| //===-- AMDGPUSubtarget.cpp - AMDGPU Subtarget Information ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// Implements the AMDGPU specific subclass of TargetSubtarget. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUSubtarget.h" |
| #include "AMDGPUCallLowering.h" |
| #include "AMDGPUInstructionSelector.h" |
| #include "AMDGPULegalizerInfo.h" |
| #include "AMDGPURegisterBankInfo.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "R600Subtarget.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/CodeGen/GlobalISel/InlineAsmLowering.h" |
| #include "llvm/CodeGen/MachineScheduler.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/IR/IntrinsicsAMDGPU.h" |
| #include "llvm/IR/IntrinsicsR600.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include <algorithm> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "amdgpu-subtarget" |
| |
| #define GET_SUBTARGETINFO_TARGET_DESC |
| #define GET_SUBTARGETINFO_CTOR |
| #define AMDGPUSubtarget GCNSubtarget |
| #include "AMDGPUGenSubtargetInfo.inc" |
| #undef AMDGPUSubtarget |
| |
| static cl::opt<bool> EnablePowerSched( |
| "amdgpu-enable-power-sched", |
| cl::desc("Enable scheduling to minimize mAI power bursts"), |
| cl::init(false)); |
| |
| static cl::opt<bool> EnableVGPRIndexMode( |
| "amdgpu-vgpr-index-mode", |
| cl::desc("Use GPR indexing mode instead of movrel for vector indexing"), |
| cl::init(false)); |
| |
| static cl::opt<bool> UseAA("amdgpu-use-aa-in-codegen", |
| cl::desc("Enable the use of AA during codegen."), |
| cl::init(true)); |
| |
| static cl::opt<unsigned> NSAThreshold("amdgpu-nsa-threshold", |
| cl::desc("Number of addresses from which to enable MIMG NSA."), |
| cl::init(3), cl::Hidden); |
| |
| GCNSubtarget::~GCNSubtarget() = default; |
| |
| GCNSubtarget & |
| GCNSubtarget::initializeSubtargetDependencies(const Triple &TT, |
| StringRef GPU, StringRef FS) { |
| // Determine default and user-specified characteristics |
| // |
| // We want to be able to turn these off, but making this a subtarget feature |
| // for SI has the unhelpful behavior that it unsets everything else if you |
| // disable it. |
| // |
| // Similarly we want enable-prt-strict-null to be on by default and not to |
| // unset everything else if it is disabled |
| |
| SmallString<256> FullFS("+promote-alloca,+load-store-opt,+enable-ds128,"); |
| |
| // Turn on features that HSA ABI requires. Also turn on FlatForGlobal by default |
| if (isAmdHsaOS()) |
| FullFS += "+flat-for-global,+unaligned-access-mode,+trap-handler,"; |
| |
| FullFS += "+enable-prt-strict-null,"; // This is overridden by a disable in FS |
| |
| // Disable mutually exclusive bits. |
| if (FS.contains_insensitive("+wavefrontsize")) { |
| if (!FS.contains_insensitive("wavefrontsize16")) |
| FullFS += "-wavefrontsize16,"; |
| if (!FS.contains_insensitive("wavefrontsize32")) |
| FullFS += "-wavefrontsize32,"; |
| if (!FS.contains_insensitive("wavefrontsize64")) |
| FullFS += "-wavefrontsize64,"; |
| } |
| |
| FullFS += FS; |
| |
| ParseSubtargetFeatures(GPU, /*TuneCPU*/ GPU, FullFS); |
| |
| // Implement the "generic" processors, which acts as the default when no |
| // generation features are enabled (e.g for -mcpu=''). HSA OS defaults to |
| // the first amdgcn target that supports flat addressing. Other OSes defaults |
| // to the first amdgcn target. |
| if (Gen == AMDGPUSubtarget::INVALID) { |
| Gen = TT.getOS() == Triple::AMDHSA ? AMDGPUSubtarget::SEA_ISLANDS |
| : AMDGPUSubtarget::SOUTHERN_ISLANDS; |
| } |
| |
| // We don't support FP64 for EG/NI atm. |
| assert(!hasFP64() || (getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS)); |
| |
| // Targets must either support 64-bit offsets for MUBUF instructions, and/or |
| // support flat operations, otherwise they cannot access a 64-bit global |
| // address space |
| assert(hasAddr64() || hasFlat()); |
| // Unless +-flat-for-global is specified, turn on FlatForGlobal for targets |
| // that do not support ADDR64 variants of MUBUF instructions. Such targets |
| // cannot use a 64 bit offset with a MUBUF instruction to access the global |
| // address space |
| if (!hasAddr64() && !FS.contains("flat-for-global") && !FlatForGlobal) { |
| ToggleFeature(AMDGPU::FeatureFlatForGlobal); |
| FlatForGlobal = true; |
| } |
| // Unless +-flat-for-global is specified, use MUBUF instructions for global |
| // address space access if flat operations are not available. |
| if (!hasFlat() && !FS.contains("flat-for-global") && FlatForGlobal) { |
| ToggleFeature(AMDGPU::FeatureFlatForGlobal); |
| FlatForGlobal = false; |
| } |
| |
| // Set defaults if needed. |
| if (MaxPrivateElementSize == 0) |
| MaxPrivateElementSize = 4; |
| |
| if (LDSBankCount == 0) |
| LDSBankCount = 32; |
| |
| if (TT.getArch() == Triple::amdgcn) { |
| if (LocalMemorySize == 0) |
| LocalMemorySize = 32768; |
| |
| // Do something sensible for unspecified target. |
| if (!HasMovrel && !HasVGPRIndexMode) |
| HasMovrel = true; |
| } |
| |
| AddressableLocalMemorySize = LocalMemorySize; |
| |
| if (AMDGPU::isGFX10Plus(*this) && |
| !getFeatureBits().test(AMDGPU::FeatureCuMode)) |
| LocalMemorySize *= 2; |
| |
| // Don't crash on invalid devices. |
| if (WavefrontSizeLog2 == 0) |
| WavefrontSizeLog2 = 5; |
| |
| HasFminFmaxLegacy = getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS; |
| HasSMulHi = getGeneration() >= AMDGPUSubtarget::GFX9; |
| |
| TargetID.setTargetIDFromFeaturesString(FS); |
| |
| LLVM_DEBUG(dbgs() << "xnack setting for subtarget: " |
| << TargetID.getXnackSetting() << '\n'); |
| LLVM_DEBUG(dbgs() << "sramecc setting for subtarget: " |
| << TargetID.getSramEccSetting() << '\n'); |
| |
| return *this; |
| } |
| |
| AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT) : TargetTriple(TT) {} |
| |
| GCNSubtarget::GCNSubtarget(const Triple &TT, StringRef GPU, StringRef FS, |
| const GCNTargetMachine &TM) |
| : // clang-format off |
| AMDGPUGenSubtargetInfo(TT, GPU, /*TuneCPU*/ GPU, FS), |
| AMDGPUSubtarget(TT), |
| TargetTriple(TT), |
| TargetID(*this), |
| InstrItins(getInstrItineraryForCPU(GPU)), |
| InstrInfo(initializeSubtargetDependencies(TT, GPU, FS)), |
| TLInfo(TM, *this), |
| FrameLowering(TargetFrameLowering::StackGrowsUp, getStackAlignment(), 0) { |
| // clang-format on |
| MaxWavesPerEU = AMDGPU::IsaInfo::getMaxWavesPerEU(this); |
| EUsPerCU = AMDGPU::IsaInfo::getEUsPerCU(this); |
| CallLoweringInfo.reset(new AMDGPUCallLowering(*getTargetLowering())); |
| InlineAsmLoweringInfo.reset(new InlineAsmLowering(getTargetLowering())); |
| Legalizer.reset(new AMDGPULegalizerInfo(*this, TM)); |
| RegBankInfo.reset(new AMDGPURegisterBankInfo(*this)); |
| InstSelector.reset(new AMDGPUInstructionSelector( |
| *this, *static_cast<AMDGPURegisterBankInfo *>(RegBankInfo.get()), TM)); |
| } |
| |
| unsigned GCNSubtarget::getConstantBusLimit(unsigned Opcode) const { |
| if (getGeneration() < GFX10) |
| return 1; |
| |
| switch (Opcode) { |
| case AMDGPU::V_LSHLREV_B64_e64: |
| case AMDGPU::V_LSHLREV_B64_gfx10: |
| case AMDGPU::V_LSHLREV_B64_e64_gfx11: |
| case AMDGPU::V_LSHL_B64_e64: |
| case AMDGPU::V_LSHRREV_B64_e64: |
| case AMDGPU::V_LSHRREV_B64_gfx10: |
| case AMDGPU::V_LSHRREV_B64_e64_gfx11: |
| case AMDGPU::V_LSHR_B64_e64: |
| case AMDGPU::V_ASHRREV_I64_e64: |
| case AMDGPU::V_ASHRREV_I64_gfx10: |
| case AMDGPU::V_ASHRREV_I64_e64_gfx11: |
| case AMDGPU::V_ASHR_I64_e64: |
| return 1; |
| } |
| |
| return 2; |
| } |
| |
| /// This list was mostly derived from experimentation. |
| bool GCNSubtarget::zeroesHigh16BitsOfDest(unsigned Opcode) const { |
| switch (Opcode) { |
| case AMDGPU::V_CVT_F16_F32_e32: |
| case AMDGPU::V_CVT_F16_F32_e64: |
| case AMDGPU::V_CVT_F16_U16_e32: |
| case AMDGPU::V_CVT_F16_U16_e64: |
| case AMDGPU::V_CVT_F16_I16_e32: |
| case AMDGPU::V_CVT_F16_I16_e64: |
| case AMDGPU::V_RCP_F16_e64: |
| case AMDGPU::V_RCP_F16_e32: |
| case AMDGPU::V_RSQ_F16_e64: |
| case AMDGPU::V_RSQ_F16_e32: |
| case AMDGPU::V_SQRT_F16_e64: |
| case AMDGPU::V_SQRT_F16_e32: |
| case AMDGPU::V_LOG_F16_e64: |
| case AMDGPU::V_LOG_F16_e32: |
| case AMDGPU::V_EXP_F16_e64: |
| case AMDGPU::V_EXP_F16_e32: |
| case AMDGPU::V_SIN_F16_e64: |
| case AMDGPU::V_SIN_F16_e32: |
| case AMDGPU::V_COS_F16_e64: |
| case AMDGPU::V_COS_F16_e32: |
| case AMDGPU::V_FLOOR_F16_e64: |
| case AMDGPU::V_FLOOR_F16_e32: |
| case AMDGPU::V_CEIL_F16_e64: |
| case AMDGPU::V_CEIL_F16_e32: |
| case AMDGPU::V_TRUNC_F16_e64: |
| case AMDGPU::V_TRUNC_F16_e32: |
| case AMDGPU::V_RNDNE_F16_e64: |
| case AMDGPU::V_RNDNE_F16_e32: |
| case AMDGPU::V_FRACT_F16_e64: |
| case AMDGPU::V_FRACT_F16_e32: |
| case AMDGPU::V_FREXP_MANT_F16_e64: |
| case AMDGPU::V_FREXP_MANT_F16_e32: |
| case AMDGPU::V_FREXP_EXP_I16_F16_e64: |
| case AMDGPU::V_FREXP_EXP_I16_F16_e32: |
| case AMDGPU::V_LDEXP_F16_e64: |
| case AMDGPU::V_LDEXP_F16_e32: |
| case AMDGPU::V_LSHLREV_B16_e64: |
| case AMDGPU::V_LSHLREV_B16_e32: |
| case AMDGPU::V_LSHRREV_B16_e64: |
| case AMDGPU::V_LSHRREV_B16_e32: |
| case AMDGPU::V_ASHRREV_I16_e64: |
| case AMDGPU::V_ASHRREV_I16_e32: |
| case AMDGPU::V_ADD_U16_e64: |
| case AMDGPU::V_ADD_U16_e32: |
| case AMDGPU::V_SUB_U16_e64: |
| case AMDGPU::V_SUB_U16_e32: |
| case AMDGPU::V_SUBREV_U16_e64: |
| case AMDGPU::V_SUBREV_U16_e32: |
| case AMDGPU::V_MUL_LO_U16_e64: |
| case AMDGPU::V_MUL_LO_U16_e32: |
| case AMDGPU::V_ADD_F16_e64: |
| case AMDGPU::V_ADD_F16_e32: |
| case AMDGPU::V_SUB_F16_e64: |
| case AMDGPU::V_SUB_F16_e32: |
| case AMDGPU::V_SUBREV_F16_e64: |
| case AMDGPU::V_SUBREV_F16_e32: |
| case AMDGPU::V_MUL_F16_e64: |
| case AMDGPU::V_MUL_F16_e32: |
| case AMDGPU::V_MAX_F16_e64: |
| case AMDGPU::V_MAX_F16_e32: |
| case AMDGPU::V_MIN_F16_e64: |
| case AMDGPU::V_MIN_F16_e32: |
| case AMDGPU::V_MAX_U16_e64: |
| case AMDGPU::V_MAX_U16_e32: |
| case AMDGPU::V_MIN_U16_e64: |
| case AMDGPU::V_MIN_U16_e32: |
| case AMDGPU::V_MAX_I16_e64: |
| case AMDGPU::V_MAX_I16_e32: |
| case AMDGPU::V_MIN_I16_e64: |
| case AMDGPU::V_MIN_I16_e32: |
| case AMDGPU::V_MAD_F16_e64: |
| case AMDGPU::V_MAD_U16_e64: |
| case AMDGPU::V_MAD_I16_e64: |
| case AMDGPU::V_FMA_F16_e64: |
| case AMDGPU::V_DIV_FIXUP_F16_e64: |
| // On gfx10, all 16-bit instructions preserve the high bits. |
| return getGeneration() <= AMDGPUSubtarget::GFX9; |
| case AMDGPU::V_MADAK_F16: |
| case AMDGPU::V_MADMK_F16: |
| case AMDGPU::V_MAC_F16_e64: |
| case AMDGPU::V_MAC_F16_e32: |
| case AMDGPU::V_FMAMK_F16: |
| case AMDGPU::V_FMAAK_F16: |
| case AMDGPU::V_FMAC_F16_e64: |
| case AMDGPU::V_FMAC_F16_e32: |
| // In gfx9, the preferred handling of the unused high 16-bits changed. Most |
| // instructions maintain the legacy behavior of 0ing. Some instructions |
| // changed to preserving the high bits. |
| return getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS; |
| case AMDGPU::V_MAD_MIXLO_F16: |
| case AMDGPU::V_MAD_MIXHI_F16: |
| default: |
| return false; |
| } |
| } |
| |
| // Returns the maximum per-workgroup LDS allocation size (in bytes) that still |
| // allows the given function to achieve an occupancy of NWaves waves per |
| // SIMD / EU, taking into account only the function's *maximum* workgroup size. |
| unsigned |
| AMDGPUSubtarget::getMaxLocalMemSizeWithWaveCount(unsigned NWaves, |
| const Function &F) const { |
| const unsigned WaveSize = getWavefrontSize(); |
| const unsigned WorkGroupSize = getFlatWorkGroupSizes(F).second; |
| const unsigned WavesPerWorkgroup = |
| std::max(1u, (WorkGroupSize + WaveSize - 1) / WaveSize); |
| |
| const unsigned WorkGroupsPerCU = |
| std::max(1u, (NWaves * getEUsPerCU()) / WavesPerWorkgroup); |
| |
| return getLocalMemorySize() / WorkGroupsPerCU; |
| } |
| |
| // FIXME: Should return min,max range. |
| // |
| // Returns the maximum occupancy, in number of waves per SIMD / EU, that can |
| // be achieved when only the given function is running on the machine; and |
| // taking into account the overall number of wave slots, the (maximum) workgroup |
| // size, and the per-workgroup LDS allocation size. |
| unsigned AMDGPUSubtarget::getOccupancyWithLocalMemSize(uint32_t Bytes, |
| const Function &F) const { |
| const unsigned MaxWorkGroupSize = getFlatWorkGroupSizes(F).second; |
| const unsigned MaxWorkGroupsPerCu = getMaxWorkGroupsPerCU(MaxWorkGroupSize); |
| if (!MaxWorkGroupsPerCu) |
| return 0; |
| |
| const unsigned WaveSize = getWavefrontSize(); |
| |
| // FIXME: Do we need to account for alignment requirement of LDS rounding the |
| // size up? |
| // Compute restriction based on LDS usage |
| unsigned NumGroups = getLocalMemorySize() / (Bytes ? Bytes : 1u); |
| |
| // This can be queried with more LDS than is possible, so just assume the |
| // worst. |
| if (NumGroups == 0) |
| return 1; |
| |
| NumGroups = std::min(MaxWorkGroupsPerCu, NumGroups); |
| |
| // Round to the number of waves per CU. |
| const unsigned MaxGroupNumWaves = divideCeil(MaxWorkGroupSize, WaveSize); |
| unsigned MaxWaves = NumGroups * MaxGroupNumWaves; |
| |
| // Number of waves per EU (SIMD). |
| MaxWaves = divideCeil(MaxWaves, getEUsPerCU()); |
| |
| // Clamp to the maximum possible number of waves. |
| MaxWaves = std::min(MaxWaves, getMaxWavesPerEU()); |
| |
| // FIXME: Needs to be a multiple of the group size? |
| //MaxWaves = MaxGroupNumWaves * (MaxWaves / MaxGroupNumWaves); |
| |
| assert(MaxWaves > 0 && MaxWaves <= getMaxWavesPerEU() && |
| "computed invalid occupancy"); |
| return MaxWaves; |
| } |
| |
| unsigned |
| AMDGPUSubtarget::getOccupancyWithLocalMemSize(const MachineFunction &MF) const { |
| const auto *MFI = MF.getInfo<SIMachineFunctionInfo>(); |
| return getOccupancyWithLocalMemSize(MFI->getLDSSize(), MF.getFunction()); |
| } |
| |
| std::pair<unsigned, unsigned> |
| AMDGPUSubtarget::getDefaultFlatWorkGroupSize(CallingConv::ID CC) const { |
| switch (CC) { |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_LS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| return std::pair(1, getWavefrontSize()); |
| default: |
| return std::pair(1u, getMaxFlatWorkGroupSize()); |
| } |
| } |
| |
| std::pair<unsigned, unsigned> AMDGPUSubtarget::getFlatWorkGroupSizes( |
| const Function &F) const { |
| // Default minimum/maximum flat work group sizes. |
| std::pair<unsigned, unsigned> Default = |
| getDefaultFlatWorkGroupSize(F.getCallingConv()); |
| |
| // Requested minimum/maximum flat work group sizes. |
| std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( |
| F, "amdgpu-flat-work-group-size", Default); |
| |
| // Make sure requested minimum is less than requested maximum. |
| if (Requested.first > Requested.second) |
| return Default; |
| |
| // Make sure requested values do not violate subtarget's specifications. |
| if (Requested.first < getMinFlatWorkGroupSize()) |
| return Default; |
| if (Requested.second > getMaxFlatWorkGroupSize()) |
| return Default; |
| |
| return Requested; |
| } |
| |
| std::pair<unsigned, unsigned> AMDGPUSubtarget::getWavesPerEU( |
| const Function &F, std::pair<unsigned, unsigned> FlatWorkGroupSizes) const { |
| // Default minimum/maximum number of waves per execution unit. |
| std::pair<unsigned, unsigned> Default(1, getMaxWavesPerEU()); |
| |
| // If minimum/maximum flat work group sizes were explicitly requested using |
| // "amdgpu-flat-work-group-size" attribute, then set default minimum/maximum |
| // number of waves per execution unit to values implied by requested |
| // minimum/maximum flat work group sizes. |
| unsigned MinImpliedByFlatWorkGroupSize = |
| getWavesPerEUForWorkGroup(FlatWorkGroupSizes.second); |
| Default.first = MinImpliedByFlatWorkGroupSize; |
| |
| // Requested minimum/maximum number of waves per execution unit. |
| std::pair<unsigned, unsigned> Requested = AMDGPU::getIntegerPairAttribute( |
| F, "amdgpu-waves-per-eu", Default, true); |
| |
| // Make sure requested minimum is less than requested maximum. |
| if (Requested.second && Requested.first > Requested.second) |
| return Default; |
| |
| // Make sure requested values do not violate subtarget's specifications. |
| if (Requested.first < getMinWavesPerEU() || |
| Requested.second > getMaxWavesPerEU()) |
| return Default; |
| |
| // Make sure requested values are compatible with values implied by requested |
| // minimum/maximum flat work group sizes. |
| if (Requested.first < MinImpliedByFlatWorkGroupSize) |
| return Default; |
| |
| return Requested; |
| } |
| |
| static unsigned getReqdWorkGroupSize(const Function &Kernel, unsigned Dim) { |
| auto Node = Kernel.getMetadata("reqd_work_group_size"); |
| if (Node && Node->getNumOperands() == 3) |
| return mdconst::extract<ConstantInt>(Node->getOperand(Dim))->getZExtValue(); |
| return std::numeric_limits<unsigned>::max(); |
| } |
| |
| bool AMDGPUSubtarget::isMesaKernel(const Function &F) const { |
| return isMesa3DOS() && !AMDGPU::isShader(F.getCallingConv()); |
| } |
| |
| unsigned AMDGPUSubtarget::getMaxWorkitemID(const Function &Kernel, |
| unsigned Dimension) const { |
| unsigned ReqdSize = getReqdWorkGroupSize(Kernel, Dimension); |
| if (ReqdSize != std::numeric_limits<unsigned>::max()) |
| return ReqdSize - 1; |
| return getFlatWorkGroupSizes(Kernel).second - 1; |
| } |
| |
| bool AMDGPUSubtarget::makeLIDRangeMetadata(Instruction *I) const { |
| Function *Kernel = I->getParent()->getParent(); |
| unsigned MinSize = 0; |
| unsigned MaxSize = getFlatWorkGroupSizes(*Kernel).second; |
| bool IdQuery = false; |
| |
| // If reqd_work_group_size is present it narrows value down. |
| if (auto *CI = dyn_cast<CallInst>(I)) { |
| const Function *F = CI->getCalledFunction(); |
| if (F) { |
| unsigned Dim = UINT_MAX; |
| switch (F->getIntrinsicID()) { |
| case Intrinsic::amdgcn_workitem_id_x: |
| case Intrinsic::r600_read_tidig_x: |
| IdQuery = true; |
| [[fallthrough]]; |
| case Intrinsic::r600_read_local_size_x: |
| Dim = 0; |
| break; |
| case Intrinsic::amdgcn_workitem_id_y: |
| case Intrinsic::r600_read_tidig_y: |
| IdQuery = true; |
| [[fallthrough]]; |
| case Intrinsic::r600_read_local_size_y: |
| Dim = 1; |
| break; |
| case Intrinsic::amdgcn_workitem_id_z: |
| case Intrinsic::r600_read_tidig_z: |
| IdQuery = true; |
| [[fallthrough]]; |
| case Intrinsic::r600_read_local_size_z: |
| Dim = 2; |
| break; |
| default: |
| break; |
| } |
| |
| if (Dim <= 3) { |
| unsigned ReqdSize = getReqdWorkGroupSize(*Kernel, Dim); |
| if (ReqdSize != std::numeric_limits<unsigned>::max()) |
| MinSize = MaxSize = ReqdSize; |
| } |
| } |
| } |
| |
| if (!MaxSize) |
| return false; |
| |
| // Range metadata is [Lo, Hi). For ID query we need to pass max size |
| // as Hi. For size query we need to pass Hi + 1. |
| if (IdQuery) |
| MinSize = 0; |
| else |
| ++MaxSize; |
| |
| MDBuilder MDB(I->getContext()); |
| MDNode *MaxWorkGroupSizeRange = MDB.createRange(APInt(32, MinSize), |
| APInt(32, MaxSize)); |
| I->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); |
| return true; |
| } |
| |
| unsigned AMDGPUSubtarget::getImplicitArgNumBytes(const Function &F) const { |
| assert(AMDGPU::isKernel(F.getCallingConv())); |
| |
| // We don't allocate the segment if we know the implicit arguments weren't |
| // used, even if the ABI implies we need them. |
| if (F.hasFnAttribute("amdgpu-no-implicitarg-ptr")) |
| return 0; |
| |
| if (isMesaKernel(F)) |
| return 16; |
| |
| // Assume all implicit inputs are used by default |
| const Module *M = F.getParent(); |
| unsigned NBytes = |
| AMDGPU::getCodeObjectVersion(*M) >= AMDGPU::AMDHSA_COV5 ? 256 : 56; |
| return F.getFnAttributeAsParsedInteger("amdgpu-implicitarg-num-bytes", |
| NBytes); |
| } |
| |
| uint64_t AMDGPUSubtarget::getExplicitKernArgSize(const Function &F, |
| Align &MaxAlign) const { |
| assert(F.getCallingConv() == CallingConv::AMDGPU_KERNEL || |
| F.getCallingConv() == CallingConv::SPIR_KERNEL); |
| |
| const DataLayout &DL = F.getParent()->getDataLayout(); |
| uint64_t ExplicitArgBytes = 0; |
| MaxAlign = Align(1); |
| |
| for (const Argument &Arg : F.args()) { |
| const bool IsByRef = Arg.hasByRefAttr(); |
| Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType(); |
| Align Alignment = DL.getValueOrABITypeAlignment( |
| IsByRef ? Arg.getParamAlign() : std::nullopt, ArgTy); |
| uint64_t AllocSize = DL.getTypeAllocSize(ArgTy); |
| ExplicitArgBytes = alignTo(ExplicitArgBytes, Alignment) + AllocSize; |
| MaxAlign = std::max(MaxAlign, Alignment); |
| } |
| |
| return ExplicitArgBytes; |
| } |
| |
| unsigned AMDGPUSubtarget::getKernArgSegmentSize(const Function &F, |
| Align &MaxAlign) const { |
| uint64_t ExplicitArgBytes = getExplicitKernArgSize(F, MaxAlign); |
| |
| unsigned ExplicitOffset = getExplicitKernelArgOffset(F); |
| |
| uint64_t TotalSize = ExplicitOffset + ExplicitArgBytes; |
| unsigned ImplicitBytes = getImplicitArgNumBytes(F); |
| if (ImplicitBytes != 0) { |
| const Align Alignment = getAlignmentForImplicitArgPtr(); |
| TotalSize = alignTo(ExplicitArgBytes, Alignment) + ImplicitBytes; |
| MaxAlign = std::max(MaxAlign, Alignment); |
| } |
| |
| // Being able to dereference past the end is useful for emitting scalar loads. |
| return alignTo(TotalSize, 4); |
| } |
| |
| AMDGPUDwarfFlavour AMDGPUSubtarget::getAMDGPUDwarfFlavour() const { |
| return getWavefrontSize() == 32 ? AMDGPUDwarfFlavour::Wave32 |
| : AMDGPUDwarfFlavour::Wave64; |
| } |
| |
| void GCNSubtarget::overrideSchedPolicy(MachineSchedPolicy &Policy, |
| unsigned NumRegionInstrs) const { |
| // Track register pressure so the scheduler can try to decrease |
| // pressure once register usage is above the threshold defined by |
| // SIRegisterInfo::getRegPressureSetLimit() |
| Policy.ShouldTrackPressure = true; |
| |
| // Enabling both top down and bottom up scheduling seems to give us less |
| // register spills than just using one of these approaches on its own. |
| Policy.OnlyTopDown = false; |
| Policy.OnlyBottomUp = false; |
| |
| // Enabling ShouldTrackLaneMasks crashes the SI Machine Scheduler. |
| if (!enableSIScheduler()) |
| Policy.ShouldTrackLaneMasks = true; |
| } |
| |
| bool GCNSubtarget::hasMadF16() const { |
| return InstrInfo.pseudoToMCOpcode(AMDGPU::V_MAD_F16_e64) != -1; |
| } |
| |
| bool GCNSubtarget::useVGPRIndexMode() const { |
| return !hasMovrel() || (EnableVGPRIndexMode && hasVGPRIndexMode()); |
| } |
| |
| bool GCNSubtarget::useAA() const { return UseAA; } |
| |
| unsigned GCNSubtarget::getOccupancyWithNumSGPRs(unsigned SGPRs) const { |
| if (getGeneration() >= AMDGPUSubtarget::GFX10) |
| return getMaxWavesPerEU(); |
| |
| if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { |
| if (SGPRs <= 80) |
| return 10; |
| if (SGPRs <= 88) |
| return 9; |
| if (SGPRs <= 100) |
| return 8; |
| return 7; |
| } |
| if (SGPRs <= 48) |
| return 10; |
| if (SGPRs <= 56) |
| return 9; |
| if (SGPRs <= 64) |
| return 8; |
| if (SGPRs <= 72) |
| return 7; |
| if (SGPRs <= 80) |
| return 6; |
| return 5; |
| } |
| |
| unsigned GCNSubtarget::getOccupancyWithNumVGPRs(unsigned NumVGPRs) const { |
| return AMDGPU::IsaInfo::getNumWavesPerEUWithNumVGPRs(this, NumVGPRs); |
| } |
| |
| unsigned |
| GCNSubtarget::getBaseReservedNumSGPRs(const bool HasFlatScratch) const { |
| if (getGeneration() >= AMDGPUSubtarget::GFX10) |
| return 2; // VCC. FLAT_SCRATCH and XNACK are no longer in SGPRs. |
| |
| if (HasFlatScratch || HasArchitectedFlatScratch) { |
| if (getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) |
| return 6; // FLAT_SCRATCH, XNACK, VCC (in that order). |
| if (getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) |
| return 4; // FLAT_SCRATCH, VCC (in that order). |
| } |
| |
| if (isXNACKEnabled()) |
| return 4; // XNACK, VCC (in that order). |
| return 2; // VCC. |
| } |
| |
| unsigned GCNSubtarget::getReservedNumSGPRs(const MachineFunction &MF) const { |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| return getBaseReservedNumSGPRs(MFI.hasFlatScratchInit()); |
| } |
| |
| unsigned GCNSubtarget::getReservedNumSGPRs(const Function &F) const { |
| // In principle we do not need to reserve SGPR pair used for flat_scratch if |
| // we know flat instructions do not access the stack anywhere in the |
| // program. For now assume it's needed if we have flat instructions. |
| const bool KernelUsesFlatScratch = hasFlatAddressSpace(); |
| return getBaseReservedNumSGPRs(KernelUsesFlatScratch); |
| } |
| |
| unsigned GCNSubtarget::computeOccupancy(const Function &F, unsigned LDSSize, |
| unsigned NumSGPRs, |
| unsigned NumVGPRs) const { |
| unsigned Occupancy = |
| std::min(getMaxWavesPerEU(), |
| getOccupancyWithLocalMemSize(LDSSize, F)); |
| if (NumSGPRs) |
| Occupancy = std::min(Occupancy, getOccupancyWithNumSGPRs(NumSGPRs)); |
| if (NumVGPRs) |
| Occupancy = std::min(Occupancy, getOccupancyWithNumVGPRs(NumVGPRs)); |
| return Occupancy; |
| } |
| |
| unsigned GCNSubtarget::getBaseMaxNumSGPRs( |
| const Function &F, std::pair<unsigned, unsigned> WavesPerEU, |
| unsigned PreloadedSGPRs, unsigned ReservedNumSGPRs) const { |
| // Compute maximum number of SGPRs function can use using default/requested |
| // minimum number of waves per execution unit. |
| unsigned MaxNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, false); |
| unsigned MaxAddressableNumSGPRs = getMaxNumSGPRs(WavesPerEU.first, true); |
| |
| // Check if maximum number of SGPRs was explicitly requested using |
| // "amdgpu-num-sgpr" attribute. |
| if (F.hasFnAttribute("amdgpu-num-sgpr")) { |
| unsigned Requested = |
| F.getFnAttributeAsParsedInteger("amdgpu-num-sgpr", MaxNumSGPRs); |
| |
| // Make sure requested value does not violate subtarget's specifications. |
| if (Requested && (Requested <= ReservedNumSGPRs)) |
| Requested = 0; |
| |
| // If more SGPRs are required to support the input user/system SGPRs, |
| // increase to accommodate them. |
| // |
| // FIXME: This really ends up using the requested number of SGPRs + number |
| // of reserved special registers in total. Theoretically you could re-use |
| // the last input registers for these special registers, but this would |
| // require a lot of complexity to deal with the weird aliasing. |
| unsigned InputNumSGPRs = PreloadedSGPRs; |
| if (Requested && Requested < InputNumSGPRs) |
| Requested = InputNumSGPRs; |
| |
| // Make sure requested value is compatible with values implied by |
| // default/requested minimum/maximum number of waves per execution unit. |
| if (Requested && Requested > getMaxNumSGPRs(WavesPerEU.first, false)) |
| Requested = 0; |
| if (WavesPerEU.second && |
| Requested && Requested < getMinNumSGPRs(WavesPerEU.second)) |
| Requested = 0; |
| |
| if (Requested) |
| MaxNumSGPRs = Requested; |
| } |
| |
| if (hasSGPRInitBug()) |
| MaxNumSGPRs = AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG; |
| |
| return std::min(MaxNumSGPRs - ReservedNumSGPRs, MaxAddressableNumSGPRs); |
| } |
| |
| unsigned GCNSubtarget::getMaxNumSGPRs(const MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| return getBaseMaxNumSGPRs(F, MFI.getWavesPerEU(), MFI.getNumPreloadedSGPRs(), |
| getReservedNumSGPRs(MF)); |
| } |
| |
| static unsigned getMaxNumPreloadedSGPRs() { |
| // Max number of user SGPRs |
| unsigned MaxUserSGPRs = 4 + // private segment buffer |
| 2 + // Dispatch ptr |
| 2 + // queue ptr |
| 2 + // kernel segment ptr |
| 2 + // dispatch ID |
| 2 + // flat scratch init |
| 2; // Implicit buffer ptr |
| |
| // Max number of system SGPRs |
| unsigned MaxSystemSGPRs = 1 + // WorkGroupIDX |
| 1 + // WorkGroupIDY |
| 1 + // WorkGroupIDZ |
| 1 + // WorkGroupInfo |
| 1; // private segment wave byte offset |
| |
| // Max number of synthetic SGPRs |
| unsigned SyntheticSGPRs = 1; // LDSKernelId |
| |
| return MaxUserSGPRs + MaxSystemSGPRs + SyntheticSGPRs; |
| } |
| |
| unsigned GCNSubtarget::getMaxNumSGPRs(const Function &F) const { |
| return getBaseMaxNumSGPRs(F, getWavesPerEU(F), getMaxNumPreloadedSGPRs(), |
| getReservedNumSGPRs(F)); |
| } |
| |
| unsigned GCNSubtarget::getBaseMaxNumVGPRs( |
| const Function &F, std::pair<unsigned, unsigned> WavesPerEU) const { |
| // Compute maximum number of VGPRs function can use using default/requested |
| // minimum number of waves per execution unit. |
| unsigned MaxNumVGPRs = getMaxNumVGPRs(WavesPerEU.first); |
| |
| // Check if maximum number of VGPRs was explicitly requested using |
| // "amdgpu-num-vgpr" attribute. |
| if (F.hasFnAttribute("amdgpu-num-vgpr")) { |
| unsigned Requested = |
| F.getFnAttributeAsParsedInteger("amdgpu-num-vgpr", MaxNumVGPRs); |
| |
| if (hasGFX90AInsts()) |
| Requested *= 2; |
| |
| // Make sure requested value is compatible with values implied by |
| // default/requested minimum/maximum number of waves per execution unit. |
| if (Requested && Requested > getMaxNumVGPRs(WavesPerEU.first)) |
| Requested = 0; |
| if (WavesPerEU.second && |
| Requested && Requested < getMinNumVGPRs(WavesPerEU.second)) |
| Requested = 0; |
| |
| if (Requested) |
| MaxNumVGPRs = Requested; |
| } |
| |
| return MaxNumVGPRs; |
| } |
| |
| unsigned GCNSubtarget::getMaxNumVGPRs(const Function &F) const { |
| return getBaseMaxNumVGPRs(F, getWavesPerEU(F)); |
| } |
| |
| unsigned GCNSubtarget::getMaxNumVGPRs(const MachineFunction &MF) const { |
| const Function &F = MF.getFunction(); |
| const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>(); |
| return getBaseMaxNumVGPRs(F, MFI.getWavesPerEU()); |
| } |
| |
| void GCNSubtarget::adjustSchedDependency(SUnit *Def, int DefOpIdx, SUnit *Use, |
| int UseOpIdx, SDep &Dep) const { |
| if (Dep.getKind() != SDep::Kind::Data || !Dep.getReg() || |
| !Def->isInstr() || !Use->isInstr()) |
| return; |
| |
| MachineInstr *DefI = Def->getInstr(); |
| MachineInstr *UseI = Use->getInstr(); |
| |
| if (DefI->isBundle()) { |
| const SIRegisterInfo *TRI = getRegisterInfo(); |
| auto Reg = Dep.getReg(); |
| MachineBasicBlock::const_instr_iterator I(DefI->getIterator()); |
| MachineBasicBlock::const_instr_iterator E(DefI->getParent()->instr_end()); |
| unsigned Lat = 0; |
| for (++I; I != E && I->isBundledWithPred(); ++I) { |
| if (I->modifiesRegister(Reg, TRI)) |
| Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *I); |
| else if (Lat) |
| --Lat; |
| } |
| Dep.setLatency(Lat); |
| } else if (UseI->isBundle()) { |
| const SIRegisterInfo *TRI = getRegisterInfo(); |
| auto Reg = Dep.getReg(); |
| MachineBasicBlock::const_instr_iterator I(UseI->getIterator()); |
| MachineBasicBlock::const_instr_iterator E(UseI->getParent()->instr_end()); |
| unsigned Lat = InstrInfo.getInstrLatency(getInstrItineraryData(), *DefI); |
| for (++I; I != E && I->isBundledWithPred() && Lat; ++I) { |
| if (I->readsRegister(Reg, TRI)) |
| break; |
| --Lat; |
| } |
| Dep.setLatency(Lat); |
| } else if (Dep.getLatency() == 0 && Dep.getReg() == AMDGPU::VCC_LO) { |
| // Work around the fact that SIInstrInfo::fixImplicitOperands modifies |
| // implicit operands which come from the MCInstrDesc, which can fool |
| // ScheduleDAGInstrs::addPhysRegDataDeps into treating them as implicit |
| // pseudo operands. |
| Dep.setLatency(InstrInfo.getSchedModel().computeOperandLatency( |
| DefI, DefOpIdx, UseI, UseOpIdx)); |
| } |
| } |
| |
| namespace { |
| struct FillMFMAShadowMutation : ScheduleDAGMutation { |
| const SIInstrInfo *TII; |
| |
| ScheduleDAGMI *DAG; |
| |
| FillMFMAShadowMutation(const SIInstrInfo *tii) : TII(tii) {} |
| |
| bool isSALU(const SUnit *SU) const { |
| const MachineInstr *MI = SU->getInstr(); |
| return MI && TII->isSALU(*MI) && !MI->isTerminator(); |
| } |
| |
| bool isVALU(const SUnit *SU) const { |
| const MachineInstr *MI = SU->getInstr(); |
| return MI && TII->isVALU(*MI); |
| } |
| |
| // Link as many SALU instructions in chain as possible. Return the size |
| // of the chain. Links up to MaxChain instructions. |
| unsigned linkSALUChain(SUnit *From, SUnit *To, unsigned MaxChain, |
| SmallPtrSetImpl<SUnit *> &Visited) const { |
| SmallVector<SUnit *, 8> Worklist({To}); |
| unsigned Linked = 0; |
| |
| while (!Worklist.empty() && MaxChain-- > 0) { |
| SUnit *SU = Worklist.pop_back_val(); |
| if (!Visited.insert(SU).second) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "Inserting edge from\n" ; DAG->dumpNode(*From); |
| dbgs() << "to\n"; DAG->dumpNode(*SU); dbgs() << '\n'); |
| |
| if (SU != From && From != &DAG->ExitSU && DAG->canAddEdge(SU, From)) |
| if (DAG->addEdge(SU, SDep(From, SDep::Artificial))) |
| ++Linked; |
| |
| for (SDep &SI : From->Succs) { |
| SUnit *SUv = SI.getSUnit(); |
| if (SUv != From && SU != &DAG->ExitSU && isVALU(SUv) && |
| DAG->canAddEdge(SUv, SU)) |
| DAG->addEdge(SUv, SDep(SU, SDep::Artificial)); |
| } |
| |
| for (SDep &SI : SU->Succs) { |
| SUnit *Succ = SI.getSUnit(); |
| if (Succ != SU && isSALU(Succ)) |
| Worklist.push_back(Succ); |
| } |
| } |
| |
| return Linked; |
| } |
| |
| void apply(ScheduleDAGInstrs *DAGInstrs) override { |
| const GCNSubtarget &ST = DAGInstrs->MF.getSubtarget<GCNSubtarget>(); |
| if (!ST.hasMAIInsts()) |
| return; |
| DAG = static_cast<ScheduleDAGMI*>(DAGInstrs); |
| const TargetSchedModel *TSchedModel = DAGInstrs->getSchedModel(); |
| if (!TSchedModel || DAG->SUnits.empty()) |
| return; |
| |
| // Scan for MFMA long latency instructions and try to add a dependency |
| // of available SALU instructions to give them a chance to fill MFMA |
| // shadow. That is desirable to fill MFMA shadow with SALU instructions |
| // rather than VALU to prevent power consumption bursts and throttle. |
| auto LastSALU = DAG->SUnits.begin(); |
| auto E = DAG->SUnits.end(); |
| SmallPtrSet<SUnit*, 32> Visited; |
| for (SUnit &SU : DAG->SUnits) { |
| MachineInstr &MAI = *SU.getInstr(); |
| if (!TII->isMAI(MAI) || |
| MAI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 || |
| MAI.getOpcode() == AMDGPU::V_ACCVGPR_READ_B32_e64) |
| continue; |
| |
| unsigned Lat = TSchedModel->computeInstrLatency(&MAI) - 1; |
| |
| LLVM_DEBUG(dbgs() << "Found MFMA: "; DAG->dumpNode(SU); |
| dbgs() << "Need " << Lat |
| << " instructions to cover latency.\n"); |
| |
| // Find up to Lat independent scalar instructions as early as |
| // possible such that they can be scheduled after this MFMA. |
| for ( ; Lat && LastSALU != E; ++LastSALU) { |
| if (Visited.count(&*LastSALU)) |
| continue; |
| |
| if (&SU == &DAG->ExitSU || &SU == &*LastSALU || !isSALU(&*LastSALU) || |
| !DAG->canAddEdge(&*LastSALU, &SU)) |
| continue; |
| |
| Lat -= linkSALUChain(&SU, &*LastSALU, Lat, Visited); |
| } |
| } |
| } |
| }; |
| } // namespace |
| |
| void GCNSubtarget::getPostRAMutations( |
| std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const { |
| Mutations.push_back(std::make_unique<FillMFMAShadowMutation>(&InstrInfo)); |
| } |
| |
| std::unique_ptr<ScheduleDAGMutation> |
| GCNSubtarget::createFillMFMAShadowMutation(const TargetInstrInfo *TII) const { |
| return EnablePowerSched ? std::make_unique<FillMFMAShadowMutation>(&InstrInfo) |
| : nullptr; |
| } |
| |
| unsigned GCNSubtarget::getNSAThreshold(const MachineFunction &MF) const { |
| if (NSAThreshold.getNumOccurrences() > 0) |
| return std::max(NSAThreshold.getValue(), 2u); |
| |
| int Value = MF.getFunction().getFnAttributeAsParsedInteger( |
| "amdgpu-nsa-threshold", -1); |
| if (Value > 0) |
| return std::max(Value, 2); |
| |
| return 3; |
| } |
| |
| const AMDGPUSubtarget &AMDGPUSubtarget::get(const MachineFunction &MF) { |
| if (MF.getTarget().getTargetTriple().getArch() == Triple::amdgcn) |
| return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<GCNSubtarget>()); |
| else |
| return static_cast<const AMDGPUSubtarget&>(MF.getSubtarget<R600Subtarget>()); |
| } |
| |
| const AMDGPUSubtarget &AMDGPUSubtarget::get(const TargetMachine &TM, const Function &F) { |
| if (TM.getTargetTriple().getArch() == Triple::amdgcn) |
| return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<GCNSubtarget>(F)); |
| else |
| return static_cast<const AMDGPUSubtarget&>(TM.getSubtarget<R600Subtarget>(F)); |
| } |