blob: 00387836c97e30eef329f1bca4501f435da5b52c [file] [log] [blame]
//===-- llvm/ADT/edit_distance.h - Array edit distance function --- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines a Levenshtein distance function that works for any two
/// sequences, with each element of each sequence being analogous to a character
/// in a string.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_EDIT_DISTANCE_H
#define LLVM_ADT_EDIT_DISTANCE_H
#include "llvm/ADT/ArrayRef.h"
#include <algorithm>
namespace llvm {
/// Determine the edit distance between two sequences.
///
/// \param FromArray the first sequence to compare.
///
/// \param ToArray the second sequence to compare.
///
/// \param Map A Functor to apply to each item of the sequences before
/// comparison.
///
/// \param AllowReplacements whether to allow element replacements (change one
/// element into another) as a single operation, rather than as two operations
/// (an insertion and a removal).
///
/// \param MaxEditDistance If non-zero, the maximum edit distance that this
/// routine is allowed to compute. If the edit distance will exceed that
/// maximum, returns \c MaxEditDistance+1.
///
/// \returns the minimum number of element insertions, removals, or (if
/// \p AllowReplacements is \c true) replacements needed to transform one of
/// the given sequences into the other. If zero, the sequences are identical.
template <typename T, typename Functor>
unsigned ComputeMappedEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
Functor Map, bool AllowReplacements = true,
unsigned MaxEditDistance = 0) {
// The algorithm implemented below is the "classic"
// dynamic-programming algorithm for computing the Levenshtein
// distance, which is described here:
//
// http://en.wikipedia.org/wiki/Levenshtein_distance
//
// Although the algorithm is typically described using an m x n
// array, only one row plus one element are used at a time, so this
// implementation just keeps one vector for the row. To update one entry,
// only the entries to the left, top, and top-left are needed. The left
// entry is in Row[x-1], the top entry is what's in Row[x] from the last
// iteration, and the top-left entry is stored in Previous.
typename ArrayRef<T>::size_type m = FromArray.size();
typename ArrayRef<T>::size_type n = ToArray.size();
if (MaxEditDistance) {
// If the difference in size between the 2 arrays is larger than the max
// distance allowed, we can bail out as we will always need at least
// MaxEditDistance insertions or removals.
typename ArrayRef<T>::size_type AbsDiff = m > n ? m - n : n - m;
if (AbsDiff > MaxEditDistance)
return MaxEditDistance + 1;
}
SmallVector<unsigned, 64> Row(n + 1);
for (unsigned i = 1; i < Row.size(); ++i)
Row[i] = i;
for (typename ArrayRef<T>::size_type y = 1; y <= m; ++y) {
Row[0] = y;
unsigned BestThisRow = Row[0];
unsigned Previous = y - 1;
const auto &CurItem = Map(FromArray[y - 1]);
for (typename ArrayRef<T>::size_type x = 1; x <= n; ++x) {
int OldRow = Row[x];
if (AllowReplacements) {
Row[x] = std::min(Previous + (CurItem == Map(ToArray[x - 1]) ? 0u : 1u),
std::min(Row[x - 1], Row[x]) + 1);
}
else {
if (CurItem == Map(ToArray[x - 1]))
Row[x] = Previous;
else Row[x] = std::min(Row[x-1], Row[x]) + 1;
}
Previous = OldRow;
BestThisRow = std::min(BestThisRow, Row[x]);
}
if (MaxEditDistance && BestThisRow > MaxEditDistance)
return MaxEditDistance + 1;
}
unsigned Result = Row[n];
return Result;
}
template <typename T>
unsigned ComputeEditDistance(ArrayRef<T> FromArray, ArrayRef<T> ToArray,
bool AllowReplacements = true,
unsigned MaxEditDistance = 0) {
return ComputeMappedEditDistance(
FromArray, ToArray, [](const T &X) -> const T & { return X; },
AllowReplacements, MaxEditDistance);
}
} // End llvm namespace
#endif