
| return false; |
| } |
| if (ConsecutiveChain[K].second <= Val) |
| return false; |
| |
| Tails.set(Idx); |
| ConsecutiveChain[K] = std::make_pair(Idx, Val); |
| return Val == 1; |
| }; |
| // Do a quadratic search on all of the given stores in reverse order and find |
| // all of the pairs of stores that follow each other. |
| for (int Idx = E - 1; Idx >= 0; --Idx) { |
| // If a store has multiple consecutive store candidates, search according |
| // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ... |
| // This is because usually pairing with immediate succeeding or preceding |
| // candidate create the best chance to find slp vectorization opportunity. |
| const int MaxLookDepth = std::max(E - Idx, Idx + 1); |
| IterCnt = 0; |
| for (int Offset = 1, F = MaxLookDepth; Offset < F; ++Offset) |
| if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) || |
| (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx))) |
| break; |
| } |
| |
| // Tracks if we tried to vectorize stores starting from the given tail |
| // already. |
| SmallBitVector TriedTails(E, false); |
| // For stores that start but don't end a link in the chain: |
| for (int Cnt = E; Cnt > 0; --Cnt) { |
| int I = Cnt - 1; |
| if (ConsecutiveChain[I].first == E || Tails.test(I)) |
| continue; |
| // We found a store instr that starts a chain. Now follow the chain and try |
| // to vectorize it. |
| BoUpSLP::ValueList Operands; |
| // Collect the chain into a list. |
| while (I != E && !VectorizedStores.count(Stores[I])) { |
| Operands.push_back(Stores[I]); |
| Tails.set(I); |
| if (ConsecutiveChain[I].second != 1) { |
| // Mark the new end in the chain and go back, if required. It might be |
| // required if the original stores come in reversed order, for example. |
| if (ConsecutiveChain[I].first != E && |
| Tails.test(ConsecutiveChain[I].first) && !TriedTails.test(I) && |
| !VectorizedStores.count(Stores[ConsecutiveChain[I].first])) { |
| TriedTails.set(I); |
| Tails.reset(ConsecutiveChain[I].first); |
| if (Cnt < ConsecutiveChain[I].first + 2) |
| Cnt = ConsecutiveChain[I].first + 2; |
| } |
| break; |
| } |
| // Move to the next value in the chain. |
| I = ConsecutiveChain[I].first; |
| } |
| assert(!Operands.empty() && "Expected non-empty list of stores."); |
| |
| unsigned MaxVecRegSize = R.getMaxVecRegSize(); |
| unsigned EltSize = R.getVectorElementSize(Operands[0]); |
| unsigned MaxElts = llvm::bit_floor(MaxVecRegSize / EltSize); |
| |
| unsigned MaxVF = std::min(R.getMaximumVF(EltSize, Instruction::Store), |
| MaxElts); |
| auto *Store = cast<StoreInst>(Operands[0]); |
| Type *StoreTy = Store->getValueOperand()->getType(); |
| Type *ValueTy = StoreTy; |
| if (auto *Trunc = dyn_cast<TruncInst>(Store->getValueOperand())) |
| ValueTy = Trunc->getSrcTy(); |
| unsigned MinVF = TTI->getStoreMinimumVF( |
| R.getMinVF(DL->getTypeSizeInBits(ValueTy)), StoreTy, ValueTy); |
| |
| if (MaxVF <= MinVF) { |
| LLVM_DEBUG(dbgs() << "SLP: Vectorization infeasible as MaxVF (" << MaxVF << ") <= " |
| << "MinVF (" << MinVF << ")\n"); |
| } |
| |
| // FIXME: Is division-by-2 the correct step? Should we assert that the |
| // register size is a power-of-2? |
| unsigned StartIdx = 0; |
| for (unsigned Size = MaxVF; Size >= MinVF; Size /= 2) { |
| for (unsigned Cnt = StartIdx, E = Operands.size(); Cnt + Size <= E;) { |
| ArrayRef<Value *> Slice = ArrayRef(Operands).slice(Cnt, Size); |
| if (!VectorizedStores.count(Slice.front()) && |
| !VectorizedStores.count(Slice.back()) && |
| vectorizeStoreChain(Slice, R, Cnt, MinVF)) { |
| // Mark the vectorized stores so that we don't vectorize them again. |
| VectorizedStores.insert(Slice.begin(), Slice.end()); |
| Changed = true; |
| // If we vectorized initial block, no need to try to vectorize it |
| // again. |
| if (Cnt == StartIdx) |
| StartIdx += Size; |
| Cnt += Size; |
| continue; |
| } |
| ++Cnt; |
| } |
| // Check if the whole array was vectorized already - exit. |
| if (StartIdx >= Operands.size()) |
| break; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { |
| // Initialize the collections. We will make a single pass over the block. |
| Stores.clear(); |
| GEPs.clear(); |
| |
| // Visit the store and getelementptr instructions in BB and organize them in |
| // Stores and GEPs according to the underlying objects of their pointer |
| // operands. |
| for (Instruction &I : *BB) { |
| // Ignore store instructions that are volatile or have a pointer operand |
| // that doesn't point to a scalar type. |
| if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| if (!SI->isSimple()) |
| continue; |
| if (!isValidElementType(SI->getValueOperand()->getType())) |
| continue; |
| Stores[getUnderlyingObject(SI->getPointerOperand())].<
|