| //===- llvm/ADT/SmallVector.h - 'Normally small' vectors --------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// This file defines the SmallVector class. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_ADT_SMALLVECTOR_H |
| #define LLVM_ADT_SMALLVECTOR_H |
| |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/type_traits.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdlib> |
| #include <cstring> |
| #include <functional> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <new> |
| #include <type_traits> |
| #include <utility> |
| |
| namespace llvm { |
| |
| template <typename T> class ArrayRef; |
| |
| template <typename IteratorT> class iterator_range; |
| |
| template <class Iterator> |
| using EnableIfConvertibleToInputIterator = std::enable_if_t<std::is_convertible< |
| typename std::iterator_traits<Iterator>::iterator_category, |
| std::input_iterator_tag>::value>; |
| |
| /// This is all the stuff common to all SmallVectors. |
| /// |
| /// The template parameter specifies the type which should be used to hold the |
| /// Size and Capacity of the SmallVector, so it can be adjusted. |
| /// Using 32 bit size is desirable to shrink the size of the SmallVector. |
| /// Using 64 bit size is desirable for cases like SmallVector<char>, where a |
| /// 32 bit size would limit the vector to ~4GB. SmallVectors are used for |
| /// buffering bitcode output - which can exceed 4GB. |
| template <class Size_T> class SmallVectorBase { |
| protected: |
| void *BeginX; |
| Size_T Size = 0, Capacity; |
| |
| /// The maximum value of the Size_T used. |
| static constexpr size_t SizeTypeMax() { |
| return std::numeric_limits<Size_T>::max(); |
| } |
| |
| SmallVectorBase() = delete; |
| SmallVectorBase(void *FirstEl, size_t TotalCapacity) |
| : BeginX(FirstEl), Capacity(TotalCapacity) {} |
| |
| /// This is a helper for \a grow() that's out of line to reduce code |
| /// duplication. This function will report a fatal error if it can't grow at |
| /// least to \p MinSize. |
| void *mallocForGrow(void *FirstEl, size_t MinSize, size_t TSize, |
| size_t &NewCapacity); |
| |
| /// This is an implementation of the grow() method which only works |
| /// on POD-like data types and is out of line to reduce code duplication. |
| /// This function will report a fatal error if it cannot increase capacity. |
| void grow_pod(void *FirstEl, size_t MinSize, size_t TSize); |
| |
| /// If vector was first created with capacity 0, getFirstEl() points to the |
| /// memory right after, an area unallocated. If a subsequent allocation, |
| /// that grows the vector, happens to return the same pointer as getFirstEl(), |
| /// get a new allocation, otherwise isSmall() will falsely return that no |
| /// allocation was done (true) and the memory will not be freed in the |
| /// destructor. If a VSize is given (vector size), also copy that many |
| /// elements to the new allocation - used if realloca fails to increase |
| /// space, and happens to allocate precisely at BeginX. |
| /// This is unlikely to be called often, but resolves a memory leak when the |
| /// situation does occur. |
| void *replaceAllocation(void *NewElts, size_t TSize, size_t NewCapacity, |
| size_t VSize = 0); |
| |
| public: |
| size_t size() const { return Size; } |
| size_t capacity() const { return Capacity; } |
| |
| [[nodiscard]] bool empty() const { return !Size; } |
| |
| protected: |
| /// Set the array size to \p N, which the current array must have enough |
| /// capacity for. |
| /// |
| /// This does not construct or destroy any elements in the vector. |
| void set_size(size_t N) { |
| assert(N <= capacity()); |
| Size = N; |
| } |
| }; |
| |
| template <class T> |
| using SmallVectorSizeType = |
| std::conditional_t<sizeof(T) < 4 && sizeof(void *) >= 8, uint64_t, |
| uint32_t>; |
| |
| /// Figure out the offset of the first element. |
| template <class T, typename = void> struct SmallVectorAlignmentAndSize { |
| alignas(SmallVectorBase<SmallVectorSizeType<T>>) char Base[sizeof( |
| SmallVectorBase<SmallVectorSizeType<T>>)]; |
| alignas(T) char FirstEl[sizeof(T)]; |
| }; |
| |
| /// This is the part of SmallVectorTemplateBase which does not depend on whether |
| /// the type T is a POD. The extra dummy template argument is used by ArrayRef |
| /// to avoid unnecessarily requiring T to be complete. |
| template <typename T, typename = void> |
| class SmallVectorTemplateCommon |
| : public SmallVectorBase<SmallVectorSizeType<T>> { |
| using Base = SmallVectorBase<SmallVectorSizeType<T>>; |
| |
| protected: |
| /// Find the address of the first element. For this pointer math to be valid |
| /// with small-size of 0 for T with lots of alignment, it's important that |
| /// SmallVectorStorage is properly-aligned even for small-size of 0. |
| void *getFirstEl() const { |
| return const_cast<void *>(reinterpret_cast<const void *>( |
| reinterpret_cast<const char *>(this) + |
| offsetof(SmallVectorAlignmentAndSize<T>, FirstEl))); |
| } |
| // Space after 'FirstEl' is clobbered, do not add any instance vars after it. |
| |
| SmallVectorTemplateCommon(size_t Size) : Base(getFirstEl(), Size) {} |
| |
| void grow_pod(size_t MinSize, size_t TSize) { |
| Base::grow_pod(getFirstEl(), MinSize, TSize); |
| } |
| |
| /// Return true if this is a smallvector which has not had dynamic |
| /// memory allocated for it. |
| bool isSmall() const { return this->BeginX == getFirstEl(); } |
| |
| /// Put this vector in a state of being small. |
| void resetToSmall() { |
| this->BeginX = getFirstEl(); |
| this->Size = this->Capacity = 0; // FIXME: Setting Capacity to 0 is suspect. |
| } |
| |
| /// Return true if V is an internal reference to the given range. |
| bool isReferenceToRange(const void *V, const void *First, const void *Last) const { |
| // Use std::less to avoid UB. |
| std::less<> LessThan; |
| return !LessThan(V, First) && LessThan(V, Last); |
| } |
| |
| /// Return true if V is an internal reference to this vector. |
| bool isReferenceToStorage(const void *V) const { |
| return isReferenceToRange(V, this->begin(), this->end()); |
| } |
| |
| /// Return true if First and Last form a valid (possibly empty) range in this |
| /// vector's storage. |
| bool isRangeInStorage(const void *First, const void *Last) const { |
| // Use std::less to avoid UB. |
| std::less<> LessThan; |
| return !LessThan(First, this->begin()) && !LessThan(Last, First) && |
| !LessThan(this->end(), Last); |
| } |
| |
| /// Return true unless Elt will be invalidated by resizing the vector to |
| /// NewSize. |
| bool isSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| // Past the end. |
| if (LLVM_LIKELY(!isReferenceToStorage(Elt))) |
| return true; |
| |
| // Return false if Elt will be destroyed by shrinking. |
| if (NewSize <= this->size()) |
| return Elt < this->begin() + NewSize; |
| |
| // Return false if we need to grow. |
| return NewSize <= this->capacity(); |
| } |
| |
| /// Check whether Elt will be invalidated by resizing the vector to NewSize. |
| void assertSafeToReferenceAfterResize(const void *Elt, size_t NewSize) { |
| assert(isSafeToReferenceAfterResize(Elt, NewSize) && |
| "Attempting to reference an element of the vector in an operation " |
| "that invalidates it"); |
| } |
| |
| /// Check whether Elt will be invalidated by increasing the size of the |
| /// vector by N. |
| void assertSafeToAdd(const void *Elt, size_t N = 1) { |
| this->assertSafeToReferenceAfterResize(Elt, this->size() + N); |
| } |
| |
| /// Check whether any part of the range will be invalidated by clearing. |
| void assertSafeToReferenceAfterClear(const T *From, const T *To) { |
| if (From == To) |
| return; |
| this->assertSafeToReferenceAfterResize(From, 0); |
| this->assertSafeToReferenceAfterResize(To - 1, 0); |
| } |
| template < |
| class ItTy, |
| std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| bool> = false> |
| void assertSafeToReferenceAfterClear(ItTy, ItTy) {} |
| |
| /// Check whether any part of the range will be invalidated by growing. |
| void assertSafeToAddRange(const T *From, const T *To) { |
| if (From == To) |
| return; |
| this->assertSafeToAdd(From, To - From); |
| this->assertSafeToAdd(To - 1, To - From); |
| } |
| template < |
| class ItTy, |
| std::enable_if_t<!std::is_same<std::remove_const_t<ItTy>, T *>::value, |
| bool> = false> |
| void assertSafeToAddRange(ItTy, ItTy) {} |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| template <class U> |
| static const T *reserveForParamAndGetAddressImpl(U *This, const T &Elt, |
| size_t N) { |
| size_t NewSize = This->size() + N; |
| if (LLVM_LIKELY(NewSize <= This->capacity())) |
| return &Elt; |
| |
| bool ReferencesStorage = false; |
| int64_t Index = -1; |
| if (!U::TakesParamByValue) { |
| if (LLVM_UNLIKELY(This->isReferenceToStorage(&Elt))) { |
| ReferencesStorage = true; |
| Index = &Elt - This->begin(); |
| } |
| } |
| This->grow(NewSize); |
| return ReferencesStorage ? This->begin() + Index : &Elt; |
| } |
| |
| public: |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using value_type = T; |
| using iterator = T *; |
| using const_iterator = const T *; |
| |
| using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| |
| using reference = T &; |
| using const_reference = const T &; |
| using pointer = T *; |
| using const_pointer = const T *; |
| |
| using Base::capacity; |
| using Base::empty; |
| using Base::size; |
| |
| // forward iterator creation methods. |
| iterator begin() { return (iterator)this->BeginX; } |
| const_iterator begin() const { return (const_iterator)this->BeginX; } |
| iterator end() { return begin() + size(); } |
| const_iterator end() const { return begin() + size(); } |
| |
| // reverse iterator creation methods. |
| reverse_iterator rbegin() { return reverse_iterator(end()); } |
| const_reverse_iterator rbegin() const{ return const_reverse_iterator(end()); } |
| reverse_iterator rend() { return reverse_iterator(begin()); } |
| const_reverse_iterator rend() const { return const_reverse_iterator(begin());} |
| |
| size_type size_in_bytes() const { return size() * sizeof(T); } |
| size_type max_size() const { |
| return std::min(this->SizeTypeMax(), size_type(-1) / sizeof(T)); |
| } |
| |
| size_t capacity_in_bytes() const { return capacity() * sizeof(T); } |
| |
| /// Return a pointer to the vector's buffer, even if empty(). |
| pointer data() { return pointer(begin()); } |
| /// Return a pointer to the vector's buffer, even if empty(). |
| const_pointer data() const { return const_pointer(begin()); } |
| |
| reference operator[](size_type idx) { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| const_reference operator[](size_type idx) const { |
| assert(idx < size()); |
| return begin()[idx]; |
| } |
| |
| reference front() { |
| assert(!empty()); |
| return begin()[0]; |
| } |
| const_reference front() const { |
| assert(!empty()); |
| return begin()[0]; |
| } |
| |
| reference back() { |
| assert(!empty()); |
| return end()[-1]; |
| } |
| const_reference back() const { |
| assert(!empty()); |
| return end()[-1]; |
| } |
| }; |
| |
| /// SmallVectorTemplateBase<TriviallyCopyable = false> - This is where we put |
| /// method implementations that are designed to work with non-trivial T's. |
| /// |
| /// We approximate is_trivially_copyable with trivial move/copy construction and |
| /// trivial destruction. While the standard doesn't specify that you're allowed |
| /// copy these types with memcpy, there is no way for the type to observe this. |
| /// This catches the important case of std::pair<POD, POD>, which is not |
| /// trivially assignable. |
| template <typename T, bool = (is_trivially_copy_constructible<T>::value) && |
| (is_trivially_move_constructible<T>::value) && |
| std::is_trivially_destructible<T>::value> |
| class SmallVectorTemplateBase : public SmallVectorTemplateCommon<T> { |
| friend class SmallVectorTemplateCommon<T>; |
| |
| protected: |
| static constexpr bool TakesParamByValue = false; |
| using ValueParamT = const T &; |
| |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| static void destroy_range(T *S, T *E) { |
| while (S != E) { |
| --E; |
| E->~T(); |
| } |
| } |
| |
| /// Move the range [I, E) into the uninitialized memory starting with "Dest", |
| /// constructing elements as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| std::uninitialized_move(I, E, Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory starting with "Dest", |
| /// constructing elements as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Grow the allocated memory (without initializing new elements), doubling |
| /// the size of the allocated memory. Guarantees space for at least one more |
| /// element, or MinSize more elements if specified. |
| void grow(size_t MinSize = 0); |
| |
| /// Create a new allocation big enough for \p MinSize and pass back its size |
| /// in \p NewCapacity. This is the first section of \a grow(). |
| T *mallocForGrow(size_t MinSize, size_t &NewCapacity); |
| |
| /// Move existing elements over to the new allocation \p NewElts, the middle |
| /// section of \a grow(). |
| void moveElementsForGrow(T *NewElts); |
| |
| /// Transfer ownership of the allocation, finishing up \a grow(). |
| void takeAllocationForGrow(T *NewElts, size_t NewCapacity); |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| return const_cast<T *>( |
| this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| } |
| |
| static T &&forward_value_param(T &&V) { return std::move(V); } |
| static const T &forward_value_param(const T &V) { return V; } |
| |
| void growAndAssign(size_t NumElts, const T &Elt) { |
| // Grow manually in case Elt is an internal reference. |
| size_t NewCapacity; |
| T *NewElts = mallocForGrow(NumElts, NewCapacity); |
| std::uninitialized_fill_n(NewElts, NumElts, Elt); |
| this->destroy_range(this->begin(), this->end()); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| this->set_size(NumElts); |
| } |
| |
| template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| // Grow manually in case one of Args is an internal reference. |
| size_t NewCapacity; |
| T *NewElts = mallocForGrow(0, NewCapacity); |
| ::new ((void *)(NewElts + this->size())) T(std::forward<ArgTypes>(Args)...); |
| moveElementsForGrow(NewElts); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| this->set_size(this->size() + 1); |
| return this->back(); |
| } |
| |
| public: |
| void push_back(const T &Elt) { |
| const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| ::new ((void *)this->end()) T(*EltPtr); |
| this->set_size(this->size() + 1); |
| } |
| |
| void push_back(T &&Elt) { |
| T *EltPtr = reserveForParamAndGetAddress(Elt); |
| ::new ((void *)this->end()) T(::std::move(*EltPtr)); |
| this->set_size(this->size() + 1); |
| } |
| |
| void pop_back() { |
| this->set_size(this->size() - 1); |
| this->end()->~T(); |
| } |
| }; |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::grow(size_t MinSize) { |
| size_t NewCapacity; |
| T *NewElts = mallocForGrow(MinSize, NewCapacity); |
| moveElementsForGrow(NewElts); |
| takeAllocationForGrow(NewElts, NewCapacity); |
| } |
| |
| template <typename T, bool TriviallyCopyable> |
| T *SmallVectorTemplateBase<T, TriviallyCopyable>::mallocForGrow( |
| size_t MinSize, size_t &NewCapacity) { |
| return static_cast<T *>( |
| SmallVectorBase<SmallVectorSizeType<T>>::mallocForGrow( |
| this->getFirstEl(), MinSize, sizeof(T), NewCapacity)); |
| } |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::moveElementsForGrow( |
| T *NewElts) { |
| // Move the elements over. |
| this->uninitialized_move(this->begin(), this->end(), NewElts); |
| |
| // Destroy the original elements. |
| destroy_range(this->begin(), this->end()); |
| } |
| |
| // Define this out-of-line to dissuade the C++ compiler from inlining it. |
| template <typename T, bool TriviallyCopyable> |
| void SmallVectorTemplateBase<T, TriviallyCopyable>::takeAllocationForGrow( |
| T *NewElts, size_t NewCapacity) { |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| |
| this->BeginX = NewElts; |
| this->Capacity = NewCapacity; |
| } |
| |
| /// SmallVectorTemplateBase<TriviallyCopyable = true> - This is where we put |
| /// method implementations that are designed to work with trivially copyable |
| /// T's. This allows using memcpy in place of copy/move construction and |
| /// skipping destruction. |
| template <typename T> |
| class SmallVectorTemplateBase<T, true> : public SmallVectorTemplateCommon<T> { |
| friend class SmallVectorTemplateCommon<T>; |
| |
| protected: |
| /// True if it's cheap enough to take parameters by value. Doing so avoids |
| /// overhead related to mitigations for reference invalidation. |
| static constexpr bool TakesParamByValue = sizeof(T) <= 2 * sizeof(void *); |
| |
| /// Either const T& or T, depending on whether it's cheap enough to take |
| /// parameters by value. |
| using ValueParamT = std::conditional_t<TakesParamByValue, T, const T &>; |
| |
| SmallVectorTemplateBase(size_t Size) : SmallVectorTemplateCommon<T>(Size) {} |
| |
| // No need to do a destroy loop for POD's. |
| static void destroy_range(T *, T *) {} |
| |
| /// Move the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_move(It1 I, It1 E, It2 Dest) { |
| // Just do a copy. |
| uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template<typename It1, typename It2> |
| static void uninitialized_copy(It1 I, It1 E, It2 Dest) { |
| // Arbitrary iterator types; just use the basic implementation. |
| std::uninitialized_copy(I, E, Dest); |
| } |
| |
| /// Copy the range [I, E) onto the uninitialized memory |
| /// starting with "Dest", constructing elements into it as needed. |
| template <typename T1, typename T2> |
| static void uninitialized_copy( |
| T1 *I, T1 *E, T2 *Dest, |
| std::enable_if_t<std::is_same<std::remove_const_t<T1>, T2>::value> * = |
| nullptr) { |
| // Use memcpy for PODs iterated by pointers (which includes SmallVector |
| // iterators): std::uninitialized_copy optimizes to memmove, but we can |
| // use memcpy here. Note that I and E are iterators and thus might be |
| // invalid for memcpy if they are equal. |
| if (I != E) |
| memcpy(reinterpret_cast<void *>(Dest), I, (E - I) * sizeof(T)); |
| } |
| |
| /// Double the size of the allocated memory, guaranteeing space for at |
| /// least one more element or MinSize if specified. |
| void grow(size_t MinSize = 0) { this->grow_pod(MinSize, sizeof(T)); } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| const T *reserveForParamAndGetAddress(const T &Elt, size_t N = 1) { |
| return this->reserveForParamAndGetAddressImpl(this, Elt, N); |
| } |
| |
| /// Reserve enough space to add one element, and return the updated element |
| /// pointer in case it was a reference to the storage. |
| T *reserveForParamAndGetAddress(T &Elt, size_t N = 1) { |
| return const_cast<T *>( |
| this->reserveForParamAndGetAddressImpl(this, Elt, N)); |
| } |
| |
| /// Copy \p V or return a reference, depending on \a ValueParamT. |
| static ValueParamT forward_value_param(ValueParamT V) { return V; } |
| |
| void growAndAssign(size_t NumElts, T Elt) { |
| // Elt has been copied in case it's an internal reference, side-stepping |
| // reference invalidation problems without losing the realloc optimization. |
| this->set_size(0); |
| this->grow(NumElts); |
| std::uninitialized_fill_n(this->begin(), NumElts, Elt); |
| this->set_size(NumElts); |
| } |
| |
| template <typename... ArgTypes> T &growAndEmplaceBack(ArgTypes &&... Args) { |
| // Use push_back with a copy in case Args has an internal reference, |
| // side-stepping reference invalidation problems without losing the realloc |
| // optimization. |
| push_back(T(std::forward<ArgTypes>(Args)...)); |
| return this->back(); |
| } |
| |
| public: |
| void push_back(ValueParamT Elt) { |
| const T *EltPtr = reserveForParamAndGetAddress(Elt); |
| memcpy(reinterpret_cast<void *>(this->end()), EltPtr, sizeof(T)); |
| this->set_size(this->size() + 1); |
| } |
| |
| void pop_back() { this->set_size(this->size() - 1); } |
| }; |
| |
| /// This class consists of common code factored out of the SmallVector class to |
| /// reduce code duplication based on the SmallVector 'N' template parameter. |
| template <typename T> |
| class SmallVectorImpl : public SmallVectorTemplateBase<T> { |
| using SuperClass = SmallVectorTemplateBase<T>; |
| |
| public: |
| using iterator = typename SuperClass::iterator; |
| using const_iterator = typename SuperClass::const_iterator; |
| using reference = typename SuperClass::reference; |
| using size_type = typename SuperClass::size_type; |
| |
| protected: |
| using SmallVectorTemplateBase<T>::TakesParamByValue; |
| using ValueParamT = typename SuperClass::ValueParamT; |
| |
| // Default ctor - Initialize to empty. |
| explicit SmallVectorImpl(unsigned N) |
| : SmallVectorTemplateBase<T>(N) {} |
| |
| void assignRemote(SmallVectorImpl &&RHS) { |
| this->destroy_range(this->begin(), this->end()); |
| if (!this->isSmall()) |
| free(this->begin()); |
| this->BeginX = RHS.BeginX; |
| this->Size = RHS.Size; |
| this->Capacity = RHS.Capacity; |
| RHS.resetToSmall(); |
| } |
| |
| public: |
| SmallVectorImpl(const SmallVectorImpl &) = delete; |
| |
| ~SmallVectorImpl() { |
| // Subclass has already destructed this vector's elements. |
| // If this wasn't grown from the inline copy, deallocate the old space. |
| if (!this->isSmall()) |
| free(this->begin()); |
| } |
| |
| void clear() { |
| this->destroy_range(this->begin(), this->end()); |
| this->Size = 0; |
| } |
| |
| private: |
| // Make set_size() private to avoid misuse in subclasses. |
| using SuperClass::set_size; |
| |
| template <bool ForOverwrite> void resizeImpl(size_type N) { |
| if (N == this->size()) |
| return; |
| |
| if (N < this->size()) { |
| this->truncate(N); |
| return; |
| } |
| |
| this->reserve(N); |
| for (auto I = this->end(), E = this->begin() + N; I != E; ++I) |
| if (ForOverwrite) |
| new (&*I) T; |
| else |
| new (&*I) T(); |
| this->set_size(N); |
| } |
| |
| public: |
| void resize(size_type N) { resizeImpl<false>(N); } |
| |
| /// Like resize, but \ref T is POD, the new values won't be initialized. |
| void resize_for_overwrite(size_type N) { resizeImpl<true>(N); } |
| |
| /// Like resize, but requires that \p N is less than \a size(). |
| void truncate(size_type N) { |
| assert(this->size() >= N && "Cannot increase size with truncate"); |
| this->destroy_range(this->begin() + N, this->end()); |
| this->set_size(N); |
| } |
| |
| void resize(size_type N, ValueParamT NV) { |
| if (N == this->size()) |
| return; |
| |
| if (N < this->size()) { |
| this->truncate(N); |
| return; |
| } |
| |
| // N > this->size(). Defer to append. |
| this->append(N - this->size(), NV); |
| } |
| |
| void reserve(size_type N) { |
| if (this->capacity() < N) |
| this->grow(N); |
| } |
| |
| void pop_back_n(size_type NumItems) { |
| assert(this->size() >= NumItems); |
| truncate(this->size() - NumItems); |
| } |
| |
| [[nodiscard]] T pop_back_val() { |
| T Result = ::std::move(this->back()); |
| this->pop_back(); |
| return Result; |
| } |
| |
| void swap(SmallVectorImpl &RHS); |
| |
| /// Add the specified range to the end of the SmallVector. |
| template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| void append(ItTy in_start, ItTy in_end) { |
| this->assertSafeToAddRange(in_start, in_end); |
| size_type NumInputs = std::distance(in_start, in_end); |
| this->reserve(this->size() + NumInputs); |
| this->uninitialized_copy(in_start, in_end, this->end()); |
| this->set_size(this->size() + NumInputs); |
| } |
| |
| /// Append \p NumInputs copies of \p Elt to the end. |
| void append(size_type NumInputs, ValueParamT Elt) { |
| const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumInputs); |
| std::uninitialized_fill_n(this->end(), NumInputs, *EltPtr); |
| this->set_size(this->size() + NumInputs); |
| } |
| |
| void append(std::initializer_list<T> IL) { |
| append(IL.begin(), IL.end()); |
| } |
| |
| void append(const SmallVectorImpl &RHS) { append(RHS.begin(), RHS.end()); } |
| |
| void assign(size_type NumElts, ValueParamT Elt) { |
| // Note that Elt could be an internal reference. |
| if (NumElts > this->capacity()) { |
| this->growAndAssign(NumElts, Elt); |
| return; |
| } |
| |
| // Assign over existing elements. |
| std::fill_n(this->begin(), std::min(NumElts, this->size()), Elt); |
| if (NumElts > this->size()) |
| std::uninitialized_fill_n(this->end(), NumElts - this->size(), Elt); |
| else if (NumElts < this->size()) |
| this->destroy_range(this->begin() + NumElts, this->end()); |
| this->set_size(NumElts); |
| } |
| |
| // FIXME: Consider assigning over existing elements, rather than clearing & |
| // re-initializing them - for all assign(...) variants. |
| |
| template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| void assign(ItTy in_start, ItTy in_end) { |
| this->assertSafeToReferenceAfterClear(in_start, in_end); |
| clear(); |
| append(in_start, in_end); |
| } |
| |
| void assign(std::initializer_list<T> IL) { |
| clear(); |
| append(IL); |
| } |
| |
| void assign(const SmallVectorImpl &RHS) { assign(RHS.begin(), RHS.end()); } |
| |
| iterator erase(const_iterator CI) { |
| // Just cast away constness because this is a non-const member function. |
| iterator I = const_cast<iterator>(CI); |
| |
| assert(this->isReferenceToStorage(CI) && "Iterator to erase is out of bounds."); |
| |
| iterator N = I; |
| // Shift all elts down one. |
| std::move(I+1, this->end(), I); |
| // Drop the last elt. |
| this->pop_back(); |
| return(N); |
| } |
| |
| iterator erase(const_iterator CS, const_iterator CE) { |
| // Just cast away constness because this is a non-const member function. |
| iterator S = const_cast<iterator>(CS); |
| iterator E = const_cast<iterator>(CE); |
| |
| assert(this->isRangeInStorage(S, E) && "Range to erase is out of bounds."); |
| |
| iterator N = S; |
| // Shift all elts down. |
| iterator I = std::move(E, this->end(), S); |
| // Drop the last elts. |
| this->destroy_range(I, this->end()); |
| this->set_size(I - this->begin()); |
| return(N); |
| } |
| |
| private: |
| template <class ArgType> iterator insert_one_impl(iterator I, ArgType &&Elt) { |
| // Callers ensure that ArgType is derived from T. |
| static_assert( |
| std::is_same<std::remove_const_t<std::remove_reference_t<ArgType>>, |
| T>::value, |
| "ArgType must be derived from T!"); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| this->push_back(::std::forward<ArgType>(Elt)); |
| return this->end()-1; |
| } |
| |
| assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); |
| |
| // Grow if necessary. |
| size_t Index = I - this->begin(); |
| std::remove_reference_t<ArgType> *EltPtr = |
| this->reserveForParamAndGetAddress(Elt); |
| I = this->begin() + Index; |
| |
| ::new ((void*) this->end()) T(::std::move(this->back())); |
| // Push everything else over. |
| std::move_backward(I, this->end()-1, this->end()); |
| this->set_size(this->size() + 1); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| static_assert(!TakesParamByValue || std::is_same<ArgType, T>::value, |
| "ArgType must be 'T' when taking by value!"); |
| if (!TakesParamByValue && this->isReferenceToRange(EltPtr, I, this->end())) |
| ++EltPtr; |
| |
| *I = ::std::forward<ArgType>(*EltPtr); |
| return I; |
| } |
| |
| public: |
| iterator insert(iterator I, T &&Elt) { |
| return insert_one_impl(I, this->forward_value_param(std::move(Elt))); |
| } |
| |
| iterator insert(iterator I, const T &Elt) { |
| return insert_one_impl(I, this->forward_value_param(Elt)); |
| } |
| |
| iterator insert(iterator I, size_type NumToInsert, ValueParamT Elt) { |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| append(NumToInsert, Elt); |
| return this->begin()+InsertElt; |
| } |
| |
| assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); |
| |
| // Ensure there is enough space, and get the (maybe updated) address of |
| // Elt. |
| const T *EltPtr = this->reserveForParamAndGetAddress(Elt, NumToInsert); |
| |
| // Uninvalidate the iterator. |
| I = this->begin()+InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end()-I) >= NumToInsert) { |
| T *OldEnd = this->end(); |
| append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| std::move_iterator<iterator>(this->end())); |
| |
| // Copy the existing elements that get replaced. |
| std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| EltPtr += NumToInsert; |
| |
| std::fill_n(I, NumToInsert, *EltPtr); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Move over the elements that we're about to overwrite. |
| T *OldEnd = this->end(); |
| this->set_size(this->size() + NumToInsert); |
| size_t NumOverwritten = OldEnd-I; |
| this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| |
| // If we just moved the element we're inserting, be sure to update |
| // the reference (never happens if TakesParamByValue). |
| if (!TakesParamByValue && I <= EltPtr && EltPtr < this->end()) |
| EltPtr += NumToInsert; |
| |
| // Replace the overwritten part. |
| std::fill_n(I, NumOverwritten, *EltPtr); |
| |
| // Insert the non-overwritten middle part. |
| std::uninitialized_fill_n(OldEnd, NumToInsert - NumOverwritten, *EltPtr); |
| return I; |
| } |
| |
| template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| iterator insert(iterator I, ItTy From, ItTy To) { |
| // Convert iterator to elt# to avoid invalidating iterator when we reserve() |
| size_t InsertElt = I - this->begin(); |
| |
| if (I == this->end()) { // Important special case for empty vector. |
| append(From, To); |
| return this->begin()+InsertElt; |
| } |
| |
| assert(this->isReferenceToStorage(I) && "Insertion iterator is out of bounds."); |
| |
| // Check that the reserve that follows doesn't invalidate the iterators. |
| this->assertSafeToAddRange(From, To); |
| |
| size_t NumToInsert = std::distance(From, To); |
| |
| // Ensure there is enough space. |
| reserve(this->size() + NumToInsert); |
| |
| // Uninvalidate the iterator. |
| I = this->begin()+InsertElt; |
| |
| // If there are more elements between the insertion point and the end of the |
| // range than there are being inserted, we can use a simple approach to |
| // insertion. Since we already reserved space, we know that this won't |
| // reallocate the vector. |
| if (size_t(this->end()-I) >= NumToInsert) { |
| T *OldEnd = this->end(); |
| append(std::move_iterator<iterator>(this->end() - NumToInsert), |
| std::move_iterator<iterator>(this->end())); |
| |
| // Copy the existing elements that get replaced. |
| std::move_backward(I, OldEnd-NumToInsert, OldEnd); |
| |
| std::copy(From, To, I); |
| return I; |
| } |
| |
| // Otherwise, we're inserting more elements than exist already, and we're |
| // not inserting at the end. |
| |
| // Move over the elements that we're about to overwrite. |
| T *OldEnd = this->end(); |
| this->set_size(this->size() + NumToInsert); |
| size_t NumOverwritten = OldEnd-I; |
| this->uninitialized_move(I, OldEnd, this->end()-NumOverwritten); |
| |
| // Replace the overwritten part. |
| for (T *J = I; NumOverwritten > 0; --NumOverwritten) { |
| *J = *From; |
| ++J; ++From; |
| } |
| |
| // Insert the non-overwritten middle part. |
| this->uninitialized_copy(From, To, OldEnd); |
| return I; |
| } |
| |
| void insert(iterator I, std::initializer_list<T> IL) { |
| insert(I, IL.begin(), IL.end()); |
| } |
| |
| template <typename... ArgTypes> reference emplace_back(ArgTypes &&... Args) { |
| if (LLVM_UNLIKELY(this->size() >= this->capacity())) |
| return this->growAndEmplaceBack(std::forward<ArgTypes>(Args)...); |
| |
| ::new ((void *)this->end()) T(std::forward<ArgTypes>(Args)...); |
| this->set_size(this->size() + 1); |
| return this->back(); |
| } |
| |
| SmallVectorImpl &operator=(const SmallVectorImpl &RHS); |
| |
| SmallVectorImpl &operator=(SmallVectorImpl &&RHS); |
| |
| bool operator==(const SmallVectorImpl &RHS) const { |
| if (this->size() != RHS.size()) return false; |
| return std::equal(this->begin(), this->end(), RHS.begin()); |
| } |
| bool operator!=(const SmallVectorImpl &RHS) const { |
| return !(*this == RHS); |
| } |
| |
| bool operator<(const SmallVectorImpl &RHS) const { |
| return std::lexicographical_compare(this->begin(), this->end(), |
| RHS.begin(), RHS.end()); |
| } |
| bool operator>(const SmallVectorImpl &RHS) const { return RHS < *this; } |
| bool operator<=(const SmallVectorImpl &RHS) const { return !(*this > RHS); } |
| bool operator>=(const SmallVectorImpl &RHS) const { return !(*this < RHS); } |
| }; |
| |
| template <typename T> |
| void SmallVectorImpl<T>::swap(SmallVectorImpl<T> &RHS) { |
| if (this == &RHS) return; |
| |
| // We can only avoid copying elements if neither vector is small. |
| if (!this->isSmall() && !RHS.isSmall()) { |
| std::swap(this->BeginX, RHS.BeginX); |
| std::swap(this->Size, RHS.Size); |
| std::swap(this->Capacity, RHS.Capacity); |
| return; |
| } |
| this->reserve(RHS.size()); |
| RHS.reserve(this->size()); |
| |
| // Swap the shared elements. |
| size_t NumShared = this->size(); |
| if (NumShared > RHS.size()) NumShared = RHS.size(); |
| for (size_type i = 0; i != NumShared; ++i) |
| std::swap((*this)[i], RHS[i]); |
| |
| // Copy over the extra elts. |
| if (this->size() > RHS.size()) { |
| size_t EltDiff = this->size() - RHS.size(); |
| this->uninitialized_copy(this->begin()+NumShared, this->end(), RHS.end()); |
| RHS.set_size(RHS.size() + EltDiff); |
| this->destroy_range(this->begin()+NumShared, this->end()); |
| this->set_size(NumShared); |
| } else if (RHS.size() > this->size()) { |
| size_t EltDiff = RHS.size() - this->size(); |
| this->uninitialized_copy(RHS.begin()+NumShared, RHS.end(), this->end()); |
| this->set_size(this->size() + EltDiff); |
| this->destroy_range(RHS.begin()+NumShared, RHS.end()); |
| RHS.set_size(NumShared); |
| } |
| } |
| |
| template <typename T> |
| SmallVectorImpl<T> &SmallVectorImpl<T>:: |
| operator=(const SmallVectorImpl<T> &RHS) { |
| // Avoid self-assignment. |
| if (this == &RHS) return *this; |
| |
| // If we already have sufficient space, assign the common elements, then |
| // destroy any excess. |
| size_t RHSSize = RHS.size(); |
| size_t CurSize = this->size(); |
| if (CurSize >= RHSSize) { |
| // Assign common elements. |
| iterator NewEnd; |
| if (RHSSize) |
| NewEnd = std::copy(RHS.begin(), RHS.begin()+RHSSize, this->begin()); |
| else |
| NewEnd = this->begin(); |
| |
| // Destroy excess elements. |
| this->destroy_range(NewEnd, this->end()); |
| |
| // Trim. |
| this->set_size(RHSSize); |
| return *this; |
| } |
| |
| // If we have to grow to have enough elements, destroy the current elements. |
| // This allows us to avoid copying them during the grow. |
| // FIXME: don't do this if they're efficiently moveable. |
| if (this->capacity() < RHSSize) { |
| // Destroy current elements. |
| this->clear(); |
| CurSize = 0; |
| this->grow(RHSSize); |
| } else if (CurSize) { |
| // Otherwise, use assignment for the already-constructed elements. |
| std::copy(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| } |
| |
| // Copy construct the new elements in place. |
| this->uninitialized_copy(RHS.begin()+CurSize, RHS.end(), |
| this->begin()+CurSize); |
| |
| // Set end. |
| this->set_size(RHSSize); |
| return *this; |
| } |
| |
| template <typename T> |
| SmallVectorImpl<T> &SmallVectorImpl<T>::operator=(SmallVectorImpl<T> &&RHS) { |
| // Avoid self-assignment. |
| if (this == &RHS) return *this; |
| |
| // If the RHS isn't small, clear this vector and then steal its buffer. |
| if (!RHS.isSmall()) { |
| this->assignRemote(std::move(RHS)); |
| return *this; |
| } |
| |
| // If we already have sufficient space, assign the common elements, then |
| // destroy any excess. |
| size_t RHSSize = RHS.size(); |
| size_t CurSize = this->size(); |
| if (CurSize >= RHSSize) { |
| // Assign common elements. |
| iterator NewEnd = this->begin(); |
| if (RHSSize) |
| NewEnd = std::move(RHS.begin(), RHS.end(), NewEnd); |
| |
| // Destroy excess elements and trim the bounds. |
| this->destroy_range(NewEnd, this->end()); |
| this->set_size(RHSSize); |
| |
| // Clear the RHS. |
| RHS.clear(); |
| |
| return *this; |
| } |
| |
| // If we have to grow to have enough elements, destroy the current elements. |
| // This allows us to avoid copying them during the grow. |
| // FIXME: this may not actually make any sense if we can efficiently move |
| // elements. |
| if (this->capacity() < RHSSize) { |
| // Destroy current elements. |
| this->clear(); |
| CurSize = 0; |
| this->grow(RHSSize); |
| } else if (CurSize) { |
| // Otherwise, use assignment for the already-constructed elements. |
| std::move(RHS.begin(), RHS.begin()+CurSize, this->begin()); |
| } |
| |
| // Move-construct the new elements in place. |
| this->uninitialized_move(RHS.begin()+CurSize, RHS.end(), |
| this->begin()+CurSize); |
| |
| // Set end. |
| this->set_size(RHSSize); |
| |
| RHS.clear(); |
| return *this; |
| } |
| |
| /// Storage for the SmallVector elements. This is specialized for the N=0 case |
| /// to avoid allocating unnecessary storage. |
| template <typename T, unsigned N> |
| struct SmallVectorStorage { |
| alignas(T) char InlineElts[N * sizeof(T)]; |
| }; |
| |
| /// We need the storage to be properly aligned even for small-size of 0 so that |
| /// the pointer math in \a SmallVectorTemplateCommon::getFirstEl() is |
| /// well-defined. |
| template <typename T> struct alignas(T) SmallVectorStorage<T, 0> {}; |
| |
| /// Forward declaration of SmallVector so that |
| /// calculateSmallVectorDefaultInlinedElements can reference |
| /// `sizeof(SmallVector<T, 0>)`. |
| template <typename T, unsigned N> class LLVM_GSL_OWNER SmallVector; |
| |
| /// Helper class for calculating the default number of inline elements for |
| /// `SmallVector<T>`. |
| /// |
| /// This should be migrated to a constexpr function when our minimum |
| /// compiler support is enough for multi-statement constexpr functions. |
| template <typename T> struct CalculateSmallVectorDefaultInlinedElements { |
| // Parameter controlling the default number of inlined elements |
| // for `SmallVector<T>`. |
| // |
| // The default number of inlined elements ensures that |
| // 1. There is at least one inlined element. |
| // 2. `sizeof(SmallVector<T>) <= kPreferredSmallVectorSizeof` unless |
| // it contradicts 1. |
| static constexpr size_t kPreferredSmallVectorSizeof = 64; |
| |
| // static_assert that sizeof(T) is not "too big". |
| // |
| // Because our policy guarantees at least one inlined element, it is possible |
| // for an arbitrarily large inlined element to allocate an arbitrarily large |
| // amount of inline storage. We generally consider it an antipattern for a |
| // SmallVector to allocate an excessive amount of inline storage, so we want |
| // to call attention to these cases and make sure that users are making an |
| // intentional decision if they request a lot of inline storage. |
| // |
| // We want this assertion to trigger in pathological cases, but otherwise |
| // not be too easy to hit. To accomplish that, the cutoff is actually somewhat |
| // larger than kPreferredSmallVectorSizeof (otherwise, |
| // `SmallVector<SmallVector<T>>` would be one easy way to trip it, and that |
| // pattern seems useful in practice). |
| // |
| // One wrinkle is that this assertion is in theory non-portable, since |
| // sizeof(T) is in general platform-dependent. However, we don't expect this |
| // to be much of an issue, because most LLVM development happens on 64-bit |
| // hosts, and therefore sizeof(T) is expected to *decrease* when compiled for |
| // 32-bit hosts, dodging the issue. The reverse situation, where development |
| // happens on a 32-bit host and then fails due to sizeof(T) *increasing* on a |
| // 64-bit host, is expected to be very rare. |
| static_assert( |
| sizeof(T) <= 256, |
| "You are trying to use a default number of inlined elements for " |
| "`SmallVector<T>` but `sizeof(T)` is really big! Please use an " |
| "explicit number of inlined elements with `SmallVector<T, N>` to make " |
| "sure you really want that much inline storage."); |
| |
| // Discount the size of the header itself when calculating the maximum inline |
| // bytes. |
| static constexpr size_t PreferredInlineBytes = |
| kPreferredSmallVectorSizeof - sizeof(SmallVector<T, 0>); |
| static constexpr size_t NumElementsThatFit = PreferredInlineBytes / sizeof(T); |
| static constexpr size_t value = |
| NumElementsThatFit == 0 ? 1 : NumElementsThatFit; |
| }; |
| |
| /// This is a 'vector' (really, a variable-sized array), optimized |
| /// for the case when the array is small. It contains some number of elements |
| /// in-place, which allows it to avoid heap allocation when the actual number of |
| /// elements is below that threshold. This allows normal "small" cases to be |
| /// fast without losing generality for large inputs. |
| /// |
| /// \note |
| /// In the absence of a well-motivated choice for the number of inlined |
| /// elements \p N, it is recommended to use \c SmallVector<T> (that is, |
| /// omitting the \p N). This will choose a default number of inlined elements |
| /// reasonable for allocation on the stack (for example, trying to keep \c |
| /// sizeof(SmallVector<T>) around 64 bytes). |
| /// |
| /// \warning This does not attempt to be exception safe. |
| /// |
| /// \see https://llvm.org/docs/ProgrammersManual.html#llvm-adt-smallvector-h |
| template <typename T, |
| unsigned N = CalculateSmallVectorDefaultInlinedElements<T>::value> |
| class LLVM_GSL_OWNER SmallVector : public SmallVectorImpl<T>, |
| SmallVectorStorage<T, N> { |
| public: |
| SmallVector() : SmallVectorImpl<T>(N) {} |
| |
| ~SmallVector() { |
| // Destroy the constructed elements in the vector. |
| this->destroy_range(this->begin(), this->end()); |
| } |
| |
| explicit SmallVector(size_t Size) |
| : SmallVectorImpl<T>(N) { |
| this->resize(Size); |
| } |
| |
| SmallVector(size_t Size, const T &Value) |
| : SmallVectorImpl<T>(N) { |
| this->assign(Size, Value); |
| } |
| |
| template <typename ItTy, typename = EnableIfConvertibleToInputIterator<ItTy>> |
| SmallVector(ItTy S, ItTy E) : SmallVectorImpl<T>(N) { |
| this->append(S, E); |
| } |
| |
| template <typename RangeTy> |
| explicit SmallVector(const iterator_range<RangeTy> &R) |
| : SmallVectorImpl<T>(N) { |
| this->append(R.begin(), R.end()); |
| } |
| |
| SmallVector(std::initializer_list<T> IL) : SmallVectorImpl<T>(N) { |
| this->append(IL); |
| } |
| |
| template <typename U, |
| typename = std::enable_if_t<std::is_convertible<U, T>::value>> |
| explicit SmallVector(ArrayRef<U> A) : SmallVectorImpl<T>(N) { |
| this->append(A.begin(), A.end()); |
| } |
| |
| SmallVector(const SmallVector &RHS) : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(RHS); |
| } |
| |
| SmallVector &operator=(const SmallVector &RHS) { |
| SmallVectorImpl<T>::operator=(RHS); |
| return *this; |
| } |
| |
| SmallVector(SmallVector &&RHS) : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| } |
| |
| SmallVector(SmallVectorImpl<T> &&RHS) : SmallVectorImpl<T>(N) { |
| if (!RHS.empty()) |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| } |
| |
| SmallVector &operator=(SmallVector &&RHS) { |
| if (N) { |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| return *this; |
| } |
| // SmallVectorImpl<T>::operator= does not leverage N==0. Optimize the |
| // case. |
| if (this == &RHS) |
| return *this; |
| if (RHS.empty()) { |
| this->destroy_range(this->begin(), this->end()); |
| this->Size = 0; |
| } else { |
| this->assignRemote(std::move(RHS)); |
| } |
| return *this; |
| } |
| |
| SmallVector &operator=(SmallVectorImpl<T> &&RHS) { |
| SmallVectorImpl<T>::operator=(::std::move(RHS)); |
| return *this; |
| } |
| |
| SmallVector &operator=(std::initializer_list<T> IL) { |
| this->assign(IL); |
| return *this; |
| } |
| }; |
| |
| template <typename T, unsigned N> |
| inline size_t capacity_in_bytes(const SmallVector<T, N> &X) { |
| return X.capacity_in_bytes(); |
| } |
| |
| template <typename RangeType> |
| using ValueTypeFromRangeType = |
| std::remove_const_t<std::remove_reference_t<decltype(*std::begin( |
| std::declval<RangeType &>()))>>; |
| |
| /// Given a range of type R, iterate the entire range and return a |
| /// SmallVector with elements of the vector. This is useful, for example, |
| /// when you want to iterate a range and then sort the results. |
| template <unsigned Size, typename R> |
| SmallVector<ValueTypeFromRangeType<R>, Size> to_vector(R &&Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| template <typename R> |
| SmallVector<ValueTypeFromRangeType<R>> to_vector(R &&Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| |
| template <typename Out, unsigned Size, typename R> |
| SmallVector<Out, Size> to_vector_of(R &&Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| |
| template <typename Out, typename R> SmallVector<Out> to_vector_of(R &&Range) { |
| return {std::begin(Range), std::end(Range)}; |
| } |
| |
| // Explicit instantiations |
| extern template class llvm::SmallVectorBase<uint32_t>; |
| #if SIZE_MAX > UINT32_MAX |
| extern template class llvm::SmallVectorBase<uint64_t>; |
| #endif |
| |
| } // end namespace llvm |
| |
| namespace std { |
| |
| /// Implement std::swap in terms of SmallVector swap. |
| template<typename T> |
| inline void |
| swap(llvm::SmallVectorImpl<T> &LHS, llvm::SmallVectorImpl<T> &RHS) { |
| LHS.swap(RHS); |
| } |
| |
| /// Implement std::swap in terms of SmallVector swap. |
| template<typename T, unsigned N> |
| inline void |
| swap(llvm::SmallVector<T, N> &LHS, llvm::SmallVector<T, N> &RHS) { |
| LHS.swap(RHS); |
| } |
| |
| } // end namespace std |
| |
| #endif // LLVM_ADT_SMALLVECTOR_H |